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Abstract

Frequency-based methods were set up in order to circumvent the limits of classical finite ele-
ment methods in fast dynamic simulations due to discretizations. In this approach the dynamic
loading was shifted in the frequency domain by FFT, then treated by the Variational Theory
of Complex Rays, and then the time response was reconstructed through an IFFT. This strat-
egy proved to be very efficient due to the CPU VTCR very low cost. However in the case of a
large loading spectrum this frequency-by-frequency approach could seriously degrade the compu-
tational performances of the strategy. This paper addresses this point by proposing the use of
Padé approximants in order to limit the number of frequencies at which the response should be
calculated. Padé approximation is applied to the overall VTCR system based on its frequency
dependency. Finally, as simulations on a simple academic case and on a civil engineering structure
show, this method is found to be very efficient for interpolating the frequency response functions
of a complex structure. This is a key point to preserve the efficiency of the complete VTCR
strategy for transient dynamic problems.
Keywords : model reduction, frequency resolution, Padé approximants, VTCR.
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Nomenclature
Parameters Physical meaning

f frequency (s−1)
ω angular frequency (rad.s−1)
ω0 central pulsation (rad.s−1)
∆ω pulsation bandwidth (rad.s−1)
Ω space domain
Ωi subdomain i
Γ common border between two subdomains

(x, y, z) cartesian basis vectors
(eα, eβ, e3) local base tangent to the shell in a given point

r(α, β) position vector
∂Ωi prescribed boundary
n, t normal and tangent vectors to the edge of the subdomain
U displacement of the average surface
u membrane displacement
w out-of-plane displacement
θ rotation
σ stress in the average surface
K out-of-plane forces
N membrane forces
M out-of-plane momentum
h shell thickness
ρ density
η structural damping coefficient
KCP Hooke’s operator in plane stress
E Young’s modulus
ν Poisson’s ratio
Sad approximation basis subspace

Uh, σh approximated value of displacements and stresses
Un, Cn amplitudes of the local vibration waves in displacements and stresses

Z position vector
P vector characterizing the direction of local vibration waves
ϕ directions of the waves
C circle for the directions of the waves
csv celerity of bending waves
cp celerity of pressure waves
csh celerity of shear waves
A VTCR bilinear operator in equation (4)
A matrix form of A
L VTCR linear operator in equation (5)
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B vector form of L
X amplitudes vector of the wave functions
T truncation order
χ coefficient vector
N number of degrees of freedom, or the number of wave functions used

L, M truncated orders
PL, QM Taylor series truncated respectively to order L and M
p, q Taylor series coefficients
x coefficients for the Taylor serie X
A matrix of Padé coefficients
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1 Introduction
When a projectile impacts a structure, several wave regimes occur that depend on the observation
time and the structure properties and geometry. Classically these wave regimes can be divided into
two types: tension-compression waves and flexural waves which propagate longitudinally. The first
type is non-dispersive and mainly affects the damages in the impacted area, while the second one is
dispersive and has a global effect on the structure.

The vibratory response of elastic structures in the low-frequency range is not a problem even for
complex structures and for the high-frequency range, it exists efficient numerical tools mainly based
on energetic approaches.

In this work we are interested in the effect of an aircraft impact on large civil engineering industrial
structures. This type of load covers a large frequency range, including the medium frequency range
[1, 2]. The cut-off frequency for this type of load is typically within the 50-100 Hz range, which will be
referred to as the medium frequency range for civil engineering structures [3]. Due to the complexity of
the problem, it is impossible to use simplified approaches, as in [4], based on spring-mass more or less
complex models. The finite elements method with a global model seems to be the most appropriate
choice in our case. In order to properly describe the response of the impact area, the finite element
method requires that space and time discretizations are sufficiently refined. Ten linear elements per
wavelength if often used as a rule of thumb [5, 6]. Time step is limited by the Courant condition for
explicit time integration scheme used for this kind of simulations, so that the duration for a wave
crossing a discrete spatial grid is less than the time for the wave to travel to adjacent grid points. For
this reason, computation time quickly becomes prohibitive when entire civil engineering structures
need to be calculated under impact loadings. As a consequence of the mesh refinement limitation,
the medium frequency range is often ignored in this type of simulation, which alters the loading that
the structure undergoes. This may result in wrong predictions from the simulations.

We can find in the literature some methods that can deal with complex structures. They can be
based on structural partitioning as in [7], on methods developed for some types of structures [8], on
specific finite-element developments [9]. In a previous work [10] we proposed a new way of calculating
the shaking of civil engineering structures, that allows to account for medium frequency range. This
methodology is based on the use of the Variational Theory of Complex Rays (VTCR) [11, 12, 13, 14],
which is a wave-based computational approach dedicated to the resolution of forced vibration problems
at a given frequency. The VTCR uses a weak formulation of the boundary conditions that is projected
on a space of admissible shape functions that satisfy both the governing equation and the constitutive
relation. Such shape functions are found to show a strong vibrational content as they describe
classical waves in infinite or semi-infinite domains. In order to address transient dynamic problems,
the proposed strategy is to use a shift from the time domain to the frequency domain that is achieved
by a Fast Fourier Transform (FFT) technique [15]. After solving the problem in the frequency domain
with the VTCR, a time recombination is performed by an inverse Fast Fourier Transform (IFFT). The
approach used in [10] can be very efficient because at each given frequency in the loading spectrum,
the VTCR performs a fast resolution of the problem. However, when the loading spectrum contains a
lot of frequencies, performances of the frequency-by-frequency treatment are decreased dramatically.
The same kind of problem is found when the solution of the Helmholtz equation is required over a
broad frequency range that can be found in various engineering applications.

The following article proposes an alternate multi-frequency approach based on Padé approximants
for improving the reconstruction of the Frequency Response Functions (FRF). Padé approximants
technique consists in the approximation of a function by a rational function of given order. The tech-
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nique was developed around 1890 by Henri Padé [16]. The model reduction by Padé ’s approximants
we have developed is based on its use for acoustic problems given in [17] Using reduced-order models
build via Padé ’s approximations are now well established for systems exhibiting polynomial frequency
dependency of second order kind and for independent frequency excitations. This paper deals with
a more complex situation where a more complicated wave number dependency is encountered due to
the frequency dependent loading.

The paper is structured as follows: Section 2 presents the reference problem and its solution using
the VTCR; Section 3 gives a general presentation of the reconstruction method by Padé approximants;
Section 4 illustrates an application of the strategy on a simple example and on an industrial structure.
Finally, conclusions and perspectives are drawn in Section 5.

2 Description of the Variational Theory of Complex Rays for
transient dynamics

In this section, a brief reminder of the time-frequency strategy (see Figure 1) and of the VTCR
methodology are given.

2.1 Time-to-frequency-to-time domain strategy
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Figure 1: The time-frequency strategy.

The Variational Theory of Complex Rays (VTCR) [12, 15] allows to handle low and medium frequency
ranges. High frequencies, which are known to vanish quickly and/or which do not contain a lot of
energy, are neglected [18].
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2.2 The reference problem at a given frequency for an assembly of two
substructures

Let us consider the case of homogeneous Kirchhoff-Love’s thin plates Ωi which vibrate at a fixed
frequency f = ω

2π
. The thickness is denoted by hi and the density ρi. Under the Kirchhoff-Love

assumptions, the displacement Ui of the average surface becomes:

Ui (x,y, z) = ui (x,y) + wi (x,y) e3i + z θi
θi (x,y) = −grad wi(x,y)

(1)

where ui is the displacement of the average surface and wi is the out-of-plane displacement. The
average surface of the plate can be defined by two independent parameters αi and βi. The location
of a point on the medium surface is defined by the position vector ri(αi, βi) (see Figure 2).
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Figure 2: Geometry of a plate Ωi.

The tangent local plane to the plate at point ri(αi, βi) is defined by two vectors, ∂ri
∂αi

= Aieαi and
∂ri
∂βi

= Bieβi (the vectors eαi and eβi are unit standards). The vector e3i is defined by e3i = eαi ∧ eβi.
The base

(
eαi, eβi, e3i

)
is then orthogonal.

Let us consider a domain Ω composed of two plates Ωi and Ωj with a common border Γij. The
actions of the environment are modeled on Ωi/j by displacement prescribed on ∂UΩi/j and prescribed
stresses on ∂FΩi/j.

Figure 3 illustrates these actions on an assembly of plates Ωi and Ωj.
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Figure 3: The reference problem.
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In elasticity , KCPi are Hooke’s operators related to each area, under plane stress assumptions;
they are defined as:

KCPi = (1 + iηi)K0i
CP = (1 + iηi)


Eαi

1−ναiνβi
ναiEαi

1−ναiνβi
0

νβiEβi
1−ναiνβi

Eβi
1−ναiνβi

0

0 0

√
EαiEβi

2(1+
√
ναiνβi)


(eαi,eβi,e3i)

(2)

where i is the imaginary unit, Eα,βi is the Young’s modulus, να,βi are the Poisson’s ratio in eαi and
eβi directions, hi is the plate thickness, ρi is the density and ηi is the structural damping coefficient
of each sub-domain i.

2.3 The variational formulation associated with the VTCR

The first ingredient of the VTCR is a global weak formulation of the boundary conditions in terms of
both displacements and forces. The weak formulation can be expressed as follows: find (Ui, σi) ∈ Sad,i
such as:

A
(∣∣∣∣ sisj ,

∣∣∣∣ δsiδsj

)
= L

(∣∣∣∣ δsiδsj

)
(3)

with the following general forms:

A
(∣∣∣∣ sisj ,

∣∣∣∣ δsiδsj

)
=Re

{
−iω

[∫
∂UΩi

δσi.ni.U
∗
idS +

∫
∂FΩi

σi.n1.δU
∗
idS

+

∫
∂UΩj

δσj.nj.U
∗
jdS +

∫
∂FΩj

σj.nj.δU
∗
jdS

+
1

2

∫
Γij

{
(δσi.ni + σj.nj) .(Ui + Uj)

∗

+(σi.ni − σj.nj) .(δUi − δUj)
∗

}
dS

]}
(4)

L
(∣∣∣∣ δsiδsj

)
=Re

{
−iω

[∫
∂UΩi

δσi.ni.U
∗
iddS +

∫
∂FΩi

Fid.δU
∗
idS

+

∫
∂UΩj

δσj.nj.U
∗
jddS +

∫
∂FΩj

Fjd.δU
∗
jdS

]}
(5)

where:

• the integral part on ∂UΩi/j satisfies the prescribed displacements on Ωi/j,

• the integral part on ∂FΩi/j satisfies the prescribed stresses on Ωi/j,

• the integral part on Γij satisfies the transmission conditions on the boundary Γij.

Re is the real part of a complexe quantity and * the conjugate part. Spaces Sad,i/j are the admissible
fields associated with homogeneous conditions on the substructure Ωi/j.

The previous weak equation is projected on an approximation basis subspace Sad,i/j that is com-
posed of shape functions that satisfies exactly both the constitutive relation and the dynamic equi-
librium equation.
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2.4 Derivations of two-scale shape functions and the discretized problem

The VTCR can be viewed as a Trefftz’s method which particularity is the use of Herglotz wave func-
tions to represent the vibrational field. Those functions involve an integral combination of plane waves
in all the directions. The solution is assumed to be properly described locally as the superposition of
an infinite number of these functions which can be written in the following manner:

Ui (Zi,Pi) =
∫
Pi∈Ci Uni (Pi) .ePi.ZidPi on Ωi

σi (Zi,Pi) =
∫
Pi∈Ci Cni (Pi) .ePi.ZidPi on Ωi

(6)

where Zi denotes the position vector. Uni and Cni contain the amplitudes of the associated local
vibration waves. Pi characterizes the direction of local waves and is defined on circle Ci.

In order for these local waves (Ui, σi) to be admissible, they must be in Sad,i and satisfy the consti-
tutive and dynamic equilibrium equations. Combining these two equations leads to some remarkable
shape functions (named complex rays) characterized by various expressions of Pi. For example in the
case of a flexural plate the vibration waves P are defined as :

(P>.P)4 =
12(1− ν2)ρω2

(1 + iη)Eh2
(P>.P)2 (7)

Note that the term ePi.Zi describes the short scale variation, which is known in a closed form, while
Uni and Cni are the long scale variations, which remain the unknown to be determined.

Let us note that admissible space Sad,i is of infinite dimension since all the directions of propagation
Pi are taken into account. To end up with a finite dimension problem that can be solved numerically,
one needs to discretize Sad,i into a finite dimension space Shad,i.

The displacement of any point of the substructure is generated by a basis of admissible complex
waves. The unknowns are the generalized amplitudes Uh

i (Pi) of the basis on Ωi. Accounting for all
the directions ϕi in Ci leads to an integral over Ci.
This integral takes the following form:

Uh
i (zi) =

∫
ϕi∈Ci

Un
h
i (ϕi)ePi(ϕi).zidϕi (8)

σhi (zi) =

∫
ϕi∈Ci

Cnhi (ϕi)ePi(ϕi).zidϕi (9)

The integrals in Equation (8) and Equation (9) can be discretized as Dirac’s functions and one can
consider the approximate amplitude Uh (Pi(ϕi)). The angular distributions of the plane waves for all
points in the substructure are assumed to be well-described by this discontinuous angular distribution.
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The choice of the angular discretization and therefore the number of waves required for solving
this kind of problem is related to the number of waves in the structure and on each edge [19].

The number of wavelength ni depends on the celerity of the waves: for pressure waves, cp =√
Eα/βi

ρi(1−ναiνβi)
, for shear waves, csh =

√ √
EαiEβi

2ρi(1+
√
ναiνβi)

and for bending waves csv =
√
ω 4

√
Eα/βih

3
i

12ρihi(1−ναiνβi)
.

Finally at a given frequency ω, the VTCR equation results in a linear problem of the following
form:

A(ω)X(ω) = B(ω) (10)

where A and B come from the discretization of operators A (Eq. 4) and L (Eq. 5). X contains
the unknown slow scale amplitude of the shape functions. Due to the strong vibrational sense of the
shape functions, the VTCR offers a substantial reduction of the size of the problem to solve compared
to finite element methods.

3 A new approach for broadband analysis by the VTCR
The treatment of an aircraft crash on a civil engineering structure by the strategy proposed in [10]
results in a frequency-by-frequency resolution by the VTCR before recombining the solution in the
time domain. This may degrade the strategy performances when lots of frequencies need to be ac-
counted for. This article provides an alternate approach based on Padé approximants for the rapid
reconstruction of frequency response functions. The aim is to reduce the number of frequencies at
which a complete problem must be solved, and then to interpolate the solution between these frequen-
cies. To this aim, a reconstruction based on Padé approximants allows a good complement, involving
the calculation of the complete solution and its derivatives for a limited number of frequencies, and
a reconstruction around these points. This approach is helped by the expression of the frequency
dependency in the form of scalar functions in the overall VTCR equation.

3.1 Padé approximants

All VTCR problems, with harmonic vibrations f = ω
2π
, have the following form:
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A(ω)X(ω) = B(ω) (11)

In a scheme of direct solution, the calculation of the complete solution of Equation (11) on only few
frequency points, coupled to a reconstruction of an approximated solution between them, was found
to be an effective approach [20]. Thus, given a function X(ω) of ω, the Taylor series development
around ω0 gives the following approximate solution:

X(ω0 + ∆ω) ≈ XT (∆ω) =
T∑
i=0

χi(∆ω)i (12)

T is the truncation order of the Taylor series expansion. The coefficient vector χi is given by:

χi =
X(i)(ω0)

i!
(13)

where X(i)(ω0) is the ith derivative of X over ω, taking ω = ω0 and considering that X(0)(ω0) = X(ω0).
The determination of the first T derivatives from X is then required to estimate an approximate
solution around ω0.

However, in the context of the series expansion, it has been shown that, for a function with poles
as it is the case for structural FRFs, an expansion at a ratio of two power series generally performs
a better representation (greater convergence range and better convergence rate) compared to the
Taylor series for a given truncation order [21, 22, 23]. In the next part, the approximation at a given
frequency ω0 is presented under the methodology for determining Padé approximants of Equation
(11). For the sake of clarity, let us consider the jth component of X(ω0), which is sought around ω0

as :

Xj(ω0 + ∆ω) ≈
PLj(∆ω)

QMj(∆ω)
(14)

where PLj(∆ω) and QMj(∆ω) are two Taylor series, truncated respectively to order L and M and
defined as:

PLj(∆ω) =
∑L

i=0 pij(∆ω)i

QMj(∆ω) =
∑M

i=0 qij(∆ω)i
(15)

The approximation of Xj(ω0 + ∆ω) is given by the single determination of the coefficients pij and
qij. An efficient approach [22] to determine these coefficients is to identify the coefficients of a Taylor
series expansion XL+Mj(∆ω) to the order L + M (Equation 12), and so solving the following linear
system:

PLj(∆ω)−XL+Mj(∆ω)QMj(∆ω) = 0 (16)

where the coefficients of order equal to ∆ω are extracted to form a set of (L+M+1) equations. With
the form of Equation (16), the linear system of equations allows zero for QMj(∆ω), which makes it
more suitable to account for a resonance frequency in the original answer. However, the system of
underdetermined Equations (16) gives a solution of (L + M + 2) coefficients up to a multiplicative
constant. Therefore, they are usually normalized so that the denominator coefficient of the zero order
q0j is taken equal to 1 [22]. In the following, all the equations can then be put as:
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p0j = x0j

p1j − x0jq1j = x1j
...

pLj − xL−1jq1j − · · · − x0jqLj = xLj
−xLjq1j − xL−1jq2j − · · · − xL−M+1jqMj = xL+1j

...
−xL+M−1jq1j − xL+M−2jq2j − · · · − xLjqMj = xL+Mj


(17)

with {
xij = 0 if i < 0
qij = 0 if i > M

(18)

Equation (13), gives the expression of the coefficients xij. Equations (17) can be explicitly written
by taking into account the (L+M) first derivatives of Xj(ω) to ω0:

i!pij −

(
i∑

k=1

(
i

k

)
k!X

(i−k)
j (ω0)qkj

)
= X

(i)
j (ω0), for i = 0, ..., L+M (19)

where {
pij = 0 if i > L
qkj = 0 if k > M

(20)

and where the binomial coefficient are given by:(
i

k

)
=

i!

k!(i− k)!
(21)

This system can be solved efficiently in the following matrix form for each DoF j involving derivatives
up to L+M order of the solution vector :

[A]j



p0
...
pL
q1
...
qM


j

=



X(ω0)
...

X(L)(ω0)
X(L+1)(ω0)

...
X(L+M)(ω0)


j

, for j = 1, ..., N (22)

Based on the solution in a given frequency, X(ω0), this method is defined in the literature as
the Padé approximation in a single point. It can easily be extended to several points, as shown for
example in [20]. The goal is to estimate the combination of this approach coupled with VTCR. The
use of a multipoint Padé approximation is considered as a natural extension of this work. Similarly,
an approximation of the solution using the Taylor series expansion, solving Equations (22) requires
the determination of the (L+M)th derivative from the solution vector X(ω) in ω0. This is discussed
in the next section.
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3.2 Successive derivatives of the solution vector

The (L + M) successive derivatives of X to the pulsation ω can be obtained by Equation (11). The
successive derivatives can be computed by a recursive formula, leading to the solution of a linear
system with multiple second members, which is very efficient from a numerical point of view : only
one decomposition of the coefficient matrix is to be done. To the order i, the expression becomes:

i∑
k=0

(
i

k

)
A(i−k)(ω0)X(k)(ω0) = B(i)(ω0), for i = 1, ..., (L+M) (23)

where the zero order derivatives correspond to the undifferentiated functions. Extracting the term of
highest order of the sum in Equation (23) leads to the following recursive expression for the ith order
derivative of X in ω0:

A(ω0)X(i)(ω0) = B(i)(ω0)−
i−1∑
k=0

(
i

k

)
A(i−k)(ω0)X(k)(ω0), for i = 1, ..., (L+M) (24)

This implies that the successive derivatives of X required for the determination of the Padé approx-
imation can be computed efficiently as the solution of a N dimension set of equations. Indeed, the
solution can be performed by direct methods using a decomposition of the system matrix. Factorising
is then the most numerical consuming step but is processed only one time. Regarding the multiple
secondary vectors, they are built from derivatives of the system matrix and derived from lower order
vector solution.

3.3 Procedure for the reconstruction of the frequency response using the
Padé approximants

This section summarizes the calculation steps to approximate the solution over a frequency range
using Padé approximants. They can be separated into two parts:

• first, at a given frequency ω0 the solution and its derivatives to successive orders (L + M) are
calculated according to Equation (24). This implies the solution of (L + M + 1) problems of
size N for each frequency at which the solution must be approached;

• then the solution around ω0 is reconstructed, involving solving N problems of (L + M + 1)
dimensions (see Equation (22)) to determine the Padé approximants for each degree of freedom.
Following this, N evaluations of the rational fraction (Equation (14)) are made for each ∆ω,
where the solution evaluated is approached.

Given a discretization of the frequency domain into intervals associated with their center frequency
ω0, the detailed procedure corresponding to a frequency range is presented in the algorithm given in
Table 1.
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Table 1: Reconstruction algorithm of the response over a frequency range using Padé approximants.

Algorithm of multi-frequency solution using Padé approximants
1. Calculate the matrix and the second member in ω0 from Equation (11)
2. Solve Equation (11) for the solution X(ω0)
3. For i = 1 to L+M
4. Solve Equation (24) for X(i)(ω0)
5. end
6. For j = 1 to N
7. Solve Equation (22) for the Padé approximants
8. Evaluate the multi-frequency solution approximated around ω0 (Equation (14))
9. end

Three points can be considered in view of the given procedure. The first point is to select the
secondary frequencies where the solution will be evaluated, or an appropriate discretization of the
frequency range. Secondly, for each coarse frequency, the order of the polynomial expansions and
frequency range around ω0 should be selected consequently, which raises the question of values of L
and M . Third, one must evaluate the efficiency conditions for this approximation scheme.

Although the second and third points are discussed in details in [20] for structural or acoustic
applications, the choice of secondary frequencies has not received much attention in the state of art.
A suggestion is made in [17]. Regarding the order of polynomial expansions to consider for both the
numerator (L) and the denominator (M) in Equation (14), the following constraint proposed in [20]
reduces the range of possibilities giving satisfying approximations:

M = L+ 1 (25)

In addition, there is an upper limit for the maximum order which can be defined, due to ill
conditionning in the resulting matrix system from Equations (22). Therefore, depending on the
frequency discretization chosen for a scan of the frequency range, the Padé approximation should be
more effective if it could converge on several frequency increments around ωmax. The time allocated
to solve several different linear systems of size N leads us to solve (L+M+1) systems with the second
member of N equations (1 decomposition, and (L + M + 1) solutions) and N systems (L + M + 1)
equations, with (L + M + 1) � N . This methodology has been extremely effective when applied
to important structural and acoustic problems with single field and a a priori discretization of the
frequency range [24, 20].

4 Application of multi-frequency analysis

4.1 Multi-frequency analysis on a simple case study

In this study to compare the multi-frequency analysis via Padé approximants with a classical frequency-
by-frequency solution, we set ourselves in the case of a bending problem applied to a single Kirchhoff-
Love plate (see Figure 5).
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Figure 5: Padé approximants example: description of the geometry and boundary conditions.

The case presented is a plate clamped on one of its edges, free on two others and loaded by a out-of-
plane line force on its last edge. The plate is square and has the following dimensions: 1m × 1m ×
0.7mm. The loaded edge is thus subjected to a unit line force Fd with a direction perpendicular to the
mean surface of the plate. The frequency range is [2π× 0 Hz ; 2π× 350 Hz]. Materials and structural
parameters are given in Table 2.

Table 2: Material and structural parameters of the studied steel plate.

Notation Physical quantity Value and unit
E Young’s modulus 210 GPa
ν Poisson’s ratio 0.3
ρ mass density 7800 kg/m3

ξ damping factor 0.01

The comparison between a finite element solutions calculated with Cast3m [25] and the VTCR solution
at ω = 2π × 150 Hz is presented in Table 3.

Table 3: FEM Cast3m solution (left), VTCR solution with 40 DoF (right).
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To study the efficiency of multi-frequency solution using Padé approximants, the flexural plate de-
scribed is studied for a 40 Hz medium frequency range, from 290 to 330 Hz. In this first study, the
goal is to investigate the efficiency of Padé approximants applied to the VTCR problem in terms of
both results and calculation time compared to a classical solution at each frequency. This solution
repeated each 1 Hz will be considered as the reference solution. Figure 6 shows the convergence of
the frequency response function (FRF) for several sets of parameters L and M . Here a single analysis
is calculated with 310 Hz as a center frequency. One can observe that increasing the order L and M
of Padé approximants quickly leads to the convergence to the reference solution.
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Figure 6: FRF for several sets of parameter L and M over a frequency range of 40 Hz.

Application of Padé approximants to VTCR is found to be efficient when the approximants order is
high enough to describe the solution over the frequency range. Nevertheless, if this analysis does not
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require one inversion of the bilinear matrix for the central frequency, it requests to calculate at each
frequency the successive derivatives of this matrix and the second member. One can easily imagine
that these derivatives may involve significant computational cost if they are not written recursively.
This cost also increases with orders L and M as the order of derivation is equal to L+M .

Figure 7 compares the computation time for multi-frequency analysis with two sets of parameters
and the classical analysis. Note that the approach using Padé approximant is particularly interesting
with an important frequency range. Indeed, in the case of a frequency-by-frequency solution, the
overall calculation time for 40 Hz is 95 s, and includes assembly and solution times required for each
frequency. For the multi-frequency analysis, the computation time is 47 s for orders L = 1 andM = 2,
and 65 s for orders L = 5 and M = 6. In these two cases, a high proportion of the calculation time
is dedicated to the construction of the successive derivatives.

Indeed, in this study, the matrix to invert is rather of small size as we treat only one subdomain.
Thus, the matrix inversion in the case of a problem with a few plate structures is numerically inex-
pensive. However, for problems involving a larger number of subdomains, the inversion time will be
much higher, and so the analysis via Padé approximants can be expected to be more efficient.
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Figure 7: Comparison of computation time for both types of analysis.

Figures 8 and 9 define the FRF calculated over the full frequency range from 0.1 to 350 Hz. Here
Padé approximants orders of L = 4 and M = 5 were chosen. This parameter set presents the best
error/computation time ratio on a small frequency range. A study on the discretization analysis is
presented here. This discretization can be observed through the center frequencies chosen to represent
the FRF solution. First, in Figure 8, the choice of bandwidth is fixed at 20 Hz and therefore defined
a priori.
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Figure 8: FRF over a wide frequency range with a bandwidth of 20 Hz.

Figure 9 presents a a posteriori study where the bandwidth ∆ω increases with respect to the central
frequency ω0. The criterion is set so that ∆ω

ω0
< 10%. This bandwidth begins at 3 Hz to finish at 20

Hz. It can be noted that it can induce significant errors when the number of modes per frequency
band becomes too important.
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Figure 9: FRF over a wide frequency band, with a standard 10 % criterion.

From this first example one can therefore conclude that the choice of the discretization analysis is
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dependent on the frequency content that one seeks to represent. To solve this, an analysis where the
frequency ranges are define by dichotomy from an error criterion can be used.

4.2 Numerical application of the method on a civil engineering structure

In this section the VTCR coupled with Padé’s multi-frequency approach is used to calculate the
frequency response of a structure subjected to a time versine loading. Experimental shaking or vibra-
tion studies on large civil engineering structures are lacking in actual literature. For that reason, the
comparisons between the VTCR-Padé strategy and the classical explicit time finite element approach
is here based on international rules [26] for the design of nuclear civil engineering structures. The
comparison between simple VTCR (frequency-by-frequency analysis) and FEM calculation for this
structure is given in [10].

The load applied on the civil engineering structure sketched in Figure 10 may be seen as an
impulsive load. First the discrete Fourier transform of the load is calculated. Then the frequency
response at two chosen points (P1) and (P2) of the structure (see in Figure 10) is given by the VTCR.

A concrete structure with a thickness of 1.0 m is considered where the mechanical properties of
concrete are calculated according to the Eurocode 2 rules:

• concrete B30 = 30 MPa,

• Young’s modulus = 34 GPa,

• Poisson’s ratio = 0.2,

• mass density = 2500 kg/m3,

• damping coefficient = 0.04 (a hysteretic damping is used),

The structure is subjected to a time loading applied at the center of a side wall (point P0 in Figure
10). This loading and the boundary conditions of the structure are modeled and described in Figure
10.
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Figure 10: Geometry of civil engineering structure studied.

The versine force FP0(t) with an amplitude of 1 MN is defined in Figure 11.
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Figure 11: Time loading function.

Figure 12 describes the frequency content of the loading function applied.
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Figure 12: Frequency content of FP0 versine loading function.

Two hundred waves are sufficient to properly represent the frequency response [27]. Table 4 shows
the VTCR frequency solution obtained at four different frequencies. A verification of the boundary
conditions is done to check the quality of the solution.

Table 4: VTCR solutions of civil engineering example at four different frequencies.
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Figure 13 presents the results for the point P1. Bandwidth is refined in this case studied with the
10 % criterion based on the error between the reference VTCR frequency-by-frequency solution and
the Padé approximants solution. In the case where the reference solution is not known, bandwidth
refinement by dichotomy, as stated in paragraph 4.1, could be used. Here this bandwidth begins at
10 Hz and is initially refined to 4 Hz. In this case, only 13 matrix inversions are enough to present
good results on a frequency bandwidth of 100 Hz.
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Figure 13: FRF over an adapted wide frequency bandwidth, with a standard criterion of 10 %, for
point P1.

Figure 14 shows the results for the point P2 with the same previous bandwidth discretization. We
can observe that the error can be higher than 10 % on some frequencies. These errors are mainly due
to the fact that the modal content of the floor at the point P2 is slightly different than that of the
area of the point P1. Nevertheless, The error remains below 20 % which is better than finite element
calculations which one not refined enough.
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Figure 14: FRF over the previous adapted wide frequency band for point P2.
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To go further in the analysis, it is possible to return to the time domain in order to analyze the
impact of these errors on the response of the structure. Figure 15 shows the displacement at point
P2 of the floor. One can thus see that despite the 20 % maximum error at some frequencies, the time
displacement response is only slightly affected. The error in this example is less than 1 mm.

The displacement response allows us to observe easily and graphically the low frequency content.
It is recommended to use the acceleration response to focus on errors in medium frequencies ranges.
So Figure 16 allows us to qualify errors with multi-frequency analysis in medium frequencies. One
can see that the approximation error remains low (≤ 4 g in our case).
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Figure 15: Time displacement response over the previous adapted wide frequency band for the point
P2.
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Figure 16: Time acceleration response for the point P2.

To conclude, in this application a multi-frequency analysis with Padé’s approximants provides good
results due to the fact that the modal content of the studied structure is known. In this case, the
frequency bands could be adapted to the modal content. Nevertheless, it is interesting to note that
in a first approach, the proposed adapted multi-frequency analysis allows to describe an approximate
response of the structure with a computational cost reduced by approximately 30 %. In the case
studied, the computational cost for a frequency-by-frequency resolution is around 105 min.

If the modal content is not known, the same analysis can be done by choosing first arbitrary
frequences. In a second step the bandwidth can be divided by two and an error between the two
solutions computed. If this error seems not acceptable the bandwidth can be divided by two again
and the news error computed. This approach can be done until the differences between two solutions
is assumed acceptable.

5 Conclusions
In this paper, a new way has been presented for the treatment of impact problems on civil engineering
structures, as well as the determination of the shaking induced on industrial structures. The approach
is based on a FFT/VTCR/IFFT methodology coupled with a multi-frequency resolution based on
use of Padé approximants.

The previous FFT/VTCR/IFFT methodology, based on a frequency-by-frequency resolution, has
already been shown to be an accurate way for solving transient dynamic impact problems over a low
and medium frequency range. However, it could exhibit a loss of efficiency in the case of large spectrum
loadings. The multi-frequency resolution developed in this paper, based on a Padé expansion of the
VTCR problem in the frequency domain, can be seen as a large band analysis methodology. The
main conclusions about this approach are:

• the Padé expansion gives accurate results on plate assemblies, but requires either the modal
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content of the structure to be a priori known, or to proceed by dichotomy with an error criterion
as proposed in this article;

• to overcome this issue, a multi-point approach based on a bandwidth adaptation related to a
convergence criterion can be used. This methodology provides good results with insignificant
errors on FRFs and on time displacement and acceleration responses. However, the results
depend on the eigenmodes excited by the input load, and more particularly by specific modes
such as floor modes or wall modes which may vary between the studied area and the area used
to define the frequency bandwidth;

• application of the Padé expansion is efficient and accurate on plate assemblies compared to
the previous frequency-by-frequency approach. In the case studied in this article, the time
saving was estimated to be nearly 30 % (32 min) compared to a classic frequency-by-frequency
resolution;

• however, application of the proposed strategy to structures involving shell substructures seems
to be more problematic. Indeed the method requires the calculation of successive derivatives
of the VTCR terms with respect to the frequency what is numerically a tough task in the
implementation for shell substructures VTCR shape functions. Further developments should
be carried out in order to adapt the Padé approximants approach to structures including shell
parts.
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