
HAL Id: hal-01457996
https://hal.science/hal-01457996v4

Preprint submitted on 24 Apr 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A short proof of correctness of the quasi-polynomial
time algorithm for parity games

Hugo Gimbert, Rasmus Ibsen-Jensen

To cite this version:
Hugo Gimbert, Rasmus Ibsen-Jensen. A short proof of correctness of the quasi-polynomial time
algorithm for parity games. 2017. �hal-01457996v4�

https://hal.science/hal-01457996v4
https://hal.archives-ouvertes.fr

A short proof of correctness of the

quasi-polynomial time algorithm for parity games

Hugo Gimbert1 and Rasmus Ibsen-Jensen2

1 LaBRI, Université de Bordeaux, CNRS, France hugo.gimbert@cnrs.fr

2 IST Austria, Vienna, Austria ribsen@ist.ac.at

Abstract

Recently Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li and Frank Stephan

proposed a quasi-polynomial time algorithm for parity games [1]. These notes provide a short

proof of correctness of their algorithm.

Parity games

A parity game is given by a directed graph (V, E), a starting node s ∈ V , a function which

attaches to each v ∈ V a priority pty(v) from a set {1, 2, ..., m}; the main parameter of

the game is n, the number of nodes, and the second parameter is m. Two players Anke

and Boris move alternately in the graph with Anke moving first. A move from a node v to

another node w is valid if (v, w) is an edge in the graph; furthermore, it is required that

from every node one can make at least one valid move. The alternate moves by Anke and

Boris define an infinite sequence of nodes which is called a play. Anke wins a play through

nodes v0, v1, · · · iff lim supt pty(vt) is even, otherwise Boris wins the play.

We say that a player wins the parity game if she has a strategy which guarantees the

play to be winning for her. Parity games are determined [3] thus either Anke or Boris wins

the parity game.

Statistics

The core of the algorithm of Calude et al. is to keep track of statistics about the game, in

the form of partial functions

f : 0 . . . k → 1 . . . m .

The integer k is chosen such that 2k is strictly larger than twice the number of vertices.

The domain of f is denoted dom(f) and its image im(f). We also let domeven(f) =

{f(i) is even|i ∈ im(f)}. Statistics are assumed to be increasing, i.e. ∀i, j ∈ dom(f), (i ≤
j =⇒ f(i) ≤ f(j)) . A statistic f can be modified by inserting a priority c at an index ℓ,

which results in removing all pairs of index ≤ ℓ from f and adding the pair (ℓ, c).

The initial statistic is the empty statistic f0 = ∅, which is updated successively by all

the priorities visited during the play, thus producing a sequence of statistics. The update of

a statistic f by a priority c is performed by applying successively the following two rules.

Type I update: If c is even then it is inserted at the highest index j ∈ 0 · · · k such that

f is defined and even on 0 . . . j − 1.

Type II update: If im(f) contains at least one value < c then c is inserted at the

highest index j ∈ dom(f) such that f(j) < c.

Applying both rules in succession ensures that the update of an increasing statistic is

increasing. If rule II triggers an insertion then we say the update is a type II update. Notice

that in this case, applying or not rule I in the first place does not change the result. If rule

I triggers an insertion but rule II does not then we say the update is a type I update.

XX:2 A short proof of correctness of the quasi-polynomial time algorithm for parity games

Anke (resp. Boris) wins the statistics game if she (resp. he) has a strategy to enforce

(resp. to avoid) a visit to a statistic whose domain contains k. Similarly to the game of

chess, statistics games are determined: either Anke or Boris has a winning strategy [2].

1 Correctness of the algorithm

◮ Theorem 1 (Calude et al). Anke wins the parity game iff she wins the statistics games.

Since statistics games are determined, the direct implication follows from:

◮ Lemma 2. If Boris wins the statistics games, he wins the parity game.

Proof. Every play won by Boris in the statistics game is won by Boris in the parity game

because c = lim supt ct is odd in every sequence of statistics updates f0 →c0 f1 →c1 . . . such

that ∀t ≥ 0, k 6∈ dom(ft), the proof of which follows.

An easy case is when the sequence of statistics is ultimately constant equal to some

f then f →c f thus c is odd because an update by an even priority always performs an

insertion. In the opposite case define (ℓ, d) the maximal pair (for the dichotomic order)

inserted infinitely often. Since d is inserted infinitely often then d ≤ lim supt ct = c. And

d ≥ c otherwise c would be inserted infinitely often at an index ≥ ℓ which would contradict

the maximality of (ℓ, d). Since (ℓ, c) is inserted infinitely often then it is removed infinitely

often, let (ℓ′, c′) be a pair used infinitely often to remove (ℓ, c). Since (ℓ, c) is removed by the

insertion of (ℓ′, c′) then ℓ ≤ ℓ′ hence ℓ = ℓ′ by maximality of ℓ. Since (ℓ′, c′) = (ℓ, c′) 6= (ℓ, c)

then c′ < c by maximality of c. Since (ℓ, c) is removed by the insertion of (ℓ′, c′) and c′ < c

then this insertion is necessarily performed by a type I update and since ℓ = ℓ′ then c is odd

otherwise the insertion would occur at a higher index. ◭

The converse implication (Corollary 9) relies on several crucial properties of statistics.

◮ Definition 3 (Counter value). With every statistic f is associated its counter value

bin(f) =
∑

j∈domeven(f)

2j .

In the sequel we fix a sequence f0 →c0 f1 . . . →cN fN+1 of statistics updates. We will

first give two lemmas that gives information on what can be said when an update of type 1

and 2, respectively, is used on a date.

◮ Lemma 4. For all N if fN →cN fN+1 is a type 1 update, then bin(fN) + 1 = bin(fN+1)

Proof. Let ℓ be the entry of the insertion in update fN →cN fN+1. Then, fN(ℓ) cannot be

defined and even, because otherwise ℓ + 1 could also be chosen. Also, fN+1(ℓ) is cN and

thus even. On the other hand, since fN →cN fN+1 is a type 1 update, we have for j < ℓ

that fN (j) is defined and even and fN+1(j) is not defined. No index > ℓ changes on an

insertion on index ℓ. Hence, bin(fN+1) − bin(fN+1) = 2ℓ − (1 + 2 + 4 + · · · + 2ℓ−1) = 1. ◭

Next, the lemma about type 2 updates.

◮ Lemma 5. For all N if there is an update of type 2 on (ℓ, c) at date N , then there is a

t < N such that

1. the update on date t is of type 1

2. the statistics ft+1 is equal to fN+1 except that ft+1(ℓ) 6= fN+1(ℓ) and ft+1(ℓ) is even

(implying that bin(ft+1) = bin(fN+1) if c is even and bin(ft+1) > bin(fN+1) if c is odd)

H. Gimbert, R. Ibsen-Jensen XX:3

3. there are no insertions at index ℓ′ for any ℓ′ > ℓ between date t and N .

Also, t < N is the last date such that there is a type 1 update at that date on index ℓ.

Proof. Let t < N be the largest date such that there is a type 1 update at that date on index

ℓ. This is well-defined, since initially, f0 = ∅ and for the smallest t′, such that ℓ ∈ ft′+1,

we must have that the update at date t′ is a type 1 update (by definition). We see that

both fN+1(i) and ft+1(i) are undefined for i < ℓ because of the updates on date N and t

respectively. Also, for all i > ℓ such that ft+1(i) or fN+1(i) is defined, we have that both are

defined and ft+1(i) = fN+1(i). This is because, if an insertion (ℓ′, d) is performed for ℓ′ > ℓ

on a date t′ between t + 1 and N , we have that ft′+1(ℓ) becomes undefined and hence, there

must be a date > t′ such that ℓ is inserted again, which would use rule 1 and thus contradict

the choice of t. Thus, the statistics match except that ft+1(ℓ) < fN+1(ℓ) (because each later

time we change index ℓ we use rule 2 and the entry thus increases). Also, ft+1(ℓ) is even

because the update on date t is of type 1. ◭

We also give a corollary.

◮ Corollary 6. Fix a number i > 0. Consider the smallest date T such that bin(fT +1) ≥ i.

Then the update on date T is of type 1 and bin(fT +1) = i

Proof. By minimality of T we get that bin(fT) < i (because bin(f0) = 0). By Lemma 5,

the update on date T has type 1. By Lemma 4, we thus get that bin(fT +1) = i. ◭

Next, we define even factorization and then show that a long even factorization implies

that Anke wins the parity game.

◮ Definition 7 (Even factorizations). An even factorization of length j is a sequence 0 ≤
t0 < . . . < tj such that for every i ∈ 0 . . . j −1, the maximum of cti , cti+1, . . . , cti+1−1 is even.

We next show that long even sequences exists.

◮ Lemma 8. For all N , there is an even factorization of length at least bin(fN).

◮ Corollary 9. If Anke wins the statistics game then she wins the parity game.

Proof. By definition of the statistics game, Anke can enforce the play to reach a statistic

fN+1 such that k ∈ dom(fN+1).

If N is chosen minimal then fN →cN fN+1 is an update of type 1 by Corollary 6 on entry

k. Hence, fN+1 is defined on k and fN+1(k) is even. This implies that bin(fN+1) ≥ 2k.

According to Lemma 8, such a play has an even factorization t0 < t1 < . . . < tj of length

bin(fN+1) ≥ 2k. Since 2k is > than twice the number of vertices, the play loops on the same

vertex at some dates ti and ti′ , while having the same current player, with 0 ≤ i < i′ ≤ j.

By definition of even factorizations, the maximal priority on this loop is even. Thus Boris

has no positional winning strategy in the parity game (because if he had followed it, no loop

can have even maximal priority), and since parity games are positional [3], Boris has no

winning strategy at all in the parity game. ◭

Proof of Lemma 8. Consider a fixed N . Let x = bin(fN). We will show that the following

sequence t1, . . . , tx is an even factorization.

For ease of notation, let tx+1 = N+1 (note that tx+1 is not part of the even factorization).

For all j ≤ x, let tj < tj+1 be the last date T using rule 1 such that bin(fT +1) = j.

Sequence is well-defined. This sequence is well-defined because (1) on the first date T

where bin(fT +1) ≥ j we use rule 1 and bin(fT +1) = j, by Corollary 6; and (2) bin(ftj+1) = j

XX:4 A short proof of correctness of the quasi-polynomial time algorithm for parity games

(and hence a date T < tj+1 exists where bin(fT +1) ≥ j), which is true for j = x by definition

of tx+1 and otherwise follows from Lemma 4 because we use rule 1 on date tj+1 for j < x.

Sequence is an even factorization. Consider some fixed i < x. We will argue that the

maximum priority c in cti , cti+1, . . . , cti+1−1 is even. We will do so using contradiction, so

assume that c is odd. Let T ∈ {ti, ti + 1, . . . , ti+1 − 1} be the smallest date such that c is

seen on that date and let ℓ be the index changed on that date. Note that T > ti, since we

use rule 1 on date ti which requires an even number.

◮ Claim 1. The number ℓ is well-defined and bin(fT +1) < i = bin(fti+1).

Proof. Let ℓ′ be the index inserted at date ti. Let ℓ′′ be the largest index inserted at a date

in ti, . . . , T −1. By definition of ℓ′′, we have that fT (ℓ′′) is defined and by definition of T and

c we have that fT (ℓ′′) < c. Thus, we can perform a type 2 insertion of c at ℓ′′ and hence ℓ is

well-defined. Thus, fT +1(i) is odd or undefined for i ≤ ℓ, and domeven(fT +1) ∩ ℓ + 1 . . . k =

domeven(fti+1) ∩ ℓ + 1 . . . k because no such entry has changed between those two dates.

On the other hand fti+1(ℓ′) is even since a rule 1 update was used on that index on that

date. ◭

Let T ′ ∈ {T, . . . , ti+1 − 1} be the first date such that bin(fT ′+1) ≥ i. This is well-

defined because we have that bin(fti+1) = i by Lemma 4 (since we use rule 1 on date ti+1).

Clearly T ′ > T since bin(fT +1) < i by Claim 1. This also implies that bin(fT ′) < i. We

must thus make an update on date T ′. We cannot make an update of type 1 on date T ′,
because bin(fT ′) < i ≤ bin(fT ′+1) would then imply that bin(fT ′+1) = i by Lemma 4, which

contradicts the choice of ti (since ti < T < T ′ < ti+1 as noted). We next argue that the

update on date T ′ cannot be of type 2 either which contradicts that an update have either

type 1 or 2, shows that c must be even and thus completes the proof of the lemma.

◮ Claim 2. The update on date T ′ is not of type 2

Proof. Assuming towards contradiction that rule 2 is used on date T ′. Let (ℓ′, c′) be the

update performed on date T ′. Since bin(fT ′) < i ≤ bin(fT ′+1), we have that c′ is even. We

will argue that there can be no such ℓ′. Let ℓ′′ be the largest index changed between date T

and date T ′, both included. We thus have that ℓ′′ ≥ ℓ, ℓ′. We can apply Lemma 5 and see

that there is t such that t < T ′ and such that bin(fj+1) = bin(fT ′+1), because c′ is even. We

thus just need to argue that t ≥ T to contradict that T ′ is the first date in {T, . . . , ti+1 − 1}
where bin(fT ′+1) ≥ i.

If ℓ′′ > ℓ′. Note that this is especially the case if ℓ > ℓ′. We see that t ≥ T because there is

no insertion between date t and T ′ at a higher index than ℓ′ by Lemma 5. This contradicts

the choice of T ′.

Otherwise, if ℓ′′ = ℓ′ ≥ ℓ. In this case fT +1(ℓ′) is either not defined or at least c. This is

because if fT (ℓ′) was defined and smaller than c, then it would be changed on date T . We

have that fT ′(ℓ′) is defined and < c′ ≤ c because otherwise we could not use rule 2 on date

T ′ and insert into ℓ′. Consider the first date t′ ≥ T such that ft+1(ℓ′) is defined and < c.

Hence t′ ≤ T ′. To lower an entry or make it defined we must use rule 1 on that entry and

thus, we use rule 1 on date t′ on entry ℓ′. Hence t′ 6= T ′ (because we use rule 2 on date T ′)
and thus t′ < T ′. But then t ≥ t′ ≥ T because t < T ′ is the last date on which rule 1 was

used on index ℓ′ by Lemma 5. This contradicts the choice of T ′. ◭

◭

H. Gimbert, R. Ibsen-Jensen XX:5

2 Time complexity of solving statistics games

Reachability games

A reachability game G is a tuple (V, E, ⊤), where V is a set of n vertices and E ⊆ V × V is

a set of m edges. The vertex ⊤ ∈ V is a the target vertex. The play starts in some initial

vertex s, player 1 and 2 alternatively select a vertex u ∈ {u | (v, u) ∈ E}. The play then

continues to u. If the play is ever in w, the game ends and player 1 wins, otherwise player

2 wins.

If player 1 has a strategy to ensure a win from some vertex s, then s is called a winning

vertex. The classical algorithm for reachability games G is called backward induction and

computes in time O(m) the set of winning vertices.

Statistics game as a reachability game

Given a parity game G = (V, E), with M priorities, n vertices and m edges, let k =

⌈log(n + 1)⌉ be the maximum index in the corresponding statistics game. Denote Si,M the

set of statistics with M priorities and i being the highest possible index.

The corresponding statistics game is the reachability game with vertices V ×Sk−1,M ∪{⊤}.

For every edge (v, u) ∈ E and statistic update f →pty(u) f ′ with k 6∈ dom(f), there is an

edge from (v, f) to (u, f ′) if k 6∈ dom(f ′) or to w if k ∈ dom(f ′).

A naïve upper complexity bound

According to Theorem 1, a vertex s is winning in the parity game if and only if the vertex

(s, ∅) is winning in the statistics game.

The statistics game has ≤ n|Sk−1,M | + 1 vertices and ≤ m|Sk−1,M | edges and there is a

naïve (M + 1)⌈log(n+1)⌉ upper bound on |Sk−1,M |. This gives a first straightforward upper

bound on the complexity of solving parity games:

O
(

m(M + 1)⌈log(n+1)⌉
)

≤ O
(

mM1+log(n)
)

.

Tighter upper complexity bounds

We give tighter upper complexity bounds, starting with some bounds on |Si,M | for all i, M .

◮ Lemma 10. Let x, y ∈ Z. The number of increasing functions f : {1, . . . , x} → {1, . . . , y}
is
(

x+y−1
x

)

Proof. Each increasing function f : {1, . . . , x} → {1, . . . , y} has a 1-to-1 correspondence

with subsets of size x of {1, . . . , x + y − 1} as follows: Let Sf be the set {f(1), f(2) +

1, . . . , f(x) + x − 1}. Observe that since f is increasing, f(i) + i < f(i + 1) + i + 1 for all

i. Thus Sf has exactly x elements. On the other hand, every set S = {1 ≤ j0 < · · · < jx}
corresponds to the function fS(z) = jz − z + 1. The function fS is increasing because

ji > ji−1 for all i. There are
(

x+y−1
x

)

subsets of size x of {1, . . . , x + y − 1}. ◭

◮ Lemma 11. Let x, y ∈ Z. The number of increasing, partial functions f : {0, . . . , x} →
{1, . . . , y} is

∑x+1
i=0

(

x+1
i

)

·
(

i+y−1
i

)

Proof. A partial increasing function is a increasing function in its domain. For a fixed i,

there are
(

x+1
i

)

domains of size i. Since each domain of size i corresponds to the domain

{1, . . . , i} we can apply Lemma 10 and see that there are
(

i+y−1
i

)

increasing functions for

XX:6 A short proof of correctness of the quasi-polynomial time algorithm for parity games

a fixed domain of size i. Thus, there are
∑x+1

i=0

(

x+1
i

)

·
(

i+y−1
i

)

increasing partial functions

f : {0, . . . , x} → {1, . . . , y} in total. ◭

Hence, the time complexity of backwards induction on the statistics game is

O(m|Sk−1,M |) = O

(

m

k
∑

i=0

(

k

i

)

·
(

i + M − 1

i

)

)

.

◮ Theorem 12. Given a parity game with n vertices, m actions and max priority M , the

winner of each initial vertex can be found in time

O

(

min

(

mn22M/
√

M log n, mn2.4427...nlog(1+ M
log n) ·

(

1 +
M

log n

)))

.

Especially, for M ≥ ǫ log2 n, for some constant ǫ > 0, the winner can be found in

O(m · n1.4427...nlog(1+ M
log n) · (1 + M

log n)) time.

For M = log n, the winner can be found in time O

(

mn
log

√
2+1√
2−1

)

= O(mn2.5431...).

Proof. We will give an upper bound on O
(

m
∑k

i=0

(

k
i

)

·
(

i+M−1
i

)

)

.

Let g(i) =
(

k
i

)

·
(

i+M−1
i

)

. For i = k we have that

g(k) =
(k − 1 + M)!

k!(M − 1)!
=

k − 1 + M

k
·
(

k − 2 + M

k − 1

)

=
k − 1 + M

k2
· g(k − 1)

For 0 < i < k we have that

g(i) =
k!

i!(k − i)!
· (i − 1 + M)!

i!(M − 1)!
=

(k − i)(i − 1 + M)

i2
· g(i − 1) .

Observe that 2k = 2⌈log(n+1)⌉ < 2log(n+1)+1 = 2(n + 1).

A trivial bound on
(

y
x

)

for all x, y is yx/x!. We thus get using Stirling’s approximation

that

g(k) ≤ (k + M − 1)k/k! < 1/2ek ln(k+M−1)/e(k+1/2) ln k−k

= 1/2ek ln(k+M−1)−(k+1/2) ln k+k = 1/2ek(1−ln k+ln(k+M−1))−(ln k)/2

= 1/2ek ln((e(k+M−1))/k)−(ln k)/2 = k−1/2 · (e(k + M − 1)/k)k

= k−1/2 · (2(n + 1))log e+log(1+(M−1)/k) = O(k−1/2 · n1.4427...nlog(1+ M−1
log n) · (1 +

M − 1

log n
))

We first consider the case where M ≥ ǫk2 for some constant ǫ > 0. Observe that

g(k) is a factor ǫ of g(k − 1) for this choice of M . Also, for 0 < i < k we have that

g(i)/g(i − 1) > (k − i)ǫ. Thus, g(i) is decreasing geometrically (with a constant factor of

at most 1/ǫ) for k − 1/ǫ > i and increasing below that. But, 1/ǫ is a constant and thus,
∑k

i=0 g(i) is O(g(k)) = O(
(

k−1+M
k

)

) = O(k−1/2 · nlog e+log(1+(M−1)/k) · (1 + M−1
log n)). Hence,

the time complexity is O(m log−1/2 n · n1.4427...nlog(1+ M−1
log n) · (1 + M−1

log n)) in this case.

Next we consider smaller values of M ≥ k + 1. Note that
(

y
x

)

is geometrically increasing

for a fixed y for x < y/2 and geometrically decreasing for x > y/2. Also,
(

y
y/2

)

≈ 2y/
√

y.

H. Gimbert, R. Ibsen-Jensen XX:7

Thus, the time complexity is

O(m|Sk−1,M |) = O

(

m

k
∑

i=0

(

k

i

)

·
(

i − 1 + M

i

)

)

= O

(

m · 2k
k
∑

i=0

(

i − 1 + M

i

)

)

= O

(

m · 2k/
√

k

(

k − 1 + M

min(k−1+M
2 , k)

))

= O

(

min

(

mn22M/
√

M log n, mn2.4427...nlog(1+ M−1
log n) · (1 +

M − 1

log n
)

))

.

Note that the above argument basically finds the maximum of
(

k
i

)

and
(

i−1+M
i

)

inde-

pendently, i.e. without using that it is the same i. Thus, one can give better bounds for

especially specific values of M as a function of k. We see that g(i) keeps increasing until

g(i)/g(i − 1) ≤ 1. Let i∗ be the smallest such i.

1 ≥ g(i∗)/g(i∗ − 1) ⇔ 1 ≥ (k − i∗)(i∗ + M − 1)

i2
∗

⇔i2
∗ ≥ (k − i∗)(i∗ + M − 1) ⇔ i2

∗ ≥ k(M − 1) + ki∗ − (M − 1)i∗ − i2
∗

⇔0 ≥ k(M − 1) + ki∗ − (M − 1)i∗ − 2i2
∗ ⇔ 0 ≤ −k(M − 1) − ki∗ + (M − 1)i∗ + 2i2

∗

⇔i∗ ≥ k − (M − 1) +
√

(M − k − 1)2 + 8k(M − 1)

4
.

We then get an upper bound on O(m|Sk−1,M |) of

O(m ·
k
∑

i=0

g(i)) = O(m · kg(i∗)) .

This bound is accurate upto a factor of k = O(log n).

Thus, for instance, for M = k+1, we have that i∗ = k√
2
. Inserting this into O(m ·kg(i∗))

we get that

m · kg(i∗) = m · kg(i∗) = m · k ·
(

k

i∗

)

·
(

k + i∗
i∗

)

= m · k · k!

i∗!(k − i∗)!

(k + i∗)!

i∗!k!
= m · k · (k + i∗)!

(i∗!)2(k − i∗)!

< m · k · e(k+i∗+1/2) ln(k+i∗)−(k+i∗)−2((i∗+1/2) ln(i∗)−i∗)−((k−i∗+1/2) ln(k−i∗)−(k−i∗)) ,

where we used Stirling’s approximation for the inequality. We next consider the exponent

of e.

(k + i∗ + 1/2) ln(k + i∗) − (k + i∗) − 2((i∗ + 1/2) ln(i∗) − i∗)

− ((k − i∗ + 1/2) ln(k − i∗) − (k − i∗))

=i∗(ln(k + i∗) + ln(k − i∗) − 2 ln(i∗)) + k(ln(k + i∗) − ln(k − i∗))

+ 1/2(ln(k + i∗) − 2 ln(i∗) − ln(k − i∗))

=i∗

(

ln

(

(k + i∗)(k − i∗)

i2
∗

))

+ k

(

ln

(

k + i∗
k − i∗

))

+ 1/2

(

ln

(

k + i∗
(i2

∗)(k − i∗)

))

=i∗

(

ln

(

k2 − k2/2

k2/2

))

+ k

(

ln

(

k + k/
√

2

k − k/
√

2

))

+ 1/2

(

ln

(

k + k/
√

2

k2/2(k − k/
√

2)

))

=k

(

ln

(

1 + 1/
√

2

1 − 1/
√

2

))

+ 1/2

(

ln

(

1 + 1/
√

2

k2(1 − 1/
√

2

))

XX:8 A short proof of correctness of the quasi-polynomial time algorithm for parity games

Inserting it back into the earlier expression, we get that the time complexity is

O

(

m · k · e
k(ln(

1+1/
√

2

1−1/
√

2
))+1/2(ln(

1+1/
√

2

k2(1−1/
√

2)
))
)

= O

(

m

(

1 + 1/
√

2

1 − 1/
√

2

)k
)

= O

(

mn
log

√
2+1√
2−1

)

= O(mn2.5431...)

◭

References

1 C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding par-

ity games in quasipolynomial time. Technical report, CDMTCS, October 2016. URL:

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_fi

2 E. Zermelo. Uber eine anwendung der mengenlehre auf die theorie des schachspiels. In

Proc. of the Fifth International Congress of Mathematicians, volume II, pages 501–504.

Cambridge University Press, 1913.

3 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. TCS, 200:135–183, 1998.

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_file=631

	Correctness of the algorithm
	Time complexity of solving statistics games

