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ABSTRACT: Karst networks are complex
structures that are difficult to observe or
survey. However, they have a major impact
on fluid flows and water resources as well
as on petroleum reservoir behaviour. In
such applications, geostatistical approaches
are generally used to simulate several 3D
models of geological structures, on which
risk assessment analyses are performed

in terms of reserve assessment or flow
behaviour. In this paper, such an approach
is proposed to simulate karst networks. The
approach is based on the classical method
Sequential Indicator Simulation (SIS). It
relies on the decomposition of the karst
network into conduit families, depending on
their orientation and dimensions. Conduit
shapes are characterized by variograms and
are simulated sequentially from the first

to the last family. Conditioning points are
randomly simulated to assert the connectivity
between each conduit family. Moreover,
special attention is paid to the integration of
geological and hydrogeological knowledge
into the karst network simulation. The
proposed approach is applied to the case
study of Saint-Sébastien (Gréoux-les-Bains,
Provence) to illustrate the possibility of
integrating analogue and geological
information.

KeywoRDs: geostatistics, cave, network.

RESUME : SIMULATION STOCHASTIQUE 3D

DE GROTTES : APPLICATION A LA GROTTE DE
SAINT-SEBASTIEN (PROVENCE). Les réseaux
karstiques sont des structures complexes

et difficiles a observer. Cependant, ils ont

un impact majeur sur les écoulements et

sur les ressources en eau ou hydrocarbures.
Ainsi, dans de telles applications, il est
souvent nécessaire de modéliser le réseau
karstique afin d’estimer les risques en

termes d’écoulement ou de réserve, au

vu des incertitudes qui peuvent exister.

Deux approches existent pour modéliser

les structures géologiques : les approches a
imitation de processus et celles a imitation de
structures [Koltermann & Gorelick, 1996]. Les
premiéres visent & reproduire les processus de
genese des structures pour les modéliser en
3D. Les secondes ont pour objectif de générer

I'organisation spatiale et la géométrie des
structures géologiques telles qu'elles sont
actuellement. Les méthodes a imitation

de processus générent par définition des
modeéles cohérents. Elles sont toutefois
couteuses en temps de calcul et ne peuvent
que difficilement étre conditionnées a

des données ponctuelles. Au contraire, les
méthodes a imitation de structures, telles
que les méthodes géostatistiques, présentent
I'avantage de pouvoir étre conditionnées

a des données ponctuelles ou globales. Ces
méthodes sont aussi trés efficaces et peuvent
ainsi s'intégrer facilement dans une stratégie
de simulation stochastique, En effet, Jorsque
fes données disponibles sont insuffisantes
pour reproduire un modéle unique fiable,
des techniques de simulations stochastiques
sont proposées pour générer un ensemble
de modéles équiprobables et possibles au

vu des données. Ces modéles représentent
un échantillon des possibles sur lequel des
études d'incertitudes [Scheidt & Caers, 2009]
et de risque [Srivastava, 2013] peuvent étre
réalisées.

Dans ce papier, nous proposons une méthode
a imitation de structures stochastique

pour reproduire un réseau karstique. Seuls
les conduits karstiques humainement
observables sont reproduits, des données
statistiques pouvant étre déterminées

a partir des acquisitions spéléologiques
(cartes, cheminements, etc.). Ces conduits
karstiques sont simulés dans ce qui est
nommeé « matrice », qui correspond en fait a
I'encaissant des conduits, comprenant la roche
ainsi que les discontinuités a petite échelle.
L‘une des principales préoccupations de ce
papier est de montrer comment il est possible
d’intégrer des connaissances géologiques
pour simuler un réseau karstique en utilisant
une technique classique de géostatistique,

la Simulation Séquentielle par Indicatrice
(SIS). La méthode proposée fonctionne de
maniére similaire aux travaux proposés dans
Fournillon et al. [2011]. Le réseau karstique
est décomposé en N familles de conduits

C,i € [1;N]. Chaque famiile de conduits

C; est caractérisée par une orientation

et des dimensions (longueur, largeur et
épaisseur). Un variogramme d'indicatrice

3D stochastic simulation
of caves: application

to Saint-Sébastien case
study (SE, France)

¥, est associé a chaque famille ainsi qu'une
valeur de proportion p; correspondant au
ratio du volume des conduits de la famille

C; sur le volume d’étude. La SIS est ensuite
utilisée de maniére récursive pour simufer
les conduits de chaque famille I'une aprés
I'autre. Toutefois, la méthode proposée dans
ce papier différe de Fournillon et al. {2011]
dans sa gestion de la connectivité entre les
familles de conduits. En effet, dans Fournillon
et al. {2011], la connectivité entre conduits
n‘est pas directement prise en compte, elle
est induite par les valeurs de proportions

et la zone de simulation imposées. Dans ce
papier, fa connectivité est assurée en simulant
des points conditionnants dans les corps
généreés de la famille C; pour contraindre la
génération de la famille C;,; et faire en sorte
gu‘elle recoupe les conduits C;.

D’autres données conditionnantes

sont aussi proposées pour prendre en
compte des informations géologiques ou
hydrogéologiques. Une approche est ainsi
proposée pour déterminer par approximation
la proportion globale p; d'une famille C; de
conduits a partir des données disponibles.

De plus, des techniques sont présentées
pour prendre en compte des structures
géologigues comme chemin préférentiel

des réseaux karstiques (i.e. axe de drainage
préférentiel) ou pour imposer des contraintes
sur les réseaux karstiques a partir des points
connus de sortie et d'entrée du karst.

La méthode proposée ainsi que la maniére
d'intégrer des connaissances géologiques
ont été appliquées sur le cas d'étude de

fa grotte de Saint-Sébastien a Gréoux-les-
Bains (Provence). Une étude statistique sur
l‘orientation et la taille des conduits a été
réalisée et a permis de déterminer deux
familles de conduits. Différentes données
conditionnantes ont aussi été intégrées pour
assurer la reproduction d‘un réseau cohérent
aux informations géologiques connues. Les
exemples de simulations sont montrés pour
illustrer les capacités de la méthode proposée
a reproduire un réseau karstique. Des calculs
de volumes ont été réalisés pour comparer
les modéles. L'ensemble de ces résultats est
présenté et discuté.

Morts-cLEFS : géostatistique, grotte, réseau.

S. VISEUR, J. JOUVES, A. FOURNILLON, et al., 3D stochastic simulation of caves: application to Saint-Sébastien case study (SE, France)

17



I. Introduction

Karst networks have a major
influence on fluid flow at the reservoir
scale but at this scale, they are hardly
continuously observable. Therefore, it
is required to model the non-observable
parts for reservoir characterization appli-
cations. Two 3D modelling approaches
exist for reproducing geological features
[Koltermann & Gorelick, 1996): the
process-based and the structure-based.
On one hand, process-based approaches
numerically reproduce the speleogenesis
processes to generate the shape of the
karst networks. Based on the speleoge-
nesis processes, the obtained 3D models
are geologically sound. However, seve-
ral difficulties are encountered when
applying such approaches: 1) they imply
knowledge of a wide parameter set that is
difficult to estimate from observed data;
2) because they are time-consuming,
they are generally determinist and not
integrate uncertainties;, 3) they are hard to
condition to available punctual observed
data. On the other hand, structure-based
approaches reproduce the geometry and
the spatial distribution of targeted objects
(e.g., channel geobodies, and fracture
or karst networks). These approaches
are dedicated to be conditioned to local
(e.g., local values of rock measurements,
and field observation) or global data
(i.e., trends). They are also very efficient
and can be integrated into a stochastic
procedure. Indeed, because few data are
available, the use of a single interpolated
model is not sufficient because many
uncertainties exist in the geometry and
spatial distribution of the objects. In this
under-constrained problem, stochastic
procedures aim at generating several
equiprobable and plausible models for
the geological structures. These models
are used as support for uncertainty ana-
lyses [Scheidt & Caers, 2009] and risk
assessment studies [Srivastava, 2013).
In the present applications, stochas-
tic simulations aim to reproduce field
observations of karst networks. These
approaches commonly require input
parameters estimated from observed ana-
logues. However, because the generated
3D models are only based on geometrical
inputs of karst morphology (dimensions,
orientations, etc.) and on their spatial dis-
tribution (proportion of karst conduits,
etc.), their geological consistency is
generally not insured. Classical geos-
tatistical approaches [Fournillon et al.,
2011; Mariethoz, 2009] and algorithms
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dedicated to karst network simulation
[Borghi, 2013] have been proposed to
reproduce the non-observed karst parts.
The consistency is generally reproduced
by integrating trends and secondary data
into the simulation. The main difficulty in
karst modelling is to reproduce accurate
network connectivity (e.g., number of
network cycles) while maintaining the
geological and hydrogeological consis-
tency of the models.

In this paper, itis proposed to show
how it is possible to integrate geological
knowledge into a classical geostatisti-
cal algorithm, SIS (Sequential Indicator
Simulation), so that it reproduces a cave
morphology from parameters obtained by
an analogue study. The proposed tech-
nique is roughly similar to the approach
proposed in [Fournillon et al., 2011]
because it relies on SIS and hierarchi-
cal simulations of karst conduits but it
differs in the way in which karst connec-
tivity is accounted for. Therefore, the
SIS technique and the method proposed
by [Fournillon et al., 2011] are brie y
described in the first section. Then, we
explain how the different kinds of data
(proportions, connectivity, geological
features, etc.) can be integrated into
the simulations so that the generated
cave morphology is consistent with the
known karstogenesis processes. In the
second section, it is shown how this
methodology can be applied to areal case
study. The results of this case study are
then discussed to assess the applicability
of the proposed methodology.

Il.Proposed approach
The proposed approach is termed as
HSIS (Hierarchical Sequential Indicator

Simulation) within this paper. The main
strategy is to decompose caves into “basic
elements” and to successively reproduce
the spatial organisation of these ele-
ments via SIS to obtain the whole cave
morphology.

A.Sequential Indicator Simulation
The SIS technique [Goovaerts, 1997,
Journel et al., 1998] corresponds to a
geostatistical simulation approach com-
monly used for reproducing 3D models of
categorical variables (e.g., facies, classes)
from available conditioning data. The
spatial repartition of categorical variables
is simulated in a 3D grid composed of nu
x nv x nw cells (figure 1). In each grid
cell, a facies value is simulated and the
set of cells characterized by the same
facies value forms the expected related 3D
geobodies. The characterisation of the 3D
geobody geometry relies on the estimation
of a 2-point statistical parameter, referred
to as the indicator variogram [Goovaerts,
1997; Journel et al., 1998]. The indicator
experimental variograms are computed
in several directions from the available
dataset. The variogram of one facies
calculates the frequency of change from
this facies to another. Variogram models
are generally characterized by two kinds
of parameters: the sill and the ranges.
In stationary cases, the sill corresponds
to the sample variance [Gringarten &
Deutsch, 2001]. In the case of indicator
variables, the variance is by definition
p(1 - p), where p is the proportion of
the simulated facies or class. From the
computed variograms, the main ave-
raged dimensions and orientations of the
geobodies are estimated by defining the
variogram ranges and anisotropy direc-

va(h_45) )
0.1875
N45
40
y4(h_135)
0.1875
| N135
20

Figure 1: Examples of SIS simulation: 1) Variogram models of F1 facies in the two areal directions.
Variogram ranges are shown as well as sills. Sills are equal to the variance of the F1 facies indicator
02 =p4(1 - py), where p, is the proportion of F; ; 2) Variogram ellipsoid of the facies; 3) Simulation
of the two facies, whose proportions are 0.25 for F1 and 0.75 for F2.

Exemples de simulation SIS : 1) Modéles de variogramme pour le faciés F1 dans deux directions
horizontales. Les portées des variogrammes sont montrées ainsi que le palier. Ce palier est égal a
la variance de lindicatrice du faciés F1, c’est-a-dire 02 = p,(1-p,), avec p; la proportion de faciés
F1; 2) Ellipsoide du variogramme du faciés F1; 3) Simulation des deux faciés, avec les contraintes
de proportion suivantes 0,25 pour F1 et 0,75 pour F2.
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topagraphia 15E / SSNATV (ot 1960)

tion, respectively. Guo & Deutsch [2010], Ma
& Jones [2001], Jones & Ma [2001]. show the
relationships between parameters of indicator
variograms and the modelled geobody dimen-
sions and orientations. Thus, if data are not
available, variogram models can be established
from mean dimensions and orientations of the
geobodies to be reproduced.

The main advantage of SIS is its flexibi-
lity because several conditioning data (data
points, trends, etc.) can be easily taken into
account and any kind of categorical variables
can be simulated in 3D, regardless of what they
represent and their nature. In this paper, the
simulated facies corresponds to karst conduits
and the background is the matrix, which
includes rock and small heterogeneities (e.g.,
fractures). Because SIS uses 2-point statistics
(variograms), it is only able to reproduce
straight shapes, roughly representing ellipsoids
that can be amalgamated. Certain authors
have proposed variant SIS algorithms that
allow curvilinear shapes to be reproduced
using variable azimuth maps for defining local
variogram directions [Deutsch, 2002; Pyrcz &

Deutsch, 2014]. However, difficulties are met
when reproducing highly continuous curvili-
near geobodies, such as channels, Object-based
[Viseur et al., 2004, 1999] and multiple-point
techniques [Mariethoz, 2009 ; Caers & Zhang,
2004] are alternative approaches to generate
3D models of complex object stacking.

B.Cave decomposition and simulation
The proposed approach relies on the
technique presented in [Fournillon et al,,
2011]. The main idea is to decompose the cave
network into elementary conduits. These ele-
mentary conduits correspond to cave branches
that share the same geometrical characteristics:
main direction and dimensions (height and
width). The whole network is then cut into
several elementary conduits that can be clus-
tered into conduit families. To reproduce the
cave morphologies, the simulator generates the
conduits from the first family to the last one.
The order of simulation may be random or
performed according to a given chronological
or process-based order. In Abelard etal. [2011],
an automated approach termed KNIT (Karst

o 1 » Som
utede
/ . Firibre
PR BN et -
1opographie TSC / SSNATV (anit 1960) Cave conduit £ ol (15059
decomposition
\____‘_
SIS parameters of cave conduit families
\ %
Family
& #
€ G G & By
3D variogram ellipsoids Proportion

Figure 2: KNIT decomposition:
1) plan view map of the
reference cave; 2) filling of the
cave area; 3) extraction of the
cave skeleton; 4) automated
decomposition based on

a curvature threshold.
Décomposition via KNIT :

1) Représentation en plan

de la cavité de référence ;

2) Remplissage de I'aire de

la cavité ; 3) Extraction du
squelette ; 4) Décomposition
automatique en fonction d'un
seuil appliqué sur la courbure du
squelette.

Figure 3: Principles of karst
decomposition for SIS simulation,
from top to bottom: 1) 2D

map of cave; 2) decomposition
of cave skeleton; 3) input
parameters for SIS simulation,
including 3D variogram ellipsoids
and proportions. G,/ &{1;4} are
the cave conduit families and Bg
is the background, i.e. matrix.
Principes de la décomposition
de la cavité pour la simulation
SIS, de haut en bas : 1) Carte 2D
de la grotte ; 2) Décomposition
du squelette de la cavité; 3)
Parameétres d’entrée pour la SIS,
comprenant les ellipsoides 3D
de variogramme ainsi que les
proportions pour chaque famille
de conduits C,i &{1,4} ainsi que
pour la matrice.
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Network InvesTigator, figure 2), is pro-
posed to decompose from 2D maps cave
networks into “elementary conduits”,
depending on the conduit intersections
and curvatures each characterized by
geometrical (e.g., dimensions, orientation
tortuosity) and topological (i.e., topologi-
cal indices) parameters. Different conduit
families can be determined using cluste-
ring algorithm applied on the dimensions
and orientations (figure 3).

2D maps represent partial views of
cave networks because the cave geometry
and description are projected onto a 2D
horizontal plane. It is also possible to
obtain using a 3D topographic survey the
complex path, with conduit width and
height, of accessible cave parts. Thus,
from this data set, decomposition into
elementary conduits could be applied and
allows effective orientation parameters
to be obtained. Then, it is assumed in
the following that statistical analysis of
analogue caves has been performed for
the dimensions and orientations of ele-
mentary conduits for each defined family.

From these statistical analyses, a
3D variogram model (figure 3), corres-
ponding to a 3D ellipsoid, is determined
and approximates the conduit shape.
Then, a series of variogram models can
be modelled so that they represent the
different karst conduit geometries, The
simulated variables C,i € [1;N] are binary
random variables and defined as follows :

ag(.’[:, Y, Z) =1if ($, Y, 2,’) belongs to

a karst conduit

Ci (:L’, Y, Z) =) else (i.e. matrix) (1)

Let pF be the proportion of karst
conduit of the i family; then, the propor-
tion of background aeainst this family is
by definition: 7 = 1 — P{.In [Fournillon
etal., 2011], the cave conduits were simu-
lated using this approach. The algorithm
may be summarized as follows

3) Different proportions P and P are
set in the respectively defined area Z;
and its complementary zone so that the
conduits of the second family C, are
preferentially simulated in Z;.

4) Simulate the conduits of the second
family C,.

5) Iterate from 2 to 4, for each remaining
family from 2 to N.

By merging all of the cells corres-
ponding to C; to Cy;, karst networks are
simulated in the given studied formation.
In Fournillon et al., 2011], it is shown
how a proportion map can be used to
simulate karst networks in areas where
they are preferentially formed.

Two main remarks may be addressed
when considering this algorithm. Firstly,
the proportions pftand p’j (step 3) were
used to promote connectivity between
karst conduit families but their values are
hard to determine from analogue data.
Moreover, the connectivity is not direc-
tly accounted for but is a consequence
of the proportions Piv1 and the size of
the Z; region. Secondly, the different
proportions of the karst conduits do
not account for intersections between
conduits. Adjustments are required
to avoid underestimated simulated
proportions.

C.Data conditioning

In this section, it is shown how the
proportions and connectivity are defined
in the proposed approach, compared to
the similar approach in [Fournillon et al.,
2011]. How geological and hydrogeolo-
gical knowledge can be integrated is also
explained. It is assumed that analogues
of cave networks were decomposed into
elementary conduits and that a statisti-
cal analysis has been performed on the
dimensions and orientations of these ele-
mentary conduits so that conduit groups
were defined from 1 to N. Each conduit
group C,,i €{1;N} is characterized by a

mean orientation and mean dimensions.
It is finally assumed that they are each
represented by a 3D variogram ellipsoid
modelled from conduit dimensions (i.e.,
variogram ranges) and orientations (i.e.
anisotropy directions).

Proportions: Proportions are essen-
tial parameters for simulating facies using
SIS. The proportion of a karst conduit
family i may be estimated by model-
ling these conduit parts and computing
the proportion as the ratio between the
modelled conduit volumes and a given
study volume. However, it is often hard
to model these 3D volumes because 3D
cave data are rare. Another strategy is to
draw a parallel between SIS and Boolean
models to estimate proportions. Let N; be
the estimated number of karst conduits
C;inagiven volume. Because elementary
conduits C; are approximated by a 3D
variogram ellipsoid, N; can be considered
as the density 0, of a Poisson point process
simulating ellipsoid objects, with mean
volume V. In stationary conditions and
in the case of Poisson point process, it
is shown in [Allard et al. [2006]) that
the relationship between density and
proportion is the following:

1
; = ——.In(l —pF)
¥ )

Moreover, intersections may occur
between C; and C, and lead to overlap
between C; and C,. The overlapping
parts correspond to simulated parts of
C, that are not accounted for in the final
proportion. Then, itis possible to adjust
the proportion p* by p* using the formula
givenin [Allard et al., 2006], considering
the case of hierarchical erosion rules:

k

K P
= 1 J=i—1 1
Tdajot By

(3)

(figure 4) :

1) The first conduit family C, is

simulated in grid area Z;, corres-

ponding to the whole 3D grid.

Each simulated karst conduit

corresponds to a set of connec-

1

ted grid cells.

1) Simulation of C;

2) Dilating C; for obtaining Z;

3) Simulation of C,,; in Z;

4) Resulting simulation

2) Using a morphological operator
(dilatation), a zone Z, is created
around each simulated karst
conduit. The extension of this
area is equal to the length of the
second family C; to simulate.

20

Figure 4: Principles of karst SIS simulation, proposed in (Fournillon et al., 2011): 1) Simulation
of the cave conduits C; ; 2) Dilating the C; zone to obtain the Z; area; 3) Simulating Cy,, in Z;;
4)Resulting simulation of cave. Principes de la simulation de formes karstiques, proposée dans
Fournillon et al.,, [2071] : 1) Simulation des conduits C;; 2) Dilatation de la région obtenue de
C; pour définir une zone Z;; 3) Simulation de C;,; dans la zone Z;; 4) Simulation finale obtenue
pour un réseau karstique a deux familles de conduits C; et C,.
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Simulation of conditioning
points for C, simulations

Simulation of C;

Conditioned
simulation of C;

Simulation of €, U C;
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Figure 5: Proposed algorithm for accounting for a given connectivity degree: 1) Simulation of
Cy ; 2) Simulation in C; of conditioning points for C; simulation; 3) Conditioned simulation of G; ;
4) Resulting simulation corresponding to the union between C, and G,.

Algorithme proposé pour prendre en compte un certain degré de connectivité : 1) Simulation de C;;
2) Simulation dans C; de points conditionnant pour la simulation de C;; 3) Simulation conditionné
de C;, 4) Simulation finale obtenue par l'union entre C; et C,.

It is important to notice that these
formulas only give an estimation of the
proportion to target, because the SIS
algorithm is different than Poisson peint
processes.

Connectivity: As mentioned pre-
viously, connectivity between cave branch
families was insured by using preferen-
tial areas of simulation around already
simulated cave branches in the approach
proposed by [Fournillon et al., 2011].
In the proposed approach, connectivity
is not reproduced using these areas but
using simulated conditioning points.
Consider a cave composed by two main
conduit directions, respectively, C; and
* C,. These two families are each charac-
terized by a variogram model y; and y..
Let N;_, be the number of intersections
between C; and C, conduits. The cave
conduits corresponding to the first family
are first simulated in the 3D grid. Let N;
be the number of grid cells belonging to
C;. To account for a given connectivity
between C; and C,, itis proposed to gene-
rate and use, on average, N;_, simulated
conditioning points among the N; cells for
simulating the C, geometries (figure 5).

To achieve this, a critical probability
value p. is computed as follows:

Ny
Ny 4)

Pe=

Then, arandom variable is simulated
with a Monte-Carlo technique applied
on a uniform probability law U(0;1) for
each cell belonging to C;. If the simu-
lated value is below pc, the cell becomes
a conditioning point to C, simulation.
By passing through each cell of C,, the
average number of simulated conditio-
ning points will be N;_, over a set of
simulations. Conditioning the simulation
of C, by these points ensures that C, will
intersect C; Nj_, times on average.

Observations: It is possible to
observe inlet and outlet points from
a cave network. These observations
mean that karst conduits pass through
these points. These points can be set as
conditioning points. However, because
in the proposed approach, the cave
network is decomposed into several
conduit families, only part of these
data points condition the simulation
of a specific conduit family. Therefore,
from the entire dataset, it is proposed
to stochastically generate aseries of
conditioning points CP), for each conduit
family k. Let consider n conduit families,
each characterized by a proportion py.
These proportions Py, = {p;}yeq1.q) define
a probability density function for the
conduit family occurrence. Considering
that these proportions are stationary, the
proposed assumption is the following:
the probability that an outlet or an inlet
point belongs to a conduit family is equal
to its proportion pk. Therefore, a Monte
Carlo sampling technique is applied on
the set of data points: a random path is
chosen among the points and for each
point, its membership to a set of given
CPy, is simulated by Monte Carlo. Thus,
a proportion of p;, data points serve on
average to condition the conduit family
k. This stochastic sampling can account
for the proportion trend (e.g., areal and
vertical proportion trends), for non
stationary cases.

Control of geological structures:
several studies [Filipponi et al., 2009]
show that karst preferentially occurs
along fractures and stratigraphic disconti-
nuities. Therefore, it would be applicable
to simulate karst conduits preferentially
near these structures. To achieve this, it
is proposed to compute at each grid cell
the distance map to these structures.
The distance map corresponds to the

computation of the shortest distance
between each point of a given space to
a given structure (e.g., surfaces, lines).
Because these structures increase karst
conduit occurrence, the probability
of karst occurrence should be higher
because the computed distance is small.
Consider the distance d computed at
each point (x,y,z) of a given space. The
following equation is proposed to define a
consistent probability field that accounts
for this assumption:

(o))

pk‘.s(ws y,Z) = (CXI)

—d(z,y,2)>
prnks(ma Y. Z) =il — (exp(_(xg‘ﬁu))
(5)
The o parameter controls how fast
the impact of the given structure on karst
occurrence decreases.

Hydrogeological control: Two
kinds of hydrogeological controls are
addressed in this paper: the estimation
of the karst conduit direction based on
the main apparent flow and on a map of
cave conduit proportions depending on
observed outlet and inlet points. First, in
some cases, the orientation of the main
conduits is aligned along particular direc-
tions. If these directions can be estimated
from observed data, it is then possible
to tune the direction of the simulation
cave conduits using a variable azimuth
approach [Boisvert, 2011; Biver et al.,
2012; Pyrcz & Deutsch, 2014]. Second,
certain conduits stem from the main
flows between outlet and inlet points.
Their occurrence is preferentially located
within the area defined by these points.
Thus, to account for this, it is suggested
in this paper to use the convex hull of
the observed points as follows: within
the convex hull the cave conduit propor-
tion is highest; outside the proportions
decrease depending on distance using
equations similar to 5.

Combining data: If several probabi-
lity field conditionings exist, it is possible
to combine them. Let us consider the two
following assumptions:

- Hypothesis A: karst conduits occur
preferentially near a given structure.

- Hypothesis B: karst conduits occur
preferentially in a given area.

Then, considering the two hypo-
theses consists in considering the event
A N Band if A and B are independent,
then: P(A N B) = P(A) # P(B).
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Figure 6: Branch decomposition:
two families were determined
from statistical analysis of the

skeleton directions. A) the cave
network of Saint-Sébastien;

B) histogram of tangent
angles; C) visualisation of the
two branch families, F1 is the
main family, which is centred
around a mean orientation of
N90-110 and F2 is the second
family centred around a mean
orientation of 160.
Décomposition en familles : deux
familles ont été déterminées
par analyse des directions du
squelette de la grotte de Saint-
Seébastien. A) Réseau de la grotte
St-Sébastien ; B) Histogramme
des angles des tangentes au
squelette ; C) Visualisation

des deux familles de branches
définies, F1 correspond a la
famille principale orientée
autour de N90 - 110 etF2 a
l'autre famille centrée autour
de N160.

Figure 7: Data conditioning:

A) 3D model of the basal surface
of marl formation and the 3D
grid with gridding conditioned
to this surface; B) Probability
for conduit occurrence near the
marl base surface; C) Variable
azimuth for the F1 family;

D) Probability field for conduit
occurrence within an area.
Données conditionnantes :

A) modeéle 3D de la surface de
base de la formation marneuse
ainsi que la grille 3D dont le
maillage est conditionné a
cette surface ; B) Probabilité

de 'occurrence dun conduit
karstique prées de la surface de
base des marnes ; C) Champs
3D de I'azimut de la famille

F1, utilisé comme contrainte
dans la SIS a azimut variable ;
D) Champs 3D de probabilité
pour la présence d’un conduit
karstique dans la zone comprise
entre et autour des points
d‘entrée et de sortie du karst.
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o F; = about a mean of N90-100°

Tangent angles

F, = about a mean of NO or N180°

Ill. Applications and discussions

This application aims to show how it is
possible to integrate data in real conditions.
As previously mentioned, it is assumed that a
statistical analysis is performed on analogue
data before applying the proposed method. The
statistical analysis allows information about
the orientations and sizes of cave conduits.
The proposed approach is applied to the case
study of the Saint-Sébastien cave (Gréoux-
les-Bains, Provence). After describing the
geological backgrounds, the statistical analysis
of the conduits is shown as well as the used
conditioning data and their justifications.
Then, the resulting simulations are shown
and discussed.

A. Geological settings and data set
Saint-Sébastien Cave (Gréoux-les-Bains,
Alpes de Haute Provence, SE France) is a
hypogenic 2D maze [Audra et al., 2010] with
a total length of 319m. It is a planar maze,
which develops within a slightly tilted (25°SE)

Hauterivian limestone confined below an
aquitard of marls. Rising water came from the
deeper passage to reach the current entrances.
The even recharges of deep water enlarged
the entire fissure network at the same rate
producing a maze pattern reflecting the tec-
tonic heritage.

In addition to the geological information,
the dataset available for this study consists of
a 3D linear representation of the cave path
(higure 7-A). Atacquisition path points, infor-
mation about the local left and right width
of the conduits as well as its bottom and top
height is available, except in certain locations
(due to acquisition difficulties). The acquisition
points are not necessarily located at the middle
of the cave conduit. To obtain comparable
measurements along the cave network, it
was necessary to relocate the path points to
the middle of the conduits width and height.

Itis important to notice that biases exist in
such data because conduit dimensions are mea-
sured at the acquisition points only. They do not

¥

oy Vertical and areal trend
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correspond to the minimum or maximum
values. Because the shape of the conduit
cross-sections can be complex, the width
and height values acquired at these points
do not necessarily reflect the true main
cross-section dimensions. Moreover, the
acquired cave data only represent a sub-
network of the entire network and that
can be reached by humans.

B. Data conditioning

A 3D geomodel was built consi-
dering the top of the karst network as
the base of marls. A surface was built
conditioned to top points of the karst
networks using DSI technology in Gocad
[Mallet, 2002]. Then, a 3D grid was
constructed so that the cell layering is
parallel to this surface (figure 7-A). The
grid resolution is around 40 cm in area
and 25 ¢m in height.

A statistical analysis was performed
on the tangent direction on the correc-
ted cave path. This analysis allows two
cave conduit families to be distinguished
(figure 6): a first family C; composed of
roughly E-W conduit directions (N90
- N100) and the second family C, of
conduits along N-S directions (around NO
or N180). The mean width and height of
the individualized conduit families were
estimated to determine the variogram
ranges of each family. Therefore, using
the anisotropy direction (orientation)
and these dimensions, two 3D variogram
ellipsoids were defined. The C; family
conduits are oriented in the main flow
direction between the outlet and inlet
locations. This leads to a fan shaped spa-
tial repartition of these conduits. These
orientations follow the main straight
directions between these points. Thus, an

Family ‘ rl I r2 | 13

G |8 |1 i

azimuth

Trend (cf figure 7-C)

proportion

0.0475 0.05

el | 10 1 1

160 0.024375 0.025

Table 1: Parameters used for simulating conduits of families C; and C;. Distances are in meters and
angles are degrees. Parametres utilisés pour simuler les familles C; et C; de conduits. Les distances

sont en metres et les angles en degrés.

orientation map (figure 7) has been inter-

polated, conditioned to these boundary

directions. This map was used as a trend
for the variogram anisotropy direction

of the C, family. This corresponds to a

variable azimuth conditioning of the SIS.

By definition, the sill of the variograms is

equal to p, x (1 - pp) with R €[1,2} and p,,

the proportion of the conduit family C,,.

The proportions of the C; and C,
conduits were estimated using the for-
mula 2 and 3. The number of conduits per
volume of interest was estimated for each
family. The elementary conduit volume
was based on the 3D variogram ellipsoid
ranges. Two trends of the proportions
were integrated in the conditioning:

- Flow direction impact: the convex hull
of the observed inlet and outlet points
was calculated. Within this zone, the
proportion is maximal and outside,
the proportion decreases depending
on the distance using the equation 5.
The o was chosen as the mean conduit
dimensions of C, (10 m) because they
are located almost perpendicular to the
main flow direction.

- Distance to the marl base surface: dis-
tance to this surface was calculated in
each cell of the 3D grid. The proportion
decreases with this distance using the
equation 5. The ¢ was chosen as the
maximal height of the conduits (2 m).

3D reference
network

The hard data conditioning are of
two categories. Firstly, the inlet and outlet
points serve as support for conditioning.
The number of these points is randomly
separated into two groups: one conditio-
ning the C; conduits and one the C,. The
random choice is performed on the data
points through Monte-Carlo sampling
considering the proportion of conduits.
Several simulations can be generated from
the same random choice as shown in the
next section. Secondly, the C; family was
conditioned to peints belonging to the
C, simulation to ensure the connectivity
between C; and C,. These points are
randomly simulated using the technique
described in section 2.3. The number
of intersections between C; and C, was
estimated as 22 from the dataset. The
conditioning data are shown in figure 7
and table 1.

C.Results and discussions

Using the conditioning dataset pre-
viously presented, simulations of cave
networks were generated. Three of the
simulations are shown in the figure 8.
Per simulation, several unconnected
caves were generated, the ones shown in
figure 8 are the largest ones among the
simulations. Moreover, only simulations
for which a cave geobody connects all
inlet and outlet points are kept because
they are all connected in the Saint-
Sébastien cave network.

The simulated numbers of conditio-
ning points for the C, family simulation
are shown in the table 2 as well as the
volume of the simulated caves. This
volume corresponds to the raster volume
of the cave, which corresponds to a set of
grid cells. To be comparable, the volume
of the 3D reference model of the Saint-
Sébastien cave was also computed as a
raster volume. The simulated numbers

Figure 8: Simulations: A) 3D survey of

the reference network; B) Simulation

#1; C) Simulation #2; D) Simulation #3.
Simulations : A) Topographie 3D du réseau de
référence ; B) Simulation n°1; C) Simulation
n°2; D) Simulation n°3.
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of conditioning data varies around 22.
The first simulation is the most connected
volume with 27 C, conditioning points.
This leads to a cave with a large volume
because it connects several branch
conduits. More simulations must be stu-
died to see the impact of the generated
conditioning points on the final cave
volumes. Simulation #2 looks visually
more similar to the real Saint-Sébastien
cave network and its volume is also the
closer to the true volume.

This example shows that it is pos-
sible to add conditioning data when
simulating cave networks.

These data reflect the geological
and speleogenetic knowledge of the cave
being simulating. However, as previously
mentioned, only straight shapes can be
reproduced using SIS. Therefore, only
straight elementary cave conduits can
be simulated. Variable azimuth condi-
tioning can be used to locally modify
the conduit directions, as shown in this
example. However, the ability to generate
curvilinear shapes remains difficult with
this technique. Multiple-point statistics
are better methods to perform this task.

Finally, efforts must be devoted
to the connectivity conditioning.
Conditioning points are simulated to
assert a certain degree of connectivity
between conduits but due to the hazard
of the simulation additional intersections
between conduits of different families
could occur. This leads to over-simu-
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