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Abstract

We consider straight-line outerplanar drawings of outerplanar graphs in which
a small number of distinct edge slopes are used, that is, the segments rep-
resenting edges are parallel to a small number of directions. We prove that
∆− 1 edge slopes suffice for every outerplanar graph with maximum degree
∆ > 4. This improves on the previous bound of O(∆5), which was shown for
planar partial 3-trees, a superclass of outerplanar graphs. Our bound is tight:
for every ∆ > 4 there is an outerplanar graph with maximum degree ∆ that
requires at least ∆ − 1 distinct edge slopes in an outerplanar straight-line
drawing.

1. Introduction

A straight-line drawing of a graph G is a mapping of the vertices of G into
distinct points of the plane and of the edges of G into straight-line segments
connecting the points representing their end-vertices and passing through no
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other points representing vertices. If it leads to no confusion, in notation and
terminology, we make no distinction between a vertex and the corresponding
point, and between an edge and the corresponding segment. The slope of
an edge in a straight-line drawing is the family of all straight lines parallel
to this edge. The slope number of a graph G, a parameter introduced by
Wade and Chu [1], is the smallest number s such that there is a straight-line
drawing of G using s slopes.

Since at most two edges at each vertex can use the same slope, ⌈∆
2
⌉ is

a lower bound on the slope number of a graph with maximum degree ∆.
Dujmović and Wood [2] asked whether the slope number can be bounded
from above by a function of the maximum degree. This has been answered
independently by Barát, Matoušek, and Wood [3], Pach and Pálvölgyi [4],
and Dujmović, Suderman, and Wood [5] in the negative: graphs with maxi-
mum degree 5 can have arbitrarily large slope number. On the other hand,
Mukkamala and Pálvölgyi [6] proved that graphs with maximum degree 3
have slope number at most 4, improving earlier results of Keszegh, Pach,
Pálvölgyi, and Tóth [7] and of Mukkamala and Szegedy [8]. The question
whether the slope number of graphs with maximum degree 4 is bounded by
a constant remains open.

The situation looks different for planar straight-line drawings, that is,
straight-line drawings in which no two edges intersect in a point other than a
common endpoint. It is well known that every planar graph admits a planar
straight-line drawing [9, 10, 11]. The planar slope number of a planar graph
G is the smallest number s such that there is a planar straight-line drawing
of G using s slopes. This parameter was first studied by Dujmović, Eppstein,
Suderman, and Wood [12] in relation to the number of vertices. They also
asked whether the planar slope number of planar graphs is bounded in terms
of the maximum degree. Jeĺınek, Jeĺınková, Kratochv́ıl, Lidický, Tesař, and
Vyskočil [13] gave an upper bound of O(∆5) for planar graphs of treewidth
at most 3. The problem has been solved in full generality by Keszegh, Pach,
and Pálvölgyi [14], who showed (with a non-constructive proof) that the
planar slope number is bounded from above by an exponential function of the
maximum degree. It is still an open problem whether this can be improved
to a polynomial upper bound.

In the present paper, we consider drawings of outerplanar graphs. The
above-mentioned result of Jeĺınek et al. implies that outerplanar graphs admit
planar drawings with O(∆5) slopes, as they have treewidth at most 2. A
straight-line drawing of a graphG is outerplanar if it is planar and all vertices

2



of G lie on the outer face. The outerplanar slope number of an outerplanar
graph G is the smallest number s such that there is an outerplanar straight-
line drawing of G using s slopes. It is proved in [12] that the outerplanar
slope number of any outerplanar graph is at most the number of its vertices.
We provide a tight bound on the outerplanar slope number in terms of the
maximum degree.

Main Theorem. For ∆ > 4, every outerplanar graph with maximum degree
at most ∆ has outerplanar slope number at most ∆− 1.

That the bound of ∆− 1 is tight is witnessed by a graph consisting of a
cycle C with 2∆−3 vertices v1, . . . , v2∆−3 each of which has ∆−2 additional
private neighbors. In any outerplanar straight-line drawing of this graph
with ∆− 2 edge slopes, C must be the boundary of an inner face. It cannot
be strictly convex, as in a strictly convex polygon each slope can be used
by at most two edges. Therefore, some angle of this face, say at vi, is not
strictly convex. Each of the private neighbors of vi needs to be connected
with vi by an edge lying outside the cycle. This is a contradiction, because
at most ∆− 3 slopes are available for such edges. Moreover, for ∆ ∈ {2, 3},
the lower bound is 3 as witnessed by the triangle.

Note that the tight bounds for the outerplanar slope number with respect
to the maximum degree ∆ are 1 for ∆ = 1 and 3 for ∆ ∈ {2, 3}. For the
latter, the upper bound follows from the Main Theorem for ∆ = 4, while the
tightness is witnessed by a triangle.

The proof of our theorem is constructive and yields an algorithm to pro-
duce a claimed drawing that performs a linear number of arithmetic opera-
tions on rationals.

2. Basic definitions

For the remainder of the paper, we assume that an outerplanar drawing
of a graph G with maximum degree at most ∆ is given, where ∆ > 4.
This drawing determines the cyclic ordering of edges around every vertex.
We produce an outerplanar straight-line drawing of G with few edge slopes
which preserves this ordering at every vertex. The set of slopes that we
use depends only on ∆, so we can draw each connected component of G
separately. Therefore, for the remainder of the paper, we assume that G is
connected. Our construction is inductive—it composes the entire drawing of
G from drawings of subgraphs of G that we call bubbles.
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We distinguish the outer face of G (the one that is unbounded in the given
drawing of G and contains all vertices on the boundary) from the inner faces.
The edges on the boundary of the former are outer edges, while all remaining
ones are inner edges. A snip is a simple closed counterclockwise-oriented
curve γ which

• passes through some pair of vertices u and v of G (possibly being the
same vertex) and through no other vertex of G,

• on the way from v to u goes entirely through the outer face of G crossing
no edges on the way,

• on the way from u to v (considered only if u 6= v) goes through inner
faces of G possibly crossing some inner edges of G, each at most once.

Every snip γ defines a bubble H in G as the subgraph of G induced on the
vertices lying on or inside γ. Note that H is a connected subgraph of G as γ
crosses no outer edges. The roots of H are the vertices u and v together with
all vertices of H adjacent to G−H . The snip γ breaks the cyclic clockwise
order of the edges of H around u or v, making it a linear order, which we
envision as going from left to right. In particular, we call the first edge in
this order leftmost and the last one rightmost. Similar left-to-right orderings
of edges are defined at the remaining roots of H , except that in their case the
cyclic order is broken by the edges connecting H to G − H . The root-path
of H is the simple oriented path P in H that starts at u with the rightmost
edge, continues counterclockwise along the boundary of the outer face of H ,
and ends at v with the leftmost edge. If u = v, then the root-path consists of
that single vertex only. All roots of H lie on the root-path—their sequence
in the order along the root-path is the root-sequence of H . A bubble with k

roots is called a k-bubble. See Fig. 1 for an illustration.
Except at the very end of the proof where we regard the entire G as

a bubble, we deal with bubbles H whose first root u and last root v are
adjacent to G − H . For such bubbles H , all the roots, the root-path, the
root-sequence and the left-to-right order of edges at every root do not depend
on the particular snip γ used to define H .

Bubbles admit a natural decomposition, which is the base of our recursive
drawing.

Lemma 1. Let H be a bubble with root-path v1 . . . vk. Every component
of H − {v1, . . . , vk} is adjacent to either one vertex among v1, . . . , vk or
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Figure 1: A 3-bubble H with root-path drawn thick, root-sequence u, v, w (connected to
the remaining graph by dotted edges), and splitting sequence (H1, . . . , H10), in which H1,
H3, H5, H6, andH9 are v-bubbles, whileH2, H4, H7, H8, andH10 are e-bubbles. There are
six 2-bubbles with roots u and v contained in H : (H1, H2, H3, H4), (H1, H2, H3, H4, H5),
(H1, H2, H3, H4, H5, H6), (H2, H3, H4), (H2, H3, H4, H5), and (H2, H3, H4, H5, H6).

two consecutive vertices from v1, . . . , vk. Moreover, there is at most one
component adjacent to vi and vi+1 for 1 6 i < k.

Proof. Let C be a connected component of H − {v1, . . . , vk}. As H itself is
connected, C must be adjacent to a vertex from v1, . . . , vk. In order to get a
contradiction, suppose that C is connected to two non-consecutive vertices
vi and vj . Let P be a simple vi, vj-path having all internal vertices in C.
Let P ′ = vi . . . vj be the subpath of the root-path of H connecting vi and vj .
Since v1 . . . vk is the root-path of H , all edges connecting the internal vertices
of P ′ to G−H are inner edges. Hence, also the edges of P ′ lie on inner faces
which are not faces of H . The symmetric difference of all these inner faces
considered as sets of edges is a simple cycle containing P ′ as a subpath. Let
P ′′ denote the other vi, vj-subpath of that cycle. It is internally disjoint from
P and P ′. Moreover, P ′′ and P together enclose P ′ and thus the internal
vertices of P ′ do not lie on the outer face—contradiction.

Now, to prove the second statement, suppose that for some i two com-
ponents C and C ′ of H − {v1, . . . , vk} are adjacent to both vi and vi+1. We
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find two internally disjoint vi, vi+1-paths P and P ′ through C and C ′, respec-
tively. As in the paragraph above, we use the fact that vivi+1 is contained in
an inner face, which is not a face of H . The third path P ′′ is obtained from
that face by deleting the edge vivi+1. It follows that P , P ′, and P ′′ form a
subdivision of K2,3, which contradicts the outerplanarity of G.

Lemma 1 allows us to assign each component of H − {v1, . . . , vk} to a
vertex of P or an edge of P so that every edge is assigned at most one
component. For a component C assigned to a vertex vi, the graph induced
on C∪{vi} is called a v-bubble. For a component C assigned to an edge vivi+1,
the graph induced on C ∪ {vi, vi+1} is called an e-bubble. If no component is
assigned to an edge of P , then we let that edge alone be a trivial e-bubble.
Note that v- and e-bubbles are special kinds of 1- and 2-bubbles, respectively.
All v-bubbles of vi in H are naturally ordered by their clockwise arrangement
around vi in the drawing. All this leads to a decomposition of the bubble
H into a sequence (H1, . . . , Hb) of v- and e-bubbles such that the naturally
ordered v-bubbles of v1 precede the e-bubble of v1v2, which precedes the
naturally ordered v-bubbles of v2, and so on. We call this sequence the
splitting sequence of H and write H = (H1, . . . , Hb). The splitting sequence
of a single-vertex 1-bubble is empty. Every 1-bubble with more than one
vertex is a v-bubble or a bouquet of several v-bubbles. The splitting sequence
of a 2-bubble may consist of several v- and e-bubbles. For an illustration,
see Fig. 1.

The general structure of the induction in our proof is covered by the
following lemma (see Fig. 2):

Lemma 2.

2.1. Let H be a v-bubble rooted at v. Let v1, . . . , vk be the neighbors of v in
H from left to right. It follows that H−v is a k-bubble with root-sequence
v1, . . . , vk.

2.2. Let H be a v-bubble rooted at v0. Consider an induced path v0 . . . vn in H

that starts with the rightmost edge at v0 and continues counterclockwise
along the outer face of H so that v1, . . . , vn−1 are not cut-vertices in H.
It follows that H − {v0, . . . , vn} has a unique component H ′ adjacent
to both v0 and vn. Moreover, let X be the subgraph of H induced on
v0, . . . , vn and the vertices of H ′. Let v10, . . . , v

k0
0 , v1 be the neighbors of

v0 in X in clockwise order. For 1 6 i 6 n− 1, let vi−1, v
1
i , . . . , v

ki
i , vi+1

be the neighbors of vi in X in clockwise order. Let vn−1, v
1
n, . . . , v

kn
n
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Figure 2: Three ways of obtaining smaller bubbles from v- and e-bubbles as described in
Lemma 2. The new bubbles are marked gray, and the new root-paths are drawn thick.

be the neighbors of vn in X in clockwise order. It follows that H ′ is a
bubble with root-sequence v10, . . . , v

k0
0 , v11, . . . , v

k1
1 , . . . , v1n, . . . , v

kn
n in which

vkii and v1i+1 coincide whenever the inner face of H containing vivi+1 is
a triangle.

2.3. Let H be an e-bubble with roots u and v. Let u1, . . . , uk, v be the neigh-
bors of u in H from left to right and u, v1, . . . , vℓ be the neighbors of
v in H from left to right. It follows that H − {u, v} is a bubble with
root-sequence u1, . . . , uk, v1, . . . , vℓ in which uk and v1 coincide if the
inner face of H containing uv is a triangle.

Proof. First we prove 2.1. Since H is a v-bubble, H − v is connected. The
symmetric difference of the inner faces of H incident to v, considered as sets
of edges, gives a simple clockwise cycle in H passing through v and v1, . . . , vk

in this order. Let γ be a closed curve going counterclockwise from vk through
the outer face of G to v1, and then through the inner faces of H at v, crossing
the edges vv2, . . . , vvk−1 in this order, back to vk. Clearly, γ is a snip defining
the bubble H − v with root-sequence v1, . . . , vk.

Next we prove 2.2. Since none of v1, . . . , vn−1 is a cut-vertex in H , the
graph H − {v0, . . . , vn} has a component adjacent to both v0 and vn. More-
over, since the path v0 . . . vn consists only of outer edges, such a component is
unique. Thus H ′ is well defined. Now, the symmetric difference of the inner
faces of X incident to any of v0, . . . , vn, considered as sets of edges, gives
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a simple clockwise cycle in H passing through vn, . . . , v0 and then through
v10, . . . , v

k0
0 , v11, . . . , v

k1
1 , . . . , v1n, . . . , v

kn
n in this order. Let γ be a closed curve

going counterclockwise from vknn through the outer face of G to v10 , and then
through the inner faces of H at v0, . . . , vn, crossing the edges v0v

2
0, . . . , v0v

k0
0 ,

v1v
1
1 , . . . , v1v

k1
1 , . . . , vnv

1
n, . . . , vnv

kn−1
n in this order, back to vknn . Clearly, γ is

a snip defining the bubble H ′ with root-sequence v10, . . . , v
k0
0 , v11, . . . , v

k1
1 , . . . ,

v1n, . . . , v
kn
n .

Finally we show 2.3. Since H is an e-bubble, H − {u, v} is connected.
Again, the symmetric difference of the inner faces of H incident to u or
v, considered as sets of edges, gives a simple clockwise cycle in H passing
through v, u, and v1, . . . , vk in this order. Let γ be a closed curve going
counterclockwise from vℓ through the outer face of G to u1, and then through
the inner faces ofH at u and v, crossing the edges uu2, . . . , uuk, vv1, . . . , vvℓ−1

in this order, back to vℓ. Clearly, γ is a snip defining the bubble H − {u, v}
with root-sequence u1, . . . , uk, v1, . . . , vℓ.

3. Bounding regions

Depending on the maximum degree ∆ of G, define the set S of ∆ − 1
slopes to consist of the horizontal slope and the slopes of vectors f1, . . . , f∆−2,
where

fi = (−1
2
+ i−1

∆−3
, 1) for i = 1, . . . ,∆− 2.

An important property of S is that it cuts the horizontal segment L from
(−1

2
, 1) to (1

2
, 1) into ∆ − 3 segments of equal length 1

∆−3
. We construct an

outerplanar straight-line drawing of G using only slopes from S and preserv-
ing the given cyclic ordering of edges at each vertex of G.

The essential tool in proving that our construction does not make bubbles
overlap are bounding regions. Their role is to bound the area of the plane
occupied by bubbles. The bounding region of a bubble is parametrized by
ℓ and r which depend on the degrees of the roots in the bubble. Let v be
a point in the plane. For a vector x, let R(v; x) = {v + αx : α > 0}. For
0 6 ℓ 6 ∆ − 1, we define LB(v; ℓ) to be the cone consisting of v and all
points p such that

• py > vy,

• p lies on R(v; f1) or to the right of it if ℓ = 1,
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ℓ = 0

ℓ = 1 2 3 4 5

u r = 5

4321r = 0

v

Figure 3: Boundaries of LB(u; ℓ) (left) and RB(v; r) (right) for ∆ = 6. Vectors fi at u

and v are indicated by thick arrows. Vectors 1

2
f1 at u+ fi and

1

2
f4 at v + fi are indicated

by thin arrows. Note that u + f3 lies on the boundary of LB(u; 4) and v + f2 lies on the
boundary of RB(v; 1).

• px > vx if ∆ = 4 and ℓ = 2,

• p lies to the right of R(v; fℓ +
1

∆−4
f1) if ∆ > 5 and 2 6 ℓ 6 ∆− 2,

• p lies to the right of R(v; f∆−2) if ℓ = ∆− 1.

Similarly, for 0 6 r 6 ∆− 1, we define RB(v; r) to be the cone consisting of
v and all points p such that

• py > vy,

• p lies to the left of R(v; f1) if r = 0,

• px < vx if ∆ = 4 and r = 1,

• p lies to the left of R(v; fr +
1

∆−4
f∆−2) if ∆ > 5 and 1 6 r 6 ∆− 3,

• p lies on R(v; f∆−2) or to the left of it if r = ∆− 2.

See Fig. 3 for an illustration. Now, for points u, v in the plane such that
uy = vy and ux 6 vx, we define bounding regions as follows:

B(uv; ℓ, r) = LB(u; ℓ) ∩ RB(v; r) for 0 6 ℓ, r 6 ∆− 1,

B̄(uv; ℓ, r; h) = B(uv; ℓ, r) ∩ {p : py < uy + h} for 0 6 ℓ, r 6 ∆− 1 and h > 0.

We denote B(vv; ℓ, r) simply by B(v; ℓ, r) and B̄(vv; ℓ, r; h) simply by B̄(v; ℓ, r; h).
Note that the bottom border of a bounding region is always included, the left
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border (if exists) is included if ℓ = 1, the right border (if exists) is included
if r = ∆− 2, and the top border (if exists) is never included. If ℓ > r, then
B(v; ℓ, r) = {v}.

We use B(v; ℓ, r) and B̄(v; ℓ, r; h) to bound drawings of 1-bubbles H with
root v such that r − ℓ + 1 = dH(v). Note that every 1-bubble drawn in-
side B(v; ℓ, r) can be scaled to fit inside B̄(v; ℓ, r; h) for any h > 0 without
changing slopes. We use B(uv; ℓ, r) and B̄(uv; ℓ, r; h) with u 6= v to bound
drawings of 2-bubbles H whose root-path starts at u and ends at v, such that
ℓ = ∆− dH(u) and r = dH(v)− 1. Here H cannot be scaled if the positions
of both u and v are fixed, so the precise value of h matters. However, every
2-bubble drawn inside B(uv; ℓ, r) can be scaled to fit inside B̄(uw; ℓ, r; h) for
any h > 0 without changing slopes, where w is some point of the segment
uv.

Lemma 3. Bounding regions have the following geometric properties ( ∗
stands for any value which if generally feasible is irrelevant to the state-
ment).

3.1. If u′v′ ⊆ uv, ℓ′ > ℓ, and r′ 6 r, then B(u′v′; ℓ′, r′) ⊆ B(uv; ℓ, r).

3.2. If i < ℓ, then a vector at u in direction fi points outside B(uv; ℓ, ∗) to
the left of it. If i > r, then a vector at v in direction fi points outside
B(uv; ∗, r) to the right of it.

3.3. If u, v, w are points on a horizontal line in this order from left to right
and ℓ− 1 > r + 1, then B(uv; ∗, r) ∩ B(vw; ℓ, ∗) = {v}.

Moreover, the following holds for ∆ > 5.

3.4. For ℓ < r, h > 0, u′ = u+ hfℓ, and v′ = v+hfr, we have B̄(u′v′; 1,∆−
2; h

∆−4
) ⊆ B̄(uv; ℓ, r; ∆−3

∆−4
h).

3.5. If u, v, w are points on a horizontal line in this order from left to right,
r′ 6 ∆− 3, and r > 1, then B̄(uv; ℓ, r′; (∆−3

∆−4
)2|vw|) ⊆ B(uw; ℓ, r).

3.6. If u, v, w, x are points on a horizontal line in this order from left to right,
|uv| = |wx| 6 |vw|, ℓ > 2, and r 6 ∆ − 3, then B̄(uv; ∗, r; ∆−3

∆−4
|uv|) ∩

B̄(wx; ℓ, ∗; ∆−3
∆−4

|wx|) = ∅.

Proof. Statement 3.1 clearly follows from the definition. Statement 3.2 is
implied by the definition and for ∆ > 5 by the fact that

fℓ +
1

∆−4
f1 = fℓ−1 +

1
∆−4

f∆−3 for ℓ = 2, . . . ,∆− 2,

fr +
1

∆−4
f∆−2 = fr+1 +

1
∆−4

f2 for r = 1, . . . ,∆− 3.
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Statement 3.2 directly yields 3.3: the vector at v in direction fr+1 points
outside both B(uv; ∗, r) and B(vw; ℓ, ∗). To see 3.4, note that the point u′ +
h

∆−4
f1, which is the top-left corner of B̄(u′v′; 1,∆−2; h

∆−4
), equals u+h(fℓ+

1
∆−4

f1). Hence, it lies at the top-left corner of B̄(uv; ℓ, r; ∆−3
∆−4

h). Similarly,

the top-right corner of B̄(u′v′; 1,∆ − 2; h
∆−4

) lies at the top-right corner of

B̄(uv; ℓ, r; ∆−3
∆−4

h). To prove 3.5, it suffices to consider the case r = 1 and

r′ = ∆− 3. The top-right corner of B̄(uv; ℓ, r′; (∆−3
∆−4

)2|vw|) is

v + ∆−3
∆−4

|vw|(f∆−3 +
1

∆−4
f∆−2) = v + |vw|(f∆−2 +

1
∆−4

f1 +
∆−3
∆−4

· 1
∆−4

f∆−2)

= w + ∆−3
∆−4

|vw|(f1 +
1

∆−4
f∆−2).

Therefore, it lies on the right side of B(uw; ℓ, 1), and the conclusion of 3.5
follows. Finally, for the proof of 3.6, it suffices to consider the case ℓ = 2,
r = ∆−3, and |uv| = |vw| = |wx| = λ. The top-right corner of B̄(uv; ∗,∆−
3; ∆−3

∆−4
λ) and the top-left corner of B̄(wx; 2, ∗; ∆−3

∆−4
λ) are respectively

v + λ(f∆−3 +
1

∆−4
f∆−2) = v + λ(f∆−2 +

1
∆−4

f2),

w + λ(f2 + 1
∆−4

f1) = w + λ(f1 + 1
∆−4

f∆−3).

They coincide if ∆ = 5, otherwise the former lies to the left of the latter.

4. The drawing

We present the construction of a drawing first for ∆ > 5 and then for
∆ = 4. Both constructions follow the same idea but differ in technical details.

Lemma 4. Suppose ∆ > 5.

4.1. Let H be a 1-bubble with root v such that dH(v) 6 ∆− 1. Suppose that
the position of v is fixed. Let ℓ and r be such that 0 6 ℓ, r 6 ∆− 1 and
r − ℓ + 1 = dH(v). It follows that there is a straight-line drawing of H

inside B(v; ℓ, r).

4.2. Let H be a 2-bubble with first root u and second root v. Suppose that
the positions of u and v are fixed on a horizontal line in this order from
left to right. Let ℓ = ∆−dH(u) and r = dH(v)−1. It follows that there
is a straight-line drawing of H inside B̄(uv; ℓ, r; ∆−3

∆−4
|uv|) such that the

root-path of H is drawn as the segment uv.
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4.3. Let H be a k-bubble with root-sequence v1, . . . , vk. If k = 1, then suppose
dH(v1) 6 ∆ − 2, otherwise suppose dH(v1), dH(vk) 6 ∆ − 1. Suppose
that the positions of v1, . . . , vk are fixed in this order from left to right
on a horizontal line so that |v1v2| = . . . = |vk−1vk| = λ, for some λ > 0.
It follows that there is a straight-line drawing of H inside B̄(v1vk; 1,∆−
2; ∆−3

∆−4
λ) such that the root-path of H is drawn as the segment v1vk.

The drawings claimed above use only slopes from S and preserve the order
of edges around each vertex w of H under the assumption that all edges
connecting w to G−H (if exist) are drawn in the correct order outside the
considered bounding region.

Proof. The proof constructs the required drawing by induction on the size
of H . That is, to prove any of 4.1–4.3 for a bubble H , we assume that the
entire lemma holds for any bubble with fewer vertices than H has. The
construction we are going to describe clearly preserves the order of edges at
every vertex of H and uses only slopes from S, and we do not explicitly state
this observation anywhere further in the proof.

Proof of 4.1. We consider several cases depending on the values of ℓ and r

and on whether H is a single v-bubble or a bouquet of several v-bubbles.

Case 1. ℓ > r.
In this case v is the only vertex of H and the statement is trivial.

Case 2. H is a v-bubble and 1 6 ℓ 6 r 6 ∆− 2.
Define H ′ = H−v, and let vℓ, . . . , vr be the neighbors of v in H from left

to right. By 2.1, the graph H ′ is an (r − ℓ + 1)-bubble with root-sequence
vℓ, . . . , vr. Put each vertex vi at point v + fi. Consider two subcases.

Subcase 2.1. 1 6 ℓ = r 6 ∆− 2.
By the induction hypothesis 4.1, the 1-bubble H ′ can be drawn inside

B(vr; 0, dH′(vr) − 1) as well as inside B(vr; ∆ − dH′(vr),∆ − 1). Choose
the former drawing if ℓ = r = ∆ − 2, the latter if ℓ = r = 1, or any of
the two otherwise. After appropriate scaling, the chosen drawing fits within
B(v; r, r).

Subcase 2.2. 1 6 ℓ < r 6 ∆− 2.
It follows that vℓ, . . . , vr lie on a common horizontal line L and partition

L into segments of length 1
∆−3

. Apply the induction hypothesis 4.3 to draw

H ′ inside B̄(vℓvr; 1,∆−2; 1
∆−4

) (see Fig. 4, left). It follows from 3.4 that this
bounding region is contained in B(v; ℓ, r).
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v

v3 v6
H ′

v = w0 w1 w2

w3

0
w3

2

H ′

Y

Figure 4: Sample drawings of 1-bubbles for ∆ = 8, illustrating Subcase 2.2 (left) and
Subcase 3.2 (right) of the proof of 4.1. The gray areas labeled H ′ and Y denote bounding
regions of the bubbles H ′ and Y . The unlabeled gray areas are where other parts of a
1-bubble may be added by repeating the procedure in Case 4 of the proof of 4.1.

Case 3. H is a v-bubble, 0 6 ℓ 6 r 6 ∆− 1, and ℓ = 0 or r = ∆− 1.
As dH(v) 6 ∆ − 1, the cases ℓ = 0 and r = ∆ − 1 cannot hold simulta-

neously. Therefore, by symmetry, it is enough to consider only the case that
1 6 ℓ 6 r = ∆− 1. Consider two subcases of the latter.

Subcase 3.1. ℓ = r = ∆− 1.
It follows that v has only one neighbor in H , say w, and H ′ = H − v is a

1-bubble rooted at w. Put w horizontally to the right of v. Draw H ′ inside
B(w; ∆−dH′(w),∆−1) by the induction hypothesis 4.1, scaling the drawing
appropriately to fit it within B(v; ∆− 1,∆− 1).

Subcase 3.2. 1 6 ℓ < r = ∆− 1.
It follows that v has at least two neighbors in H . Let P = w0 . . . wn be

the simple path of length n > 1 that stars at w0 = v with the rightmost edge
and continues counterclockwise along the outer face of H so that

• the vertices w1, . . . , wn−1 have degree ∆ and are not cut-vertices in H ,

• the vertex wn has degree at most ∆− 1 or is a cut-vertex in H .

Note that the first condition is satisfied vacuously if n = 1. Since the degrees
of w1, . . . , wn−1 are at least 3 and by outerplanarity, P is an induced path.
Therefore, by 2.2, the graph H−P has exactly one component H ′ adjacent to
both w0 and wn. All other components ofH−P are adjacent to wn. Together
with wn they form a (possibly trivial) 1-bubble Y rooted at wn. Let X denote
the subgraph of H induced on w0, . . . , wn and the vertices of H ′. Define
rX = dX(wn)−1 and ℓY = ∆−dY (wn). Let w

ℓ
0, . . . , w

∆−2
0 , w1 be the neighbors
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of w0 in X ordered clockwise. Let wi−1, w
1
i , . . . , w

∆−2
i , wi+1 be the neighbors

of wi in X ordered clockwise, for 1 6 i 6 n − 1. Let wn−1, w
1
n, . . . , w

rX
n

be the neighbors of wn in X ordered clockwise. It follows from 2.2 that H ′

is a bubble with root-sequence wℓ
0, . . . , w

∆−2
0 , w1

1, . . . , w
∆−2
1 , . . . , w1

n, . . . , w
rX
n

in which w∆−2
i and w1

i+1 coincide whenever the inner face of H containing
wiwi+1 is a triangle. For i = 0, . . . , n− 1, define

λi =

{

1 if w∆−2
i = w1

i+1,
∆−2
∆−3

if w∆−2
i 6= w1

i+1.

Put the vertices w1, . . . , wn in this order from left to right on the horizontal
line going through w0 in such a way that |wiwi+1| = λi for 0 6 i 6 n − 1.
Put each vertex w

j
i at point wi+ fj . Note that if w

∆−2
i and w1

i+1 are the same

vertex, then they correctly end up at the same point. All wj
i lie on a common

horizontal line L at distance 1 above the segment w0wn and partition L into
segments of length 1

∆−3
. Define

BX = B̄(w0wn; ℓ, rX;
∆−3
∆−4

),

BY = B̄(wn; ℓY ,∆− 1; 1).

Draw H ′ inside B̄(wℓ
0w

rX
n ; 1,∆ − 2; 1

∆−4
) using the induction hypothesis 4.3

(see Fig. 4, right). Note that if H ′ is a 1-bubble, then n = 1 and the root
of H ′ has at least two edges outside H ′ (the ones going to w0 and w1), so
4.3 can indeed be applied. By 3.4, this bounding region is contained in BX .
Draw Y inside BY using the induction hypothesis and scaling. This way it
lies entirely below the line L. By 3.2, the drawing of Y lies to the right of
the edge wnw

rX
n and thus does not overlap with the drawing of X . Clearly,

BX and BY are contained in B(w0; ℓ,∆− 1).

Case 4. H consists of at least two v-bubbles.
Let (H1, . . . , Hb) be the splitting sequence of H . Thus all H1, . . . , Hb are

v-bubbles and b > 2. Define X = (H2, . . . , Hb), r1 = ℓ + dH1
(v) − 1, and

ℓX = ∆ − dX(v). By the induction hypothesis 4.1, we can draw H1 inside
B(v; ℓ, r1) and X inside B(v; ℓX , r). We scale the drawing of H1 to make
it so small that it lies entirely below the horizontal lines determined by all
the vertices of X other than v and those lying on the horizontal line passing
through v (see Fig. 4). Since r1 + 1 = ℓX and by 3.2, our scaled drawing of
H1 lies to the left of the leftmost edge at the root v of X . Thus the drawings
of H1 and X do not overlap. By 3.1, they both fit within B(uv; ℓ, r).
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u v

u3 v3
H ′

u = w0 w1 wn = v

w3

0

w4

1
H ′

Y

Figure 5: Sample drawings of 2-bubbles for ∆ = 8, illustrating Case 2 (left, with u6 = v1)
and Case 3 (right, with w6

0 6= w1
1) of the proof of 4.2. The gray areas labeled H ′ and Y

denote bounding regions of the bubbles H ′ and Y . The unlabeled gray areas are where
initial and final v-bubbles may be added by repeating the procedure in Case 4 of the proof
of 4.2.

Proof of 4.2. We consider several cases depending on the bubbles forming
the splitting sequence of H . The cases are not pairwise disjoint, but they
cover all possible situations.

Case 1. The splitting sequence of H contains a trivial single-edge e-bubble.
Let (H1, . . . , Hb) be the splitting sequence of H , and let Hi be a trivial

e-bubble. Let ui and vi be the first and the second roots of Hi, respectively.
That is, Hi consists only of the edge uivi. Define X = (H1, . . . , Hi−1) and
Y = (Hi+1, . . . , Hb). If i = 1, then X is a trivial one-vertex bubble, while
if i = b, then Y is a trivial one-vertex bubble. Choose a small λ > 0. If X
is a 1-bubble, then ui = u, and otherwise put ui on the segment uv so that
|uui| = λ. Similarly, if Y is a 1-bubble, then vi = v, and otherwise put vi on
uv so that |viv| = λ. Draw X inside B̄(uui; ℓ, dX(ui)−1; ∆−3

∆−4
λ) and Y inside

B̄(viv; ∆−dY (vi), r;
∆−3
∆−4

λ) using the induction hypothesis 4.1 or 4.2. Clearly,

both bounding regions are contained in B̄(uv; ℓ, r; ∆−3
∆−4

|uv|). Moreover, if λ
has been chosen small enough, then the two bounding regions are disjoint.

Case 2. H is a non-trivial e-bubble.
It follows that dH(u), dH(v) > 2 and therefore ℓ 6 ∆ − 2 and r > 1.

Let uℓ, . . . , u∆−2, v be the neighbors of u in H ordered clockwise, and let
u, v1, . . . , vr be the neighbors of v in H ordered clockwise. Let H ′ = H −
{u, v}. By 2.3, the graph H ′ is a bubble with root-sequence uℓ, . . . , u∆−2,

v1, . . . , vr in which u∆−2 and v1 coincide if the inner face of H containing uv
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is a triangle. Define

h =

{

|uv| if u∆−2 = v1,
∆−3
∆−2

|uv| if u∆−2 6= v1.

Put each vertex ui at point u+ hfi and each vertex vi at point v + hfi. Note
that if u∆−2 and v1 are the same vertex, then they correctly end up at the
same point. All ui and vi lie on a common horizontal line and partition it
into segments of length h

∆−3
. Draw H ′ inside B̄(uℓvr; 1,∆−2; h

∆−4
) using the

induction hypothesis 4.3 (see Fig. 5, left). This bounding region is contained
in B̄(uv; ℓ, r; ∆−3

∆−4
h) by 3.4. Since h 6 |uv|, we have B̄(uv; ℓ, r; ∆−3

∆−4
h) ⊆

B̄(uv; ℓ, r; ∆−3
∆−4

|uv|).

Case 3. The splitting sequence of H starts with a non-trivial e-bubble and
contains some other e-bubbles but no trivial e-bubbles.

Let (H1, . . . , Hb) be the splitting sequence of H and w0 . . . wn be the root-
path of H . Thus b > 2, w0 = u, wn = v, and n > 2. We split H into the
e-bubble H1 with roots w0 and w1 and the rest Y = (H2, . . . , Hb) being a 2-
bubble with roots w1 and wn. Define r1 = dH1

(w1)−1 and ℓY = ∆−dY (w1).
Since H1, . . . , Hb are non-trivial, we have dH1

(w0), dH1
(w1), dY (w1), dY (wn) >

2 and therefore ℓ 6 ∆− 2, 1 6 r1 6 ∆− 3, 2 6 ℓY 6 ∆− 2, and r > 1. Let
wℓ

0, . . . , w
∆−2
0 , w1 be the neighbors of w0 in H1 ordered clockwise. Similarly,

let w0, w
1
1, . . . , w

r1
1 be the neighbors of w1 in H1 ordered clockwise. Note that

w∆−2
0 and w1

1 are the same vertex if the inner face of H containing w0w1 is a
triangle. Define

α =

{

1 if w∆−2
0 = w1

1,
∆−3
∆−2

if w∆−2
0 6= w1

1.

Fix the position of w1 on the segment w0wn so that α|w0w1| =
∆−3
∆−4

|w1wn| =

h. Put each vertex wi
0 at point w0+hfi and each vertex wi

1 at point w1+hfi.
Note that if w∆−2

0 and w1
1 are the same vertex, then they correctly end up at

the same point. All wi
0 and wi

1 lie on a common horizontal line L at distance
h to the segment w0wn and partition L into segments of length h

∆−3
. Define

B1 = B̄(w0w1; ℓ, r1;
∆−3
∆−4

h),

BY = B̄(w1wn; ℓY , r; h).

Let H ′ = H1−{w0, w1}. By 2.3, the graph H ′ is a bubble with root-sequence
wℓ

0, . . . , w
∆−2
0 , w1

1, . . . , w
r1
1 in which w∆−2

0 and w1
1 may coincide. Draw H ′

16



inside B̄(wℓ
0w

r1
1 ; 1,∆−2; h

∆−4
) using the induction hypothesis 4.2 (see Fig. 5,

right). By 3.4, this bounding region is contained in B1. Since r1 6 ∆ − 3
and by 3.5, we have B1 ⊆ B(w0wn; ℓ, r). This and the fact that h 6 |w0wn|
imply B1 ⊆ B̄(w0wn; ℓ, r;

∆−3
∆−4

|w0wn|). To complete the drawing of H , apply
the induction hypothesis 4.2 to draw Y inside BY . This way it lies entirely
below L and therefore does not overlap with the drawing ofH ′. By 3.2, it also
lies to the right of the edge w1w

r1
1 . Clearly, BY ⊆ B̄(w0wn; ℓ, r;

∆−3
∆−4

|w0wn|).

Case 4. The splitting sequence of H starts or ends with a v-bubble.
The two cases are symmetric, so it is enough to consider only the case that

the splitting sequence ofH starts with a v-bubble. Hence, let (H1, . . . , Hb) be
the splitting sequence ofH , whereH1 is a v-bubble. DefineX = (H2, . . . , Hb),
r1 = ℓ + dH1

(u)− 1, and ℓX = ∆− dY (u). By the induction hypothesis 4.1,
we can draw H1 inside B(u; ℓ, r1), and by the induction hypothesis 4.2, we
can draw X inside B̄(uv; ℓX, r;

∆−3
∆−4

|uv|). We scale the drawing of H1 to make
it so small that it lies entirely below the horizontal lines determined by all
the vertices of X not lying on the root-path as well as below the horizontal
line bounding from above the requested bounding region of H (see Fig. 5).
Since r1 + 1 = ℓX and by 3.2, our scaled drawing of H1 lies to the left of the
leftmost edge at the root u of X . Thus the drawings of H1 and X do not
overlap. By 3.1, they both fit within B̄(uv; ℓ, r; ∆−3

∆−4
|uv|).

Proof of 4.3. If k = 1, then the claim follows directly from 4.1 and 3.1
by scaling. Thus assume k > 2. There is a splitting of H into 2-bubbles
X1, . . . , Xk−1 so that the splitting sequences of X1, . . . , Xk−1 together form
the splitting sequence of H . In particular,

• the roots of Xi are vi and vi+1 for i = 1, . . . , k − 1,

• Xi−1 ∩Xi = {vi} for i = 2, . . . , k − 1.

Apply 4.2 to draw each Xi inside B̄(vivi+1; ∆− dXi
(vi), dXi

(vi+1)− 1; ∆−3
∆−4

λ).
Consecutive bounding regions do not overlap by 3.3, while non-consecutive
ones are disjoint by 3.6. By 3.1, they are all contained in B̄(v1vk; 1,∆ −
2; ∆−3

∆−4
λ).

Lemma 5. Suppose ∆ = 4.

5.1. Let H be a 1-bubble with root v. Suppose that the position of v is fixed.
Let ℓ and r be such that 0 6 ℓ, r 6 3 and r − ℓ + 1 = dH(v) 6 3. It
follows that there is a straight-line drawing of H inside B(v; ℓ, r).
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5.2. Let H be a 2-bubble with first root u and second root v. Suppose that
the positions of u and v are fixed on a horizontal line in this order from
left to right. Let ℓ = 4− dH(u) and r = dH(v)− 1. It follows that there
is a straight-line drawing of H inside B(uv; ℓ, r) such that the root-path
of H is drawn as the segment uv.

The drawings claimed above use only slopes from S and preserve the order
of edges around each vertex w of H under the assumption that all edges
connecting w to G−H (if exist) are drawn in the correct order outside the
considered bounding region.

Note that 5.2 differs from 4.2 in that the bounding region of H is unbounded
from above, and in fact no such bound independent of the size ofH is possible.
This is why the case of ∆ = 4 needs to be dealt with separately.

Proof. The proof, like for Lemma 4, constructs the required drawing by in-
duction on the size of H . That is, to prove either of 5.1 and 5.2 for a bubble
H , we assume that the entire lemma holds for any bubble with fewer vertices
than H has. We proceed along the same lines as in the proof of Lemma 4,
focusing only on those details in which the two proofs differ.

Proof of 5.1. We consider the same cases as in the proof of 4.1.

Case 1. ℓ > r.
As in the proof of 4.1, the statement is trivial in this case.

Case 2. H is a v-bubble and 1 6 ℓ 6 r 6 2.

Subcase 2.1. 1 6 ℓ = r 6 2.
This is handled the same way as in Subcase 2.1 of the proof of 4.1.

Subcase 2.2. ℓ = 1 and r = 2.
Define H ′ = H − v, and let v1 and v2 be the left and right neighbors of v

in H , respectively. As in Subcase 2.2 of the proof of 4.1, H ′ is a 2-bubble with
roots v1 and v2. Draw H ′ inside B(v1v2; 1, 2) using the induction hypothesis
5.2. This bounding region is clearly contained in B(v; 1, 2).

Case 3. H is a v-bubble, 0 6 ℓ 6 r 6 3, and ℓ = 0 or r = 3.
As dH(v) 6 3, the cases ℓ = 0 and r = 3 cannot hold simultaneously.

Therefore, by symmetry, it is enough to consider only the case that 1 6 ℓ 6

r = 3. Consider two subcases of the latter.

Subcase 3.1. ℓ = r = 3.
This is handled the same way as in Subcase 3.1 of the proof of 4.1.
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Subcase 3.2. 1 6 ℓ < r = 3.
Define path w0 . . . wn, bubbleH

′, index rX , and vertices wj
i like in Subcase

3.2 of the proof of 4.1. For i = 0, . . . , n− 1, define

λi =

{

1 if w2
i = w1

i+1,

1 + ε if w2
i 6= w1

i+1,

for a small ε > 0. Draw vertices wi and w
j
i like in Subcase 3.2 of the proof of

4.1 but with the new definition of λi. All w
j
i lie on a common horizontal line,

and moreover the segments w2
iw

1
i+1 (for w2

i 6= w1
i+1) have length ε. Define

BX = B(w0wn; ℓ, rX). To obtain the required drawing of H , it suffices to
draw H ′ inside BX , and then the remaining part of H can be drawn like in
Subcase 3.2 of the proof of 4.1. But here the drawing of H ′ inside BX is more
tricky.

If H ′ is a 1-bubble, then n = 1, w2
0 = w1

1, and thus we can draw H ′

inside B(w2
0; 1, 2) by the induction hypothesis 5.1, scaling the drawing ap-

propriately to fit it within BX . Thus we assume that H ′ is a k-bubble with
k > 2. We split H ′ into 2-bubbles X1, . . . , Xk−1 so that the splitting se-
quences of X1, . . . , Xk−1 together form the splitting sequence of H ′. The
roots of X1, . . . , Xk−1 are pairs of vertices consecutive in the sequence of all
w

j
i . Define ℓi = 4− dXi

(ui) and ri = dXi
(vi), where ui and vi denote respec-

tively the first and the last root of Xi. We draw each Xi inside B(uivi; ℓi, ri)
using the induction hypothesis 5.2. Since each root of H ′ has degree at most
3 in H ′, we have ℓi > 2 for 2 6 i 6 k − 1 and ri 6 1 for 1 6 i 6 k − 2. Thus
the bounding regions for Xi do not overlap. Moreover, for 2 6 i 6 k − 2, we
clearly have B(uivi; ℓi, ri) ⊆ BX . Thus to complete the proof for the case of
H being a v-bubble, it remains to show that the drawings of X1 and Xk−1 are
contained in BX . We do not necessarily have B(u1v1; ℓ1, r1) ⊆ BX . However,
this inclusion may not hold only if ℓ = 2 and w2

0 6= w1
1. In this case we have

|u1v1| = ε and thus the drawing of X1 indeed lies within BX provided that
ε is small enough. Similarly, the drawing of Xk−1 in contained in BX for ε
small enough.

Case 4. H consists of at least two v-bubbles.
This is handled the same way as in Case 4 of the proof of 4.1.

Proof of 5.2. Again, we consider the same cases as in the proof of 4.2.

Case 1. The splitting sequence of H contains a trivial single-edge e-bubble.
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This is handled the same way as in Case 1 of the proof of 4.2. The only
difference is that here the bounding regions of X and Y (defined as in Case 1
of the proof of 4.2) obtained from the application of the induction hypothesis
5.2 are not bounded from above, so we need to choose λ small enough for
the drawings of X and Y not to overlap and to fit within B(uv; ℓ, r).

Case 2. H is a non-trivial e-bubble.
It follows that dH(u), dH(v) > 2 and therefore ℓ 6 2 and r > 1. Define

vertices uj, vj and bubble H ′ like in Case 2 of the proof of 4.2. Define

h =

{

|uv| if u2 = v1,

|uv| − ε if u2 6= v1,

for a small ε > 0. Put each vertex ui at point u + hfi and each vertex vi at
point v + hfi, so that if u2 and v1 are the same vertex, then they correctly
end up at the same point. All ui and vi lie on a common horizontal line, and
moreover the segment u2v1 (if exists) has length ε. The same argument as
in Subcase 3.2 above shows that H ′ can be drawn inside B(uℓvr; 1, 2).

Case 3. The splitting sequence of H contains at least two e-bubbles but no
trivial e-bubbles.

Let (H1, . . . , Hb) be the splitting sequence of H and w0 . . . wn be the
root-path of H . Thus b > 2, w0 = u, wn = v, and n > 2. Since none
of the edges w0w1, . . . , wn−1wn is a bridge in H . We split H into 2-bubbles
X1, . . . , Xn so that the roots ofXi are wi−1 and wi and the splitting sequences
of X1, . . . , Xn together form the splitting sequence (H1, . . . , Hb) of H . Define
ℓi = 4−dXi

(wi−1) and ri = dXi
(wi). We draw each Xi inside B(wi−1wi; ℓi, ri)

using the induction hypothesis 5.2. Since none of X1, . . . , Xn is a trivial e-
bubble, we have ℓ1 = ℓ 6 2, ℓi = 2 for 2 6 i 6 n, ri = 1 for 1 6 i 6 n − 1,
and rn = r > 1. Thus the bounding regions for Xi do not overlap and are
contained in B(w0wn; ℓ, r).

Case 4. The splitting sequence of H starts or ends with a v-bubble.
This is handled the same way as in Case 4 of the proof of 4.2.

Now, to prove the Main Theorem, pick any vertex v of G of degree less
than ∆ (such a vertex always exists in an outerplanar graph), fix its position
in the plane, and apply 4.1 or 5.1 to the graph G considered as a 1-bubble
with root v.
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T. Vyskočil, The planar slope number of planar partial 3-trees of
bounded degree, Graphs Combin. 29 (4) (2013) 981–1005.

[14] B. Keszegh, J. Pach, D. Pálvölgyi, Drawing planar graphs of bounded
degree with few slopes, SIAM J. Discrete Math. 27 (2) (2013) 1171–1183.

22


	Introduction
	Basic definitions
	Bounding regions
	The drawing

