

Phenotypic evolution of different spinach varieties grown and selected under organic conditions

Estelle Serpolay-Besson, Nicolas Schermann, Julie Dawson, E.T. Lammerts

van Bueren

▶ To cite this version:

Estelle Serpolay-Besson, Nicolas Schermann, Julie Dawson, E.T. Lammerts van Bueren. Phenotypic evolution of different spinach varieties grown and selected under organic conditions. Congrès international de IFOAM, International Federation of Organic Agriculture Movements (IFOAM). DEU., Sep 2011, NA, South Korea. 1 p. hal-01458617

HAL Id: hal-01458617 https://hal.science/hal-01458617

Submitted on 5 Jun2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Phenotypic evolution of different spinach varieties grown and selected under organic conditions

Serpolay, E[1]., Schermann[1], N., Dawson, J.[2] & Lammerts van Bueren, E.T.[3]

[1] INRA, unité SAD Paysage, 65 rue de Saint-Brieuc, F-35042 Rennes, France [2] INA, unito of a blogg, joint as called a blogg, blogg called a blogg, blogg called a blogg blogg called a blogg blogg called a blogg blogg called a blogg

Context – introduction

Organic agriculture needs flexible varieties to buffer the variability of cultivation conditions, to enhance the self-regulation capacity of organic farming systems (Lammerts van Bueren, 2002) and to adapt to the requirements of each farmer (specific markets for example). More and more farmers are looking for such varieties in order to achieve seed self sufficiency. Populations varieties are genetically more diverse than commercial ones. Many organic farmers are interested in such varieties, in order to adapt them to their own conditions. In Europe, farmers take part in participatory plant breeding (PPB) programmes because it is a selection method that can respond to their different needs.

In this context, we conducted an experiment (in the framework of the European project Farm Seed Opportunities) to investigate the evolutionary capacities of spinach population varieties for phenotypic traits of interest for farmers. Indeed, while diversity among spinach varieties based on molecular markers has been studied, there have not been published studies of the diversity of phenotypic traits which are of direct relevance to farmers.

ent of the

evolution by

comparison

Plants and methods

During a 3-year experiment (2007 to 2009), different populations varieties of spinach (Spinacia oleracea L.) were cultivated and selected by 3 organic farmers (MC, AVO and FD) in contrasting environments (two farmers in Western France and one in The Netherlands) The evolution was assessed on station by comparison of the original seed sample with the variety cultivated and selected on farm for two cycles (Figure 1).

- Varieties tested: European populations of spinach not cultivated anymore, seeds coming from national gene banks (of The Netherlands and France)

- Three steps in the experiment: (i) 2007, choice by each farmer of at least one variety out of 20 to be grown and selected for 3 years; (ii) 2007 and 2008: on-farm mass selection within the chosen variety(ies) (see box 1); (iii) 2009: on-station common evaluation of the varieties chosen and selected by the farmers (Le Rheu, Brittany, France).

- Common trial: split-plot design with 3 replicates, sub-blocks composed of the different versions of one variety, i.e. population N from the gene bank and population(s) N+2 from farmer(s).

- Different phenotypic traits of interest for farmers assessed (see box 2), measured on 15 plants per replicate

Statistical analyses: performed with R software, ANOVA (quantitative traits), Chi² tests (semi-quantitative traits) and ascending hierarchical classification to assess multitrait evolution of varieties

farmer MC version

Traits assessed

In italic = quantitative traits, normal = semi-quantitative traits

colour, shape of apex, thickness and blistering, stem

Box 2

Petiole and leaf length and attitude, leaf width,

anthocyanin, bolting index (3 dates)

Original population N

Year 1. on-farm

Cultivation, choice of the variety(ies)

and breeding

Population N+1

Year 2. on-farm

Cultivation and breeding

'Verbeterde Hollandia' - year N original version

and late to bolt)

order to increase diversity

'Alwaro' - year N original version

Varieties selected by farmers		Monarch Long Standing	Alwaro	Superg reen	Verbeter de Hollandi a	Viking	Viking Matad or	Ebé	de Ruel
Traits I	Farmers	AVD	NC						FD
Petiole length		n _n = 84/	76/	80/	85/	68/	89/	110/	110/
		n _{n,2} =75 *	90 ***	71	92	70	95	102	99
Leaf width		135/	119/	130/	127/	129/	113/	112/	112/
		127	118	124 *	136	140	123	118	109
Colour "A"		-14.3/	-12.8/	-12.4/	-14.8/	-12.4/	-14.4/	-13.3/	-13.3/
		-14.1	-13.4***	-12.9	-15.4	-14.3 *	-14.4	-13.7	-12.6
Petiole attitude 1 -		1.82/	1.91/	1.98/	2.18/	2.41/	2.22/	2.25/	2.26/
3		1.84	2.27 *	1.64	2.16	2.06 **	2.32	2.30	2.21
Thickness 1 - 5		4.20/	3.96/	2.43/	4.36/	2.60/	3.44/	3.74/	3.74/
		4.02	3.89	3.48	4.09	2.44	3.95	4.30 *	3.79
Bilatering 1-5		2.82/	3.04/	2.18/	2.71/	3.01/	2.27/	1.74/	1.74/
		2.69	2.96	2.11	2.78	3.43 *	2.48	1.63	1.66
Bolting index (0 to 3) May 22, 2009		1.00/ 0.67	0.67/ 2.33***	0.67/ 1.00	1.67/ 1.67	0.33/ 0.67	2.67/ 1.00 ²	2.00/ 2.50*	2.00/ 2.50 *

farmer MC version

tract iof the complete table of the mean values and ignificance values of the evolution of varieties after 2 yea n and selection in the common experiment at Le Rheu in mN+2 where mN+2 is the mean of the farmers' version

Results

Farmers' strategies of selection

MC: elimination of the plants not in the type wished

(plants wished = big, dark, thick, smooth, lanced shaped

AVO: conservation of the latest plants to bolt and flower

FD: multiplication of all the plants of the variety chosen in

Box

Population N+2

Original population N

Year 3, on-station

Evaluation

All varieties showed statistically significant evolution (difference between the original version and the version cultivated by farmers): for only one or few traits (Monarch Long Standing, Verbeterde Hollandia and Viking Matador) or more numerous traits (Alwaro, Viking or Eté de Rueil) and they differ on traits on which they evolved (see Table 1).

All measured traits showed significant evolution for at least one variety. When the same trait evolved for 2 varieties, in most cases it was in the same "direction".

While showing a certain evolution, the varieties conserved their own identity (the different versions of each variety were always grouped in the AHC) but one, 'Alwaro', seemed to evolve really more ('Alwaro' versions always in different groups of AHC).

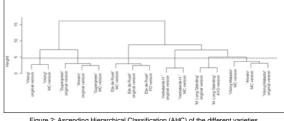


Figure 2: Ascending Hierarchical Classification (AHC) of the different varieties for the different morphological traits

Conclusion – perspective for Organic Agriculture

Even if further experiment would be needed to explore adaptive response of the varieties to farmers selection, our results points out the flexibility of such varieties, which is of interest for participatory plant breeding because of their potential for differential evolution. On-farm conservation and selection is one strategy to maintain or increase cultivated biodiversity in connection with farmers' needs (each farmer having his/her own breeding objectives). By breeding their own varieties, farmers could adapt them to their own conditions, and it is of great interest for organic and low input farming.

These results are also relevant to help policy-makers to adapt the European seed legislation, to recognize on-farm breeding and to take into account evolving populations.

