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Classification of coupled dynamical systems with multiple delays: Finding the
minimal number of delays

L. Lücken †, J. P. Pade †, and K. Knauer ‡

Abstract. In this article we study networks of coupled dynamical systems with time-delayed connections. If
two such networks hold different delays on the connections it is in general possible that they exhibit
different dynamical behavior as well. We prove that for particular sets of delays this is not the case.
To this aim we introduce a componentwise timeshift transformation (CTT) which allows to classify
systems which possess equivalent dynamics, though possibly different sets of connection delays. In
particular, we show for a large class of semiflows (including the case of delay differential equations)
that the stability of attractors is invariant under this transformation. Moreover we show that each
equivalence class which is mediated by the CTT possesses a representative system in which the
number of different delays is not larger than the cycle space dimension of the underlying graph.
We conclude that the ’true’ dimension of the corresponding parameter space of delays is in general
smaller than it appears at first glance.

Key words. multiple delays, networks with delay, coupled dynamical systems, delay differential equations,
dynamical equivalence, semidynamical systems, cycle space.
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1. Introduction. Differential equations with time delays have been subject of intensive
research in the last decades. Recently, major impulses for theoretical investigations came from
the challenge of understanding and modeling the human brain [19, 15, 13]. Here, time delays
appear due to the finite speed of action potentials propagating through axons [28, 38, 5].
It was observed that the qualitative behaviour of brain networks is closely related to their
heterogeneous delay distributions. These were shown to play important roles in phenomena
such as coherence in the resting state activity [13, 15], nonstationary bifurcations of equilibria
[1] and enhanced synchronizability [12, 9]. Further examples of delay-coupled systems are
interacting lasers where delays appear due to the finite speed of light travelling through optical
fibers [39, 11, 36]. In population dynamics, delays correspond to maturing and gesturing times
[22], and in gene regulatory networks, delays represent the time the system needs to produce
a protein [23, 8]. Thus, delays are often included in order to account for the time a signal
needs to propagate from one node of the network to another or for the processing time that it
takes to emit a response to some input. An inevitable property of real networks of interacting
systems with delays is that, generically, each delay time is different from any other.

Nevertheless, there exist comparatively few attempts to study systems with several dif-
ferent delays analytically. An important reason for this is that their analysis is usually much
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harder than for identical delays and techniques available for systems with one delay are in
general not applicable in the case of multiple delays. In particular, the analysis of spectra
of solutions becomes more complicated since the characteristic quasi-polynomials involve sev-
eral exponential terms [4, 18]. At least for coupled systems with two different delays some
analytical results are available. For instance, Nussbaum [29] proved the existence of periodic
solutions in a system with two commensurable delays. Moreover some detailed studies on
bifurcations in coupled systems with two different delay times were conducted [3, 7, 35, 6, 17].
In particular, we mention Shayer et al. [35], where the investigation initially assumes three
different delays. In the course of the investigation, the authors discover that the stability of a
steady state depends only on two values combined from these delays. This finding is a special
case of the more general result that we present in this paper. Higher order scalar systems
with two delays are considered, e.g., by Gu et al. [16], who study stability crossing curves for
this system. For the same system, Ruan and Wei [34] refine techniques for the determination
of the roots of characteristic quasi-polynomials of single delay equations to treat the case
of two delays. Yanchuk and Giacomelli [40] consider a scalar system with two large delays
and show that this system can be described by a complex Ginzburg-Landau equation in the
neighborhood of an equilibrium.

Finally, we want to mention studies of Hopfield neural networks with delayed connections
where many different delays are taken into account [14, 41, 37, 24]. Here, the primary object
of investigation are sufficient conditions for global convergence of the system towards a single
steady state in order to obtain a well-defined method of input classification.

In this paper, the focus of our interest is a componentwise timeshift transformation (CTT)
which allows to change the interaction delays while the dynamical properties of the system
remain the same. Apart of providing an intuition about the functionality of delays, the
transformation proves to be particularly useful in cases where it is possible to achieve a
smaller or in some sense preferable set of delays in the transformed system.

This is especially apparent for the case when the nodes are coupled in a single unidirec-
tional ring. The corresponding special case of the CTT was utilized more or less explicitly
already in [2, 27, 31, 32]. Therefore, let us illustrate the CTT for this example. In a general
form, a ring of N unidirectionally delay-coupled systems can be written as

(1.1)
d

dt
xj(t) = fj (xj(t), xj−1(t− τj−1)) , j = 1, ..., N,

where j is considered modulo N and τj ≥ 0 are N possibly different delays. Given a solution
xj(t), j = 1, ..., N , we introduce new variables

(1.2) yj (t) := xj (t+ ηj) ,

by shifting the nodes independently in time by certain amounts ηj ≥ 0. Formally, we find
that the dynamics of the variables yj(t) obey

(1.3)
d

dt
yj(t) = fj (yj(t), yj−1(t− τ̃j−1)) , j = 1, ..., N,

with new delays τ̃j = τj + ηj − ηj+1. In other words, finding timeshifts ηj for given delays τ̃j
is equivalent to solving a system of linear equations.
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Figure 1. Two simple examples of CT-Transformations for a ring of two delay-coupled systems. The
transformation T1 reduces the number of delays from two to one and T2 reveals a hidden symmetry in the
system by adjusting the two delays to the same value τ = (τ1 + τ2)/2.

For the case of a ring with only two nodes, which is depicted in Fig. 1, we illustrate the
possible effect of the timeshift (1.2) in Fig. 2. The plots (a)–(c) show an initial piece of a
solution and its change under the CTT (two delay-coupled Mackey-Glass systems [26] were
used to create this example). The process of transformation is indicated by the symbols T and
T̃ , which are given a precise meaning in §4. Each transformation corresponds to a particular
choice of the timeshifts in (1.2). Here, T converts (1.1) to (1.3) and T̃ describes the reverse
transformation from (1.3) to (1.1). In (a) and (c), the arrows between the timetraces of both
components indicate the delayed dependence of ẋ1(t) on x2(t − τ2) and ẋ1(t) on x2(t − τ2),
similar in (b) for y1 and y2 for the transformed delays τ̃1 and τ̃2. From (1.2) it follows that
the timetraces of the single components have exactly the same form in both systems. Both
solutions only differ in the relative timeshifts between their components.

Baldi and Atiya [2] discovered that by choosing timeshifts ηj =
∑j−1

k=1 τk one obtains the
transformed delays

τ̃j =

{
0, for 1 ≤ j ≤ N − 1,∑N

k=1 τk, for j = N.
(1.4)

They used this simplified form to predict oscillatory behavior and bifurcations for a neural
circuit exhibiting delayed excitatory and inhibitory connections. Mallet-Paret [27] utilized the
same transformation to prove a Poincaré-Bendixson Theorem for monotone cyclic feedback
systems with delays. A slightly different set of timeshifts can be found in [31] and [32], where
the choice ηj = (N − j)τ̄ +

∑j
k=1 τk, with the mean delay τ̄ = 1

N

∑
k τk, was proposed. This

leads to identical transformed delays

(1.5) τ̃j ≡ τ̄ .

For a ring of identical nodes, i.e. fj ≡ f for all j, it turns out that the obtained system is
much more tractable due to its rotational symmetry. One may say that this hitherto hidden
symmetry was revealed by the CTT. See also Fig. 1 for an illustration of the two above
mentioned timeshifts in a ring of two nodes.

For both variants, (1.4) and (1.5), it is evident that if one is interested in the changes of
dynamic behavior with respect to the different delays τj it suffices to vary a single parameter,
i.e. the mean delay τ̄ = 1

N

∑
k τk, instead of the N different parameters τj , j = 1, ..., N . In
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↓ T

↓ T̃

Figure 2. CT-Transformation for a pair of bidirectionally coupled Mackey-Glass systems [26], cf. Fig. 1.
Plot (a) shows the original solution x(t) = (x1(t), x2(t)) of (2.1). Plot (b) shows the transformed solution
y(t) = (y1(t), y2(t)) of (2.2), which is shifted to the left by amounts η1 = 0 and η2 = 10. Plot (c) shows the
solution x(t+ η1) obtained after a reverse transformation of y(t) [see §4 for details].

other words, the parameter space dimension is much smaller than it might have appeared
at first glance. Similar as for a ring, the CTT allows to identify a canonical set of delay
parameters in a general network as we explain in §5.

Before doing so let us pose a question. What does the knowledge about dynamical features
of the transformed system (1.3) really tell us about the dynamical features of the original
system (1.1)? It might seem intuitive that they are the same since the timeshift yj (t) 7→
yj (t− ηj) inverses (1.2). This is true for the particular solution (1.2) but, in general, the
expression yj (t− ηj) (with ηj > 0) may not be defined at all. This is because, in general,
solutions of delay differential equations (DDEs) cannot be continued backwards. Another
subtlety arises if one considers timeshifts ηj leading to anticipating arguments, that is negative
delays. In this case (1.3) has fundamentally different properties from an ordinary DDE with
positive delays. For instance, initial value problems are ill-posed in general [18]. Even though
we will restrict ourselves to the situation where transformed delays are positive, a proper
treatment of the above question should introduce state spaces and flows to formulate and
compare the dynamical properties of the original and the transformed system. Such a rigorous
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treatment of the CTT was not given in any of the above mentioned works [2, 27, 31, 32]. We
will do this in a quite general setting using semidynamical systems in §4 where we also give
a rigorous definition of the CTT. In particular, the structural similarity of the state spaces
and the stability of invariant sets is studied. In §2 we introduce notations to describe general
networks of delay coupled dynamical systems and in §3 we study the special cases of equilibria
and periodic orbits of DDEs where the equivalence of the dynamics of the original and the
transformed system is relatively easy to show.

2. Networks of delay coupled dynamical systems. To describe a general network of N
coupled systems we choose a framework which enables us to account for multiple links between
two nodes holding different delays. That is, the coupling structure of the network is assumed
to be represented by a multidigraph. This is a set of node indices, N = {1, ..., N}, and a set
E of directed links. Throughout the whole article we assume that (N , E) is weakly connected.
This means that each node can be reached from any other node by traversing a sequence
of links, where each link may be traversed in arbitrary direction. For networks with several
connected components our results can be applied separately to each component. For each link
ℓ ∈ E the functions s, t : E → N assign its source s(ℓ) and its target t(ℓ). This means that the
link ℓ connects the node xs(ℓ) to the node xt(ℓ). The delay time of ℓ is denoted by τ(ℓ). Note
that there may indeed exist two links ℓ1 and ℓ2 in E with s(ℓ1) = s(ℓ2) and t(ℓ1) = t(ℓ2) but
τ(ℓ1) ̸= τ(ℓ2). For node xj , we introduce the set of its incoming links as

Ij = {ℓ ∈ E : t (ℓ) = j} .

Then, the dynamics of xj can be written as

(2.1)
d

dt
xj(t) = fj

((
xs(ℓ) (t− τ (ℓ))

)
ℓ∈Ij

)
∈ R, j = 1, ..., N,

where we assume xj(t) ∈ R without loss of generality. This notation allows to include a
self-dependency of xj(t) via a link ℓ with s(ℓ) = t(ℓ) = j. It is also possible to have an
instantaneous dependence by setting τ(ℓ) = 0. For (2.1), the introduction of new variables
yj(t) as in (1.2) leads to the transformed system

(2.2)
d

dt
yj(t) = fj

((
ys(ℓ) (t− τ̃ (ℓ))

)
ℓ∈Ij

)
, j = 1, ..., N,

with modified delays

(2.3) τ̃ (ℓ) = τ (ℓ)− ηt(ℓ) + ηs(ℓ).

3. Spectrum of equilibria and periodic orbits. An equilibrium point x̄ = (x̄1, ..., x̄N ) ∈
RN of (2.1) is a point which satisfies

(3.1) fj

((
x̄s(ℓ)

)
ℓ∈Ij

)
= 0, j = 1, ..., N.

Obviously x̄ is also an equilibrium of (2.2). In the following we assume that fj ∈ C1. Then a
characteristic exponent λ of x̄ in (2.1) corresponds to an exponential solution ξ (t) = eλtξ0 ∈
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CN of the variational equation

(3.2)
d

dt
ξj (t) =

∑
ℓ∈Ij

∂s(ℓ)fj

((
x̄s(ℓ′)

)
ℓ′∈Ij

)
ξs(ℓ) (t− τ (ℓ)) .

If all of the characteristic exponents of x̄ possess negative real parts this assures that x̄ is
stable, if at least one has positive real part then x̄ is unstable [18]. In the transformed
system (2.2) the timeshifted variation χ (t), given by χj (t) = ξj (t+ ηj), is a solution of the
corresponding variational equation of x̄

(3.3)
d

dt
χj (t) =

∑
ℓ∈Ij

∂s(ℓ)fj

((
x̄s(ℓ′)

)
ℓ′∈Ij

)
χs(ℓ) (t− τ̃ (ℓ)) .

Hence, the characteristic exponents of x̄ are the same in (2.1) and (2.2).
Similarly, the stability of a periodic solution x̄ (t) = x̄ (t+ T ) is determined by its Floquet

exponents if their real parts are different from zero. Each exponent λ corresponds to a solution
ξ (t) of the variational equation

(3.4)
d

dt
ξj (t) =

∑
ℓ∈Ij

∂s(ℓ)fj

((
x̄s(ℓ′)

(
t− τ

(
ℓ′
)))

ℓ′∈Ij

)
ξs(ℓ) (t− τ (ℓ))

which has the form ξ (t) = eλtp (t) with a periodic function p (t) = p (t+ T ). Again, the
timeshifted solution χ (t) with χj (t) = ξj (t+ ηj) fulfills the variational equation

(3.5)
d

dt
χj (t) =

∑
ℓ∈Ij

∂s(ℓ)fj

((
ȳs(ℓ′)

(
t− τ̃

(
ℓ′
)))

ℓ′∈Ij

)
χs(ℓ) (t− τ̃ (ℓ))

of the corresponding periodic solution ȳj (t) = x̄j (t+ ηj) in the transformed system. Let us
summarize this section in a theorem:

Theorem 3.1.The following statements hold true:
(i) A fixed point x̄ possesses the same characteristic exponents in (2.1) and (2.2).
(ii) A periodic solution x̄ (t) possesses the same Floquet exponents in (2.1) as the corre-

sponding transformed solution ȳ (t) of (2.2).

4. The componentwise timeshift transformation.

4.1. Definitions. In this section we introduce a rigorous formulation of the idea which
underlies the change of variables (1.2). We define the CTT in terms of the underlying infinite
dimensional phase spaces of (2.1) and (2.2).

First recall that a semidynamical system (or a semiflow) is a mapping

Φ : [0,∞)×X → X,

(t,x) 7→ Φt (x) ,

on a Banach space X which fulfills:

(i) Φ0 = Id
(ii) Φt+s = Φt ◦ Φs, ∀t, s ≥ 0
(iii) Φt : X → X is continuous for all t ≥ 0.
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The state spaces for DDEs contain segments of functions, which represent the history
of the solution curve x (t). For instance, in Fig. 2 the shaded part of the timetrace in (a)
corresponds to the initial segment of the depicted solution. For the original system (2.1), we
choose the state space to be

C =
N∏
j=1

C ([−rj , 0] ; R) , rj = max
ℓ∈Oj

τ (ℓ) ,

where Oj = {ℓ ∈ E : s (ℓ) = j} is the set of all outgoing links from the j-th node. Hence, the
value rj is the largest delay time on outgoing links of the node j. This definition ensures,
that the history for the j-th component is available for all delayed arguments appearing on
the right hand side of (2.1). Similarly, we choose

C̃ =

N∏
j=1

C ([−r̃j , 0] ; R) , r̃j = max
ℓ∈Oj

τ̃ (ℓ)

as state space for the transformed system (2.2). Assuming that solutions exist for all future
times (e.g. if fj are Lipschitz continuous), there exist semiflows

Φ : [0,∞)× C → C, (t,x) 7→ Φt (x) ,

Ψ : [0,∞)× C̃ → C̃, (t,y) 7→ Ψt (y) ,

for (2.1) and (2.2). Now let us formulate (1.2) as a state space transformation T : C → C̃. We
define T componentwise for j = 1, ..., N , and pointwise for x0 ∈ C and t ∈ [−r̃j , 0], as

(4.1) Tj [x0] (t) =

{
[x0 (t+ ηj)]j , for t ∈ [−r̃j ,−ηj ] ,[
Φt+ηj (x0)

]
j
(0) , for t ∈ [−min {ηj , r̃j} , 0] .

For illustration see Fig. 2(b), where the shading marks the segment y0 = T [x0] for the initial
segment x0 indicated in (a). The lighter shading indicates the part defined by the second case
of (4.1). Let us show that (4.1) is well-defined. For this we need to assure that y0 = T [x0] ∈ C̃.
This only requires that the term [x0(t− ηj)]j appearing in (4.1) is defined for all t+ ηj with
t ∈ [−r̃j ,−ηj ]. For the case in which [−r̃j ,−ηj ] is non-empty, this is equivalent to t+ηj ≥ −rj
for all t ∈ [−r̃j ,−ηj ]. In order to show this, choose a link ℓ ∈ Oj with maximal delay τ̃(ℓ) = r̃j .
Then,

rj − r̃j ≥ τ (ℓ)− τ̃ (ℓ) = τ
(
ℓ′
)
−

(
τ
(
ℓ′
)
− ηt(ℓ′) + ηj

)
≥ −ηj .

Therefore, t+ ηj ≥ −r̃j + ηj ≥ −rj for t ∈ [−r̃j ,−ηj ] and (4.1) is well-defined.
Furthermore, one easily checks that

(4.2) T ◦ Φt = Ψt ◦ T, for all t ≥ 0.

That is, T transforms solutions of (2.1) into solutions of (2.2). As inherited from the semiflow
Φ, the transformation T is neither injective nor surjective in general. Therefore, one cannot
expect a dynamical equivalence of (2.1) and (2.2) in the strict form of topological conjugacy,
i.e. Ψ = h◦Φ◦h−1 for some homeomorphism h. Moreover, since T is not surjective, (4.2) does
not even signify that Ψ is properly semiconjugate to Φ. However, this ”weak semiconjugacy”
is mutual as we show in the following, and this fact implies a strong equivalence as well.
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4.2. CT-equivalence. Let us find a reverse transformation from (2.2) to (2.1). It should
transform τ̃ (ℓ) back to τ (ℓ) which leads to the natural definition of reverse timeshifts

η̃j = η̄ − ηj ≥ 0, with η̄ = max
1≤j≤N

ηj .

Then, the reverse transformation T̃ : C̃ → C is given as

(4.3) T̃j [y0] (t) =

{(
Ψt+η̃j (y0)

)
j
(0) , t ∈ [−min {η̃j , rj} , 0] ,

(y0 (t+ η̃j))j (0) , t ∈ [−rj ,−η̃j ] .

Analogously to (4.2), we have

(4.4) T̃ ◦Ψ = Φ ◦ T̃ ,

and additionally T and T̃ are reverse in the sense that

(4.5) T̃ ◦ T = Φη̄ and T ◦ T̃ = Ψη̄.

See, for example, Fig. 2(c), where the shaded region indicates the initial segment (T̃ ◦ T )[x0]
of the solution (T̃ ◦ T )[x](t) = x(t + η̄), with η̄ = 10. The lighter shaded region indicates
where the second case of (4.3) takes effect.

The equations (4.2), (4.4) and (4.5) constitute a notion of equivalence which can be applied
not only to semidynamical systems which stem from systems of DDEs, but as well to systems
such as delay coupled PDEs or more generally to abstract evolution equations. Therefore we
define in a more abstract fashion:

Definition 4.1. Two semidynamical systems Φ : [0,∞)×X → X and Ψ : [0,∞)× Y → Y
are called CT-equivalent if there exist mappings T : X → Y , T̃ : Y → X and η̄ ≥ 0 such that

T ◦ T̃ = Ψη̄, T ◦ Φt = Ψt ◦ T,
T̃ ◦ T = Φη̄, T̃ ◦Ψt = Φt ◦ T̃ .

In the following, the analysis is carried out in the general setting on Banach spaces X and
Y but we keep in mind that the results apply to the case of DDEs on the spaces X = C and
Y = C̃ as introduced above. We still use the term CT-equivalence for the general formulation
though, since most probably the equivalent systems Φ and Ψ will in practice be connected by
a transformation, which resembles (4.1).

4.3. Dynamical invariants of CT-equivalent semidynamical systems. In this section, we
derive some properties of CT-equivalent systems in the sense of Definition 4.1. We show that
their state spaces hold a structure of corresponding strongly invariant sets. Then, assuming
that the CTTs T and T̃ are Lipschitz continuous, we prove that stability properties are
preserved as well. For the DDE systems (2.1) and (2.2) this is the case if all fj are Lipschitz
continuous. Throughout, we assume that X and Y are Banach spaces. Before stating the
main results of this section (Theorems 4.2 and 4.4), we give some definitions:

A set A ⊆ X is called positively invariant under Φ if for any t ≥ 0:

Φt (A) ⊆ A.
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A ⊆ X is called invariant under Φ if for any t ≥ 0:

Φt (A) = A.

For any set A ⊆ X, we define its strongly invariant hull HΦ (A) as the set

HΦ (A) := {x ∈ X | ∃t1, t2 ≥ 0, x̂ ∈ A : Φt1 (x̂) = Φt2 (x)} .

A strongly invariant set A ⊆ X is a set that coincides with its strongly invariant hull, i.e.

HΦ (A) = A.

The class of strongly invariant sets is denoted by

sis (Φ) = {A ⊆ X | A = HΦ (A)} .

Note that positive invariance is implied by both, invariance and strong invariance. But be-
tween invariance and strong invariance there holds no implication. Of course a strongly
invariant set always contains a maximal invariant set which might be empty.

Theorem 4.2. Let Φ : [0,∞)×X → X and Ψ : [0,∞)× Y → Y be CT-equivalent. Then,
(i) for each (positively) Φ-invariant set A ∈ X, the set T [A] ∈ Y is (positively) Ψ-

invariant,
(ii) there is a one-to-one correspondence between (strongly) invariant sets of Φ and Ψ.
Proof. Ad (i): Let A be positively invariant, x ∈ A and y = T [x]. Then, Ψt (y) =

T [Φt (x)] ∈ T [A]. Hence T [A] is positively invariant.
If A is invariant, then for each x ∈ A and each t ∈ [0,∞) there is an x−t ∈ A such that
Φt (x−t) = x and correspondingly for each y = T [x] ∈ T [A] there is y−t = T [x−t] with

Ψt

(
y−t

)
= T [Φt (x−t)] = T [x] = y.

Ad (ii): Let A ∈ sis (Φ). We define a corresponding set Ã = HΨ (T [A]) ∈ sis (Ψ).
Correspondence for strongly invariant sets is proven via

(HΦ ◦ T̃ ) ◦ (HΨ ◦ T ) = idsis(Φ) and (HΨ ◦ T ) ◦ (HΦ ◦ T̃ ) = idsis(Ψ),

where, by symmetry, it suffices to show only one equality. Let y ∈ Ã, then there exist t1, t2 ≥ 0
and ŷ = T [x̂] ∈ T [A] such that Ψt2 (y) = Ψt1 (ŷ) ∈ Ã. Thus,

Φt2

(
T̃ [y]

)
= T̃ [Ψt2 (y)] = T̃ [Ψt1 (ŷ)]

= T̃ [Ψt1 (T [x̂])] = T̃ [T [Φt1 (x̂)]]

= Φt1+η̄ (x̂) ∈ HΦ (A) = A.

Hence, T̃ [y] ∈ A. That is, T̃
[
Ã
]
⊆ A and HΦ

(
T̃
[
Ã
])

⊆ A. We have also shown that for

x̂ ∈ A, Φt1+η̄ (x̂) ∈ T̃
[
Ã
]
and therefore x̂ ∈ HΦ

(
T̃
[
Ã
])

. This yields A ⊆ HΦ

(
T̃
[
Ã
])

⊆ A,

i.e. A = HΦ

(
T̃
[
Ã
])

and
(
HΦ ◦ T̃

)
◦ (HΨ ◦ T ) = idsis(Φ).
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For invariant sets, the one-to-one correspondence is mediated directly via T and T̃ .
Definition 4.3.The maximal Lyapunov exponent (MLE) of a point x ∈ X with respect to a

semidynamical system Φ : [0,∞)×X → X on a Banach space X is defined as

λ (x) := lim sup
t→∞

lim sup
|ξ|↘0

1

t
ln

(
|Φt (x+ ξ)− Φt (x)|

|ξ|

)
∈ [−∞,∞] .

The MLE of x ∈ A ⊆ X with respect to the set A is defined as

λ (x,A) := lim sup
t→∞

lim sup
|ξ|↘0

min
a∈A

1

t
ln

(
|Φt (x+ ξ)− a|

|ξ|

)
= lim sup

t→∞
lim sup
|ξ|↘0

1

t
ln

(
dist (Φt (x+ ξ) , A)

|ξ|

)
.

The MLE of a set A ∈ X is defined as λ (A) = supx∈A λ (x, A) .
Theorem 4.4. Let the CT-transformations T and T̃ be Lipschitz-continuous and let X, Y

be Banach spaces. Then,
(i) corresponding (strongly) invariant sets of Φ and Ψ possess the same maximal Lyapunov

exponents (MLEs),
(ii) for each positively invariant set A ∈ X, the set T [A] ∈ Y has the same type of stability.

Claim (i) is a direct consequence of the following Lemma.
Lemma 4.5. Let X, Y be Banach spaces and let T and T̃ be Lipschitz-continuous with

constants LT and LT̃ . Then, we have λ (x) ≤ λ (T [x]) ≤ λ (Φη̄ (x)) for all x ∈ X.
Proof. For each x,χ ∈ C, t ≥ η̄:

1

t
ln

(
|Φt (x)− Φt (x+ χ)|

|χ|

)

=
1

t
ln


∣∣∣Φt−η̄

(
T̃ ◦ T [x]

)
− Φt−η̄

(
T̃ ◦ T [x+ χ]

)∣∣∣
|χ|


=

1

t
ln


∣∣∣T̃ ◦Ψt−η̄ (T [x])− T̃ ◦Ψt−η̄ (T [x] + ξ)

∣∣∣
|χ|

 ,

with |ξ| = |T [x+ χ]− T [x]| ≤ LT |χ|,

... ≤ 1

t
ln

(
LT̃ |Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

(|ξ| /LT )

)
=

1

t
ln

(
|Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

|ξ|

)
+

1

t
ln

(
LTLT̃

)
Therefore,

1

t
ln

(
|Φt (x)− Φt (x+ χ)|

|χ|

)
≤ 1

t
ln

(
|Ψt−η̄ (T [x])−Ψt−η̄ (T [x] + ξ)|

|ξ|

)
,
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and, thus,
λ (x) ≤ λ (T [x]) .

The same reasoning for y = T [x] gives

λ (x) ≤ λ (T [x]) ≤ λ (Φη̄ (x)) .

Proof. (of Theorem 4.4) Lemma 4.5 implies claim (i). To see that consider two corre-
sponding sets A ∈ sis (Φ) and Ã ∈ sis (Ψ). Then it is impossible that λ (A) > λ(Ã) since for
any x ∈ A there exists y = T [x] ∈ Ã such that λ (x) ≤ λ (y). The same holds vice versa and
therefore λ (A) = λ(Ã). Similarly, one shows this for the case of invariant sets.

Ad (ii): Let A ∈ C be an (asymptotically) stable positively invariant set. We show that
if A is (asymptotically) stable so is T [A]. Let ε > 0, y0 = T [x0] ∈ T [A] and ξ0 ∈ C̃ a small
initial perturbation, i.e. |ξ0| ≤ δ with δ = δ (ε) > 0 to be specified later. Define the perturbed
solution

ỹt = Ψt (y0 + ξ0) = yt + ξt,

where yt = Ψt (y0) is the unperturbed solution. Consider

x̃t : = T̃ [ỹt] = T̃ [Ψt (y0 + ξ0)]

= Φt

(
T̃ [y0 + ξ0]

)
= Φt

(
T̃ ◦ T [x0] +

(
T̃ [y0 + ξ0]− T̃ [y0]

))
= Φt

(
xη̄ + χη̄

)
,

with ∣∣χη̄

∣∣ = ∣∣∣T [y0 + ξ0]− T̃ [y0]
∣∣∣

≤ LT̃ · δ,

where LT̃ is the Lipschitz constant of T̃ . Since xη̄ ∈ A and A is (asymptotically) stable, we
can find a δ = δ (ε) such that

d (x̃t, A) ≤ ε

LT
,

and, in case of asymptotic stability, such that

x̃t → A.

This means, we can represent x̃t as x̃t = at + χt with at ∈ A, |χt| ≤ ε
LT

and, in case of
asymptotic stability, |χt| → 0, for t → ∞. Note that t 7→ at has not to be a solution. Define
bt = T [at] ∈ T [A]. Then, ∣∣ỹt+η̄ − bt

∣∣ = ∣∣∣T ◦ T̃ [ỹt]− T [at]
∣∣∣

= |T [at + χt]− T [at]|
≤ LT |χt| ≤ ε

and
∣∣ỹt+η̄ − bt

∣∣ → 0, if A is asymptotically stable. This completes the proof.
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5. Reduction of delay-parameters. The Theorems 4.2 and 4.4 show that CT-equivalence
is indeed a very strong equivalence. For virtually all cases one is best advised to study
the system which possesses the most convenient distribution of delays within the concerned
equivalence class. However, it is difficult give a general identification of the appropriate
distribution, since it strongly depends on the problem at hand. We can acknowledge two
possible guiding principles, which correspond to the transformations of delays in a ring that
were mentioned in the introduction [cf. (1.4) and (1.5)]. Firstly, a homogenization of delays
can sometimes lead to a higher degree of symmetry and thereby allow for simplifications. In
other cases a ”concentration” of the delays on selected links may be useful.

In §5.1 we show, that it is always possible to find timeshifts ηj , j = 1, ..., N , such that the
number of different delays in system (2.1) reduces to the cycle space dimension C = L−N+1
of the network, where L = #E is the number of links and N = #N is the number of nodes in
the network. Effectively, this means that no more than C delay-parameters have to be taken
into account during investigation [see Fig. 1]. For a connected network this number cannot
be reduced further as we show in §5.2.

5.1. Construction of an instantaneous spanning tree. In this section we construct a
set of links, called a ”spanning tree” (see Def. 5.2), on which all connection delays can be
eliminated by componentwise timeshifts. Let us firstly introduce the necessary notions:

Definition 5.1.A semicycle c = (ℓ1, ..., ℓk) is a closed path in the undirected graph which is
obtained by dropping the orientation from all links from the multigraph (N , E).

Definition 5.2. A spanning tree of (N , E) is a set of links S ⊆ E which contains no semi-
cycles but all nodes, that is {s(ℓ), t(ℓ)}ℓ∈S = N .

A spanning tree can be thought of as a ”skeleton” of the graph. Following its links one
can visit each node in the graph exactly once. For instance, the solid, red links in Figs. 4(c)
form spanning trees. A spanning tree can also be characterized as a maximal cycle-free set of
links. Consequently, adding another link which is not contained in the spanning tree creates
a semicycle. For instance, if in Figs. 4(a) the link with delay τ1 is added to the spanning tree
the semicycle c1 is created. A spanning tree of a connected network necessarily contains N−1
links, therefore the cycle space dimension C coincides with the number of links not contained
in a spanning tree. In the context of the CTT, an important quantity for a semicycle is its
delay sum.

Definition 5.3.The delay sum of a semicycle c = (ℓ1, ..., ℓk) with respect to a delay distri-
bution and an orienting link ℓ1 is

Σ(c) :=

k∑
j=1

σjτ (ℓj) ,

where σj ∈ {±1} indicates whether the link ℓj points in the same direction as ℓ1 (σj = 1) or
not (σj = −1). The roundtrip of c is the modulus of its delay sum

(5.1) rt (c) := |Σ(c)| .

The following Lemma gives a characterization of timeshift-transformed delay distributions
and describes their relation to the underlying graph structure. More specifically, it shows that
the delay sums of semicycles are invariant under timeshifts.
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Lemma 5.4. Let τ, τ̃ : E → [0,∞) be two delay distributions in a connected network. Then,
the following statements are equivalent.

(i) There exist ηj ≥ 0, j = 1, ..., N , such that τ̃ (ℓ) = τ (ℓ)− ηt(ℓ) + ηs(ℓ).
(ii) For all semicycles c of the network holds:

Στ (c) = Στ̃ (c) .

Proof. (i) ⇒ (ii) Indeed, for any cycle c = (ℓ1, ..., ℓk) we have

Στ̃ (c) =
k∑

j=1

σj τ̃ (ℓj) =
k∑

j=1

σj

(
τ (ℓj)− ηt(ℓj) + ηs(ℓj)

)

= Στ (c) +

k∑
j=1

σj

(
ηs(ℓj) − ηt(ℓj)

)
= Στ (c) .

(ii) ⇒ (i) Select an arbitrary spanning tree S = (ℓ1, ..., ℓN−1). Select ξ = (ξ1, ..., ξN ) and
χ = (χ1, ..., χN ) such that τ (ℓj) = ξt(ℓj)− ξs(ℓj) and τ̃ (ℓj) = χt(ℓj)−χs(ℓj) for j = 1, ..., N − 1.

(Note that both defining sets of equations are inhomogeneous linear systems of type RN×(N−1)

and of rank N − 1. Therefore they possess solutions.) The shifts ξ and χ define distributions
(with possibly negative values)

τ̂1 (ℓ) = τ (ℓ)− ξt(ℓ) + ξs(ℓ),

τ̂2 (ℓ) = τ̃ (ℓ)− χt(ℓ) + χs(ℓ).

Both, τ̂1 and τ̂2, are instantaneous along S, i.e., τ̂1 (ℓ) = τ̂2 (ℓ) = 0 for ℓ ∈ S. Each link ℓ
which is not in S corresponds to a unique fundamental semicycle c = c(S, ℓ) which is created
by adding ℓ to S. It is the only link in c which may hold a non-zero value τ̂1 (ℓ) or τ̂2 (ℓ),
respectively. By the part (i) ⇒ (ii) we have

τ̂1 (ℓ) = Στ (c) = Στ̃ (c) = τ̂2 (ℓ) .

Hence τ̂1 = τ̂2. With ηj := ξj − χj this gives

τ̃ (ℓ) = τ (ℓ)− ηt(ℓ) + ηs(ℓ).

Note that ηj can always be chosen to be non-negative since a simultaneous shift ηj 7→ ηj+η̄
by some amount η̄ ∈ R does not change the resulting transformed distribution τ̃ .

Often, this lemma makes it straightforward to determine possible transformations, since
it circumvents the explicit determination of timeshifts. For instance, in the case of the two
coupled systems depicted in Fig. 1, it follows immediately that τ = (τ1 + τ2)/2.

Now we can state the main result of this section, which is the construction of a transfor-
mation (1.2) such that the number of delays is minimized.

Theorem 5.5. For every connected network with dynamics given by Eq. (2.1), there exists
a spanning tree S and timeshifts ηj such that in the transformed system (2.2) all links ℓ ∈ S
are instantaneous,

τ̃ (ℓ) = 0, for ℓ ∈ S,
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Figure 3. Illustration of the fundamental cut corresponding to the link ℓ∗ in the spanning tree S (solid red
links), s(ℓ∗) and t(ℓ∗) denote the source and target of ℓ∗. Links which are not contained in S are indicated by
dashed lines.

and for each link ℓ outside the spanning tree the delay τ̃ (ℓ) equals the roundtrip rt (c (ℓ))
[Eq. (5.1)] along the corresponding fundamental cycle c (ℓ),

τ̃ (ℓ) = T (c (ℓ)) , for ℓ /∈ S.

Proof. The following algorithm describes the general procedure to find a reduced set of
delays. For a more definite example see Fig. 4 and its description following this proof. The
main idea of the algorithm is as follows. We construct spanning trees and timeshifts iteratively
such that after each step the number of non-zero delays on the spanning tree has decreased
by at least one. Therefore the algorithm finishes after at most N − 1 iterations. Each step
consists of two stages.

Stage (i). Construction of a spanning tree:
Select a spanning tree S = {ℓ1, ...., ℓN−1} in the following way. First, pick a link ℓ1 with
minimal delay, i.e. τ (ℓ1) = minℓ∈L {τ (ℓ)} ∈ [0,∞). Proceed picking links ℓ2, ..., ℓj with
minimal delays (under all links except the ones already picked) as long as the set Sj =
{ℓ1, ..., ℓj} contains no semicycles. If at the j-th step the chosen link would create a semicycle
when added to Sj−1, do not add it but ignore it for the rest of this stage. Following this
procedure, called Kruskal’s algorithm [21], yields a spanning tree S = {ℓ1, ..., ℓN−1}.

Stage (ii). Construction of timeshifts:
Now consider the link ℓ∗ ∈ S with minimal positive delay (in the very first step of the
construction it equals ℓ1 if τ (ℓ1) > 0). The link induces a fundamental cut [10], i.e. it
partitions the spanning tree S in two connected components: the source component V of ℓ∗

and the target component W of ℓ∗, see Fig. 3. Since S is spanning, this is a partition of all
nodes. Now let us define the timeshifts by ηj = 0 for j ∈ V and ηj = τ (ℓ∗) for all j ∈ W .
From the shifts ηj we obtain the new delay distribution τ̃ (ℓ) = τ (ℓ) + ηs(ℓ) − ηt(ℓ). For
a link ℓ ̸= ℓ∗ which connects nodes within one set of the partition, i.e. s(ℓ), t(ℓ) ∈ V or
s(ℓ), t(ℓ) ∈ W , we have ηs(ℓ) = ηt(ℓ). This implies τ̃ (ℓ) = τ (ℓ). In particular this is the case
for all links in S \ {ℓ∗} and therefore τ(ℓ) = 0 = τ̃(ℓ) for all instantaneous links in S. For ℓ∗

we have τ̃ (ℓ∗) = 0 because s (ℓ∗) ∈ V and t (ℓ∗) ∈ W , which means ηs(ℓ∗) − ηt(ℓ∗) = −τ (ℓ∗).
Hence, the delay distribution τ̃ reduced the number of delays on the spanning tree S by one
compared to the distribution τ . We remind that τ (ℓ∗) is the smallest positive delay not only
on the spanning tree but over all the links which connect V and W . Therefore, τ(ℓ) ≥ 0 for
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(a) initial stage: (b) stage τ1 τ2 τ3 τ4 τ5 τ6 τ7

(i) ↶

4 3 10 8 9 2 5

(ii) ↶

4 [3] 10 8 [9] [2] [5]

(i) ↶

2 [3] 12 8 [9] [0] [5]

(ii) ↶

[2] 3 12 8 [9] [0] [5]

(i) ↶

[0] 5 12 8 [9] [0] [5]

(ii) ↶

[0] 5 12 8 [9] [0] [5]

(i) ↶

[0] 5 7 13 [9] [0] [0]

(ii) ↶
[0] 5 [7] 13 9 [0] [0]
[0] 5 [0] 13 16 [0] [0]

(c) final stage:

Figure 4. Illustration of the delay reduction in a network of N = 7 delay-coupled systems with cycle space
dimension C = 3 [cf. proof of Theorem. 5.5]. In (a) the initially selected spanning tree with original delays
τj, j = 1, ..., 7, is indicated by red, solid links, Three semicycles c1, c2, and c3 are indicated by the grey curves
following the contained links; in (c) the final spanning tree with transformed delays τ̃j is indicated. The table
(b) shows the steps taken by the reduction algorithm. Bracketed, red values indicate the delay times on the
currently selected spanning tree at each step.

all ℓ ∈ L. Indeed, if there were a link between V and W with a smaller delay we must have
included it in the spanning tree in step (i)

If a link ℓ exists in S with τ̃ (ℓ) ̸= 0 we repeat stage (i) starting from an initial set Sj

which contains all j instantaneous links from the spanning tree constructed in the previous
step. Then stage (ii) yields a spanning tree with a strictly larger number of instantaneous
links. In this way we arrive at an instantaneous spanning tree S in at most N − 1 iterations.
The statement that τ̃ (ℓ) = T (c (ℓ)) for ℓ /∈ S follows from Lemma 5.4.

Fig. 4 illustrates how the algorithm described in the proof of Theorem. 5.5 determines a
delay reduction in the depicted network of N = 7 coupled systems with cycle space dimension
C = 3. We assume an initial delay-distribution as given in the first row of the table in
Fig. 4(b). Then, the spanning tree in (a), indicated by solid, red links, is selected by the
algorithm as a successive cycle-free collection of links with smallest delays. Let us denote the
links of the example by ℓj with τj = τ(ℓj), j = 1, ..., 7. Note that in (a) ℓ1 is not contained
in the spanning tree although τ1 < τ5 and τ1 < τ7, and ℓ5 and ℓ7 are both contained. This
is because if the links ℓ2 and ℓ6 with τ2, τ6 < τ1 are already selected, then an addition of ℓ1
would lead to the inclusion of the semicycle c1, which is not allowed. Each row of table (b)
corresponds to a step of the algorithm, where the bracketed, red values correspond to the
delay times of the currently selected spanning tree. Two stages are repeated alternatingly: In
stage (i) a spanning tree with minimal delay sum is determined and in stage (ii) the minimal
delay in this spanning tree is eliminated by a componentwise timeshift. In (c) the spanning
tree is shown which is selected at the final stage. It contains only instantaneous links when
the algorithm is completed. The remaining delays on links not contained in the final spanning
tree, correspond to the delay sums of the corresponding semicycles (c1, c2, c3), oriented as
indicated in the figure, i.e., τ̃2 = Σ(c1) = τ1 + τ2 − τ6; τ̃5 = Σ(c2) = τ3 + τ5 + τ6 − τ7; and
τ̃4 = Σ(c3) = τ4 + τ7.
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5.2. Genericity of the dimension of the delay parameter space. We call C the essential
number of delays since it is the minimal number to which the number of different delays in
a network can be reduced generically. Here “generically” means that the conditions which
allow for further reduction of delays form a null set in the parameter space of delays RL

≥0 =
{(τ (ℓ))ℓ∈E : τ (ℓ) ≥ 0} of the original system. The reducibility condition to m different delays
is described by the L linear equations

(5.2) ηt(ℓ) − ηs(ℓ) + τ̃ (ℓ) = τ (ℓ) , ℓ ∈ Ij ,

with the restriction for τ̃ (ℓ) to take one of m different values {θ1, ..., θm}. System (5.2) can be
equivalently written in the vector form Gqv = τ , where v is the (N +m)-dimensional vector
of unknowns v = (η1, . . . , ηN , θ1, . . . θm) and τ is the L-dimensional vector of delays τ (ℓ). For
any fixed assignment τ̃ (ℓ) = θq(ℓ), ℓ ∈ Ij , with q : Ij → {0, ...,m}, and θ0 := 0, one obtains a

different matrix Gq ∈ RL×(N+m). It can further be shown that the rank of the matrix Gq is
smaller than N−1+m. This implies for m < C = L−(N−1) that N−1+m < L. Hence, the
number of equations in (5.2) is larger than the number of unknowns. Such equation cannot
be solved generically, unless the given delays τ (ℓ) satisfy some special condition of positive
codimension.

6. Conclusion. In this article we have studied a componentwise timeshift transformation
(CTT) for a general class of coupled differential equations with constant coupling delays. We
have defined appropriate phase spaces such that the CTT conveys an equivalence for the
semiflows of the original and the transformed system which is reminiscent to, but weaker
than topological conjugacy. We have shown several dynamical invariants for the equivalent
flows. Firstly, for delay differential equations, the characteristic exponents of equilibria and
the Floquet exponents of periodic orbits are invariant under the CTT. More generally, for CT-
equivalent semidynamical systems, we have shown that there exists a one-to-one correspon-
dence between invariant and strongly invariant sets, respectively. As a main stability result
we have shown that corresponding positively invariant sets have the same kind of stability,
and invariant and strongly invariant corresponding sets possess the same maximal Lyapunov
exponents. To sum up, the observable dynamics of the coupled units might change its rela-
tive timing in the transformed system, but qualitatively it remains the same. In particular
attractors and their stability are invariant.

We have presented a constructive proof that there is always a CTT which reduces the
delays to at most C = L − N + 1 different delays, where L is the number of links in the
network and N is the number of nodes. The number of different delays C coincides with the
cycle space dimension of the underlying graph. Furthermore, we have shown that the sum
of delays along semicycles in the network is invariant under CTTs. This reveals a strong
link between a coupled delay differential equation and the topology of the underlying graph.
Although a CTT which reduces the number of different delays to a minimum is usually not
unique, we have shown that the minimal number of different delays itself cannot be reduced
in general.

We believe that our results have a relevance for several applied areas (see also [25]). For
example, in theoretical neuroscience it is an accepted fact that in the case of two mutually
delay coupled units [30] (as in Fig. 1) or more generally, in unidirectionally coupled rings



CLASSIFICATION OF COUPLED SYSTEMS WITH DELAYS 17

[31], the delays can always be chosen identical for theoretical investigations. Moreover, in
view of our results, the observations about the role of the greatest common divisor of loop-
lengths in networks of delay coupled excitable systems with homogeneous delays [20, 33] can
be formulated more generally in terms of the delay sums along the network’s cycles. The
CTT is an important tool for investigators working with delayed dynamical systems since it
clarifies one aspect of the way in which different interaction delays in a coupled system work
together.

Furthermore, the CTT can speed up the numerical simulation of a system by reducing
the number of different delays or by reducing the maximal delay time. The computational
advantages of the transformed system might be of interest especially in the field of delayed
neural networks, where large scale simulations of networks with many different delay times
are conducted.
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