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Gosseleta
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Abstract

The purpose of this article is to assess the adaptive multipreconditioned FETI
solvers (AMPFETI) on realistic industrial problems and hardware. The multi-
preconditioned FETI algorithm (first introduced as Simultaneous FETI [1]) is
a non-overlapping domain decomposition method which exhibits good robust-
ness properties without requiring the explicit knowledge of the original partial
differential equation, or any a priori analysis of the algebraic system through
eigenvalues problems. Multipreconditioned FETI solves critical problems in
significantly fewer iterations than classical FETI but each iteration involves a
larger computational effort. An adaptive strategy (known as the adaptive mul-
tipreconditioned conjugate gradient algorithm [2]) has been proposed to achieve
balance between robustness and efficiency and we will observe that it provides
an efficient solver for the problems considered here.

Keywords: Domain decomposition, FETI, Krylov subspace methods,
multipreconditioning, adaptive multipreconditioning

1. Introduction

Domain decomposition methods provide a favorable framework to solve in
parallel the linear systems resulting from the discretization of partial differential
equations. Indeed the algorithms which can be derived, and in particular the
Schur complement family of methods, namely Balancing Domain Decomposi-5

tion (BDD) [3], Finite Element Tearing and Interconnecting (FETI) [4], and
their constrained variants [5, 6], involve exchanges between neighbors and only
limited all-to-all communications. Moreover, the sparse structure of the coarse
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problems introduced to ensure the scalability allows for multilevel large scale
implementations [7, 8].10

These methods suffer from a loss of performance in certain cases (typically
jagged interfaces, bad aspect ratios, strong heterogeneities misplaced with re-
spect to the interface, incompressibility) which makes them ineffective to solve
a large class of systems encountered by mechanical engineers. Many fixes were
proposed to correct these flaws but they often required the knowledge of the15

original PDE [9, 10], and they were thus not generic enough to be implemented
in commercial engineering software.

It has been understood that the drop of performance occurred when the
classical preconditioner - a weighted sum of the inverses of subdomain matrices
- was not able to correctly take into account certain global features [11, 12]. New20

fixes were proposed based on an a priori analysis of the algebraic system without
reference to the PDE. The prior analysis takes the form of localized generalized
eigenvalues problems with minimal communication. In the GenEO methods
[13, 14], the part of the spectrum of the preconditioned operator which causes
bad conditioning, is detected and removed from the resolution by augmenting25

the Krylov solver; the same objective can be achieved by adding well chosen
primal constraints [15, 16]. In the deluxe scaling methods, the partition of
unity between subdomains which is involved in the preconditioner is optimized
in order to avoid the dilution of the problematic local information [17].

Because of the strong connection between eigenvalue analysis and Krylov30

solvers, it was tempting to skip the prior analysis and try to detect the “bad
modes” on the fly. This idea led to the Simultaneous-FETI algorithm (SFETI)
[1], which turned out to be a particular case of the multipreconditioned Krylov
solvers [18, 19, 20] with an optimized implementation. For clarity, in this ar-
ticle we will refer to the SFETI algorithm as the multipreconditioned FETI35

(MPFETI) algorithm. In MPFETI the additivity of the preconditioner is ex-
ploited in order to generate as many search directions as there are subdomains:
the local information is preserved, and an optimal combination (scaling) is com-
puted at each iteration. The drawback of the method is the large quantity of
information generated at each iteration and the storage requirements caused by40

the loss of the short recurrence property. In order to limit the amount of nu-
merical data, a selection criterion was proposed in [2] where the vectors whose
contributions need not be individualized are summed up (as in the classical
FETI algorithm). This is the adaptive multipreconditioned conjugate gradient
algorithm (AMPCG) which gives rise to the adaptive MPFETI, or AMPFETI,45

algorithm.
The aim of this paper is to present a validation of the MPFETI and AMPFETI

algorithms on large scale computations and realistic problems coming from the
industry, computed on “standard” clusters (a few thousands cores). MPFETI
requires the factorization of a dense N × N matrix at each iteration (where50

N is the number of subdomains) so in its present form we do not expect it to
scale up to hundreds of thousands of subdomains as do some of the previously
cited methods. We do anticipate that this bottleneck could be avoided with
further adaptive or multilevel methods, for instance by aggregating subdomains
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into clusters before multipreconditiong as proposed in [21] for the RAS domain55

decomposition method.
The article is organized as follows: Section 2 gives a short presentation of

Simultaneous FETI and its adaptive versions; then, academic validation and
scalability results are provided in Section 3; Section 4 presents a realistic indus-
trial simulation; finally, Section 5 concludes the paper.60

2. Adaptive Multipreconditioned FETI: the algorithm

The algorithm that we study in this article is a combination of two things.
First, the FETI domain decomposition method is applied to rewrite the original
linear system as a linear system posed on the interfaces between subdomains
that posesses an additive structure. Then the adaptive multipreconditioned65

conjugate gradient (AMPCG) is used as a linear solver. Although this algo-
rithm is not limited to the context of structural mechanics, we restrain to this
framework for simplicity.

2.1. The FETI linear system

Let us consider the linear system of equations of the form Ku = f arising70

from some finite element discretization of a linear mechanical problem set on a
domain denoted by Ω. Vectors u and f are respectively the vector of displace-
ments and the vector of generalized forces (as well as the forces this may include
terms coming, for example, from the elimination of non-homogeneous Dirich-
let boundary conditions). We assume that the stiffness matrix K is symmetric75

positive definite. In the FETI method [22], the global problem is not assembled.
Instead, the computational domain Ω is partitioned into N non-overlapping sub-
domains Ωs, s = 1, . . . , N , and only local quantities are assembled: the matrix
Ks and vector of generalized forces fs of the same problem once restricted to
each subdomain Ωs. This way the problem can be reformulated as80

Ksus = fs + ts>Bs>λ for each s = 1, . . . , N,∑
s

Bstsus = 0
(1)

where ts : Ωs → ∂Ωs are trace operators and Bs : ∂Ωs → ⊕1≤i 6=j≤N (∂Ωi∩∂Ωj)
are signed Boolean assembly operators. The first equation ensures the equilib-
rium of subdomain Ωs and the second is a constraint that ensures the continuity
of the displacements on the interface. This is known as the compatibility con-
dition and enforced by means of an extra unknown: the Lagrange multiplier λ.85

Next, the problem is restricted to the set of interfaces between subdomains.
To this end, we introduce the local Schur complements :

Ss = Ks
ΓΓ −Ks

ΓIK
s
II
−1Ks

IΓ;
I : internal degrees of freedom
Γ : boundary degrees of freedom,

and their (pseudo) inverses Ss† that satisfy the identity: Ss† = tsKs†ts> (the
reason pseudo-inversion ·† is needed is to account for all cases where the kernel
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of Ks is not restricted to zero). Let Rs be a matrix whose columns form a basis
of Ker(Ks) (in this case of the local rigid body modes) and define

e = −
(
f1>R1| . . . |fN>RN

)>
; d = −

∑
s

BstsKs+fs

F =
∑
s

BsSs†Bs> ; G =
(
B1t1R1| . . . |BN tNRN

)
.

The displacement unknown is then eliminated out of (1) to yield the FETI
system: find (λ,β) such that(

F G
G> 0

)(
λ
β

)
=

(
d
e

)
. (2)

The second equation, G>λ = e, corresponds to the constraint that each sub-
domain must remain self-equilibrated. The connection with the original for-
mulation is that us = Ks†(fs + ts>Bs>λ) + Rsβs (βs being the part of β
corresponding to subdomain Ωs). Instead of solving a saddle point system, an
initialization–projection strategy is applied and λ is sought for as

λ = λ0 + Πλ̃; λ0 = AG(G>AG)−1e; Π = I −AG(G>AG)−1G>

for a given symmetric positive definite matrix A, most often chosen among the
classical preconditioners S̃ (see (4)) and the identity matrix I [23]. Note that
Π is a projector that satisfies Ker(Π>) = range(G). Substituting this into (2),
and pre-multiplying by Π> leads to the final linear system

Π>FΠλ̃ = Π>(d− Fλ0), (3)

that is solved by the conjugate gradient iterative solver. The preconditioner
takes the form of a scaled sum of Schur complements (or approximations thereof):

S̃ =
∑
s

B̃sS̃sB̃s> with

∣∣∣∣∣∣∣∣
either S̃s = Ss : Dirichlet (or full) preconditioner,

or S̃s = Ks
ΓΓ : lumped preconditioner,

or S̃s = diag(Ks
ΓΓ) : superlumped preconditioner,

(4)
where operators B̃s are scaled assembly operators such that:(∑

s

BsB̃s>

)
Bj = Bj (5)

Two common choices (that we use in our numerical experiments) are mul-
tiplicity scaling and stiffness scaling (often called K-scaling) [24]: the scaling
is proportional either to the number of subdomains that the degree of freedom
belongs to or to the diagonal of the local stiffness matrix Ks

ΓΓ on the boundary.
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2.2. Adaptive Multipreconditioned Conjugate Gradient90

Unfortunately there are many cases in which the FETI algorithm does not
converge fast or does not converge at all (due to the accumulation of numerical
errors over very many iterations) even with state of the art choices of the scaling
operators. This is the case in particular for some heterogeneous material distri-
butions and partitions into subdomains that cut through the heterogeneities [11].95

The Simultaneous FETI algorithm [1] was proposed to solve even these hard
test cases. It is a multipreconditioned conjugate gradient algorithm (MPCG)
[18] where each term in the definition of the preconditioner S̃ is considered to
be a separate preconditioner. This way the search space is significantly enlarged
and it was observed that convergence is greatly improved. The drawback is that100

an iteration of MPCG is more expensive than an iteration of the usual PCG
and the extra work may not always be necessary. Recently, an improvement
of MPCG, the Adaptive MPCG algorithm (AMPCG) [2] was introduced that
chooses, at each iteration, how many search directions are used (between 1 and
N , N being again the number of subdomains). The FETI linear system is ideal105

for the AMPCG framework since the main assumption is that a bound for the
smallest eigenvalue of the globally preconditioned operator is known. This is
the case here: all non zero eigenvalues of S̃Π>FΠ are larger than 1 [25, 26, 27].

Algorithm 1 describes AMPCG applied to FETI (equation (3) precondi-
tioned by S̃) using the notation introduced in the previous section as well as
the following: λ00 is an initial guess, 1 = (1, 1, . . . , 1︸ ︷︷ ︸

N times

)>, ε > 0 is the tolerance

on the preconditioned residual, τ > 0 is a threshold chosen by the user (more on
this below), and the local components in the operator and the preconditioner
are respectively denoted by

F s = BsSs†Bs>, and S̃s = B̃sS̃sB̃s>

Let mi denote the number of search directions selected at iteration i. There
are in fact three variants in Algorithm 1 that differ in the preconditioning step110

(between lines 13 and 19):

• No τ -test: mi = N for all i. Each local contribution to the preconditioner
serves as a search direction. This is the Simultaneous FETI algorithm [1],
it is a non adaptive MPCG solver [18].

• Global τ -test: mi = 1 or N . At each iteration, either all contributions are115

saved (as above) or they are summed into a global search direction which
is what is done in the usual PCG algorithm. The test ti < τ is called the
global τ -test.

• Local τ -test: 1 ≤ mi ≤ N . This time, in each subdomain, the local τ -test
tsi < τ determines whether to keep a separate search direction or not. If120

not all directions are selected, the global direction is also used as a search
direction.
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Algorithm 1: Adaptive Multipreconditioned FETI. The user inputs the
initial guess λ00, the tolerance ε > 0 and the threshold τ > 0 in the τ -test.

1 λ0 = AG(G>AG)−1e+ Πλ00

2 r0 = Π>(d− Fλ0)

3 Z0 =
(
S̃1r0| . . . |S̃Nr0

)
4 W0 = ΠZ0

5 i = 0

6 while
√
r>i Zi1 > ε do

7 Qi = FWi

8 ∆i = Q>i Wi

9 γi = Z>i ri

10 αi = ∆†iγi
11 λi+1 = λi +Wiαi
12 ri+1 = ri −Π>Qiαi
13 if No τ -test then

14 Zi+1 = (S̃1ri+1| . . . |S̃Nri+1) /* Multi-Precondition */

15 else if Global τ -test then

16 Zi+1 =

{
(S̃1ri+1| . . . |S̃Nri+1) if ti :=

γ>
i αi

r>i+1zi+1
< τ,

S̃ri+1 otherwise.

17 else if Local τ -test then

18 tsi =
(Wiαi)

>F s(Wiαi)

r>i+1S̃
sri+1

19 Zi+1 = concatenate({S̃sri+1 ; tsi < τ},
∑
tsi>τ

S̃sri+1)

20 Wi+1 = ΠZi+1

21 for 0 ≤ j ≤ i do

{
Φi,j = Q>j Wi+1

Wi+1 ←Wi+1 −Wj∆
†
jΦi,j

22 i← i+ 1

23 Return λi
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For clarity we next state the sizes of the quantities in Algorithm 1 (denoting
by n the size of the linear system):

ri, λi, λ00 ∈ Rn; Zi, Wi, Qi ∈ Rn×mi ; ∆i ∈ Rmi×mi ;

αi, γi ∈ Rmi ; Φi,j ∈ Rmj×mi ; ti, t
s
i ∈ R.

The effective preconditioner changes at each iteration of AMPCG which
makes full recurrence mandatory (see line 21 in Algorithm 1) in order to obtain
F -conjugate blocs of search directions: W>

i FWj = 0 for i 6= j . The fact125

that it is a linear combination of the same components does, however, ensure
that a global minimization property holds [18]: the approximate solution λi at
iteration i minimizes the F norm of the error λi − λ over the minimization
space: λ0 +

∑i−1
j=0Wj . This minimization space has higher dimension than the

minimization space of PCG and this is the reason why the convergence of MPCG130

is so good. Of course, the enlargement induces an extra cost and the purpose
of the τ -tests is precisely to detect automatically which iterations require it.
In order to get the best balance between number of iterations and cost of each
iteration, the choice of τ is crucial. In [2][Corollary 3.3] it is proposed to choose

τ = 1−ρ2
ρ2 if the user would be satisfied by a relative reduction of the F -norm of135

the error by a factor ρ at each iteration1.

2.3. Optimized implementation

In order for the algorithm to be efficient, several points need to be addressed
during implementation.

Low rank corrections to avoid many Neumann solves. Perhaps the most impor-
tant modification is to not naively apply F to Wi as stated in line 7. Instead it
was proposed in [1] to pre-compute and store the (sparse) product FAG and
replace line 7 by the following computation:

Qi = FZi − (FAG)(G>AG)−1G>Zi −
i−1∑
j=0

Qj∆
†
jΦi,j . (6)

This way F is applied to Zi instead of Wi: each component F s need only be140

applied to the columns in Zi corresponding to Ωs and its neighbours. This
represents a huge gain because there is a local solve in F s. What’s more, since
memory access is a significant part of the cost of a matrix vector product,
multiplying by a reasonably sized block of vectors instead of a single vector
is not much more expensive. Also, the term (G>AG)−1G>Zi in (6) is not145

computed since it was already evaluated during the projection in line 20. Thus
the low rank correction does not imply any additional global communication.

1In [2], the smallest eigenvalue λmin appears as a factor in the denominator but here we
used the fact that λmin = 1.
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Factorization of ∆i. In the update and orthogonalization steps the pseudo in-
verse ∆†i of ∆i must be applied. Note that these applications are well defined
[1]. The reason the pseudo inverse is needed is to take care of cases where some150

search directions are linearly redundant. Here, we follow what was proposed
in the initial article [28]: perform a Cholesky factorization of ∆i and use it
to replace the block of search directions Wi by an F -orthonormal family that
spans the same space. This way ∆i can be replaced by identity in all evalua-
tions. The use of a Crout factorization, which further improves accuracy since155

no square root is performed, and is required in some contexts, is exposed in the
next subsection.

2.4. Extension to finite displacement problems

The MPFETI algorithm can be used as the linear solver for the tangent
systems arising from the Newton-Raphson linearization scheme. In the case of160

finite displacement problems, a classical observation is the loss of definiteness
of the Neumann operator (somehow infinitesimal rotations evolve into nega-
tive energy modes, see [28] for another illustration). Anyhow, because only a
few eigenvalues are negative, reorthogonalized conjugate gradient can still be
employed without a significant drop of performance [29].165

In the case of MPCG, this leads to possibly non-positive definite symmetric
matrices ∆i rendering the Cholesky factorization irrelevant. We propose instead
to use a rank revealing Crout factorization to compute the pseudo-inverse of ∆i.
In that case, we are not able to F -orthonormalize the columns of the blocks
(Wi):

∆i = MLDL>M ; with L =

(
L̃ 0
× I

)
; D =

(
D̃ 0
0 0

)
(7)

where L̃ is a unit lower triangular matrix and D̃ is an invertible diagonal matrix
(with positive and negative coefficients); M is a permutation matrix. The
search directions are F -orthogonalized and redundant direction are eliminated
by setting:

Wi ←WiM

(
L̃−>

0

)
; αi ← D̃−1

(
L̃−1 0

)
Mγi

Qi ← QiM

(
L̃−>

0

)
; ∆†i ← D̃−1

(8)

3. Numerical assessments

In this section, the classical FETI method is compared to the three solvers
presented in Algorithm 1:

• MPFETI, is the optimized application of MPCG to FETI (see Algorithm 1
with no τ -test),170
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Preconditioner Projector
Variant Operator Scaling Operator Scaling

a Exact Stiffness Exact Stiffness
b Exact Stiffness Super lumped Multiplicity
c Lumped Stiffness Lumped Stiffness
d Lumped Stiffness Super lumped Multiplicity

Table 1: Combinations of preconditioner and projector considered

• AMPFETIG, or Adaptive multipreconditioned FETI with a Global τ -test,
is the application of the global version of Adaptive MPCG to FETI (see
Algorithm 1 with the Global τ -test),

• AMPFETIL, or Adaptive multipreconditioned FETI with a Local τ -test,
is the application of the local version of Adaptive MPCG to FETI (see175

Algorithm 1 with the Local τ -test).

Moreover, as stated in Section 2, the FETI method has the advantage of
providing several choices for the preconditioner S̃ and for the operator A used
in the projector. Each of this choices is in turn defined by the choice of a scal-
ing operator and an approximation of the Schur complement. We propose four180

different combinations of scaling and operator (see Tab. 1). This way we show
that the adaptive multipreconditioning technique can be applied to the user’s
favorite FETI method and behaves as expected in all cases. Combinations (a)
and (b) use the best available preconditioner and only differ in the choice of the
projector. Likewise, the same lumped preconditioner is used for combinations185

(c) and (d) and the difference consists in the choice of the projector. The first
two combinations are expected to converge faster than the others in terms of
iterations. However, this statement is not so obvious in terms of computational
time: even if the lumped preconditioner is numerically less efficient than the
Dirichlet preconditioner, its low computational cost may lead to better perfor-190

mance.
Three specific timers have been defined:

• The Orthog. timer represents the time spent orthogonalizing the search
directions, it corresponds to line 21 in Algorithm 1.

• The Precond. timer regroups the time spent computing the preconditioned195

residual and selecting search directions within the adaptive algorithms, it
corresponds to lines 13 to 19 in Algorithm 1.

• The Operator timer is the time spent applying the FETI operator F , it
corresponds to line 7 in Algorithm 1 with the trick presented in equa-
tion (6) to make the application of the operator local.200

The three aforementioned timers only consider subregions inside the while loop
and the rest of the computational time is regrouped in the Remaining timer.
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This timer consequently times the initialization of Algorithm 1 and operations
in the while loop that are not already taken into account by the three previous
timers. In particular, the factorization of operators F , S̃ and A and the com-205

putation of FAG needed to apply the low rank correction (see Section 2.3) are
computed once during the initialization phase. Thus, the Precond. and Operator
timers only catch forward and backward substitutions. Also, the time presented
is the Wall time (not CPU time) so it is the actual time of the computation and
takes into consideration the message passing latency and a perhaps perfectible210

synchronization of processes.
We first illustrate, in subsection 3.1, the robustness of the multiprecondi-

tioned approach for various academic problems known to trigger convergence
difficulties of the classical FETI method. Then, we present, in subsection 3.2.1,
the advantages of the adaptive approach. More precisely, we illustrate the ad-215

vantage of local adaptivity with a specific test case, see subsection 3.2.2 whereas
the question of the choice of the user threshold τ is raised in subsection 3.2.3.
Finally, the weak scalability of the proposed methods is evaluated on prob-
lems with various values of material contrast (as expected), see subsection 3.3.
These examples come in complement of the two-dimensional test cases already220

proposed in [1]. In particular, results involving regular interfaces have already
been presented in [1].

The solvers have been implemented in the finite element suite Z-Set 8.6
[30]. The tests presented in sections 3.1, 3.2 have been conducted on a clus-
ter of 2.6 GHz 16-core Xeon processors connected by an InfiniBand Mellanox225

network, each subdomain being allocated to one core. The tests presented in
sections 3.3 and 4 have been performed on the Cobalt supercomputer, which is
a 1.299-petaflop Bull system at the french Computing Center for Research and
Technology (CCRT, http://www-ccrt.cea.fr, ranked 75 in the last TOP500
list from November 2016) made of 1,422 Intel Broadwell nodes inter-connected230

with an Infiniband EDR network and providing a total of 34,816 available cores,
and seven cores have been assigned to each subdomain. In all configuration,
the Mumps solver [31] in association with the BLAS library provided by In-
tel MKL package has been used for local solves. Because of the high material
contrast, the local rigid body modes of subdomains have been computed using235

the geometric-algebraic method [32]. For all computations, the partition of the
domain has been obtained by the automatic graph partitioner Metis [33]. For
all following computations, the solver is considered converged when the residual
has decreased by a factor 106.

3.1. Robustness of MPFETI240

A rather academic problem is used for this numerical study: a slender hetero-
geneous (3D) plate with aspect ratio 1×20×10 discretized into 15×250×125 reg-
ular twenty-node brick elements (c3d20). This way the problem size is 5, 959, 218
degrees of freedom (dofs). This mesh is split into 127 domains (see Fig. 1a)
composed on average of 55, 000 dofs and 3, 800 c3d20 elements. With this de-245

composition, there is only one subdomain in the thickness which leads to a
reasonable number of neighbors per domain (between 2 and 8). It is a fact that

10
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the multipreconditioned algorithms benefit from this low number of neighbors
(see Section 2.3). Nevertheless, slender geometries are representative of many
structural applications.250

The plate is clamped on the left side and both pressure and shear are im-
posed on the opposite side. It consists of five thin linear elastic layers (see
Fig. 1b). All layers share the same Poisson’s coefficient 0.3 but the Young’s
modulus alternates between a stiff value E1 and a soft value E2. This case aims
at representing a laminated composite material made out of a soft material255

reinforced by a stiffer one.

(a) Automatic decomposition (b) Soft material is in red, stiff material in
blue

Figure 1: Heterogeneous composite

The results are summarized in Tab. 2. All four variants of the solver pre-
sented in Tab. 1 are considered with the MPFETI method. Combinations (c)
and (d) are not considered for FETI since convergence was only achieved for
a small material contrast. This alone is a first argument toward the fact that260

MPFETI improves the robustness of the FETI algorithms. Figures 2, 3, and 4
all share the same structure: the top graph presents the decrease of the residual
and the bottom one displays the computational time for each combination.

The results obtained with the lowest material contrast (E1/E2 = 101), are
shown in Fig. 2. In this case, even if the multipreconditioned solvers require265

approximately half as many iterations to converge as FETI, the computational
time is more than double. The computational time repartition plotted in Fig. 2b
clearly reveals that the performance of the FETI and MPFETI methods are not
driven by the same computational tasks. For multipreconditioned approaches,
the orthogonalization of search directions predominantly contributes to the com-270

putational time. This was expected since each iteration creates as many search
directions as there are subdomains in the decomposition (127 in the present
case), and a full modified Gram-Schmidt re-orthogonalization is performed. For
the FETI method, the computational time inside the while loop is dominated
by the forward and backward substitutions required by local solves. The use of275

a lumped preconditioner decreases the duration of the preconditioning step but
it does not compensate for the additional iterations. For all MPFETI meth-
ods, the duration returned by the Remaining timer is longer than for the FETI
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method even if the number of iterations is lower. This is mainly due to a longer
initialization phase since extra work is needed to pre-compute FAG. Finally,280

one can see that the choice of the projector has little effect on the convergence,
however the superlumped option slightly decreases the computational time of
all methods.

Figures 3 and 4 show results obtained with material contrasts of 105 and 106

respectively. Clearly, for all combinations of the preconditioner and the projec-285

tor, multipreconditioned approaches are rather insensitive to the increase in the
heterogeneity factor. Even for the highest material contrast and the cheap-
est preconditioner, the number of iterations is at most 42. The FETI method
however is significantly penalized by this increase in heterogeneity. With the
highest material contrast presented, only the FETI-a method is able to decrease290

the residual by a factor 106, the number of iterations needed is 766. The FETI-
b combination, that uses a super lumped projector with a topological scaling,
does not manage to decrease the residual by more than a factor 104. It however
presented a faster convergence during the first iterations. We observed that
this behavior is rather systematic, even for the multipreconditioned approaches.295

Indeed, for all cases, the super lumped projector combined with the multiplicity
scaling exhibits a faster convergence during the first iterations. However, and
unlike FETI-a, FETI-b does not benefit from an acceleration of the convergence
(see Fig. 3a). The same remarks made for Fig. 2 about computational time
are still relevant. Once more, for FETI the computational time mostly traces300

back to the local solves whereas the orthogonalization step is predominant for
the multipreconditioned approaches. For a not too large heterogeneity factor
of 103, computational times are of the same order of magnitude (see Table 1).
With a material contrast of 105 and 106, the computational time of the mul-
tipreconditioned methods is more than three times shorter than for FETI. As305

seen before, the low computational cost of the lumped preconditioner hardly
ever reduces the computational time of multipreconditioned approaches. It is
barely visible in Figure 4, but this gain remains negligible and not systematic.
As a conclusion MPFETI is robust. It is not optimal on the easier test cases
where FETI already converges fast. This is expected and resolved by using the310

adaptive methods (as discussed at length in [2] on academic problems).
Since the lumped preconditioner hardly ever compensates its suboptimality,

combinations (c) and (d) are not presented anymore in what follows.
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Figure 2: Heterogeneous composite: robustness w.r.t. heterogeneities (E1/E2 = 101).
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Figure 3: Heterogeneous composite: robustness w.r.t. heterogeneites (E1/E2 = 105).
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Figure 4: Heterogeneous composite: robustness w.r.t. heterogeneities (E1/E2 = 106). FETI-b
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Counters Timers (s)
E1/E2 = 101 # iter. # search dir. Total Precond. Operator Orthog.

FETI-a 44 44 41.81 19.9% 13.9% 0.2%
FETI-b 45 45 37.3 22.7% 16.1% 0.2%

MPFETI-a 22 2794 89.37 12.2% 16.4% 21.3%
MPFETI-b 23 2921 88.03 13.3% 17.6% 23.3%
MPFETI-c 33 4191 103.2 4.8% 21.1% 39.8%
MPFETI-d 33 4191 102.1 4.9% 21.2% 40.2%
E1/E2 = 103 # iter. # search dir. Total Precond. Operator Orthog.

FETI-a 177 177 99.0 36.1% 26.0% 1.2%
FETI-b 167 167 93.59 35.0% 25.6% 1.2%

MPFETI-a 32 4064 123.3 13.1% 17.1% 31.7%
MPFETI-b 33 4191 126.2 13.3% 17.7% 32.8%
MPFETI-c 42 5334 139.7 4.5% 19.4% 47.4%
MPFETI-d 40 5080 129.7 4.9% 20.4% 46.2%
E1/E2 = 105 # iter. # search dir. Total Precond. Operator Orthog.

FETI-a 745 745 333.9 45.5% 34.4% 6.0%
FETI-b 738 738 350.5 42.1% 32.0% 5.6%

MPFETI-a 31 3937 120.6 13.0% 17.1% 30.4%
MPFETI-b 29 3683 109.1 13.3% 17.7% 29.1%
MPFETI-c 40 5080 130.9 4.7% 20.1% 45.5%
MPFETI-d 33 4191 103.2 4.9% 20.9% 40.0%
E1/E2 = 106 # iter. # search dir. Total Precond. Operator Orthog.

FETI-a 766 766 343.8 44.8% 33.2% 6.1%
FETI-b - - - - - -

MPFETI-a 31 3937 120.4 12.9% 17.2% 30.3%
MPFETI-b 24 3048 92.11 12.8% 17.6% 24.2%
MPFETI-c 40 5080 129.3 4.7% 20.2% 45.7%
MPFETI-d 27 3429 81.81 5.5% 21.8% 34.2%

Table 2: Heterogeneous composite: summary of results
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3.2. Robustness and efficiency of AMPFETI

The previous section has shown the robustness of MPFETI with respect315

to heterogeneous material. It has also emphasized the large computational ef-
fort involved in the orthogonalization of the search directions, which is likely
to be the bottleneck of MPFETI in terms of scalability. It is therefore reason-
able to wonder if all search directions are useful in the resolution, especially
at the end of the computation when the isolated eigenvalues have been well320

approximated. Selecting only the useful search directions is the objective of
the adaptive variants of MPFETI. In this section, results obtained with both
global (AMPFETIG) and local (AMPFETIL) adaptive methods are presented.
Letters a and b still refers to the combinations of preconditioner and projector
as given by Table 1.325

(a) Spread out inclusions (b) Gathered inclusions

Figure 5: Plate with heterogeneous inclusions

3.2.1. Randomly distributed inclusions

We consider the same geometry as previously but change the material distri-
bution. This time, heterogeneous spherical inclusions are inserted inside a soft
matrix (see Fig. 5). The location, size and Young’s modulus of the inclusions
are randomly selected using a uniform distribution. Such a test case generates330

various kind of heterogeneities in the context of domain decomposition: an in-
clusion may be contained within a domain, grossly match its interfaces, or cross
them. The matrix behavior is linear elastic with a Poisson’s coefficient of 0.45.
All inclusions are linear elastic with a Poisson’s coefficient of 0.3. The maximal
value taken by the Young’s modulus of the inclusions provides a material con-335

trast Einclusion/Ematrix = 105. The radius of the inclusions is bounded between
20% and 80% of the plate thickness.

Two different distributions of the inclusions are presented. In the first case
(Fig. 5a), the 200 inclusions are spread out over the plate so that the computa-
tional complexity is evenly shared by all subdomains. The second distribution340

tries to gather the computational complexity: all 75 inclusions are located in a
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small subregion of the plate (1/5 of the volume as shown in Fig. 5b). In this
section, we solve both of these problems with the threshold τ set to 0.1.

The results are summarized in Tab. 3. We observe that the AMPFETI
solvers always converge faster than the MPFETI solvers which in turn always345

converge faster than the FETI solvers. The adaptive variants (AMPFETI)
require a few more iterations to converge than the MPFETI, but their compu-
tational time is reduced. In detail, for the spread out inclusions (see Figure 6),
the reduction of the computational time with AMPFETIG-a and AMPFETIL-a
compared to MPFETI-a, is respectively 34.8% and 30.2%. This gain is mainly350

induced by a faster orthogonalization step: the Orthog. timer decreases by
76.9% and 78.9% for AMPFETIG-a and AMPFETIL-a (respectively) compared
to MPFETI-a.

Although both the minimization space and number of iterations of AMPFETIL-
a are smaller than with AMPFETIG-a, the computational time of AMPFETIL-a355

is slightly larger. This is due to the cost of evaluating the τ -test. Indeed, unlike
the global τ -test, the cost of the evaluation of the local τ -test is not negligible :
with the current implementation one global extra communication is needed for
the local τ -test. This is accounted for in the Precond. timer. In the end, when
the inclusions are spread out over the domain, the local τ -test does not provide360

a significant speedup compared to the global τ -test, which seems intuitive since
the computation complexity is shared by all domains.

The results obtained when the inclusions are gathered are shown in Fig-
ure 7. This time, the FETI method experiences less difficulty to converge since
the heterogeneity only concerns a subregion of the plate, and the speedup in-365

duced by multipreconditioning is smaller. However, the gain provided by the
adaptive variants is worthwile, especially with the local τ -test. As early as the
first iterations, the local τ -test only selects a few search directions (see Fig.
7c). The minimization space generated by AMPFETIL-a is six times smaller
than the space generated by MPFETI-a. Consequently, the time spent in the370

orthogonalization of search directions is significantly reduced. It becomes com-
parable to the orthogonalization cost within the classical FETI method. Even
though the global τ -test generates a larger minimization space, it converges
more slowly than the local adaptive methods, both in terms of iterations and
computational time. In this case, all search directions selected by the global375

τ -test do not provide valuable information. This seems consistent and directly
related to the gathering of the inclusions: when the global τ -test is triggered, the
search directions proposed by all subdomains are included, even those proposed
by subdomains far away from the inclusions.
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Spread out inclusions (τ = 0.1)
Counters Timers (s)

# iter. # search dir. Total Precond. Operator Orthog.

FETI-a 487 487 239.2 37.6% 31.6% 3.7%
FETI-b 638 638 293.2 41.6% 31.9% 5.0%

MPFETI-a 30 3810 117.2 12.3% 16.8% 30.0%
MPFETI-b 24 3048 92.27 12.1% 17.1% 24.3%

AMPFETIG-a 38 1550 76.33 19.6% 18.9% 10.6%
AMPFETIG-b 26 2420 84.09 17.7% 17.1% 19.0%
AMPFETIL-a 36 1219 81.79 26.5% 17.3% 9.1%
AMPFETIL-b 27 1948 78.91 20.1% 17.9% 15.1%

Gathered inclusions(τ = 0.1)
# iter. # search dir. Total Precond. Operator Orthog.

FETI-a 181 181 126.2 32.4% 26.4% 1.2%
FETI-b 244 244 170.7 39.2% 30.8% 1.5%

MPFETI-a 24 3048 110.4 13.0% 18.6% 21.7%
MPFETI-b 19 2413 87.79 13.0% 19.2% 17.7%

AMPFETIG-a 28 1666 86.05 18.7% 18.8% 10.8%
AMPFETIG-b 19 2287 84.72 15.8% 18.8% 15.6%
AMPFETIL-a 27 486 73.3 25.6% 16.9% 3.3%
AMPFETIL-b 20 812 66.03 20.4% 17.1% 5.5%

Table 3: Heterogeneous inclusions: summary of results. AMPFETI converges faster than
MPFETI which in turn converges faster than FETI.
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Figure 6: Convergence, time repartition and search space evolution for spread out inclusions
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Figure 7: Convergence and time repartition for gathered inclusions
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3.2.2. Gathering of the selected search directions when the inclusions are gath-380

ered

For AMPFETIL (local τ -test), we define a selection rate as the ratio be-
tween the number of times the search direction proposed by a given subdomain
is selected and the total number of iterations. Figure 8 shows the selection rate
map obtained with AMPFETIL-a for the spread out inclusions and the gath-385

ered inclusions. When the inclusions are spread out over the volume (see Fig.
5a) the selection rate map does not exhibit any particular profile (Fig. 8a).
However, when the inclusions are gathered (see Fig. 5b), Figure 8b distinctly
reveals a higher selection rate for search directions provided by domains near the
inclusions. The local τ -test detects on the fly the difficulties that slow down the390

convergence of FETI and triggers the multipreconditioning mechanism which
accelerates convergence. This is the expected behaviour of the local τ -test and
why it should prove very useful on industrial test cases where the complexity of
the simulation is not evenly spread out over the domain.

(a) Randomly distributed inclusions (b) Locally distributed inclusions

Figure 8: Selection rate of search directions provided by each domain (AMPFETIL-a)

3.2.3. Sensitivity of the adaptive process with respect to τ395

In the previous section, the (only) user parameter τ , which drives the adap-
tivity test was arbitrarily set to 0.1. Although τ can be connected to a targetted
contraction factor (see Section 2.2 and [2]), it is an intricate task to estimate a
priori an optimal value of τ , leading to the best computational time. It is in-
deed expected to depend on the test case (size and number of subdomains, size400

of the interfaces, heterogeneities, average number of neighbors. . . ) and on the
hardware characteristics (processors frequency, network bandwith and latency).

This section investigates the influence of τ on the performance of adaptive
methods AMPFETIL and AMPFETIG. Both test cases with heterogeneous in-
clusions are solved for twenty one values of τ regularly spaced out (in logarithmic405

scale) over the interval [10−4, 101]. The number of iteration, the size of the min-
imization space and the computational time for all values of τ are plotted in
Figures 9 and 10. We recall that in the limit τ → 0, both AMPFETIL and
AMPFETIG behave like the classical FETI, whereas for large values of τ all

22



10−410−310−210−1 100 101

50

100

150

200

Selection threshold

It
er

a
ti

o
n

s
AMPFETIG-a
AMPFETIG-b
AMPFETIL-a
AMPFETIL-b

(a) Influence of τ on the number of iterations

10−410−310−210−1 100 101

1,000

2,000

3,000

4,000

Selection threshold

M
in

im
iz

at
io

n
sp

ac
e

d
im

.

(b) Influence of τ on minimization space dim.

10−4 10−3 10−2 10−1 100 101

80

100

120

140

160

Selection threshold

C
om

p
u

ta
ti

on
al

T
im

e
(s

)

AMPFETIG-a
AMPFETIG-b
AMPFETIL-a
AMPFETIL-b

(c) Influence of τ on the computational time

Figure 9: Spread out inclusions: τ -sensitivity of the performance

candidate search directions are selected and the multipreconditioned iterations410

are recovered. As expected, for both test cases, the dimension of the mini-
mization space becomes larger with the increase of τ whereas the number of
iterations is reduced. In terms of computational time, there is an optimal value
of τ which provides the best compromise between the reduction of the number
of iterations and the cost induced by extra search directions. The good news is415

that the performance is not very sensitive to changes in τ since all values in the
range [10−2, 10−1] lead more or less to the same performance. This confirms
the observations in [2]. The advantage of the local τ -test when the inclusions
are gathered is again highlighted in Figure 10. Indeed, for a large range of
τ , and despite a much smaller minimization space, the number of iterations of420

AMPFETIL-a (resp. AMPFETIL-b) and AMPFETIG-a (resp. AMPFETIG-b)
are similar leading to a reduced computational time.
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Figure 10: Gathered inclusions: τ -sensitivity of the performance
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3.3. Weak parallel scalability results

In this section, we study the weak parallel scalability of the previous algo-
rithms up to 512 subdomains for both homogeneous and heterogeneous prob-425

lems. For Nc ∈ {2, 3, 4, 5, 6, 7, 8}, we consider a set of three dimensional hetero-
geneous cube made of Nc identical cubic sub-structures (see Figure 11). Each
sub-cube is discretized with the same ruled mesh made of 64,000 eight-node
brick elements (c3d8), leading to a total number of approximately N3

c ×206, 763
dofs with a corresponding H/h ratio of 40. The cube is clamped on one side and430

subject to a prescribed unitary displacement in the three space directions on
the opposite one, all other faces remaining traction-free. The material behavior
is isotropic linear elastic, with a Poisson’s coefficient of 0.3 and two values of
Young’s modulus assigned following a checkerboard pattern in order to obtain
a coefficient jump E1/E2 between two adjacent sub-cubes. Finally, an unstruc-435

tured decomposition in N3
c subdomains is obtained with a partitioning software

which leads to interfaces no longer aligned with heterogeneities. Such a config-
uration is represented on Figure 11 for Nc = 8.

(a) Checkerboard cube (b) Automatic decomposition

Figure 11: Heterogeneous cube (configuration with 512 subdomains))

In the following, we compare FETI, AMPFETIL and AMPFETIG algo-
rithms with three increasing values of ratio E1/E2 given by the set {1, 103, 106}.440

Let us note that MPFETI algorithm was excluded from this study for two rea-
sons. First, the regular increase of the underlying minimization space becomes
a serious drawback regarding memory footprint and time spent on the orthog-
onalization step when applied to large computations involving several hundred
domains. Second, previous results from Section 3.2 show that AMPFETIL445

and AMPFETIG algorithms perform almost as well as MPFETI regarding the
number of iterations needed to achieve convergence and better regarding total
elapsed time, while keeping a significantly smaller minimization space. All algo-
rithms are equipped with the best state of the art preconditioner and projector
corresponding to the combination (a) of Table 1 and the convergence criterion450

ε is set to 10−6. We also set the τ -test to 10−2 which, despite not being the
optimal value, offers a good trade-off between the global performance of the
algorithm and the size of the minimization space, as stated in Section 3.2.3. All
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Nc N #DOFs total #DOFs on interface #cores
2 8 1,594,323 74,514 56
3 27 5,314,683 365,802 189
4 64 12,519,843 918,129 448
5 125 24,361,803 1,945,023 875
6 216 41,992,563 3,520,671 1,512
7 343 66,564,123 5,725,812 2,401
8 512 99,228,483 8,624,838 3,584

Table 4: Weak scalability: summary of configurations studied

the computations have been performed on the Cobalt supercomputer described
at the beginning of the section. Table 4 summarizes the different configurations.455

All the results for the three values of coefficient jumps are summarized in
tables 5, 6 and 7. These results are also shown in Figures 12, 13 and 14.

First, we note that the variants of AMPFETI always converge in fewer iter-
ations than the FETI method, which is in accordance with the results from the460

previous sections (see Figures 12b, 13b and 14b). Here, the most important fact
for AMPFETIL and AMPFETIG is probably that the number of iterations to
reach convergence is independent from the number of subdomains whatever the
level of heterogeneity. Furthermore, it is only subject to a moderate increase
when the ratio of heterogeneities increases (jumping to six orders of magnitude),465

which shows both the efficiency of the adaptive approach and also that the choice
of 10−2 for the τ -test remains a good compromise in order to limit the dimension
of the minimization space. On the other hand, again, we notice that the FETI
method is significantly penalized by the increase of heterogeneities and also the
number of subdomains for high value of the ratio E1/E2. More precisely, on470

the 512 subdomains configuration, FETI method needs 4 times more iterations
to converge when E1/E2 is equal to 103 and more than 16 times for a ratio of
106. Again, it is still noticeable that AMPFETIG needs a little more iterations
to converge than AMPFETIL, despite a larger minimization space, even on this
particular problem where heterogeneities are spread over the whole space rather475

than gathered, which is in accordance with results of Section 3.2.
Figures 13a and 14a showing the global elapsed time of the solver cor-

roborate the previous observations for heterogeneous problems. Indeed, both
AMPFETIL and AMPFETIG exhibit fast solution, but AMPFETIG is always
about 30% faster than AMPFETIL for the same reasons as stated in Section 3.2.480

Specifically, on the largest problem with 512 subdomains, the reduction of com-
putational time compared to FETI is 45% (resp. 30%) for AMPFETIG (resp.
AMPFETIL) when E1/E2 is set to 103, and 86% (resp. 81%) for a value of
106. As for the homogeneous configuration, from Figure 12a and Table 5, we
may notice that AMPFETIG behaves almost the same way as FETI, whereas485

the computational time of AMPFETIL is larger, which is due to the extra cost
of the local τ -test as well. As for the repartition of the computational time, the
remarks already mentioned in previous sections are still relevant.

Finally, Figures 12c, 13c and 14c show the ratio between the size of the
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Counters Timers (s)
N #DOFs (×106) # iter. # search dir. Total Precond. Operator Orthog.

FETI
8 1.6 43 43 59.67 36.65% 25.10% 0.49%
27 5.3 79 79 112.30 47.19% 25.84% 0.71%
64 12.5 82 82 129.00 46.57% 24.41% 0.80%
125 24.4 106 106 167.80 48.35% 24.39% 1.18%
216 42.0 119 119 192.00 47.42% 24.25% 1.49%
343 66.6 130 130 203.90 47.76% 24.79% 1.81%
512 99.2 121 121 201.90 44.54% 23.64% 1.74%

AMPFETIL
8 1.6 39 46 75.83 49.83% 18.53% 0.12%
27 5.3 56 97 141.60 59.00% 14.61% 0.27%
64 12.5 61 121 194.00 58.51% 11.82% 0.48%
125 24.4 65 231 229.30 54.80% 11.03% 0.98%
216 42.0 64 315 247.70 49.74% 10.48% 1.51%
343 66.6 67 424 273.76 49.49% 10.19% 2.23%
512 99.2 66 684 292.40 44.29% 9.98% 3.45%

AMPFETIG
8 1.6 41 48 58.16 34.29% 25.85% 0.15%
27 5.3 63 115 102.80 42.78% 24.33% 0.37%
64 12.5 75 138 138.00 39.79% 22.52% 0.61%
125 24.4 76 324 167.00 37.06% 20.64% 1.21%
216 42.0 75 505 188.60 33.44% 19.41% 1.78%
343 66.6 87 771 222.89 31.90% 20.90% 2.79%
512 99.2 81 1103 227.50 28.77% 20.53% 3.81%

Table 5: Weak scalability (E1/E2 = 1): summary of results

minimization space produced and the number of subdomains N . We notice490

that (at least with this checkerboard test case and this value of τ), the size of
the minimization spaces produced seems to be proportional to the number of
subdomains. This ratio quickly stagnates with the increase of N . Furthermore,
this ratio remains almost the same (around 10) when E1/E2 increase from 103

to 106, which illustrate the efficiency of the selection process of relevant search495

directions. We also notice that the minimization space of AMPFETI variants
is 5 to 10 times larger than those of FETI, but that is the price to pay for
the convergence properties of AMPFETI variants. Indeed, this factor tends to
decrease as the heterogeneity is getting worse (and so does the performance of
the FETI method).500

As a conclusion, AMPFETIL and AMPFETIG show very good scalability
properties in both convergence and computational time, even on highly heteroge-
neous problem up to 512 subdomains on a 100 million dofs problem. Moreover,
AMPFETIG shows almost the same computational time behavior as FETI on
homogeneous problems. Finally, regarding time to solution, it seems that the505

use of AMPFETIL should be limited to problems with gathered heterogeneities,
as stated in Section 3.2.2.
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(c) Normalized minimization space size vs. nb. of subdomains

Figure 12: Weak scalability (E1/E2 = 1): time to solution, nb. of iterations and minimization
space size
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Figure 13: Weak scalability (E1/E2 = 103): time to solution, nb. of iterations and minimiza-
tion space size
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Figure 14: Weak scalability (E1/E2 = 106): time to solution, nb. of iterations and minimiza-
tion space size
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Counters Timers (s)
N #DOFs (×106) # iter. # search dir. Total Precond. Operator Orthog.

FETI
8 1.6 103 103 111.10 46.49% 32.29% 0.88%
27 5.3 150 150 190.80 52.88% 28.98% 1.48%
64 12.5 304 304 395.66 56.40% 29.26% 3.33%
125 24.4 378 378 517.40 55.98% 27.97% 4.48%
216 42.0 422 422 598.10 53.80% 27.40% 5.43%
343 66.6 458 458 641.40 53.34% 27.51% 6.48%
512 99.2 482 482 696.50 51.16% 27.13% 7.08%

AMPFETIL
8 1.6 63 128 111.80 54.01% 23.10% 0.21%
27 5.3 73 217 178.20 61.11% 16.23% 0.43%
64 12.5 91 758 284.80 59.59% 14.46% 1.54%
125 24.4 91 1187 321.70 54.97% 12.97% 2.60%
216 42.0 96 1989 365.20 50.66% 12.57% 4.62%
343 66.6 96 3102 410.00 47.46% 11.96% 7.46%
512 99.2 97 4829 495.00 38.41% 10.91% 15.19%

AMPFETIG
8 1.6 70 126 89.53 42.32% 31.74% 0.27%
27 5.3 85 215 131.60 46.11% 27.45% 0.60%
64 12.5 111 678 205.69 45.33% 26.52% 1.96%
125 24.4 109 1225 236.50 41.04% 24.47% 3.22%
216 42.0 112 2047 279.10 37.42% 23.19% 5.45%
343 66.6 114 3192 309.60 33.66% 23.10% 8.61%
512 99.2 122 4721 380.00 28.66% 22.46% 12.39%

Table 6: Weak scalability (E1/E2 = 103): summary of results
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Counters Timers (s)
N #DOFs (×106) # iter. # search dir. Total Precond. Operator Orthog.

FETI
8 1.6 106 106 115.60 46.65% 32.61% 1.00%
27 5.3 155 155 196.10 53.22% 29.05% 1.53%
64 12.5 416 416 535.30 57.00% 29.63% 4.61%
125 24.4 556 556 758.50 56.13% 28.03% 6.60%
216 42.0 852 852 1231.00 52.76% 26.81% 10.60%
343 66.6 1194 1194 1771.00 50.33% 25.90% 15.55%
512 99.2 1674 1674 2707.00 45.72% 24.23% 21.13%

AMPFETIL
8 1.6 63 132 111.90 53.87% 23.17% 0.21%
27 5.3 73 228 179.10 61.19% 16.22% 0.46%
64 12.5 94 838 294.70 59.59% 14.43% 1.65%
125 24.4 95 1240 328.30 56.08% 13.16% 2.69%
216 42.0 97 2125 371.70 50.42% 12.58% 4.89%
343 66.6 102 3319 432.30 47.84% 11.93% 7.99%
512 99.2 100 5134 511.10 38.48% 10.93% 16.24%

AMPFETIG
8 1.6 69 132 89.58 42.21% 31.76% 0.27%
27 5.3 88 218 134.80 46.69% 27.74% 0.61%
64 12.5 112 742 210.80 45.30% 26.54% 2.18%
125 24.4 106 1346 236.30 40.69% 24.57% 3.41%
216 42.0 107 2257 277.30 36.45% 23.13% 5.81%
343 66.6 119 3197 314.70 33.52% 23.42% 8.62%
512 99.2 108 5729 376.30 26.96% 22.12% 13.98%

Table 7: Weak scalability (E1/E2 = 106): summary of results

32



4. Application to a real engineering problem : woven Organic Matrix
Composite material (OMC)

As an application to a real engineering problem, we choose the scope of archi-510

tectured materials and more specifically of woven Organic Matrix Composites
(OMC). This type of material is increasingly studied and used, e.g. in the au-
tomotive and aircraft industries, as it provides interesting properties in order to
maximize strength while decreasing total mass. In the following, we consider a
cuboid volume of composite material with an aspect ratio of 19× 19× 3, made515

of a 26 yarn weave pattern inside a polymer matrix (Fig. 15). Typical use cases
may be found in numerical homogenization procedures, where a Representative
Elementary Volume (REV) of a given material is used to identify the equivalent
macroscopic properties by means of the averaging of the mechanical response
under specific load conditions (e.g. periodic, mixed, uniform) [34].520

In order to accurately describe the architecture at the mesoscopic scale,
given the complexity of the underlying weave, this type of problem may lead to
a high number of dof : from several dozens of millions to several billions when
taking into account fine morphologic details. Furthermore, as weave pattern
complexity increases, its characteristic scale may be too high compared to that525

of the macroscopic structure such that no scale separation hypothesis can be
used anymore. As a result, to get an accurate description of the medium, the
mesoscopic model has to be used on the whole structure which, again, leads to
a discretized problem with a high number of dofs.

The present weave pattern has been obtained by simulation [35] and a voxel-530

based finite element description is used to model the woven mesostructure [36].
The cuboid volume is discretized into a structured mesh of 30, 223, 800 regular
eight-node fully integrated hexahedral elements (c3d8), which leads to a global
size of 91, 995, 540 dofs. Depending on its spatial position, each element is
either associated to one of the yarns, or to the matrix. All yarns share the same535

material behavior, chosen to be an orthotropic linear elastic law with a primary
direction corresponding to the orientation of the yarn, whereas the behavior of
the matrix is chosen to be isotropic linear elastic. The maximal ratio between
all Young’s moduli related to the yarns and the matrix is 6.9.103. The cuboid
is clamped on one side and subject to prescribed displacements corresponding540

to pure tension on the opposite side.
In the following, three configurations of splitting are considered, correspond-

ing to N = 175, 250 and 500 subdomains (see Fig. 15 for N = 500), which lead
to an average of about 555, 000, 390, 000 and 200, 000 dofs per subdomain,
respectively. As in Section 3.3, both FETI, AMPFETIL and AMPFETIG algo-545

rithms, equipped with their best state of the art preconditioner and projector
corresponding to variant (a) in table 1, are compared. Again, MPFETI has been
excluded from this study for the same reasons as aforementioned in Section 3.3.
All the computations have been performed on the Cobalt supercomputer (see
Section 3.3) and the same values ε = 10−6 and τ = 10−2 are chosen for the550

convergence and search direction selection criteria as in Section 3.3.
The results, which are summarized in Table 8, are in accordance with those
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(a) Woven microstructure (b) Automatic decomposition (500
subdomains)

(c) Tensile principal stresses in the load direc-
tion

Figure 15: Representative elementary volume of woven composite

previously obtained.
Figure 16, which plots the global computational time of the three methods,

clearly emphasizes the gain provided by the AMPFETI variants. Indeed, we may
notice that the AMPFETIG method reduces the time to solution by a factor
of more than two in comparison with FETI. Again, AMPFETIL shows slightly
less efficiency compared to AMPFETIG, with a computational time about 20%
larger. Besides, the time repartition of the different steps is uniformly decreasing
as the number of subdomains increases, except regarding the orthogonalization
step, which is logical since the size of the minimization space increases. Figure 17
shows the speedup of the three methods with respect to the 175 subdomain
configuration, as defined by:

Speedup(N sd) =
Wall time(175 sd)

Wall time(N sd)

We note that all speedup from the three methods have nearly identical behavior,
however, AMPFETIG has a slightly better one. Finally, we note from Table 8555

that the size of the minimization space for AMPFETIL and AMPFETIG is
about ten times the number of subdomains, whatever the splitting configuration,
which corroborates the remark of Section 3.3.

As a conclusion, AMPFETI variants have shown their ability to provide so-
lution to this engineering problem twice as fast as the FETI method, exhibiting560

a numerical behavior consistent with what has been previously observed.
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Counters Timers (s)
N = 175 # iter. # search dir. Total Precond. Operator Orthog.

FETI 371 371 1553.00 52.91% 29.77% 2.59%
AMPFETIL 103 1627 876.30 49.93% 15.97% 2.63%
AMPFETIG 120 1686 726.60 40.69% 24.49% 2.85%
N = 250 # iter. # search dir. Total Precond. Operator Orthog.

FETI 405 405 1109.00 50.97% 28.71% 3.52%
AMPFETIL 103 2026 635.10 51.74% 14.52% 3.49%
AMPFETIG 121 2113 499.10 40.88% 23.87% 3.83%
N = 500 # iter. # search dir. Total Precond. Operator Orthog.

FETI 544 544 721.60 49.40% 26.70% 7.75%
AMPFETIL 104 3907 408.20 43.73% 11.60% 12.25%
AMPFETIG 122 4613 319.52 30.75% 22.25% 12.64%

Table 8: Woven composite REV: summary of results
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Figure 16: Woven composite REV: wall time vs. nb. of subdomains
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Figure 17: Woven composite REV: speedup vs. nb. of subdomains

5. Conclusion

In this article we have investigated the application to FETI of the adaptive
multipreconditioned conjugate gradient algorithm [2] on problems of industrial
complexity and on modern hardware. More precisely there are two adaptive565

variants: either with the Local or the Global τ -test. The Global test embeds
a criterion which choses at each iteration whether a classical FETI iteration is
sufficient to sufficiently reduce the error or if MPFETI would do significantly
better. The Local test involves more computations but it allows to let only the
meaningful subdomain individually contribute to the minimization space; which570

potentially generates a smaller search space.
Our numerical experiments show AMPFETI is indeed robust and gives inter-

esting speedups compared to classical FETI. Tests went up to 500 subdomains,
and more than 3500 cores, without any performance drop, letting us hope that
the methods shall perform correctly on larger numbers of subdomains. We do575

note that, even if 500 subdomains is not the actual limit for our current code
and hardware, it is clear that as such AMPFETI would not scale up to tens of
thousand subdomains. We are currently investigating other adaptive strategies
to further improve this bottleneck.

On most cases, the Global test proved to be the more efficient: even if it is580

less precise than the Local test, the absence of extra computation made it more
efficient in term of computational time. The only situation where the Local test
was significantly more interesting was cases where difficulties (heterogeneities)
were concentrated in local areas such that the rest of the domain could be
treated in a classical FETI way.585

This article has confirmed the robustness and efficiency of AMPFETI com-
pared to FETI and MPFETI and we believe that AMPFETI is a well suited
parallel solver for the linear systems that arise from industrial structural dy-
namic simulations.
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