
HAL Id: hal-01457996
https://hal.science/hal-01457996v2

Preprint submitted on 14 Feb 2017 (v2), last revised 24 Apr 2017 (v4)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A short proof of correctness of the quasi-polynomial
time algorithm for parity games

Hugo Gimbert, Rasmus Ibsen-Jensen

To cite this version:
Hugo Gimbert, Rasmus Ibsen-Jensen. A short proof of correctness of the quasi-polynomial time
algorithm for parity games. 2017. �hal-01457996v2�

https://hal.science/hal-01457996v2
https://hal.archives-ouvertes.fr


A short proof of correctness of the

quasi-polynomial time algorithm for parity games

Hugo Gimbert1 and Rasmus Ibsen-Jensen2

1 LaBRI, Université de Bordeaux, CNRS, France hugo.gimbert@cnrs.fr

2 IST Austria, Vienna, Austria ribsen@ist.ac.at

Abstract

Recently Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li and Frank Stephan

proposed a quasi-polynomial time algorithm for parity games [1]. These notes provide a short

proof of correctness of their algorithm.

Parity games

A parity game is given by a directed graph (V, E), a starting node s ∈ V , a function which

attaches to each v ∈ V a priority pty(v) from a set {1, 2, ..., m}; the main parameter of

the game is n, the number of nodes, and the second parameter is m. Two players Anke

and Boris move alternately in the graph with Anke moving first. A move from a node v to

another node w is valid if (v, w) is an edge in the graph; furthermore, it is required that

from every node one can make at least one valid move. The alternate moves by Anke and

Boris define an infinite sequence of nodes which is called a play. Anke wins a play through

nodes v0, v1, · · · iff lim supt pty(vt) is even, otherwise Boris wins the play.

We say that a player wins the parity game if she has a strategy which guarantees the

play to be winning for her. Parity games are determined [3] thus either Anke or Boris wins

the parity game.

Statistics

The core of the algorithm of Calude et al. is to keep track of statistics about the game, in

the form of partial functions

f : 0 . . . k → 1 . . . m .

The integer k is chosen such that 2k is strictly larger than the number of vertices. The domain

of f is denoted dom(f) and its image im(f). Statistics are assumed to be increasing, i.e.

∀i, j ∈ dom(f), (i ≤ j =⇒ f(i) ≤ f(j)) . A statistic f can be modified by inserting a

priority c at an index ℓ, which results in removing all pairs of index ≤ ℓ from f and adding

the pair (ℓ, c).

The initial statistic is the empty statistic f0 = ∅, which is updated successively by all

the priorities visited during the play, thus producing a sequence of statistics. The update of

a statistic f by a priority c is performed by applying successively the following two rules.

Type I update: If c is even then it is inserted at the highest index j ∈ 0 · · · k such that

f is defined and even on 0 . . . j − 1.

Type II update: If im(f) contains at least one value < c then c is inserted at the

highest index j ∈ dom(f) such that f(j) < c.

Applying both rules in succession ensures that the update of an increasing statistic is

increasing. If rule II triggers an insertion then we say the update is a type II update. Notice

that in this case, applying or not rule I in the first place does not change the result. If rule

I triggers an insertion but rule II does not then we say the update is a type I update.



XX:2 A short proof of correctness of the quasi-polynomial time algorithm for parity games

Anke (resp. Boris) wins the statistics game if she (resp. he) has a strategy to enforce

(resp. to avoid) a visit to a statistic whose domain contains k. Similarly to the game of

chess, statistics games are determined: either Anke or Boris has a winning strategy [2].

1 Correctness of the algorithm

◮ Theorem 1 (Calude et al). Anke wins the parity game iff she wins the statistics games.

Since statistics games are determined, the direct implication follows from:

◮ Lemma 2. If Boris wins the statistics games, he wins the parity game.

Proof. Every play won by Boris in the statistics game is won by Boris in the parity game

because c = lim supt ct is odd in every sequence of statistics updates f0 →c0
f1 →c1

. . . such

that ∀t ≥ 0, k 6∈ dom(ft), the proof of which follows.

An easy case is when the sequence of statistics is ultimately constant equal to some

f then f →c f thus c is odd because an update by an even priority always performs an

insertion. In the opposite case define (ℓ, d) the maximal pair (for the dichotomic order)

inserted infinitely often. Since d is inserted infinitely often then d ≤ lim supt ct = c. And

d ≥ c otherwise c would be inserted infinitely often at an index ≥ ℓ which would contradict

the maximality of (ℓ, d). Since (ℓ, c) is inserted infinitely often then it is removed infinitely

often, let (ℓ′, c′) be a pair used infinitely often to remove (ℓ, c). Since (ℓ, c) is removed by the

insertion of (ℓ′, c′) then ℓ ≤ ℓ′ hence ℓ = ℓ′ by maximality of ℓ. Since (ℓ′, c′) = (ℓ, c′) 6= (ℓ, c)

then c′ < c by maximality of c. Since (ℓ, c) is removed by the insertion of (ℓ′, c′) and c′ < c

then this insertion is necessarily performed by a type I update and since ℓ = ℓ′ then c is odd

otherwise the insertion would occur at a higher index. ◭

The converse implication (Corollary 7) relies on several crucial properties of statistics.

◮ Definition 3 (Counter value). With every statistic f is associated its counter value

bin(f) =
∑

j∈dom(f)

2j .

◮ Lemma 4 (Increments). Let f →c f ′ be a statistic update inserting c at index ℓ ∈ 1 . . . k.

The following conditions are equivalent:

bin(f ′) > bin(f),

bin(f ′) = bin(f) + 1,

ℓ 6∈ dom(f).

If any of these conditions hold then f →c f ′ is a type I update called an increment.

Proof. If ℓ ∈ dom(f) then dom(f ′) ⊆ dom(f) thus bin(f ′) ≤ bin(f) and none of the

conditions hold. If ℓ 6∈ dom(f) then by definition of updates, f →c f ′ is a type I update and

f is defined and even on 1 . . . ℓ − 1. Thus bin(f ′) − bin(f) = 2ℓ − (20 + 21 . . . + 2ℓ−1) = 1

and the three conditions hold. ◭

In the sequel we fix a sequence f0 →c0
f1 . . . →cN

fN+1 of statistics updates.

◮ Definition 5 (Even statistics and even factorizations). A statistic f is even if all values in

im(f) are even. An even factorization of length j is a sequence 0 ≤ t0 < . . . < tj = N + 1

such that for every i ∈ 0 . . . j − 1, the maximum of cti
, cti+1, . . . , cti+1−1 is even.

Long even factorizations exist whenever the last statistic is even.



H. Gimbert, R. Ibsen-Jensen XX:3

◮ Lemma 6. Assume f0 = ∅ and fN+1 is even. Then there is an even factorization of

length at least bin(fN+1).

◮ Corollary 7. If Anke wins the statistics game then she wins the parity game.

Proof. By definition of the statistics game, Anke can enforce the play to reach a statistic

fN+1 such that k ∈ dom(fN+1). If N is chosen minimal then fN →cN
fN+1 is an increment

by Lemma 4, thus bin(fN+1) = 2k. Moreover fN+1 is even, because fN+1 = {(k, cN)} by

minimality of N , and cN is even since fN →cN
fN+1 is an increment. According to Lemma 6,

such a play has an even factorization t0 < t1 < . . . < tj = N + 1 of length j ≥ 2k. Since 2k

is > than the number of vertices, the play loops on the same vertex at some dates ti and ti′

with 0 ≤ i < i′ ≤ j. By definition of even factorizations, the maximal priority on this loop

is even. Thus Boris has no positional winning strategy in the parity game, and since parity

games are positional [3], Boris has no winning strategy at all in the parity game. ◭

Proof of Lemma 6. The proof is by induction on N . We first show two easy cases: if

bin(fN+1) = 0 then t0 = N + 1 is an even factorization of length 0; and if N = 0 and

0 < bin(f1) then according to Lemma 4, f0 →c0
f1 is an increment and c0 is even thus

t0 = 0, t1 = 1 is an even factorization of length 1. Assume now N > 0 and 0 < bin(fN+1).

Then fN+1 is not empty, let ℓ = min dom(fN+1) and

Kℓ = {t′ ∈ 0 . . . N | ft′ →c
t′

ft′+1 is a type I update triggering an insertion at index ℓ } .

We make use of property

(A) for every t′ ∈ 0 . . . N , if ℓ 6∈ dom(ft′) then there is t′′ ∈ Kℓ such that t′′ ≥ t′.

To prove property (A), choose for t′ the maximal date such that ℓ 6∈ dom(ft′). According

to (A) and since f0 = ∅ then Kℓ is not empty, and t = max Kℓ is well defined. Moreover,

(B) for every t′ ∈ t . . . N , ℓ ∈ dom(ft′) and ft′ →c
t′

ft′+1 is not an insertion at index > ℓ.

(A) implies (B) because an insertion at index > ℓ removes ℓ from the domain. We show:

i) bin(ft+1) ≤ bin(ft) + 1,

ii) bin(ft+1) = bin(fN+1),

iii) ft is even,

iv) the largest priority c in ct, . . . , cN is fN+1(ℓ) and thus even.

Property i) is a straightforward application of Lemma 4: in case ℓ 6∈ dom(ft) then ft →ct

ft+1 is an increment and in case ℓ ∈ dom(ft) then bin(ft+1) ≤ bin(ft). According to (B),

ft+1 and fN+1 coincide on ℓ+1 . . . N . Since moreover ℓ = min dom(ft+1) = min dom(fN+1)

it implies ii). Since fN+1 is even and ft+1(ℓ) = ct is even (because t ∈ Kℓ) then ft+1 is even

as well. And the update ft →ct
ft+1 has type I thus ft is even as well hence iii).

Now we show iv). Observe first that if ft′(ℓ) = c for some t′ ∈ t + 1 . . . N + 1, then

fN+1(ℓ) = c: after date t′, by maximality of c no type II update can remove c and by

(B) and the maximality of t, type I updates modify only the indices < ℓ. If c = ct, then

ft+1(ℓ) = c because t ∈ Kℓ thus fN+1(ℓ) = c. Otherwise, if c 6= ct let t∗ ∈ t + 1 . . . N

be the minimal date such that ct∗ = c. The update at t∗ is a type II update on index ℓ:

ℓ ∈ dom(ft∗) by property (B), ft∗(ℓ) < c by maximality of c and minimality of t∗ and the

insertion of c occurs at index ≤ ℓ by property (B) again. Hence, ft∗+1(ℓ) = c and thus

fN+1(ℓ) = c.

Since t ≤ N and according to iii) we can apply the induction hypothesis to f0 →c0

f1 . . . →ct−2
ft and get an even factorization 0 ≤ t0 < t1 < . . . < tn = t of length ≥ bin(ft).

According to iv), 0 ≤ t0 < t1 < . . . < tn = t < N + 1 is an even factorization as well, of

length ≥ 1 + bin(ft). According to i) and ii), 1 + bin(ft) ≥ bin(ft+1) = bin(fN+1) which

terminates the proof of the induction step. ◭



XX:4 A short proof of correctness of the quasi-polynomial time algorithm for parity games

References

1 C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan. Deciding par-

ity games in quasipolynomial time. Technical report, CDMTCS, October 2016. URL:

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_fi

2 E. Zermelo. Uber eine anwendung der mengenlehre auf die theorie des schachspiels. In

Proc. of the Fifth International Congress of Mathematicians, volume II, pages 501–504.

Cambridge University Press, 1913.

3 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata

on infinite trees. TCS, 200:135–183, 1998.

https://www.cs.auckland.ac.nz/research/groups/CDMTCS/researchreports/index.php?download&paper_file=631

	Correctness of the algorithm

