

Influence of farming system on ground beetle communities at local and landscape scales

Maud Belhache, El Aziz Djoudi, Stéphanie Aviron, Julien Pétillon, Manuel

Plantegenest

► To cite this version:

Maud Belhache, El Aziz Djoudi, Stéphanie Aviron, Julien Pétillon, Manuel Plantegenest. Influence of farming system on ground beetle communities at local and landscape scales. 17th European Carabidologists Meeting, Sep 2015, Primosten, Croatia. 48 p. hal-01458651

HAL Id: hal-01458651 https://hal.science/hal-01458651v1

Submitted on 3 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Influence of farming system on ground beetle communities at local and landscape scales

UMR 1349 INRA-Agrocampus Ouest-Université Rennes, IGEPP Maud Belhache, El Aziz Djoudi, Stéphanie Aviron, Julien Pétillon and Manuel Plantegenest

- > Needs for more **sustainable** and **healthy** agricultural systems
- Development of Organic farming
 - \rightarrow based on ecological processes
 - \rightarrow no petrochemical fertilizers and pesticides used

- > Needs for more **sustainable** and **healthy** agricultural systems
- Development of Organic farming
 - \rightarrow based on ecological processes

 \rightarrow no petrochemical fertilizers and pesticides used

Beneficial effect on the abundance and species richness of ground beetle communities.

- Needs for more sustainable and healthy agricultural systems
- Development of Organic farming
 - \rightarrow based on ecological processes

 \rightarrow no petrochemical fertilizers and pesticides used

Beneficial effect on the abundance and species richness of ground beetle communities.

How does organic farming affect ground beetle communities at local and landscape scales ?

Differences in abundances and species composition (richness)

Organic farming

Abundance Species richness

Conventional farming

Differences in abundances and species composition (richness)
 Local scale processes

Environmental characteristics

Differences in species abundances and composition

- Differences in abundances and species composition (richness)
 - ► landscape scale processes

Conventional farming

Differences in abundances and species composition (richness)

➡ landscape scale processes : coexistence of the two systems

Differences in abundances and species composition (richness)
 Iandscape scale processes : Source/Sink dynamics ?

Influence of the proportion of organic farming at landscape scale ?

Goal and hypotheses

How does organic farming affect ground beetle communities at local and landscape scales ?

- Contrasting assemblages in organic vs conventional farming
 habitat characteristics differ between systems
- Contrasting emerging vs circulating communities
 local vs landscape contribution
- Assessing landscape influence on local communities
 - ► source/sink dynamics

Method

Selection of :

- ➢ 10 landscapes in Brittany
 - ▶ 20 wheat fields
 - \rightarrow 10 under organic farming
 - \rightarrow 10 under conventional farming

Method

Pièges Barber

100 cm

In each sampled field :

- \rightarrow 3 emergence arenas including two pitfall traps
- → 1 pitfall trap located in the vicinity of each emergence arena
- Samples collection every 2 weeks (april-may 2015).

Abundances

Higher abundances in OF :

- \rightarrow attractive effect ?
- \rightarrow differences in mortality rates ?

Similar species richness in the two systems.

- Similar species richness between the two systems.
- Variation in communities composition.

- Similar species richness between the two systems.
- Variation in communities composition.

- Similar species richness between the two systems.
- Variation in communities composition.

- Similar species richness between the two systems.
- Variation in communities composition.

- Similar species richness between the two systems.
- Majority of species are present in the two systems.

Specific composition of ground beetle communities

Axe 1 & 2 : organic and conventional communities differ

Specific composition of ground beetle communities

Axe 2 : circulating and emerging communities differ

Specific composition of ground beetle communities

Organic farming :

- Rich vegetation cover

Specific composition of ground beetle communities

Organic farming :

- Rich vegetation cover
 - phytophagous

Specific composition of ground beetle communities

Organic farming :

- Rich vegetation cover
 - phytophagous
- Genus Amara
 - genus Brachinus

Specific composition of ground beetle communities

Conventional farming :

- less diverse resources

Landscape scale

Method

Cartography :

- \rightarrow Buffer of 500m around fields
- \rightarrow Information on crops management
 - ► OF gradient in the surroundings of sampling fields.

Results : Landscape scale

Influence of OF percentage in the landscape

Increasing the percentage of organic farming in the landscape :

- A abundance of circulating communities in CF
- - A abundance of circulating phytophagous species in CF

- > Differences in species composition :
 - OF : phytophagous species
 - CF : collembola eaters

Communities structure driven by **resources availability**.

Differences in species composition :

- OF : phytophagous species
- CF : collembola eaters

Conventional farming

Differences in species composition :

- OF : phytophagous species
- CF : collembola eaters

Conventional farming

- Abundances in circulating communities > in OF.
- Slight differences in abundances in emerging communities.
- Differences between circulating & emerging communities in OF.
 - OF acts as a sink \rightarrow attractiveness of crops

Organic farming

Conventional farming

> Differences in species composition :

- OF : phytophagous species
- CF : collembola eaters

Communities structure driven by **resources availability**.

- Abundances in circulating communities > in OF.
- Slight differences in abundances in emerging communities.
- Differences between circulating & emerging communities in OF.

ightarrow OF acts as a **sink** \rightarrow attractiveness of crops

Abundances increase in circulating communities in CF in relation with the augmentation of OF percentage in the landscape.

 \blacktriangleright OF acts as a source \rightarrow dispersion/dynamics at landscape scale

Interactions between systems

Interactions between systems

Isotopic tool \rightarrow identifying and quantifying migrant flows

Interactions between systems

Isotopic tool \rightarrow identifying and quantifying migrant flows

Changes in soil's isotopic labelling :

- \rightarrow differences in fertilization methods
- \rightarrow differences in organic matter origin

Interactions between systems

Isotopic tool \rightarrow identifying and quantifying migrant flows

Changes in soil's isotopic labelling :

- \rightarrow differences in fertilization methods
- \rightarrow differences in organic matter origin

Isotopic labelling transmission from soils to ground beetle ?

First results : Isotopic labelling

Isotopic labelling of emerging individuals

Metallina lampros pros

Anchomenus dorsalis alis

Isotopic labelling

- First conclusions
- Coherence soil / ground beetle isotopic labelling

➡ confirms usefulness of the method

 \succ High intrasepecific variability \rightarrow no individual assignment

Isotopic labelling

First conclusions

Coherence soil / ground beetle isotopic labelling

confirms usefulness of the method

 \succ High intrasepecific variability \rightarrow no individual assignment

The method allows the evaluation of the contribution at populational scale.

importance and **temporality exchanges** between both farming systems.

Prospects

Organic farming :

- sink in spring \rightarrow attractiveness of crops
- source at farm scale \rightarrow management and type of marginal areas
- source at the scale of multiannual dynamics

Prospects

- > Organic farming :
 - sink in spring \rightarrow attractiveness of crops
 - source at farm scale \rightarrow management and type of marginal areas
 - source at the scale of multiannual dynamics
- Take into account:
 - \rightarrow landscape features associated with farming systems
 - \rightarrow temporal variability of habitats

to assess :

- \rightarrow relative contribution of farming systems for auxiliary production
- \rightarrow exchanges of migrants between farming systems

and thus **quantify** their influence in terms of biological control.

Prospects

> Organic farming :

- sink in spring \rightarrow attractiveness of crops
- source at farm scale \rightarrow management and type of marginal areas
- source at the scale of multiannual dynamics
- Take into account:
 - \rightarrow landscape features associated with farming systems
 - \rightarrow temporal variability of habitats

to assess :

- \rightarrow relative contribution of farming systems for auxiliary production
- \rightarrow exchanges of migrants between farming systems

and thus **quantify** their influence in terms of biological control.

> Utilization of **isotopic tool** to characterize the **migrant flows** between farming systems.

Thank you for your attention.

