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In this note, we continue to be interested in the relationship that connects the restricted distribution of finitude at the local level of intermediate fields of a purely inseparable extension K/k to the absolute or global finitude of K/k. In "w0-generated field extensions, Arch. Math. 47, (1986), 410-412", JK Deveney constructed an example of modular extension K/k called w0-generated such that for any proper subfield L of K/k, L is finite over k, and for every n ∈ N, we have

. This example has proved to be extremely useful in the construction of other examples of w0-generated extensions. In particular, we prolong the w0generated to an extension of unspecified finite size. However, when K/k is of unbounded size, we show that any modular extension of unbounded exponent admits a proper subextension of unbounded exponent. This brings us to study the w0-generated in the restricted sense. In addition, with the aim of extending the w0-generated to a purely inseparable extension of unbounded size, we propose other generalizations.

Introduction

Soit K/k une extension purement inséparable de caractéristique p > 0. Une partie B de K est dite r-base de K/k si K = k(K p )(B), et pour tout x ∈ B, x ∈ k(K p )(B \ {x}). En vertu du ( [START_REF] Bourbaki | Eléments de Mathématique Théorie des ensembles[END_REF], III, p. 49, corollaire 3) et de la propriété d'échange des r-bases, on en déduit que toute extension admet une r-base et que le cardinal d'une r-base est invariant. Si de plus K/k est d'exposant fini, on vérifie aussitôt que B est une r-base de K/k si et seulement si B est un générateur minimal de K/k. Sous ces conditions, on désigne par di(K/k) = |G|, où G est un générateur minimal de K/k, le degré d'irrationalité de K/k, et par di(k) = |B|, où B est une r-base de k/k p , le degré d'imperfection de k. Ces deux invariants permettent de mesurer respectivement la taille de K/k et la longueur de k. Notamment, la taille d'une extension croit en fonction de l'inclusion. Plus précisément, pour toute chaine d'extensions d'exposant borné k ⊆ L ⊆ K, on a di(L/k) ≤ di(K/k) (cf. [START_REF] Fliouet | Extensions absolument lq-modulaires[END_REF]). En particulier, cette propriété permet d'étendre la meseure de la taille à une extension purement inséparable K/k quelconque par prolongement vertical du degré d'irrationalité des sous-extensions intermédiaires d'exposant fini de K/k. Ainsi, on pose di(K/k) = sup n∈N (di(k p -n ∩ K/k)), ici le sup est employé dans le sens ( [START_REF] Bourbaki | Eléments de Mathématique Théorie des ensembles[END_REF], III, p. 25, proposition 2). Dans ce contexte, on montre dans (cf. [START_REF] Fliouet | Extensions absolument lq-modulaires[END_REF]) que la mesure de la taille d'une extension est compatible avec l'inclusion et la linéarité disjointe. En d'autres termes, on a :

• Pour toute chaine d'extensions purement inséparables k ⊆ L ⊆ L ′ ⊆ K, on a di(L ′ /L) ≤ di(K/k) ≤ di(k) • Pour tous corps intermédiaires K 1 et K 2 de K/k, k-linéairement dis- joints, on a di(K 1 (K 2 )/k) = di(K 1 /k) + di(K 2 /k) et di(K 1 (K 2 )/K 2 ) = di(K 1 /k).
En outre, di(K/k) = sup(di(L/k)), où k ⊆ L ⊆ K. Autrement dit, la mesure de la taille de K/k est vue comme limite inductive du degré d'irrationalité de ces sous-extensions intermédiaires. Dans cette note, nous continuons à s'intéresser à la relation qui relit la répartition restreinte de la finitude au niveau des corps intermédiaires d'une extension purement inséparable K/k à la finitude absolue ou globale de K/k.

Dans [START_REF] Deveny | w 0 -generated field extensions[END_REF], J. K. Deveney construit un exemple d'extension modulaire K/k dite extension w 0 -générée tel que toute sous-extension propre de K/k est finie, et telle que pour tout n ∈ N, on a [k p -n ∩ K : k] = p 2n . Il est facile de vérifier que di(k p -n ∩ K/k)) = 2, et donc K/k est relativement parfaite d'exposant non borné dont la mesure de la taille vaut 2. En particulier, K/k ne conserve pas la distribution de la finitude au niveau local des corps intermédiaires de K/k. Ainsi, on peut espérer étendre la w 0 -génératrice à une extension de taille quelconque. Dans cette perspective, dans [2] on construit pour tout entier j une extension purement inséparable K/k d'exposant non borné vérifiant :

(i) Toute sous-extension propre de K/k est finie ; (ii) Pour tout n ∈ N, [k p -n ∩ K : k] = p jn . Améliorant ainsi le contre-exemple de J. K. Deveney, une telle extension est relativement parfaite d'exposant non borné, et pour tout n ∈ N, di(k p -n ∩K/k) = j. Il est également clair que K/k ne conserve pas la finitude restreinte. Il s'agit donc d'une forme d'irréductibilité dans le sens où K/k ne peut se décomposer sous la forme k -→ K 1 -→ K avec K 1 /k et K/K 1 ont chacune un exposant non borné. D'autre part, toute extension de taille finie est composée d'extensions w 0 -générées. Toutefois, lorsque la taille de K/k n'est pas borné, on montre que toute extension modulaire d'exposant non borné admet une sous-extension d'exposant non borné. En particulier, on montre pour qu'une extension w 0 -générée soit de taille finie il faut et il suffit que la plus petite sous-extenion m de K/k telle que K/m est modulaire soit non triviale (m = K), et par suite si l'on tient compte de ce résultat, il est fort probable que la w 0 -génératrice soit liée aux extensions de taille finie. Ceci, nous amène à étudier de près la w 0 -génératrice au sens restreint. Conformément à cette approche, et dans le but d'étendre la w 0 -génératrice aux extensions purement inséparables de taille non bornée, on propose d'autres généralisations. Une extension K/k est dite j-w 0 -générée si K/k n'admet aucun corps intermédiaire L d'exposant non borné sur k et de degré d'irrationalité inférieur ou égal j. Il s'agit d'une forme d'irrédictubilité locale conditionnée par la mesure de la taille. En particulier, si pour tout entier j, K/k est j-w 0 -générée, K/k sera appelée +∞-w 0 -générée. On vérifie aussitôt que toute extension w 0 -générée est +∞-w 0 -générée et inversement toute extension +∞-w 0 -générée de taille finie est w 0 -générée. Il s'agit d'une répartition absolue de la w 0 -génératrice au niveau des extensions de taille finie. Par ailleurs, pour des raisons de la non-contradiction, on construit un exemple d'extension +∞-w 0 -générée de taille infinie.

Enfin, il est à noter qu'au cours de cette note, on reprend, les notations et les résultats élémentaires de [START_REF] Fliouet | Extensions absolument lq-modulaires[END_REF], puisqu'ils sont utilisés avec toute leur force ici.

2 Généralité D'abord, nous commencerons par donner une liste préliminaire des notations le plus souvent utilisées tout le long de ce travail :

k désigne toujours un corps commutatif de caractéristique p > 0, et Ω une clôture algébrique de k. k p -∞ indique la clôture purement inséparable de Ω/k.

-Pour tout a ∈ Ω, pour tout n ∈ N * , on symbolise la racine du polynôme X p na dans Ω par a p -n . En outre, on pose k(a p -∞ ) = k(a p -1 , . . . , a p -n , . . .)

= n∈N * k(a p -n ) et k p -n = {a ∈ Ω | , a p n ∈ k}.
-Pour toute famille B = (a i ) i∈I d'éléments de Ω, on note k(B p -∞ ) = k((a i p -∞ ) i∈I ). -Enfin, |.| sera employé au lieu du terme cardinal.

Il est à signaler aussi que toutes les extensions qui interviennent dans ce papier sont des sous-extensions purement inséparables de Ω, et il est commode de noter [k, K] l'ensemble des corps intermédiaires d'une extension K/k.

r-base, r-générateur

Définition 2.1 Soit K/k une extension. Une partie G de K est dite r-générateur de K/k, si K = k(G) ; et si de plus pour tout x ∈ G, x ∈ k(G\x), G sera appelée r-générateur minimal de K/k. Définition 2.2 Etant données une extension K/k de caractéristique p > 0 et une partie B de K. On dit que B est une r-base de K/k, si B est un r-générateur minimal de K/k(K p ). Dans le même ordre d'idées, on dit que B est r-libre sur k, si B est une r-base de k(B)/k ; dans le cas contraire B est dite r-liée sur k.

Voici quelques cas particuliers :

-Toute r-base de k/k p s'appelle p-base de k.

-Egalement, toute partie d'éléments de k, r-libre sur k p sera appelée pindépendante (ou p-libre) sur k p .

Ici B désigne une partie d'un corps commutatif k de caractéristique p > 0. Comme conséqueces immédiates on a :

(1) B est p-base de k si et seulement si pour tout n ∈ Z, B p n l'est également de k p n . (2) B est r-libre sur k p si et seulement si pour tout n ∈ Z, B p n l'est auusi sur

k p n+1 . (3) B est p-base de k si et seulement si B est un r-générateur minimal de k/k p . (4) B est p-base de k si et seulement si pour tout n ∈ N * , k p -n = ⊗ k (⊗ k k( a p -n )) a∈B et pour tout a ∈ B, a ∈ k p . En particulier, B est p-base de k si et seulement si k p -∞ = ⊗ k (⊗ k k(a p -∞ )) a∈B et pour tout a ∈ B, a ∈ k p .
Il est à noter que le produit tensoriel est utilisé conformément à la définition 5 (cf. [START_REF] Bourbaki | Algèbre, Chapitre 1 à 3[END_REF], III, p. 42). Il est vu comme limite inductive du produit tensoriel d'une famille finie de k-algèbre. Toutefois, la proposition ci-dessous permet de ramener l'étude des propriétés des systèmes r-libres des extensions de haureur ≤ 1, (K p ⊆ k) au cas fini. Plus précisément, on a : Preuve. Notons B = {x 1 , . . . , x n }, comme pour tout i ∈ {1, . . . , n}, on a

x p i ∈ k(K p ) ⊆ k(K p )(x 1 , . . . , x i-1 ), alors [k(K p )(x 1 , . . . , x i ) : k(K p )(x 1 , . . . , x i-1 )] ≤ p, et il y'a égalité si et seulement si x i ∈ k(K p )(x 1 , . . . , x i-1 ). Compte tenu de la transitivité de la finitude, on a [k(K p )(x 1 , . . . , x n ) : k(K p )] = n i=1 [k(K p )(x 1 , . . . , x i ) : k(K p )(x 1 , . . . , x i-1 )] ≤ p n , et il y'a égalité si et seulement si B est r-libre sur k(K p ). ⊓ ⊔ Corollaire 2.3 Soit K/k une extension de caractéristique p > 0. Une partie B de K est r-libre sur k(K p ) si et seulement si pour toute sous-partie finie B ′ de B, on a [k(K p )(B ′ ) : k(K p )] = p |B ′ | .
Comme application, le résultat ci-dessous montre que la r-indépendance est transitive dans le cas des extensions de hauteurs 1. Autrement dit :

Proposition 2.4 Etant donnée une extension K/k de caractéristique p > 0. Deux parties B 1 et B 2 de K sont respectivement r-libres sur k(K p ) et k(B 1 )(K p ) si et seulement si B 1 ∪ B 2 l'est sur k(K p ). En particulier, si B 1 est une r-base de k(K p )/K p , et B 2 est une r-base de K/k(B 1 )(K p ), alors B 1 ∪ B 2 est p-base de K.
Preuve. La condition suffisante résulte aussitôt de la définition des r-bases. Par ailleurs, d'après la proposition 2.1, on se ramène au cas où

B 1 et B 2 sont finies. En vertu de la proposition 2.2, on a [k(K p )(B 1 ∪ B 2 ) : k(K p )] = [k(K p )(B 1 ∪ B 2 ) : k(K p )(B 1 )].[k(K p )(B 1 ) : k(K p )] = p |B2| .p |B1| = p |B2|+|B1| = p |B1∪B2| , et par suite B 1 ∪ B 2 est r-libre sur k(K p ). ⊓ ⊔
Comme conséquences immédiates : 

Corollaire 2.5 Soient k ⊆ L ⊆ K des extensions purement inséparables et B 1 , B 2 deux parties respectivement de K et L. Si B 1 est une r-base de K/L et B 2 une r-base de L(K p )/k(K p ), alors B 1 ∪ B 2 est une r-base de K/k. Corollaire 2.6 Soient K/k une extension de caractéristique p > 0, x un élém- ent de K, et B une partie r-libre sur k(K p ). Pour que B ∪ {x} soit r-libre sur k(K p ) il faut et il suffit que x ∈ k(K p )(B). Preuve. immédiat. ⊓ ⊔ Théorème 2.7 [théorème de la r-base incomplète] Etant données une extension K/k de caractéristique p > 0, et une partie B de K, r-libre sur k(K p ). Pour tout r-générateur G de K/k(K p ), il existe un sous-ensemble G 1 de G tel que B ∪ G 1 est une r-base de K/k. Preuve. Le cas où k(K p )(B) = K est trivialement évident. Si k(K p )(B) = K, il existe x ∈ G tel que x ∈ k(K p )(B). En effet, si pour tout x ∈ G, x ∈ k(K p )(B), comme G est un r-générateur de K/k(K p ), on aura k(K p )(G) = K ⊆ k(K p )(B
. Soit B 1 = M ∪ B, nécessairement K = k(K p )(B 1 ), si K = k(K p )(B 1 ), il existe également un élément y de G tel que y ∈ k(K p )(B 1 ), et donc B 1 ∪ {y} serait r-libre sur k(K p ) ; c'est une contradiction avec le fait que M est maximal. ⊓ ⊔
Voici quelques conséquences immédiates :

(1) De tout r-générateur de K/k(K p ) on peut en extraire une r-base de K/k.

(2) Toute partie r-libre sur k(K p ) peut être complétée en une r-base de K/k. En particulier, toute partie p-indépendante sur k p peut être étendue en une p-base de k. (3) Toute extension K/k admet une r-base. En outre, tout corps commutatif de caractéristique p > 0 admet une p-base.

Par ailleurs, toutes les r-bases d'une même extension ont même cardinal comme le précise le résultat suivant.

Théorème 2.8 Soit K/k une extension de caractéristique p > 0. Si B 1 et B 2 sont deux r-bases de K/k, alors |B 1 | = |B 2 |.
Pour la preuve de ce théorème on se sérvira des résultats suivants. Lemme 2.9 [Lemme d'échange] Sous les conditions du théorème précédent, pour tout x ∈ B 2 , il existe

x 1 ∈ B 1 tel que (B 1 \{x 1 }) ∪ {x} est une r-base de K/k.
Preuve. Choisissons un élément arbitraire x de B 2 , comme B 2 est une r-base de K/k, il en résulte que {x} est r-libre sur k(K p ). Compte tenu du théorème 2.7, il existe Preuve. Immédiat, puisque tout r-générateur peut se réduire (respectivement toute famille r-libre peut se compléter) en une r-base.

B ′ 1 ⊂ B 1 tel que B ′ 1 ∪ {x} est une r-base de K/k. D'où, p = [k(K p )(B ′ 1 )({x}) : k(K p )(B ′ 1 )] = [K : k(K p )(B ′ 1 )] = [k(K p )(B ′ 1 )(B 1 \B ′ 1 ) : k(K p )(B ′ 1 )], et comme B 1 \B ′ 1 est r-libre sur k(K p )(B ′ 1 ), on en déduit que |B 1 \B ′ 1 | = 1, c'est-à-dire B 1 \B ′ 1 est réduit à un singleton. ⊓ ⊔ Proposition 2.
K = k(K p )(B 2 ) ⊆ k(K p )( x∈B2 ( 

⊓ ⊔

Dans le cas où K/k(K p ) est finie, compte tenu du théorème de la r-base incomplète, un r-générateur G de K/k(K p ) est une r-base de

K/k si et seulement si |G| = Log p ([K : k(K p )]). En particulier, si B est une r-base de K/k et G un r-générateur de K/k(K p ) tels que |B| = |G| < +∞, alors G est une r-base de K/k.
Soit K/k une extension purement inséparable de caractéristique p > 0. On rappelle que K est dit d'exposant fini sur k, s'il existe e ∈ N tel que K p e ⊆ k, et le plus petit entier qui satisfait cette relation sera appelé exposant (ou hauteur) de K/k. Certes, la proposition suivante permet de ramener l'étude des propriétés des r-générateurs minimals des extensions d'exposant fini au cas des extensions de hauteur 1, lesquelles sont plus riches. Proposition 2.12 Soit K/k une extension purement inséparable d'exposant fini. Pour qu'une partie de K soit une r-base de K/k il faut et il suffit que elle soit r-générateur minimal de K/k. Preuve. On distingue deux cas : 

Preuve. Soit G une r-base de K/k, donc K = k(K p )(G) = . . . = k(K p e )(G) = k(G), et s'il existe x ∈ G tel que x ∈ k(G\{x}), on aura x ∈ k(K p )(G\{x}), c'est une contradiction avec le fait que G est une r-base de K/k. Inversement, pour tout r-générateur minimal G de K/k, on a K = k(G) = k(K p )(G), et s'il existe x ∈ G tel que x ∈ K = k(K p )(G\x) = . . . = k(K p e )(G\{x} = k(G\{x}
1-ier cas. Si K/k est d'exposant 1, c'est-à-dire K p ⊆ k, donc L p ⊆ k. D'après le théorème 2.7, il existe B 1 ⊆ B K tel que B L ∪ B 1 est une r-base de K/k, et par suite |B L | ≤ |B L ∪ B 1 | = |B K |.
(K p ) ⊆ L(K p ) ⊆ K, et donc il existe B 1 ⊆ B L et B 2 ⊆ B K telles que B 1 et B 2 sont deux r-bases respectivement de L(K p )/k(K p ) et K/L(K p ). D'après la transitivité de la r-indépendance, B 1 ∪ B 2 est une r-base de K/k(K p ). Posons ensuite k 1 = k(B 1 ) et B ′ L = B L \ B 1 ; on vérifie aussitôt que L ⊆ k 1 (K p ) = k 1 (B 2 p ), et k 1 (K p )/k 1 est d'exposant < e.
Par application de la propriété de récurrence et du corollaire 2.11, on obtient

|B ′ L | ≤ |B 2 p | = |B 2 |. Comme B 1 ∩ B ′ L = ∅ et B 1 ∩ B 2 = ∅, alors |B 1 ∪ B ′ L | ≤ |B 1 ∪ B 2 |, et par suite |B L | ≤ |B K |. ⊓ ⊔ 3 Degré d'irrationalité
Soit K/k une extension purement inséparable. Désormais, et sauf mention expresse du contraire, pour tout n ∈ N * , on note Remarque 3.1 di(K/k) permet de mesurer la taille de l'extension K/k, et di(k) la longueur de k.

k n = k p -n ∩ K, on obtient ainsi k ⊆ k 1 ⊆ . . . ⊆ k n ⊆ . . . ⊆ K, et k n /k est d'exposant fini. Soit B n une r-base de k n /k, d
Toutefois, on vérifie aussitôt que :

-di(K/K) = 0. -Pour tout n ∈ Z, di(k) = di(k p n ) = di(k p -∞ /k).
-Compte tenu du corollaire 2.5, pour toute sous-extension

L/k de K/k, on a di(K/k(K p )) = di(K/L(K p )) + di(L(K p )/k(K p )). Plus généralement, si K/k est d'exposant 1, on a di(K/k) = di(K/L) + di(L/k). -En vertu de la proposition 2.2, pour toute extension purement inséparable d'exposant fini K/k, on a di(K/k) = di(K/k(K p )). Théorème 3.1 Soient k ⊆ L ⊆ K des extensions purement inséparables, on a di(L/k) ≤ di(K/k). En outre, di(K/k) = sup(di(L/k)) L∈[k,K] .
Preuve. D'après le théorème 2.13, il suffit de remarquer que pour tout n ≥ 1, on a di(k

p -n ∩L/k) ≤ di(k n /k), et donc sup(di(k p -n ∩L/k)) n≥1 ≤ sup(di(k n /k)) n≥1 ; ou encore di(L/k) ≤ di(K/k). ⊓ ⊔
Une conséquence type est le résultat suivant : Théorème 3.2 Pour toute extension purement inséparable K/k, on a di(K/k) ≤ di(k).

Preuve. Il suffit de remarquer qu'une partie B de k est une p-base de k si et seulement si B p -n est une r-base

de k p -n /k pour tout n ≥ 1. Comme k p -∞ = n≥1 k p -n , on a pour tout n ≥ 1, k p -n ∩K ⊆ k p -∞ , et par suite di(K/k) ≤ di(k p -∞ /k) = di(k).
⊓ ⊔ Proposition 3.3 Soit (K n /k) n∈N une famille croissante de sous-extensions purement inséparables d'une extension Ω/k. On a :

di( n∈N (K n )/k) = sup n∈N (di(K n /k)).
Preuve.

Notons K = n∈N K n , et soit j un entier naturel non nul. Il est immédiat que k j = k p -j ∩ K = n∈N (k p -j ∩ K n ).
Dans la suite on distingue deux cas :

1-ier cas : si di(k j /k) est fini, ou encore k j /k est finie. Comme pour tout n ∈ N , on a k p

-j ∩ K n ⊆ k p -j ∩ K n+1 ⊆ k p -j ∩ K, alors la suite d'entiers ([k p -j ∩ K n : k]) n∈N est croissante et bornée, donc stationnaire à partir d'un rang n 0 ; et par conséquent pour tout n ≥ n 0 , k p -j ∩ K n = k p -j ∩ K n+1 . En outre, di(k p -j ∩ K/k) = di(k p -j ∩ K n0 /k) = sup n∈N (di(k p -j ∩ K n /k)). 2-ième cas : si di(k p -j ∩ K/k) est infini, ou encore sup n∈N (di(k p -j ∩ K n /k)) n'est pas fini. Comme k p -j ∩ K = n∈N (k p -j ∩ K n ), donc si B j n est une r-base de k p -j ∩ K n /k, alors n∈N B j n est un r-générateur de k p -j ∩ K/k. En vertu du corollaire 2.11, di(k p -j ∩ K/k) ≤ | n∈N B j n |, et d'après ([16], III, p.49, corollaire 3), | n∈N B j n | ≤ sup n∈N (|B j n |) = sup n∈N (di(k p -j ∩ K n /k)).
Compte tenu de ces deux cas, on en déduit que di(K/k) ≤ sup n∈N (di(K n /k)).

Mais comme

K n ⊆ K pour tout n ≥ 1, d'après le théoréme 3.1 on obtient sup n∈N (di(K n /k)) ≤ di(K/k), et par suite di(K/k) = sup n∈N (di(K n /k)). ⊓ ⊔
Le résultat suivant qui est une conséquence bien connue de la linéarité disjointe intervient souvent dans le reste de ce papier.

Proposition 3.4 Soient K 1 /k et K 2 /k deux sous-extensions d'une même ex- tension K/k, k-linéairement disjointes. Pour touts corps intermédiaires L 1 et L 2 respectivement de K 1 et K 2 , on a L 2 (K 1 ) et L 1 (K 1 ) sont k(L 1 , L 2 )-linéairement- disjointes. En particulier, L 2 (K 1 ) ∩ L 1 (K 2 ) = k(L 1 , L 2 ).
Une famille (F i /k) i∈J d'extensions est dites k-linéairement disjointes, si pour toute partie G d'éléments finis de J, (F n /k) n∈G sont k-linéairement disjointes (cf. [START_REF] Michael | Regional Center for the Professions of Education and Training[END_REF], p. 36). Il est trivialement évident que k((

F i ) i∈J ) = i∈J F i ≃ ⊗ k (⊗ k F i ) i∈J si et seulement si (F i /k) i∈J sont k-linéairement disjointes.
De plus, les propriétés de la linéarité disjointe du cas fini se prolonge naturellement à une famille quelconques d'extensions k-linéairement disjointes. En particulier, pour tout i ∈ J, soit L i un sous-corps de F i , si (F i /k) i∈J sont k-linéairement disjointes, compte tenu de la transitivité de la linéarité disjointe,

(L i /k) i∈J (resp. (( n∈J L n )F i /k) i∈J ) sont k-linéairement (resp. n∈J L n -linéairement) disjointes. Considérons maintenant deux sous-extensions K 1 /k et K 2 /k d'exposant fini d'une même extension purement inséparable K/k. On vérifie aussitôt que si B 1 et B 2 sont deux r-bases respectivement de K 1 /k et K 2 /k, alors B 1 et B 1 ∪ B 2 sont deux r-générateurs respectivement de K 1 (K 2 )/K 2 et K 1 (K 2 )/k. En outre, di(K 1 (K 2 )/K 2 ) ≤ di(K 1 /k) et di(K 1 (K 2 )/k) ≤ di(K 1 /k) + di(K 2 /k
). D'une façon plus précise, on a : Proposition 3.5 Sous les conditions ci-dessus, et si de plus

K 1 /k et K 2 /k sont k-linéairement disjointes, on a : (i) B 1 ∪ B 2 est une r-base de K 1 (K 2 )/k. (ii) B 1 est une r-base de K 1 (K 2 )/K 2 .
Preuve. Ici, on se contente de présenter uniquement la preuve du premier item, puisque les deux assertions utilisent les mêmes techniques de raisonnement. Il est clair que

K 1 (K 2 ) = k(B 1 ∪B 2 ), il suffit donc de montrer que B 1 ∪B 2 est minimal. Pour cela, on suppose par exemple l'existence d'un élément x dans B 1 tel que x ∈ k((B 1 \{x})∪B 2 ) = K. Comme K 1 /k et K 2 /k sont k-linéairement disjointes, par transitivité, on a k(B 1 ) = K 1 et K 2 (B 1 \{x}) = K sont k(B 1 \{x})-linéairement disjoints, et donc K 1 = K ∩ K 1 = k(B 1 \ {x}), c'est une contradiction avec le fait que B 1 est une r-base de K 1 /k. ⊓ ⊔
Comme conséquence immédiate, on a Corollaire 3.6 Soient K 1 et K 2 deux corps intermédiaires d'une même extension purement inséparable Ω/k. Alors :

(i) di(K 1 (K 2 )/k) ≤ di(K 1 /k) + di(K 2 /k), et il y'a égalité si K 1 et K 2 sont k-linéairement disjoints. (ii) di(K 1 (K 2 )/K 2 ) ≤ di(K 1 /k), et il y'a égalité si K 1 et K 2 sont k-linéair- ement disjoints.
Preuve. Il suffit de remarquer que

K 1 (K 2 ) = j∈N (k p -j ∩ K 1 )(k p -j ∩ K 2 ) = j∈N K 2 (k p -j ∩ K 1 ), et si K 1 et K 2 sont k-linéairement disjoints, d'après la tran- sitivité de la linéarité disjoint, k p -j ∩ K 1 et k p -j ∩ K 2 sont aussi k-linéairement disjoints pour tout j ≥ 1.
On se ramène ainsi au cas où K 1 /k et K 2 /k sont d'exposant fini auquel cas le résultat découle immédiatement de la proposition précédente.

⊓ ⊔

Comme conséquence immédiate, on a :

Corollaire 3.7 Pour toute sous-extension L/k d'une extension purement insé- parable K/k, on a di(L(K p ) /k(K p )) ≤ di(L/k(L p )), et il y'a égalité si k(K p ) et L sont k(L p )-linéairement disjointes.
Preuve. Due au corollaire 3.6.

⊓ ⊔

Le résultat suivant améliore naturelement les conditions du théorème 3.1

Théorème 3.8 Pour toute famille d'extensions purement inséparables k ⊆ L ⊆ L ′ ⊆ K, on a di(L/L ′ ) ≤ di(K/k). Preuve. Il est clair que K = j∈N L(k j ), et d'après la proposition 3.3, et le théorème 3.1, on a di(L ′ /L) ≤ di(K/L) = sup j∈N (di(L(k j )/k)) ≤ sup j∈N (di(k j /k)) = di(K/k). ⊓ ⊔
Comme conséquence immédiate, on a :

Corollaire 3.9 Pour toute extension purement inséparable K/k, on a di(K) ≤ di(k).
Preuve. Il suffit de remarque que

K ⊆ k p -∞ , et di(K) = di(K/K p ) ≤ di(k p -∞ /k p ) = di(k). ⊓ ⊔

Extensions relativement parfaites

Au cours de cette section, on reprend, en les améliorant, quelques notions et résultats de [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], puisqu'ils sont utilisés fréquemment ici.

Un corps k de caractéristique p est dit parfait si k p = k ; dans le même ordre d'idées, on dit que K/k est relativement parfaite si k(K p ) = K. On vérifie aisément que :

-La relation "être relativement parfaite" est transitive, c'est-à-dire si K/L et L/k sont relativement parfaites, alors K/k l'est aussi. -Si K/k est relativement parfaite, il en est de même de L(K)/k(L).

-La propriété "être relativement parfaite" est stable par un produit quelconque portant sur k. Autrement dit, pour toute famille

(K i /k) i∈I d'ext- ensions relativement parfaites, on a alors i K i /k est aussi relativement parfaite.
Par suite, il existe une plus grande sous-extension relativement parfaite de K/k appelée clôture relativement parfaite de K/k, et se note rp(K/k). On a les relations d'associativité-transitivité suivantes.

Proposition 3.10 Soit L un corps intermédiaire de K/k. Alors

rp(rp(K/L)/k) = rp(K/k) et rp(K/rp(L/k)) = rp(K/k).
Preuve. Cf. [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], p. 50, proposition 5.2.

⊓ ⊔ Corollaire 3.11 Pour tout L ∈ [k, K], on a K/L finie =⇒ rp(K/k) ⊂ L. En particulier, si K/k est relativement parfaite, on a K/L f inie =⇒ L = K. Schématiquement on a un trou k -→ K; ↑ trou et ce trou caractérise le fait que K/k est relativement parfaite. En effet, suppo- sons que K/k vérifie le trou et soit B une r-base de K/k. Supposons B = ∅ ; soit x ∈ B et L = k(K p )(B \ {x}) ; on a K/L est finie, donc K = L ce qui est absurde.
Proposition 3.12 Soit K/k une extension purement inséparable telle que [K : k(K p )] est fini. Alors on a :

(i) K est relativement parfaite sur une extension finie de k. (ii) La suite décroissante (k(K p n )) n∈N est stationnaire sur k(K p n 0 ) = rp(K / k).
Preuve. Cf. [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], p. 51, lemme 2.1.

⊓ ⊔

Comme conséquence de la proposition précédente, on a :

Proposition 3.13 Soit K/k une extension purement inséparable telle que [K : k(K p )] est fini. Pour tout L ∈ [k, K], on a rp(K/L) = L(rp(K/k)).
Preuve. Cf. [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], p. 51, proposition 6.2.

⊓ ⊔

En utilisant le lemme 1.16 qui se trouve dans ( [START_REF] Mordeson | Structure of arbitrary purely inseparable extension fields[END_REF], p. 10), on peut affirmer que la condition de finitude de [K : k(K p ] est nécéssaire, et par suite, le résultat précédent peut tomber en défaut si K/k(K p ) n'est pas finie. Par ailleurs, on vérifie aussitôt que k(K p ) = rp(K/k)(K p ), et donc pour qu'une partie G de K soit r-base de K/k il faut et il suffit qu'elle en soit de même de K/rp(K/k). De plus, comme 2-ième conséquence de la proposition 3.12, le résultat suivant exprime une condition nécessaire et suffisant pour que K/rp(K/k) soit finie. Plus précisément, on a : Proposition 3.14 Soit K/k une extension purement inséparable, alors K/rp( K/ k) est finie si est seulement il en est de même de K/k(K p ).

Preuve. Résulte de la proposition 3.12.

⊓ ⊔

4 Extensions q-finies Définition 4.1 Toute extension de degré d'irrationalité fini s'appelle extension q-finie.

En d'autres sens, la q-finitude est synonyme de la finitude horizontale. Toutefois, la finitude se traduit par la finitude horizontale et verticale, il s'agit de la finitude au point de vue taille et hauteur. Autrement dit, K/k est finie si et seulement si K/k est q-finie d'exposant borné. Par ailleurs, on vérifie que le degré d'irrationalité d'une extension K/k vaut 1 si est seulement si l'ensemble de corps intermédiaires de K/k est totalement ordonné. Ensuite, on appelle extension q-simple toute extension qui satisfait l'affirmation précédente.

Remarque 4.1 On rappelle que lorsque di(k) est fini, et après avoir montré dans [2] 

que K/k(K p ) est finie et di(K) ≤ di(k), le degré d'irrationalité d'une extension purement inséparable K/k a été défini par l'entier di(K/k) = di(k) -di(K) + di(K/k(K p )).
En outre, toute extension est q-finie si di(k) est fini. Avec quelques modifications légères, on peut toujours prolonger cette définition au cas où di(k) est non borné. Commençons par le choix d'une extension

K/k relativement parfaite et q-finie. Etant donnée une p-base B de k, donc k = k p (B), et par suite k(K p ) = K p (B). Comme K/k est relativement parfaite, alors K = k(K p ) = K p (B). D'après le théorème 2.7, il existe B 1 ⊆ B telle que B 1 est une p-base de K. Ainsi, on aura k p -∞ = k(B p -∞ ) = k(B 1 p -∞ ) ⊗ k k((B \ B 1 ) p -∞ ) ≃ K p -∞ ≃ K ⊗ k k(B 1 p -∞ ). En particulier, d'après le corollaire 3.6, di(K/k) = di(K ⊗ k k(B 1 p -∞ )/k(B 1 p -∞ )) = di(k p -∞ /k(B 1 p -∞ )) = di(k((B \ B 1 ) p -∞ )/k) = |B\B 1 |. Si on interprète (par abus de langage) |B\B 1 | comme dif- férence de degré d'imperfection de k et K en écrivant |B\B 1 | = di(k)-di(K), on obtiendra di(K/k) = di(k) -di(K). Dans le cas général, supposons que K/k est q-finie quelconque, donc K/rp(K/k) est finie, d'où di(K) = di(rp(K/k)) ; et par suite di(K/k) = di(rp(K/k)/k) + di(K/k(K p )) = di(k) -di(K) + di(K/k(K p )) (cf. proposition 4.4 ci-dessous).
Il est à signaler en tenant compte de cette considération que tous les résultats des articles [START_REF] Chellali | Extension presque modulaire[END_REF], [2], [START_REF] Chellali | Théorème de la clôture lq-modulaire et applications[END_REF], [START_REF] Chellali | Extensions i-Modulaires[END_REF] se généralisent naturellement par translation à une extension q-finie quelconque.

Soient L/k une sous-extension d'une extension q-finie K/k, pour tout n ∈ N, on note toujours k n = k p -n ∩ K. On vérifie aussitôt que :

(i) La q-finitude est transitive, en particulier, pour tout n ∈ N, K/k(K p n ) et k n /k sont finies. (ii) Il existe n 0 ∈ N, pour tout n ≥ n 0 , di(k n /k) = di(K/k).
Par ailleurs, voici quelques applications immédiates des propositions 3.12 et 3.14. Proposition 4.1 Soit K/k une extension q-finie. La suite (k(K p n )) n∈N s'arrête sur rp(K/k) à partir d'un n 0 . En particulier, K/rp(K/k) est finie.

Comme conséquence, on a : Corollaire 4.2 La clôture relativement parfaite d'une extension q-finie K/k n'est pas triviale. Plus précisément, rp(K/k)/k est d'exposant non borné si K/k l'est.

Preuve. Immédiat. ⊓ ⊔ Proposition 4.3 Pour toute extension q-finie K/k, il existe n ∈ N tel que K/k n est relativement parfaite. En outre, k n (rp(K/k)) = K. Preuve. Immédiat. ⊓ ⊔ Proposition 4.4 Le degré d'irrationalité d'une extension q-finie K/k vérifie l'égalité suivante : di(K/k) = di(rp(K/k)/k) + di(K/k(K p )) = di(K/rp(K/k)) +di(rp(K/k)/k). Preuve. Soient G une r-base de K/k et K r = rp(K/k), donc k(G)/k ad- met un exposant fini noté m et, K = K r (G). En paticulier, pour tout n ≥ m, k(G) ⊆ k n .
Compte tenu de la r-indépendance de G sur k(K p ) et vu que k(k n p ) est un sous-ensemble de k(K p ), on en déduit que G est r-libre sur k(k n p ) pour tout n ≥ m. Complétons G en une r-base de k n /k par une partie G n de k n . Dans ces conditions, pour n suffisamment grand, on aura

|G|+|G n | = sup j≥m (|G|+ |G j |) = di(K/k) = di(K r (G)/k) ≤ di(K r /k) + di(k(G)/k) = di(K r /k) + |G|, et donc |G n | ≤ di(K r /k). Toutefois, comme n≥m k(k n p m ) = n≥m k(G n p m , G p m ) = n≥m k(G n p m ) = k(K p m ) = K r (K p m ), d'après le théorème 3.1, pour n suffisam- ment grand, on aura également di(K r / k) ≤ di(K r (K p m )/k) = di(k(k n p m )/k) ≤ |G n p m | = |G n |. D'où, |G n | = di(K r /k) pour n assez grand, et par suite di(K/k) = di(K r /k) + di(K/k(K p )).
⊓ ⊔

Comme conséquence immédiate, on a :

Corollaire 4.5 Pour qu'une extension q-finie K/k soit finie il faut et il suffit que di(K/k) = di(K/k(K p )).
Théorème 4.6 Pour toutes extensions q-finies k 

⊆ L ⊆ K, on a di(K/k) ≤ di(K/L) + di(L/k), avec l'égalité si et seulement si L/k(L p ) et k(K p )/k(L p ) sont k(L p )-linéairement disjointes. Preuve. Comme K = n∈N L p -n ∩ K et K/k est q-finie, d'après le théorème 3.1, pour n assez grand, on a di(K/k) = di(L p -n ∩ K/k) ; donc
/k) = di(K r /k) + di(K/k(K p )) = di(L r /k) + di(K/L(K p )) + di(L(K p )/k(K p )) = di(L r /k) + di(K/L) + di(L(K p )/k(K p )). Compte tenu du corollaire 3.7, on aura di(L( K p ) /k(K p )) ≤ di(L/k(L p )), et donc di(K/k) ≤ di(L r /k) + di(K/L) + di(L/k(L p )) = di(L/k) + di(K/L), toutefois il y'a égalité si et seulement si di(L/k(L p )) = di(L(K p )/k( K p )), ou encore [L : k(L p )] = [L(K p ) : k(K p )], c'est-à-dire L/k(L p ) et k(K p )/k( L p ) sont k(L p )-linéairement disjointes. ⊓ ⊔ Remarque 4.
2 La condition de la linéarité disjointe qui figure dans la proposition ci-dessus se traduit en terme de r-indépendance par toute r-base de L/k se complète en une r-base de K/k.

Comme application immédiate, on a :

Corollaire 4.7 Toute sous-extension relativement parfaite L/k d'une extension q-finie K/k vérifie di(K/k) = di(K/L) + di(L/k).
D'une façon assez générale, on a : Proposition 4.8 Pour toute suite de sous-extensions relativement parfaites

k = K 0 ⊆ K 1 ⊆ . . . ⊆ K n d'une extension q-finie K/k, on a di(K/k) = n-1 i=0 di(K n+1 /K n ) + di(K/K n ).
Preuve. Résulte immédiatement du corollaire précédent.

⊓ ⊔

Dans la suite on va étudier de plus près les propriétés des exposants d'une extension q-finie.

Exposants d'une extension q-finie

Dans cette section nous distinguons deux cas : [2], p. 138, lemme 1.3). On en déduit aussitôt le résultat de ( [START_REF] Pickert | Inseparable Körperweiterungen[END_REF], p. 90, satz 14) qui confirme l'indépendance des entiers o(a i /k(a 1 , . . . , a i-1 )), (1 

Cas où K/k est purement inséparable finie. Soit x ∈ K, posons o(x/k) = inf{ m ∈ N| x p m ∈ k} et o 1 (K/k) = inf{m ∈ N| K p m ⊂ k}. Une r- base B = {a 1 , a 2 , . . . , a n } de K/k est dite canoniquement ordonnée si pour j = 1, 2, . . . , n, on a o(a j /k(a 1 , a 2 , . . . , a j-1 )) = o 1 (K/k(a 1 , a 2 , . . . , a j-1 )). Ainsi, l'entier o(a j /k(a 1 , . . . , a j-1 )) défini ci-dessus vérifie o(a j /k(a 1 , . . . , a j-1 )) = inf{m ∈ N| di(k(K p m )/k) ≤ j -1} (cf.
≤ i ≤ n), vis-à-vis au choix des r-bases canonique- ment ordonnées {a 1 , . . . , a n } de K/k. Par suite, on pose o i (K/k) = o(a i /k(a 1 , . . . , a i-1 )) si 1 ≤ i ≤ n, et o i (K/k) = 0 si i > n, où {a 1 , . . . , a n } est une r-base canoniquement ordonnée de K/k. L'invariant o i (K/k) ci-dessus s'appelle le i- ème exposant de K/k. Voici
K/k, et m j le j-ième exposant de K/k, 1 ≤ j ≤ n. On a : (1) k(K p m j ) = k(α p m j 1 , . . . , α p m j j-1 ). (2) Soit Λ j = {(i 1 , . . . , i j-1 ) tel que 0 ≤ i 1 < p m1-mj , . . . , 0 ≤ i j-1 <
p mj-1-mj }, alors {(α 1 , . . . , α j-1 ) p m j ξ tel que ξ ∈ Λ j } est une base de k(K p m j ) sur k.

(3) Soient n ∈ N et j le plus grand entier tel que m j > n. Alors {α p n 1 , . . . , α p n j } est une r-base canoniquement ordonnée de k(K p n )/k, et sa liste des exposants est (m 1n, . . . , m jn).

Preuve. cf. [2], p. 140, proposition 5.3.

⊓ ⊔ Proposition 4.12 Soient

K 1 /k et K 2 /k deux sous-extensions purement insép- arables de K/k. K 1 et K 2 sont k-linéairement disjointes si et seulement si o j (K 1 (K 2 )/K 2 ) = o j (K 1 /k) pour tout j ∈ N.
Preuve. cf. [START_REF] Chellali | Sur les extensions purement inséparable[END_REF] Lemme 4.14 Soit K/k une extension q-finie, alors o s (K/k) est fini si et seulement s'il existe un entier naturel n tel que di(k

(K p n )/k) < s, et on a o s (K/k) = inf{m ∈ N | di(k(K p m )/k) < s}. En particulier, o s (K/k) est infini si et seule- ment si pour tout m ∈ N, di(k(K p m )/k) ≥ s.
Preuve. Pour simplifier l'écriture, on note e t = o t (K/k) si o t (K/k) est fini. Compte tenu du [2], p. 138, lemme 1.3, on vérifie aussitôt que o s (K/k) est infini si et seulement si pour tout m ∈ N, di(k(K p m )/k) ≥ s, donc on se ramène au cas où o s (K/k) est fini. Par suite, il existe un entier n 0 , pour tout

n ≥ n 0 , e s = o s (k n /k). D'après [2] p. 138, lemme 1.3, di(k(k n p es )/k) < s et di(k(k n p es -1 )/k) ≥ s. En vertu du théorème 3.1, di(k(K p es )/k) < s et di(k(K p es -1 )/k) ≥ s. Autrement dit, o s (K/k) = inf{m ∈ N | di(k(K p m )/k) < s}. ⊓ ⊔
Le résultat ci-dessous permet de ramener l'étude des propriétés des exposants des extensions q-finies aux extensions finies par le biais des clôtures relativement parfaites.

Théorème 4.15 Soit K r /k la clôture relativement parfaite de degré d'irrationalité s d'une extension q-finie K/k, alors on a :

(i) Pour tout t ≤ s, o t (K/k) = +∞. (ii) Pour tout t > s, o t (K/k) = o t-s (K/K r ).
En outre, o t (K/k) est fini si et seulement si t > s.

Preuve. Pour tout t ∈ N * , notons e t = o t (K/K r ). Comme pour tout entier e, on a k(K 

p e ) = K r (K pe ) = n∈N k(k n p e ), donc s = di(K r /k) ≤ di(k(K p e )/k) = di(k(k n p e )/
> s, di(K r (K p e n-s )/k) = di(K r /k) + di(K r (K p e n-s )/K r ) < s + n -s = n et di(K r (K p e n-s -1 )/k) = di(K r /k) + di(K r (K p e n-s -1 )/K r ) ≥ n. Notamment, pour tout n > s, o n (K/k) = o n-s (K/K r ). Toutefois, o n (K/k) est fini si et seulement si n ≤ s. ⊓ ⊔
Voici une liste de conséquences immédiates :

Proposition 4.16 Soient K et L deux corps intermédiaires d'une extension q-finie M/k. Pour tout j ∈ N * , on a o j (L(K)/L) ≤ o j (K/k).
Preuve. Due au lemme 4.14, et à l'inégalité suivante résultant du corllaire 3.6 :

di(L(L p n , K p n )/L) = di(L(K p n )/L) ≤ di(k(K p n )/k) pour tout n ∈ N. ⊓ ⊔
Proposition 4.17 Etant données des extensions q-finies k ⊆ L ⊆ K. Pour tout j ∈ N * , on a o j (L/k) ≤ o j (K/k).

Preuve. Application immédiate du lemme 4.14, et de l'inégalité suivante résultant du théorème 3.

1 : di(k(L p n )/k) ≤ di(k(K p n )/k) pour tout n ∈ N.
Par ailleurs la taille d'une extension relativement parfaite reste invariant, à une extension finie près comme l'indique le résultat suivant. 

t (k n /k) > e + 1, en outre L ⊆ k n et di(k n /k) = di(K/k).
Soit {α 1 , . . . , α t } une r-base canoniquement ordonnée de k n /k, s'il existe s ∈ {1, . . . , t} tel que α s ∈ L(k n p )(α 1 , . . . , α s-1 ), d'après la proposition 4.10, on aura

e < o t (k n /k) ≤ o s (k n /k) = o(α s , k(α 1 , . . . , α s-1 )) ≤ o 1 (L(k n p )(α 1 , . . . , α s-1 )/ k(α 1 , . . . , α s-1 )) ≤ sup(o 1 (L/k), o s (k n /k) -1) = o s (k n /k) -1, et donc o s (k n /k) ≤ o s (k n /k) -1, contradiction. D'où, {α 1 , . . . , α t } est une r-base de L(k n )/L, et par suite, t = di(K/k) = di(L(k n )/L) ≤ di(L(K)/L). ⊓ ⊔

Extensions modulaires

On rappelle qu'une extension K/k est dite modulaire si et seulement si pour tout n ∈ N, K p n et k sont K p n ∩ k-linéairement disjointes. Cette notion a été définie pour la première fois par Swedleer dans [START_REF] Sweedler | Structure of inseparable extensions[END_REF], elle caractérise les extensions purement inséparables, qui sont produit tensoriel sur k d'extensions simples sur k. Par ailleurs, toute r-base B de K/k telle que K ≃ ⊗ k (⊗ k k(a)) a∈B sera appelée r-base modulaire. En particulier, d'après le théorème de Swedleer, si K/k est d'exposant borné, il est équivalent de dire que :

(i) K/k admet une r-modulaire. (ii) K/k est modulaire.
Soient m j le j-ième exposant d'une extension purement inséparable finie K/k et {α 1 , . . . , α n } une r-base canoniquement ordonnée de K/k, donc d'après la proposition 4.11, pour tout j ∈ {2, . . . , n}, il existe des constantes uniques

C ε ∈ k telles que α j p m j = ε∈Λj C ε (α 1 , . . . , α j-1 ) p m j ε , où Λ j = {(i 1 , . . . , i j-1 ) tel que 0 ≤ i 1 < p m1-mj , . . . , 0 ≤ i j-1 < p mj-1-mj }.
Ces relations s'appellent les équations de définition de K/k.

Le critère ci-dessous permet de tester la modularité d'une extension.

Théorème 5.1 [Critère de modularité] Sous les notations ci-dessus, les propriétés suivantes sont équivalentes :

(1) K/k est modulaire.

(2) Pour toute r-base canoniquement ordonnée {α 1 , . . . , α n } de K/k, les C ε ∈ k ∩ K p m j pour tout j ∈ {2, . . . , n}.

(3) Il existe une r-base canoniquement ordonnée {α 1 , . . . , α n } de K/k telle que les C ε ∈ k ∩ K p m j pour tout j ∈ {2, . . . , n}.

Preuve. cf. [2], p. 142, proposition 1.4. ⊓ ⊔ Exemple 5.2 Soient Q un corps parfait de caractéristique p > 0, k = Q(X, Y, Z) le corps des fractions rationnelles aux indéterminées X, Y, Z, et

K = k(α 1 , α 2 ) avec α 1 = X p -2 et α 2 = X p -2 Y p -1 + Z p -1 .
On vérifie aussitôt que

• o 1 (K/k) = 2 et o 2 (K/k) = 1, • α p 2 = Y α p 1 + Z. Si K/k est modulaire, d'après le critère du modularité, on aura Y ∈ k ∩ K p et Z ∈ k ∩ K p , et donc Y p -1 et Z p -1 ∈ K. D'où k(X p -2 , Y p -1 , Z p -1 ) ⊂ K, et par suite, di(k(X p -2 , Y p -1 , Z p -1 )/k) = 3 < di(K/k) = 2, contradiction.
Le résultat suivant est conséquence immédiate de la modularité. 

⊓ ⊔

Le théorème suivant de Waterhouse joue un rôle important dans l'étude des extensions modulaires (cf. [START_REF] Waterhouse | The structure of inseparable field extensions[END_REF] Théorème 1.1). Théorème 5.5 Soient (K j ) j∈I une famille de sous-corps d'un corps commutatif Ω, et K un autre sous-corps de Ω. Si pour tout j ∈ I, K et

K j sont K ∩ K j -linéairement disjoints, alors K et j K j sont K ∩ ( j K j )-linéairement disjoint.
Comme conséquence, la modularité est stable par une intersection quelconque portant soit au dessus ou en dessous d'un corps commutatif. Plus précisément, on a : Corollaire 5.6 Sous les mêmes hypothèses du théorème ci-dessus, on a :

(i) Si pour tout j ∈ I, K j /k est modulaire, il en est de même de j K j /k.

(ii) Si pour tout j ∈ I, K/K j est modulaire, il en est de même de K/ j K j . D'après le théorème de Waterhouse, il existe une plus petite sous-extension m/k de K/k (respectivement une plus petite extension M/K) telle que K/m (respectivement M/k) est modulaire. Désormais, on note m = lm(K/k) et M = um(K/k). Toutefois, l'extension um(K/k) sera appelée clôture modulaire de K/k.

Comme application immédiate de la proposition 3.4, on a Comme Application de la proposition précédente, on a : Théorème 5.8 Sous les conditions précisées ci-dessus, pour tout entier j < o(K/k), on a k j = k((a na-j ) a∈B1 , B 2 ).

Preuve. Comme K/k est réunion inductive d'extentions modulaires engendrées par des parties finies de B, et compte tenu de la distributivité de l'intersection par rapport à la réunion, on peut supposer sans perdre de généralité que K/k est finie d'exposant noté e. Soient {α 1 , • • • , α n } une r-base modulaire et canoniquement ordonnée de K/k, et m j le j-ième exposant de K/k. Désignons par s le plus grand entier tel que m s > j, et L = k(α p m 1 -j 1 , . . . , α p ms -j s , α s+1 , . . . , α n ). On vérifie aussitôt que :

(i) L ⊆ k j , (ii) K ≃ k(α 1 ) ⊗ k . . . ⊗ k k(α n ) ≃ L(α 1 ) ⊗ L . . . ⊗ L L(α s ). Ainsi, pour tout x ∈ K, il existe des constantes uniques C ε ∈ L telles que x = ε∈Λ C ε (α 1 , . . . , α s ) ε , où Λ = {(i 1 , . . . , i s ) tel que 0 ≤ i 1 < p m1-j , . . . , 0 ≤ i s < p ms-j }, et donc x p j = ε∈Λ C ε p j (α 1 p j , . . . , α s p j ) ε
. Compte tenu de la proposition 4.11, x p j ∈ k (c'est-à-dire x ∈ k j ) si et seulement si x p j = C (0,...,0) p j , ou encore x = C (0,...,0) . Par suite x ∈ k j si et seulement si x ∈ L, autrement dit k j = L.

Comme conséquence immédiate, dans le cas de modulaire le résultat suivant exprime une propriété de stabilité de la taille d'un certains corps intermédiaires. Plus précisément, Corollaire 5.9 Pour toute extension modulaire K/k, pour tout n ∈ N, on a

di(k n /k) = di(k 1 /k). En particulier, di(K/k) = di(k 1 /k).
Le résultat suivant est bien connu (cf. [START_REF] Kime | Purely inseparable modular extensions of unbounded exponent[END_REF]). Proposition 5.10 Soit K/k une extension purement inséparable et modulaire ; soit pour tout n ∈ N,

K n = k(K p n ). Alors k n /k, K/k n , K n /k et K/K n sont modulaires. Proposition 5.11 Soient K 1 et K 2 deux sous-extensions de K/k telles que K ≃ K 1 ⊗ K 2 .
Si pour tout i ∈ {1, 2}, K i /k est modulaire, il en est de même de K/k. Preuve. Cf. [START_REF] Chellali | Sur la tour des clôtures modulaires[END_REF], p. 55, lemme 3.4.

⊓ ⊔

Le résultat suivant étend trivialement les hypothèses de la proposition 3.3, [START_REF] Mordeson | Structure of arbitrary purely inseparable extension fields[END_REF], p. 94, ainsi que le théorème 3.2, [START_REF] Deveney | An intermediate theory for a purely inseparable Galois theory[END_REF], p. 289. Il utilise plus particulièrement les propriétés du système canoniquement générateur (pour plus d'information cf. [START_REF] Mordeson | Structure of arbitrary purely inseparable extension fields[END_REF], définition 1.32, p. 29). Proposition 5.12 Soient K 1 et K 2 deux sous-extensions de K/k telles que

K ≃ K 1 ⊗ K 2 . Si K/K 1 est modulaire, et K 2 /k est d'exposant borné, il existe une partie B de K telle que K ≃ K 1 ⊗ k (⊗ k (k(α) α∈B ). Preuve. D'abord, comme K ≃ K 1 ⊗ k K 2 , alors pour tout i ∈ N, pour toute r-base C de k(K 2 p i )/k, C est aussi une r-base de K 1 (K 2 p i )/K 1 . Choisissons ensuite une r-base B de K 2 /k, comme K 2 /k est d'exposant fini, alors B est un r-générateur minimal de K 2 /k. Soit B 1 , . . . , B n une partition de B vérifiant B 1 = {x ∈ B| o(x, k) = o 1 (K 2 /k) = e 1 } et, pour tout 1 < i ≤ n, B i = {x ∈ B| o(x, k(B 1 , . . . , B i-1 )) = o 1 (K 2 /k(B 1 , . . . , B i-1 )) = e i }.
Il est clair que e 1 > . . . > e n , et en vertu de la linéarité disjointe, pour tout i ∈ {1 . . . , n}, pour tout

x ∈ B i , on a également o(x, K 1 (B 1 , . . . , B i-1 )) = o 1 (K/K 1 (B 1 , . . . , B i-1 ))} = e i . En particulier, pour tout i ∈ {2, . . . , n}, ( α (G) αp e i ) G , où G est une partie finie d'éléments de B 1 ∪ . . . ∪ B i-1 et les α sont convenablement choisis, est une base respectivement de k(K 2 p e i ) sur k et K 1 (K 2 p e i ) = K 1 (K p e i ) sur K 1 . Notons M i cette base, et soit x ∈ B i , il existe des c α ∈ k uniques tels que x = α c α y α , (y α ∈ M i )
, en outre les c α sont aussi uniques dans K 1 . D'autre part, en vertu de la modularité, pour tout i ∈ {1, . . . , n}, K

p e i et K 1 sont K 1 ∩ K p e i -linéairement disjointes. Comme K 1 (K 2 p e i ) = K 1 (K p e i ) et M i ⊆ K p e i
, alors M i est aussi une base de K p e i sur K 1 ∩ K p e i . En tenant compte de l'unicité de l'écriture de x dans la base M i , on en déduit par identification que les c α ∈ k ∩ K p e i , et donc B i p e i ⊆ k ∩ K p e i (K 1 p e i (B 1 p e i , . . . , B i-1 p e i )) pour tout i ∈ {1 . . . , n}. Par application du ( [START_REF] Mordeson | Structure of arbitrary purely inseparable extension fields[END_REF], proposition 3.3, p. 94), il existe une sous-extension modulaire J/k d'exposant fini de K/k telle que K ≃ K 1 ⊗ k J. Ainsi, le résultat découle immédiatement du théorème de Swedleer.

⊓ ⊔

Dans le cas fini, le résultat suivant généralise la proposion ci-dessus.

Proposition 5.13 Soient K 1 et K 2 deux corps intermédiaires ; k-linéairement disjoints d'une extension purement inséparable finie L/k avec di(L/K 1 ) = di(K 2 /k) = n. Soit s le plus petit entier tel que o s (K 2 /k) = o n (K 2 /k). Si L/K 1 est modulaire, il existe une r-base {α 1 , . . . , α n } canoniquement ordonnée de K 1 (K 2 )/K 1 vérifiant K 1 (K 2 ) ≃ K 1 ⊗ k(α 1 , . . . , α s ) ⊗ k k(α s+1 ) ⊗ k . . . ⊗ k k(α n ).
Preuve. Pour simplifier l'écriture, pour tout j ∈ {1, . . . , n}, on note Preuve. D'après le théorème 5.8, il suffit de montrer que k(k n p ) = k n-1 . Compte tenu de la modularité de K/k, K p n et k sont k ∩ K p n -linéairement disjointes pour tout n ≥ 1, et en vertu de la transitivité de la linéarité disjointe,

o j (K 2 /k) = e j , et K = K 1 (K 2 ) . Soit
p -en ∈ L. Posons ensuite, F = k((C i ε ) p -en ) où (i, ε) parcourt l'ensemble {s, . . . , n} × Λ s-1 , et H = K 1 (F )(α 1 , . . . , α s-1 ). Il est clair que o 1 (F/k) ≤ e n , et K ⊆ H ⊆ L. De plus, d'après le théorème 3.1 et la proposition 4.10, n = di(K/K 1 ) ≤ di(H/K 1 ) ≤ di(L/K 1 ) = n, et pour tout i ∈ {s, . . . , n}, e n = o i (K/K 1 ) ≤ o i (H/K 1 ) ≤ e n .
• Pour tout i ∈ {1, . . . , s-1}, e i = o i (H/K 1 ) = o i (K 1 (α 1 , . . . , α s-1 )/K 1 ) = o i (k(α 1 , . . . , α s-1 )/k). • Pour tout j ∈ {s, . . . , n}, e n = o j (H/K 1 ) = o(b j , K 1 (α 1 . . . , α s-1 , b s , . . . , b j-1 )) ≤ o(b j , k(b s , . . . , b j-1 )/k) ≤ o 1 (F/k) ≤ e n , et donc e n = o j (H/K 1 ) = o j (k(b s , . . . , b n )/k). D'où, H = K ≃ K 1 ⊗ k(α 1 , . . . , α s-1 ) ⊗ k k(b s ) ⊗ k . . . ⊗ k k(b n ). ⊓ ⊔ 6 
k p n-1 (K p n ) et k sont k p n-1 (k ∩ K p n )-linéairement disjointes. Or K/k est relativement parfaite, donc k p n-1 (K p n ) = K p n-1 , et par suite k ∩ K p n-1 = k p n-1 (k ∩ K p n ), ou encore k(k n p ) = k n-1 . ⊓ ⊔
Le résultat suivant, rapporte plus de précision à la proposition 6.2 dans le cas des extensions q-finies, notamment aux extensions finies. Proposition 6.3 Soit K/k une extension purement inséparable de degré d'irrationalité t, relativement parfaite et modulaire (respectivement finie et équiexponentielle). Soient n et m deux entiers naturels tels que n < m (respectivement, n < o 1 (K/k)). Les propriétés suivantes sont vérifiées :

(1) di(k m /k n ) = t. (2) k m /k n est équiexponentielle d'exposant m -n ; (3) k p -(m-n) n ∩ K = k m et k(k p m-n m ) = k n . En particulier, pour tout n ∈ N, on a [k n , k] = p nt .
Preuve. cf. [2], p. 147, proposition 9.4.

⊓ ⊔

Comme conséquence immédiate, on a : Corollaire 6.4 Si K/k est une extension équiexponentielle d'exposant e, alors :

(i) Pour tout i ∈ {1, . . . , e}, k i /k et K/k i sont équiexponentielles d'exposant respectivement i et e -i. (ii) Pour tout i ∈ {1, . . . , e}, k(K p i )/k et K/k(K p i ) sont équiexponentielles d'exposant respectivement e -i et i.

Preuve. Immédiat. ⊓ ⊔

Le théorème ci-dessus reproduit dans un cadre plus étendu le corollaire 4.5 qui se trouve dans [START_REF] Deveney | An intermediate theory for a purely inseparable Galois theory[END_REF], p. 292, et pour plus d'information au sujet d'extraction des r-bases modulaires, on se réfère aux [START_REF] Deveney | An intermediate theory for a purely inseparable Galois theory[END_REF] et [START_REF] Deveney | Invariance in inseparable Galois theory[END_REF]. 

, • • • , a n } d'éléments de B 1 , L(a 1 , . . . , a n ) ≃ L(a 1 ) ⊗ L . . . ⊗ L L(a n ) et M (a 1 , . . . , a n ) ≃ M (a 1 ) ⊗ M . . . ⊗ M M (a n ).
Par application de la proposition 4.12, on a succes-

sivement [L(a 1 , . . . , a n ) : L] = n i=1 p ea i et [M (a 1 , . . . , a n ) : M ] = n i=1 p ea i , ou encore L et K sont M -linéairement disjointes. D'où L = L ∩ K = M . ⊓ ⊔
7 q-finitude et modularité Soit K/k une extension q-finie d'exposant non borné. Dans tout ce qui suit, nous utilisons les notations suivantes :

k j = k p -j ∩ K, U j s (K/k) = j -o s (k j /k), et Ilqm(K/k)
désigne le premier entier i 0 pour lequel la suite (U j i0 (K/k)) j∈N est non bornée. Le résultat ci-dessus est une application immédiate de la proposition 4.10.

Proposition 7.1 Etant donnée une extension q-finie K/k. Pour tout entier s, la suite (U j s (K/k)) j∈N est croissante.

Preuve. Comme k n+1 p ⊆ k n , il est clair que o s (k n /k) ≤ o s (k n+1 /k) ≤ o s (k n /k) + 1, et donc n + 1 -o s (k n+1 /k) ≥ n -o s (K n /k) ; c'est-à-dire la suite (U j s (K/k)) j∈N est croissante. ⊓ ⊔
En outre, on vérifie aussitôt que :

(i) Pour tout s ≥ Ilqm(K/k), lim n→+∞ (U n s (K/k)) = +∞. (ii) Pour tout s < Ilqm(K/k), la suite (U j s (K/k)) j∈N est bornée ; et par suite, pour tout n ≥ sup j∈N (sup(U j s (K/ k ))) s<Ilqm(K/k) , on a U n s (K/k) = U n+1 s (K/k). Autrement dit, o s (k n+1 /k) = o s (k n /k) + 1.
Dans toute la suite, on pose e(K/k) = sup

j∈N (sup(U j s (K/k))) s<Ilqm(K/k) , et pour tout (s, j) ∈ N * × N * , e j s = o s (k j /k) Théorème 7.2 Soit K/k une extension q-finie, avec t = di(rp(K/k)/k).
Les affirmations suivantes sont équivalentes ;

(1) K/k est modulaire sur une extension finie de k.

(2) Pour tout s ∈ {1, 2, . . . , t}, la suite (U j s (K/k)) j∈N est bornée.

(3) Ilqm(K/k) = t + 1.
Preuve. Il est clair que (2) ⇔ (3). Par ailleurs, compte tenu de la proposition 4.3, il existe un entier j 0 tel que K/k j0 est relativement parfaite et k j0 (rp(K/k)) = K, et d'après la proposition 4.18, on aura di(K/k j0 ) = di(rp(K/ k)/k) = t. Supposons ensuite que la condition (1) est vérifiée. On distingue deux cas :

Si K/k est modulaire, en vertu de la proposition 6.3, pour tout j ≥ j 0 , on a k j /k j0 est équiexponentielle d'exposant jj 0 et di(k j /k j0 ) = t. D'où pour tout s ∈ {1, . . . , t}, on a

U j s (K/k) = U j+1 s (K/k).
Si K est modulaire sur une extension finie L de k, compte tenu de la finitude de L/k, il existe un entier naturel

n tel que L ⊆ k n . Par suite, L p -j ∩ K ⊆ k n+j , et donc U n+j s (K/k) ≤ n + U j s (K/L). D'où, la suite (U j s (K/k)) j est stationnaire pour tout s ∈ {1, . . . , t}.
Inversement, si la condition (2) est vérifiée, il existe m 0 ≥ sup(e(K/k), j 0 ), pour tout j ≥ m 0 , pour tout s ∈ {1, . . . , t}, on a o s (k

j+1 /k) = o s (k j /k) + 1 (et di(k j /k m0 ) = t). Par suite, k j /k j0 est équiexponentielle, donc modulaire. D'où K = j>m0 k j est modulaire sur k j0 .
⊓ ⊔ Théorème 7.3 La plus petite sous-extension M/k d'une extension q-finie K/k telle que K/M est modulaire n'est pas triviale (M = K). Plus précisément, si K/k est d'exposant non borné, il en est de même de K/M .

Preuve. Le cas où K/k n'est pas relativement parfaite (en particulier le cas fini) est trivialement évident, puisque K/k(K p ) est modulaire. Ainsi, on est amené à considérer que K/k est relativement parfaite d'exposant non borné. On emploiera ensuite un raisonnement par récurrence sur di(K/k) = t. Si t = 1, ou encore si K/k est q-simple, il est immédiat que K/k est modulaire. Supposons maintenant que t > 1, si Ilqm(K/k) = t + 1, en vertu du théorème 7.2, M/k est finie, et donc K/M est d'exposant non borné. Si Ilqm(K/k) ≤ t, pour tout j > e(K/k), pour tout s ∈ [1; i -1] où i = Ilqm(K/k), on a e j+1 s = e j s + 1. Comme k p j+1 ⊆ k j , d'après la proposition 5.4, il existe une rbase canoniquement ordonnée (α 1 , . . . , α n ) de k j+1 /k, il existe ε i , . . . , ε t ∈ {1, p} tels que (α p 1 , . . . , α p i-1 , α εi i . . . , α εt t ) est une r-base canoniquement ordonnée de k j /k. Dans la suite, pour tout j > e(K/k), notons K j = k(k p e j i j ). D'une part,

K j = k(α p e j i +1 1 , . . . , α p e j i +1 i-1 ) et K j+1 = k(α p e j+1 i 1 , . . . , α p e j+1 i i-1 ). D'autre part, on a e j+1 i = e j i + ε, avec ε = 0 ou 1, cela conduit à K j ⊆ K j+1 . Toutefois, par définition de Ilqm(K/k), on a 1 + e j i > e j+1 i (c'est-à-dire e j i = e j+1 i
) pour une infinité de valeurs de j. Pour ces valeurs, on a di(K j+1 /k) = i -1, sinon d'après le lemme 4.14, e j+1 i = e j+1 i-1 = 1 + e j i-1 = e j i , et donc e j i > e j i-1 , ce qui contredit la définition des exposants. Comme (di(K j /k)) j>e(K/k) est une suite croissante d'entiers bornée par di(K/k), donc elle stationne sur Ilqm(K/k) -1. De plus,

K j = K j+1 , en effet si K j = K j+1 = k(K p j+1 ), comme K j+1 /k est d'exposant borné, on aura K j+1 = k, ce qui est absurde. Posons ensuite H = j>e(K/k) K j .
On vérifie aussitôt que H/k est d'exposant non borné et di(H/k) = i -1, de plus H/k est relativement parfaite car k(K p j+1 ) = K j pour une infinité de j. Par ailleurs, d'après les corollaires 4.5 et 4.7, di(K/H) < t et K/H est d'exposant non borné. Compte tenu de l'hypothèse de récurrence appliquée à K/H, on aura K est modulaire sur une extension M ′ de H avec K/M ′ est d'exposant non borné ; comme M ⊆ M ′ , alors K/M est aussi d'exposant non borné.

⊓ ⊔

Une version équivalente de ce résultat se trouve dans [2]. Toutefois, le théorème ci-dessus peut tomber en défaut lorsque l'hypothèse de la q-finitude n'est pas vérifiée comme le montre le contre-exemple ci-dessus

Exemple 7.4 Soient Q un corps parfait de caractéristique p > 0, et (X, (Y i ) i∈N * , (Z i ) i∈N * , (S i ) i∈N * ) une famille algébriquement indépendante sur Q. Soit k = Q(X, (Y i ) i∈N * , (Z i ) i∈N * , (S i ) i∈N * ) le corps des fractions rationnelles aux indéterminées (X, (Y i ) i∈N * , (Z i ) i∈N * , (S i ) i∈N * ). Posons ensuite : K 1 = n≥1 k(θ 1,n ), avec θ 1,1 = X p -1 et θ 1,n = θ 1,n-1 p -1 pour tout entier n > 1. K 2 = n≥1 K 1 (θ 2,n ), où θ 2,1 = Z 1 p -1 θ 1,2 + Z 2 p -1 , et pour tout n > 1, θ 2,n = Z 1 p -1 θ 1,2n + θ 2,n-1 p -1 .
Par récurrence, on pose

K j = n≥1 K j-1 (θ j,n ), où θ j,1 = Z j-1 p -1 θ j-1,2 +Z j p -1 , et pour tout n > 1, θ j,n = Z j-1 p -1 θ j-1,2n +θ j,n-1 p -1 .
Enfin, on note K = j∈N * K j , et par conventient on pose K 0 = k, et pout tout i ∈ N, θ i,0 = 0. Comme pour tout j ∈ N * , K j ⊆ K j+1 , alors K est un corps commutatif.

Théorème 7.5 Sous les conditions ci-dessus, la plus petite sous-extension m telle que K/m est modulaire est triviale, c'est-à-dire lm(K/k) = K Pour la preuve de ce théorème, on se servira des résultats suivants :

Lemme 7.6 Sous les mêmes conditions ci-dessus, pour tout

(j, n) ∈ N × N * , K j (θ j+1,n ) = K j (θ j+1,n+1 p ) et θ j+1,1 ∈ K j . En particulier, o(θ j+1,n , K j ) = n.
Preuve. Il est trivialement évident que K j (θ j+1,n ) = K j (θ j+1,n+1 p ) pour tout (j, n) ∈ N×N * . Pour achever la preuve, il suffit de remarquer que

K j ⊆ k(X p -∞ , Z 1 p -∞ , . . . , Z j p -∞ ) et k(θ j+1,n , X p -∞ , Z 1 p -∞ , . . . , Z j p -∞ ) = k(Z j+1 p -n , X p -∞ , Z 1 p -∞ , . . . , Z j p -∞ ), et donc, pour tout n ∈ N * , n = o(θ j+1,n , k(X p -∞ , Z 1 p -∞ , . . . , Z j p -∞ )) ≤ o(θ j+1,n , K j ) ≤ n. ⊓ ⊔
Comme conséquence immédiate, pour tout j ∈ N * , K j /K j-1 est q-simple d'exposant non borné. En particulier, di(K j /k) = j. Lemme 7.7 Pour tout i ∈ N * , la famille (Z i , (S j ) j∈N * ) est r-libre sur K p . Lorsque K/k est d'exposant non borné, il est immédiat que k ⊆ K est une i-suite dite triviale, et donc l'ensemble des i-suites de K/k est non vide. Cependant, K/k n'admet pas de i-suite si K/k est d'exposant fini, donc pour écarter ce cas, on suppose tout au long de cette paragraphe que K/k est d'exposant non borné. Si de plus, K/k est q-finie, on vérifie aussitôt que k = K 0 ⊆ K 1 ⊆ . . . ⊆ K n ⊆ . . . ⊆ K est une i-suite si et seulement si il en est de même de

Preuve. Puisque pour tout

i ≥ 1, S i p -1 ∈ k(X p -∞ , (Z j p -∞ ) j≥1 )(S 1 p -1 , . . . , S i-1 p -1 ) = K(Z 1 p -∞ )(S
L = L(K 0 ) ⊆ L(K 1 ) ⊆ . . . ⊆ L(K n ) ⊆ . . . ⊆ K pour toute sous-extension finie L de K/k. En particulier, k = K 0 ⊆ K 1 ⊆ . . . ⊆ K n ⊆ . . . ⊆ K est une i-suite si et seulement si k = K 0 ⊆ rp(K 1 /k) ⊆ . . . ⊆ rp(K n /k) ⊆ . . . ⊆ K l'est aussi.
Proposition 8.1 Toute suite décroissante d'une extension q-finie est stationnaire.

Preuve. Soient (K n /k) n∈N une suite décroissante de sous-extensions de K/k et (F i /k) i∈N la suite associée à leurs clôtures relativement parfaites. Compte tenu du théorème 3.1 et de la proposition 4.1, la suite des entiers (di(F i /k)) i∈N est décroissante, donc stationnaire à partir d'un entier n 0 , ou encore pour tout n ≥ n 0 , F i = F n0 . En vertu de la monotonie, pour tout n ≥ n 0 , [K n+1 : Preuve. Immédiat.

F n0 ] ≤ [K n : F n0 ]. Autrement dit,

⊓ ⊔

Soit K/k une extension q-finie, on dit que K/k admet une i-suite de longueur n si K peut se décomposer sous-forme d'extensions : k = K 0 ⊆ K 1 ⊆ . . . ⊆ K n = K telles que K i+1 /K i est d'exposant non borné pour tout i ∈ {0, . . . , n -1}. D'après la proposition précédente toute extension q-finie d'exposant non borné admet une i-suite de longueur maximale n, elle sera qualifiée de i-suite maximale. En outre, toute i-suite peut se prolonger en une i-suite de longueur maximale. Par ailleurs, une i-suite de longueur maximale présente en quelque sorte une certaine forme d'irréductibilité dans la mesure où entre deux termes consécutifs n'existe aucune extension propre d'exposant non borné, et donc impossible de décomposer deux termes consécutifs en i-suite de longueur 2. Il est à signaler que cette forme d'irréductibilité sera étudiée avec précision dans les sections qui suivent.

Remarque 8.1 En générale, les termes d'une i-suite maximale ne sont pas uniques. Toutefois, on peut chercher d'autres formes d'unicité, par exemple on peut se demander si une i-suite maximale conserve la taille et les exposants des termes à une permutation près. En d'autres termes, K/k est w 0 -générée si toutes les sous-extensions propres de K/k ont un exposant borné. En particulier, si K/k est q-finie, alors K/k est w 0 -générée si pour toute sous-extension propre L/k de K/k, on a L/k est finie, et par suite on retrouve la définition du J.K Devney cf. [START_REF] Deveny | w 0 -generated field extensions[END_REF]. Par ailleurs, la w 0 -génératrice exprime une certaine forme d'irréductibilité dans la mesure où K/k est indécomposable sous forme d'extensions d'exposant non borné. Si de plus K/k est d'exposant non borné, on vérifie aussitôt que :

-Toute extension w 0 -générée est relativement parfaite.

-Toute extension w 0 -générée et q-finie est modulaire sur une extension finie de k. Dans le cas des extensions modulaires, le résultat suivant montre que la w 0génératrice devient une propriété intrinsèque exclusivement liée aux extensions q-finies. Preuve. On va construire par récurrence une suite strictement croissante (K n /k) n≥1 de sous-extensions modulaires d'exposant n de K/k. Comme K/k est relativement parfaite, d'après la proposition 6.2 et le corollaire 5.9, pour tout

n ≥ 1, di(k p -n ∩ K/k) = di(k p -1 ∩ K/k) = di(K/k) et k p -n ∩ K/k est équiexponentielle d'exposant n. Soit G 1 une r-base de k p -1 ∩ K/k, il en résulte que k p -1 ∩ K ≃ ⊗ k (k(a)) a∈G1 . Choisissons un élément x de G 1 , comme |G 1 | est infini, il existe un sous-ensemble fini G ′ 1 de G 1 tel que x ∈ k(G ′ 1 ). Posons K 1 = k(G ′ 1 )
, il est clair que K 1 /k est modulaire. Supposons qu'on a construit une suite de sous-extensions finies k Il est clair que toute extension w 0 -générée est +∞-w 0 -générée. Notamment, ces deux notions coîncident dans le cas de la q-finitude. Toutefois, pour éviter la non-contradiction, la construction d'un exemple d'extension +∞-w 0 -générée de degré d'irrationalité infini nécessite les résultats suivants : Théorème 8.8 Etant donnée une extension purement inséparable K/k relativement parfaite et modulaire ; et soit L/k une sous-extension propre finie de K/k. Si K/L est modulaire, alors pour tout entier n > e = o 1 (L/k), k p -n ∩ K/k(L p e-1 ) est modulaire. En particulier, K/k(L p e-1 ) est modulaire.

⊆ K 1 ⊆ K 2 ⊆ . . . K n de K/k telle que (1) Pour tout i ∈ {1, . . . , n}, K i /k est modulaire. (2) Pour tout i ∈ {1, . . . , n}, o 1 (K i /k) = i. (3) x ∈ K n . Soit G n+1 une r-base de k p -n-1 ∩ K/k, d'après la proposition 6.1, k p -n-1 ∩ K ≃ ⊗ k (k(a)) a∈Gn+1 . Comme o 1 (K n /k) = n, on en déduit que K n ⊆ k p -n-1 ∩ K. Or K n /k est finie et |G n+1 | est infini, donc il existe une partie finie G ′ n+1 de G n+1 telle que K n ⊆ k(G ′ n+1 ). Deux cas peuvent se produire : 1-ier cas si x ∈ k(G ′ n+1 ), alors K n+1 = k(G ′ n+1 ) convient. 2-ième cas si x ∈ k(G ′ n+1 ), comme k p -n-1 ∩ K ≃ ⊗ k (⊗ k (k(a)) a∈G ′ n+1 ) ⊗ k (⊗ k (k(a)) a∈Gn+1\G ′ n+1 ), donc x ∈ k(G n+1 \ G ′ n+1 ) ; sinon puisque k(G ′ n+1 ) et k(G n+1 \ G ′ n+1 ) sont k-linéairement disjoints, alors x ∈ k(G ′ n+1 ) ∩ k(G n+1 \ G ′ n+1 ) = k, absurde. Soit y un élément de G n+1 \ G ′ n+1 , (y existe car |G n+1 | est infini et |G ′ n+1 | est fini). Notons K n+1 = K n (y), on vérifie aussitôt que : -K n+1 /k est finie, et o 1 (K n+1 /k) = o(y, k) = n + 1. -K n+1 ≃ K n ⊗ k k(y), (application de la transitivité de la linéarité disjointe de k(G ′ n+1 ) et k(G n+1 \ G ′ n+1 )), et comme K n /k est modulaire, d'après la proposition 5.11, K n+1 /k est modulaire. -x ∈ K n+1 , sinon comme k p -n-1 ∩ K ≃ k(G ′ n+1 ) ⊗ k k(G n+1 \ G ′ n+1 ) ≃ K n (G ′ n+1 )⊗ Kn K n (G n+1 \G ′ n+1 ), alors x ∈ k(G ′ n+1 )∩K n (y) ⊆ K n (G ′ n+1 ) ∩K n (G n+1 \ G ′ n+1 ) = K n , absurde. D'où K n+1 /k convient,
Pour la preuve de ce théorème, on se servira des résultats suivants. D'abord pour tout n ∈ N, on pose K n = k p -e-n ∩ K et L n = L p -n ∩ K. -Pour tout i ∈ {1, . . . , n}, k(K

n p i ) = K n-i = k(M p i ) ⊗ k k(N p i ).
-Pour tout i ∈ {1, . . . , n}, M (K -K ⊆ K ′ , et di(K/k) = di(K ′ /k).

n p i ) = M (K n-i ) = M ⊗ k k(N p i ).
Si K ′ /L est modulaire, alors K ′ p n et L sont L∩K ′ p n -linéairement disjointes. Comme α p n-1 ∈ L, ou encore (1, α p n-1 ) est L-libre, donc (1, α p n-1 ) est en particulier L ∩ K ′ p n -libre. Complétons ce système en une base B de K ′ p n sur L ∩ K ′ p n . Compte tenu de la linéarité disjointe, B est aussi une base de L(K ′ p n ) sur L. Or, (α p -1 t p -1 + β p -1 ) p n = t p n-1 α p n-1 + β p n-1 , par identification on aura t p n-1 ∈ k ∩ K ′ p n , et donc t p -1 ∈ k p -1 ∩ K ′ = k p -1 ∩ K ⊆ K, c'est une contradiction avec le fait que t ∈ K p . Il en résulte que K ′ /L est non modulaire. Lemme 8.12 Etant donnés un corps k de caractéristique p > 0, et Ω une clôture algébrique de k. Soit H l'ensemble des sous-extensions finies de Ω/k. Si k est dénombrable, il en est de même de Ω et H. 

Proposition 2 . 1 Proposition 2 . 2

 2122 Soit K/k une extension de caractéristique p > 0. Une partie B de K est r-libre sur k(K p ) si et seulement s'il en est de même pour toute sous-partie finie de B.Preuve. Immédiat.⊓ ⊔ Soit K/k une extension de caractéristique p > 0. Toute partie finie B de K satisfait [k(K p )(B) : k(K p )] ≤ p |B| , et il y'a égalité si et seulement si B est r-libre sur k(K p ).

  ), absurde. D'après le lemme précédent, B ∪ {x} est une partie r-libre sur k(K p ). Posons ensuite H = {L ⊂ G tel que B ∪ L est r-libre sur k(K p )}. IL est clair que H est inductif, et donc d'après le lemme de Zorn, H admet un élément maximal que l'on note M

  D(x))). Il en résulte que x∈B2 (D(x)) = B 1 , et en vertu du ([16], III, p. 49, cor 3), on obtient |B 1 | ≤ |B 2 |.|N| = |B 2 |. De la même façon on montre que |B 2 | ≤ |B 1 | ; d'où |B 1 | = |B 2 |. ⊓ ⊔ Comme conséquence, on a : Corollaire 2.11 Pour toute partie B 1 de K, r-libre sur k(K p ), et tout rgénérateur G de K/k, on a |B 1 | ≤ |G|.

2 -

 2 ième cas. Etant donné un entier naturel e distinct de 0 et 1. Raisonnons par récurrence en supposant que le théorème est vérifié pour toute extension d'exposant < e, et soit K/k une extension purement inséprable d'exposant e. Il est clair que k

  on est amené au cas où K/L est finie, ou encore rp(K/k) = rp(L/k). Dans la suite, on posera L r = K r = rp(K/k). D'après la proposition 4.4 ci-dessus, on aura di(K

Définition 4 . 2

 42 Soient K/k une extension q-finie et j un entier naturel non nul. On appelle le j-ième exposant de K/k l'invariant o j (K/k) = lim n→+∞ (o j (k n /k)).

Proposition 4 . 18

 418 Etant donnée une sous-extension K/k relativement parfaite d'une extension q-finie M/k. Pour toute sous-extension finieL/k de M/k, on a di(L(K)/L) = di(K/k).Preuve. En vertu du corollaire 3.6, il suffit de montrer que di(L(K)/L) ≥ di(K/k). Pour cela, on pose d'abord e = o 1 (L/k) et t = di(K/k). D'après le théorème 4.15, pour tout s ∈ {1, . . . , t}, o s (K/k) = +∞, donc pour n assez grand, on aura o

Proposition 5 . 3

 53 Soient m, n ∈ Z avec n ≥ m. Si K/k est modulaire, alors K p m /k p n est modulaire. La condition n ≥ m assure k p n ⊂ K p m . Proposition 5.4 Soit K/k une extension purement inséparable finie (respectivement, et modulaire), et soit L/k une sous-extension de K/k (respectivement, et modulaire) avec di(L/k) = s. Si K p ⊆ L, il existe une r-base canoniquement ordonnée (respectivement, et modulaire) (α 1 , α 2 , . . . , α n ) de K/k, et e 1 , e 2 , . . . , e s ∈ {1, p} tels que (α 1 e1 , α 2 e2 , . . . , α s es ) soit une r-base canoniquement ordonnée (respectivement, et modulaire) de L/k. De plus, pour tout j ∈ {1, . . . , s}, on a o j (K/k) = o j (L/k), auquel cas e j = 1, ou o j (K/k) = o j (L/k) + 1, auquel cas e j = p. Preuve. Cf. [2], p. 146, proposition 8.4.

Proposition 5 . 7

 57 Etant données une r-base modulaire B d'une extension modulaire K/k et une famille (e a ) a∈B d'entiers tels que 0 ≤ e a ≤ o(a, k). Soit L = k((a p ea ) a∈B ), alors L/k et K/L sont modulaires, et (B \ L), ((a p ea ) a∈B \ L) sont deux r-bases modulaires respectivement de K/L et L/k. En outre, pour tout a ∈ B, o(a, L) = e a . Preuve. On se ramène au cas fini auquel le résultat découle de la transitivité de la linéarité disjointe. En outre, pour toute partie {a 1 , . . . , a n } d'élément de B, [L(a 1 , . . . , a n ) : L] = n i=1 p ea i . ⊓ ⊔ Dans la suite, pour tout a ∈ B, on pose n a = o(a, k). Considérons maintenant les sous-ensembles B 1 et B 2 de B définis par B 1 = {a ∈ B | n a > j}, B 2 = B \ B 1 = {a ∈ B | n a ≤ j}, (j étant un entier ne dépassant pas o(K/k)).

  Il en résulte que di(H/K 1 ) = n, et pour tout i ∈ {s, . . . , n}, e n = o i (H/K 1 ). Comme e s-1 > e s = e n , d'après l'algorithme de la complétion des r-bases, il existe des éléments b s , . . . , b n ∈ F tels que {α 1 . . . , α s-1 , b s , . . . , b n } soit une r-base canoniquement ordonnée de H/K 1 . En particulier, on aura :

Extensions équiexponentielles Proposition 6 . 1 ( 1 ) 2 ) 3 )Définition 6 . 1

 6112361 Soit K/k une extension purement inséparable d'exposant e. Les assertions suivantes sont équivalentes : Il existe une r-base G de K/k vérifiant K ≃ ⊗ k (k(a)) a∈G , et pour tout a ∈ G, o(a, k) = e. (Toute r-base G de K/k satisfait K ≃ ⊗ k (k(a)) a∈G , et o 1 (K/k) = e. (Il existe une r-base G de K/k telle que pour tout a ∈ G, o(a, k(G\{a})) = o(a, k) = e. (4) Pour toute r-base G de K/k, pour tout a ∈ G, o(a, k(G \ {a})) = o(a, k) = e. Preuve. D'après le théorème de la r-base incomplète, on se ramène au cas où K/k est finie auquel cas [K : k] = p en , où e = o 1 (K/k) et n = di(K/k), et en vertu de la proposition 4.12, le résultat est immédiat. ⊓ ⊔ Une extension qui vérifie l'une des conditions de la proposition ci-dessus est dite équiexponentielle d'exposant e.Il est clair que toute extension équiexponentielle est modulaire. De plus, on vérifie aussitôt qu'il est équivalent de dire que :(1) K/k est équiexponentielle d'exposant e.

( 2 ) 3 )Proposition 6 . 2

 2362 Il existe une r-base G de K/k, pour toute partie finie G 1 de G, on a k(G 1 )/k est équiexponentielle d'exposant e. (Pour toute r-base G de K/k, pour toute partie finie G 1 de G, on a k(G 1 )/k est équiexponentielle d'exposant e. Pour toute extension K/k relativement parfaite et modulaire, pour tout entier n, k n /k est équiexponentielle d'exposant n.

Théorème 6 . 5

 65 Soient k ⊆ L ⊆ K des extensions purement inséparables telles que K/k est équiexponentielle d'exposant e. Si K/L est modulaire, il existe une r-base G de K/k telle que {a p o(a,L) | a ∈ G et o(a, L) < e} est une r-base modulaire de L/k. Preuve. Comme K/L est modulaire d'exposant fini, il existe une r-base B 1 de K/L telle que K ≃ ⊗ L (⊗ L L(a)) a∈B1 ), (*). Pour des raisons d'écriture, pour tout a ∈ B 1 , on pose e a = o(a, L) et C = (a p ea ) a∈B1 . Soit B 2 une partie de L telle que B 2 est une r-base de L(K p )/k(K p ). Compte tenu de la transitivité de r-indépendance, B 1 ∪ B 2 est aussi une r-base de K/k. Dans la suite, notons M = k(C, B 2 ). Il est clair que M ⊆ L, de plus, comme K/k est équiexponentielle, on aura K ≃ ⊗ k (⊗ k k(a)) a∈B1∪B2 . En vertu de la transitivité de la linéarité disjointe, K ≃ ⊗ M (⊗ M M (a)) a∈B1 , (**). En particulier, d'après les relations (*) et (**), pour toute famille finie {a 1

8. 2

 2 Extensions w 0 -générées Définition 8.2 Une extension purement inséparable est dite w 0 -générée, s'elle n'admet pas de sous-extensions propres d'exposant non borné.

Théorème 8 . 5

 85 Pour qu'une extension w 0 -générée K/k soit q-finie il faut et il suffit que lm(K/k) = K.La démonstration de ce théorème fait appel au résultat suivant : Lemme 8.6 Soit K/k une extension purement inséparable d'exposant non borné et de degré d'irratinalité infini. Si K/k est relativement parfaite et modulaire, alors K/k contient une sous-extension propre L/k d'exposant non borné et modulaire.

Lemme 8 . 9

 89 Sous les mêmes hypothèses du théorème ci-dessus. Pour tout n ∈ N * , il existe deux sous-extensions N et M de K n /k vérifiant :-L ⊆ k(N p n ), avec N/k est finie. -K n ≃ M ⊗ k N ≃ (M ⊗ k L) ⊗ L N . En outre, M/k et N/k sont équiexponentielles d'exposant n + e -L(M )/L(M p ) et L(L n+e p )/L(M p ) sont L(M p )-linéairement disjointes. -L n+e /L(M ) est modulaire avec di(L n+e /L(M )) = di(K n /M ) = di(N/k). Preuve. Puisque L/k est d'exposant e, donc L ⊆ k p -e ∩ K. D'où L → L p -n ∩ K → K n → L n+e . Soit G une r-base de K n /k, comme K/k est relativement parfaite et modulaire, alors d'après la proposition 6.2, K n /k est équiexponentielle d'exposant e + n. En outre, K n ≃ ⊗ k (k(a)) a∈G , et donc K 0 = k(K n p n ) ≃ ⊗ k (k(a p n )) a∈G . Or, L/k est finie, et L ⊆ K 0 , donc il existe une partie finie G 1 de G telle que L ⊆ k(G 1 p n ). Notons le complémentaire de G 1 dans G par G 2 , (G 2 = G \ G 1 ), et désignons respectivement par M et N les corps k(G 2 ) et k(G 1). On vérifie aussitôt que :-K n ≃ M ⊗ k N ≃ (M ⊗ k L) ⊗ L N . -M et N sont équiexponentielle d'exposant e + n. En particulier, pour tout x ∈ G 2 , o(x, L(G 2 \{x})) = n+e ; et par suite s'il existe x ∈ G 2 tel que x ∈ L(L n+e p )(G 2 \ {x}), on aura n + e = o(x, L(G 2 \ {x})) ≤ o 1 (L(L n+e p )(G 2 \ {x})/L(G 2 \ {x})) ≤ o 1 (L(L n+e p )/L) = n + e -1,c'est une contradiction. D'où, G 2 est r-libre sur L(L n+e p ), ou encore L(M )/L(M p ) et L(L n+e p ) sont L(M p )-linéairement disjointes. D'après le théorème de la r-base incomplète, il existe une partie G 3 de L n+e telle que G 2 ∪ G 3 est une r-base de L n+e /L(L n+e p ), compte tenu de la proposition 2.12, G 2 ∪ G 3 est aussi un r-générateur minimal de L n+e /L. Puisque K/L est modulaire et relativement parfaite, doncL n+e ≃ ⊗ L (L(a)) a∈G2∪G3 ≃ (L ⊗ k M ) ⊗ L (⊗ L (L(a)) a∈G3 ) ≃ M ⊗ k (⊗ L (L(a)) a∈G3 ). D'où L n (M ) ≃ M ⊗ k (⊗ L (L(a p e )) a∈G3 ≃ (M ⊗ k L) ⊗ L (⊗ L (L(a p e )) a∈G3 ⊆ K n et K n ≃ M ⊗ k N ≃ (M ⊗ k L) ⊗ L N ⊆ L n+e . D'une part, comme N/k est équiexponnetielle d'exposant n+e et L ⊆ k(N p n ), on aura |G 1 | = di(N/k) = di(N/k(N p n )) ≤ di(N/L) ≤ di(N/k), et donc di(N/L) = |G 1 |. D'autre part, en vertu du théorème 3.8 et du corollaire 3.6, on a |G 3 | = di(L n (M )/L(M )) ≤ di(K n /L(M )) = di(N/L) et di(K n /L(M )) ≤ di(L n+e / L( M )) = |G3 |, (car K n ⊆ L n+e ). Par suite, on aura |G 3 | = |G 1 | = di(N/k). ⊓ ⊔ Comme K n ≃ M ⊗ k N ≃ (M ⊗ k L) ⊗ L N et K n /k équiexponentielle d'exposant n + e, on vérifie aussitôt que :

  En particulier, pour tout i ∈ {1, . . . , n}, M (K i )/M est équiexponentielle d'exposant e + i et di(M (K i )/M ) = di(N/k). -L n+e /L(M ) est équiexponentielle d'exposant n+e. En outre, L n+e /L(M ) est modulaire. Dans la suite, on pose di(N/k) = j, et désignons par s le plus grand entier tel que o s (L/k) = o 1 (L/k) = e. Lemme 8.10 Sous les conditions ci-dessus, pour tout n ∈ N * , on a :(i) Pour tout i ∈ {0, . . . , n -1}, di(M (K n p i )/L(M )) = di(N/k). (ii) di(M (K n p n )/L(M )) = di(M (K 0 )/L(M )) = js. En particulier, pour tout r ∈ {js + 1, . . . , j}, o r (K n /L(M )) = o j-s+1 (K n /L(M )) = n. Preuve. Soit {α 1 , . . . , α m } une r-base canoniquement ordonnée de L/k, donc k → k(α 1 , . . . , α s ) → L → K 0 → K n . Soit B une r-base de M (K 0 )/M (L), donc M (K 0 ) = M (α 1 , . . . , α m , B). Or, L(M ) ≃ L ⊗ k M , donc M (α 1 , . . . , α s )/M est équiexponentielle d'exposant e. Complétons le système {α 1 , . . . , α s } en une r-base de M (K 0 )/M par une partie C de K 0 . En particulier, on aura |B| = di(M (K 0 )/L(M )) ≤ di(M (K 0 )/M (α 1 , . . . , α s )) = |C| = js.Par ailleurs, pour tout r ∈ {s + 1, . . . , m}, o(α r , k(α 1 , . . . , α s )) < e, ainsi par application de l'algorithme de la complétion des r-bases M (K 0 ) = M (α 1 , . . . , α s , B) ; et donc B non vides, sinon k p -1 ∩ K = L ou L = k, contradiction avec le fait que L est un sous-corps propre de k p-1 ∩ K/k. Soient α ∈ G \ G 1 et β ∈ G 1 . Comme k ⊆ K p , il existe t ∈ k tel que t ∈ K p . Notons G ′ = (a p -1 ) a∈G\{β} ∪ {t p -1 α p -1 + β p -1 } et K ′ = k(G ′). On vérifie aussitôt que :-K ′ /k est équiexponentielle d'exposant n + 1.

  Preuve. Dans Ω on définit la relation ∼ de la façon suivante : α ∼ β si et seulement si irr(α, k) = irr(β, k), où irr(α, k) et irr(β, k) sont respectivement les polynômes minimals sur k de α et β. On vérifie immédiatement que ∼ est une relation d'équivalence. Soit E un système de représentants dans Ω de cette relation (on peut choisir les éléments de E parmi les racines de tous les polynômes irréductibles unitaires de telle manière que chaque polynôme sera identifié par une et une seule racine, c'est-à-dire par un élément de E). D'où, Ω = a∈E a.Comme les racines d'un polynôme sont finies, donc pour tout a ∈ E, |a| est fini. De même, on a k[X] est dénombrable, en particulier E l'est aussi ; et par suite Ω est dénombrable (cf.[START_REF] Bourbaki | Eléments de Mathématique Théorie des ensembles[END_REF], III, p.49, corollaire 3). Dans la suite, pour tout n ∈ N * , notons H n = {L ∈ H tel que L/k est engendrée par au plus n éléments}. Il est clair que :• L'application Ω n -→ H n , (α 1 , . . . , α n ) -→ k(α 1 , . . . , α n ), est surjective, donc |H n | ≤ |Ω n | ; et par suite H n est dénombrable. • Comme H = n≥1H n , alors H/k est dénombrable (cf.[START_REF] Bourbaki | Eléments de Mathématique Théorie des ensembles[END_REF], III, p.49, corollaire 3).⊓ ⊔Construisons maintenant, une extension +∞-w 0 -générée de degré d'irrationalité infini. Pour cela, considérons un corps commutatif dénombrable k de caractéristique p > 0 et de degré d'imperfection infini, et soit ((X i ) i∈N * , t) une famille p-libre sur k . Notons M 1 = k((X i p -1 ) i∈N * ) et M 2 = k((X i p -2 ) i∈N * ).

  Pour toutes r-bases B L et B K respectivement de L/k et K/k, on a |B L | ≤ |B K |.

		),
	on aura une contradiction avec le fait que G est un r-générateur minimal de
	K/k.	⊓ ⊔
	Théorème 2.13 Soit L/k une sous extension d'une extension purement insé-
	parable d'exposant fini K/k.	

  'après le théorème 2.13, |B n | ≤ |B n+1 |.

	Définition 3.1 L'invariant di(K/k) défini ci-dessus s'appelle le degré d'irrat-
	ionalité de K/k.
	En particulier, et pour des raisons de différenciation, le degré d'irrationalité
	de k/k p sera appelé degré d'imperfection de k et sera noté di(k).
		Ensuite, on pose
	di(K/k) = sup n∈N *	(|B n |), on rappelle que le sup est utilisé ici au sens du ([16], III,
	p. 25, proposition 2).

  les principales relations dont on aura besoin, et qui font intervenir les exposants. Soient K et L deux corps intermédiaires d'une extension Ω/k, avec K/k purement inséparable finie. Alors pour tout entier j, on a o j (K( L)/k(L)) ≤ o j (K/k).

	Proposition 4.9 Preuve. Cf. [4], p. 373, proposition 5.

⊓ ⊔ Proposition 4.10 Soit K/k une extension purement inséparable finie. Pour toute sous-extension L/L ′ de K/k, et pour tout j ∈ N, on a o j (L/L ′ ) ≤ o j (K/k). Preuve. cf. [4], p. 374, proposition 6. ⊓ ⊔ Proposition 4.11 Soient {α 1 , . . . , α n } une r-base canoniquement ordonnée de

  , p. 374, proposition 7. ⊓ ⊔ Proposition 4.13 (Algorithme de la complétion des r-bases) Soient K/k une extension purement inséparable finie, G un r-générateur de K/k, et {α 1 , . . . , α Rappelons que pour tout n ∈ N * , k n désigne toujours k p -n ∩ K. En vertu de la proposition 4.10, pour tout j ∈ N * , la suite des entiers naturels (o j (k n /k)) n≥1 est croissante, et donc (o j (k n /k)) n≥1 converge vers +∞, ou (o j (k n /k)) n≥1 est stationnaire à partir d'un certain rang. Lorsque (o j (k n /k)) n≥1 est bornée, par construction, pour tout t ≥ j, (o t (k n /k)) n≥1 est aussi bornée (et donc stationnaire).

s } un système de K tel que pour tout j ∈ {1, . . . , s}, o(α j , k( α 1 , . . . , α j-1 )) = o j (K/k). Pour toute suite α s+1 , α s+2 , . . . , d'éléments de

G vérifiant o(α m , k( α 1 , . . . , α m-1 )) = sup a∈G (o(a, k( α 1 , . . . , α m-1 )

)), la suite (α i ) i∈N * s'arrête sur un plus grand entier n tel que o(α n , k(α 1 , . . . , α n-1 )) > 0. En particulier, {α 1 , . . . , α n } est une r-base canoniquement ordonnée de K/k. Preuve. Cf.

[2]

, p. 139, proposition 1.3.

⊓ ⊔

Cas où K/k est q-finie d'exposant non borné. Soit K/k une extension q-finie.

  k) pour n suffisament grand. D'après le lemme 4.14, on aura d'une part o t (K/k) = +∞ pour tout t ≤ s, et d'autrs part pour tout n

  {α 1 , . . . , α n } une r-base canoniquement ordonnée de K 2 /k. Compte tenu de la proposition 4.12, {α 1 , . . . , α n } est aussi une r-base canoniquement ordonnée de K/K 1 , et pour tout j ∈ {1, . . . , n}, o j (K/K 1 ) = e j . D'après la proposition 4.11, pour tout i ∈ {s, . . . , n}, il existe des constantes uniques C i ε ∈ k telles que α i p en = ∈ {s . . . , n}, l'équation de définition de α i par rapport à K 1 (α 1 , . . . , α s-1 ) est aussi définie par la relation ( * ) ci-dessus. Comme L/K 1 est modulaire, en se servant du critère de modularité, pour tout (i, ε) ∈ {s, . . . , n} × Λ s-1 , on aura (C i ε )

	C i ε (α 1 . . . α s-1 ) p ε	( * ). En vertu de
	ε∈Λs-1	
	la proposition 4.12, pour tout i	

  1 p -1 , . . . , S i-1 p -1 ), il suffit de montrer que Z i ∈ K p ; ou encore Z i p -1 ∈ K. Par construction, pour tout j ∈ {1, . . . , n}, on a θ j,1 = )/k) ≤ di(K n /k), ou encore n + 1 ≤ n, absurde. D'où pour tout n ∈ N * , Z i p -1 ∈ K n , et comme K est réunion de la famille croissante d'extensions (K n ) n∈N * , alors Z i p -1 ∈ K. ⊓ ⊔ Preuve du théorème 7.5. Posons m = lm(K/k). En utilisant un raisonnement par récurrence on va montrer que K i ⊆ m pour tout i ∈ N, et par suite obtenir K = m. Il est immédiat que K 0 = k ⊆ m, donc le résultat est vérifié pour le rang 0. Soit i ∈ N * , supposons par application de l'hypothèse de récurrrence que K i ⊆ m. S'il existe un entier naturel s tel que θ i+1,s ∈ m, désignons par n le plus grant entier tel que θ i+1,n ∈ m. D'où pour tout t ∈ {0, . . . , n}, θ i+1,t ∈ m et θ i+1,n+1 ∈ m, en outre θ p n i+1,2n ∈ m, et θ i+1,2(n+1) p n+1 ∈ m. Il en résulte que le système (θ i+1,2(n+1) p n+1 , 1) est libre sur m, en particulier, il en est de même sur m ∩ K p n+1 . Complétons ce système en une base B de K p n+1 sur m ∩ K p n+1 . Comme K p n+1 et m sont m ∩ K p n+1 -linéairement disjointes (K/m est modulaire), B est aussi une base de m(K p n+1 ) sur m. Une suite k = K 0 ⊆ K 1 ⊆ . . . ⊆ K n ⊆ . . . ⊆ K de sousextensions d'une extension purement inséparable K/k est dite i-suite dans K si pour tout indice i, on a K i+1 /K i est d'exposant non borné.

	Z j-1	p -1 θ j-1,2 +Z j	p -1 avec K n contient θ j,1 et θ j-1,2 , et donc s'il existe n >
	i tel que Z i	p -1 ∈ K n , par itération, on aura Z i-1	p -1 , . . . , Z 1	p -1 ∈ K n et
	Z i+1	p -1 , . . . , Z n	p -1 ∈ K n . Par suite, d'après le théorème 3.1, di(k(X p -1 , Z 1	p -1 ,
	. . . , Z n	p -1 Or, par
	construction, θ i+2,n+1 = Z i+1	p -1 θ i+1,2(n+1) + θ i+2,n	p -1 , donc θ i+2,n+1	p n+1 =
	Z i+1	p n θ i+1,2(n+1)	p n+1 + θ i+2,n	p n , avec θ i+2,n	p n = Z i+1	p n-1 θ i+1,2n	p n + • • • +
	Z i+1 θ i+1,2	p + Z i+2 ∈ m. Par identification, Z i+1	p n ∈ m ∩ K p n+1 ⊆ K p n+1 ,
	et donc Z i+1	p -1 ∈ K, absurde. D'où pour tout n ∈ N * , θ i+1,n ∈ m, ou encore
	K i+1 ⊆ m. D'où m = K.	⊓ ⊔
	8 Extensions +∞-w 0 -générées
	8.1 i-suite	
	Définition 8.1	

  la suite des entiers ([K n : F n0 ]) n≥n0 est décroissante, donc stationnaire à partir d'un entier e, ou encore pour tout n ≥ e, [K n : F n0 ] = [K e : F n0 ]. Comme pour tout n ≥ e, K n ⊆ K e , on en déduit que K n = K e , pour tout n ≥ e. Dans une extension q-finie, toute i-suite est finie.

	⊓ ⊔
	Corollaire 8.2

  -K/k est w 0 -générée si et seulement si k -→ K est une i-suite de longueur maximale, et K/k est relativement parfaite. -Pour toute sous-extension L/k d'exposant borné de K/k, on a L(K)/L est w 0 -générée si K/k l'est. Théorème 8.3 L'ensemble H des sous-extensions d'exposant non borné d'une extension q-finie K/k d'exposant non borné est inductif pour la relation d'ordre K 1 ≤ K 2 si et seulement si K 2 ⊆ K 1 . En particulier, K/k admet une sousextension w 0 -générée d'exposant non borné. Preuve. Découle immédiatement de la proposition 8.1.

	Le résultat ci-dessous assure l'existence des extensions w 0 -générées. Plus
	précisément, on a :

⊓ ⊔ Proposition 8.4 Toute extension q-finie est composée finie d'extensions w 0générées.

Preuve. Le résultat est évidemment trivial si K/k est finie. Sinon, d'après le corollaire 8.2, K/k admet une i-suite k = K 0 ⊆ K 1 ⊆ . . . ⊆ K n = K de longueur maximale n. Nécessairement, K i ⊆ K i+1 est une i-suite de longueur maximale 1, sinon K/k admet une i-suite de la longueur dépassant n, contradiction. Par suite, on est amené à démontrer le résultat pour k ⊆ K de longueur maximale 1. En particulier, rp(K/k) est irréductible dans la mesure où rp(K/k)/k n'admet aucune sous-extension proppre d'exposant non borné. Toutefois, d'après la proposition 4.1, K/rp(K/k) est finie, et par suite K/k est composée finie d'extensions w 0 -générées.

⊓ ⊔

  Preuve du théorème 8.5. La condition nécessaire résulte immédiatement du théorème 7.3. Inversement, soit m la plus petite sous-extension de K/k telle que K/m est modulaire. Comme K/k est w 0 -générée et m = K, alors m/k admet un exposant fini que l'on note e, et d'après le lemme 8.6 ci-dessus, K/m sera q-finie. Dans la suite, pour tout n ∈ N * , posonsK n = m p -e-n ∩ K et di(K/m) = l. Soit G n une r-base de K n /m,compte tenu de la proposition 6.2 et le corollaire 5.9, |G n | = l et o 1 (K n /m) = e + n. mais comme K/k est w 0 -générée, on obtient K = L. Toutefois, en vertu de la proposition 3.3, di(L/k) = sup Toute extension modulaire et w 0 -générée est q-finie.Compte tenu du théorème ci-dessus et dans le but d'étendre la notion de w 0 -génératrice, on adopte le point de vue suivante : 8.3 Généralisation d'une extension w 0 -générée Définition 8.3 Soit j un entier naturel non nul. Une extension purement inséparable K/k est dite j-w 0 -générée si K/k n'admet pas de sous-extensions propres d'exposant non borné et degré d'irrationalité inférieur à j.Autrement dit, toute extension propre de K/k dont le degré d'irrationalité ne dépasse pas j strictement est d'exposant fini. Une extension purement inséparable K/k est dite +∞-w 0 -générée si pour tout j ∈ N * , K/k est j-w 0 -générée.

	non borné, Corollaire 8.7 Définition 8.4
	Par ailleurs, on a k(K n p e )/k) ≤ l, et o 1 (k(K n p e )/k) ≥ p e ) = p e )/m) = n. En particulier, l'extension L = k(K n k(m p e , G n p e ) = k(G n p e ). En outre, di(k(K n o 1 (m(K n p e ) est d'exposant

et par suite L = i≥1 K i satisfait les conditions du lemme ci-dessus. ⊓ ⊔ n∈N (di(K n /k)) ≤ l, donc K/k est q-finie.

est une r-base de M (K 0 )/M (α 1 , . . . , α s ). D'où, di(M (K 0 )/M (L)) = j -s = |B|. De même, on a L(M

Preuve du théorème 8.8. Tout au long de cette démonstration, on se servira des notations précédentes. D'abord, pour tout n ∈ N * , on a :

En vertu de la proposition 5.13, il existe une r-base canoniquement ordonnée {a 1 , . . . , a j } de

Comme o(α i , k) ≤ e pour tout i ∈ {1, . . . , m} et K n /M est équiexponentielle d'exposant n + e, d'après l'algorithme de la complétion des r-bases et le lemme 8.9,

p n , . . . , a j p n )/k est équiexponentielle d'exposant e. D'autre part, k(a j-s+1 p n , . . . , a j p n ) ⊆ L, donc en complétant ce système en une r-base canoniquement ordonnée de L/k, on obtient k(L p e-1 ) = k(a j-s+1 p n+e-1 , . . . , a j p n+e-1 ). Par suite, en vertu de la proposition 5.7, on aura

(a 1 ) ⊗ k(L p e-1 ) . . . ⊗ k(L p e-1 ) k(L p e-1 )(a j ), avec M/k est modulaire. D'après la proposition 5.11, on en déduit que K n /k(L p e-1 ) est aussi modulaire. ⊓ ⊔ Lemme 8.11 Soit K/k une extension purement inséparable équiexponentielle d'exposant n > 1, et telle que k ⊆ K p . Soit L/k une sous extension propre de k p -1 ∩ K. Il existe une extension K ′ /K vérifiant les conditions ci-dessous :

(3) K ′ /L n'est pas modulaire.

Preuve. 1-ier cas : si K/L est non modulaire, alors

2-ième cas : si K/L est modulaire, d'après le théorème 6.5, il existe une r-base