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Making Octants Colorful

and Related Covering Decomposition Problems

Jean Cardinal∗ Kolja Knauer† Piotr Micek‡ Torsten Ueckerdt§

Abstract

We give new positive results on the long-standing open
problem of geometric covering decomposition for homo-
thetic polygons. In particular, we prove that for any
positive integer k, every finite set of points in R3 can
be colored with k colors so that every translate of the
negative octant containing at least k6 points contains
at least one of each color. The best previously known
bound was doubly exponential in k. This yields, among
other corollaries, the first polynomial bound for the de-
composability of multiple coverings by homothetic tri-
angles. We also investigate related decomposition prob-
lems involving intervals appearing on a line. We prove
that no algorithm can dynamically maintain a decompo-
sition of a multiple covering by intervals under insertion
of new intervals, even in a semi-online model, in which
some coloring decisions can be delayed. This implies
that a wide range of sweeping plane algorithms cannot
guarantee any bound even for special cases of the octant
problem.

1 Introduction and Main Results

We study coloring problems for hypergraphs induced
by simple geometric objects. Given a family of convex
bodies in Rd, a natural colorability question that one
may consider is the following: is it true that for any
positive integer k, every collection of points P ⊂ Rd

can be colored with k colors so that any element of
the family containing at least p(k) of them, for some
function p(k), contains at least one of each color? This
question has been investigated previously for convex
bodies in the plane such as halfplanes and translates
of a convex polygon.

Octants in three-space. In this paper, we give
a polynomial upper bound on p(k) when the family
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under consideration is the set of translates of the three-
dimensional negative octant {(x, y, z) ∈ R3 : x 6 0, y 6
0, z 6 0}. The best previously known bound is due
to Keszegh and Pálvölgyi, and is doubly exponential in
k [20].

Theorem 1.1. There exists a constant a < 6 such that
for any positive integer k, every finite set P of points in
R3 can be colored with k colors so that every translate
of the negative octant containing at least ka points of P
contains at least one of each color.

A dual version of the above problem sometimes
referred to as cover-decomposability can be stated as
follows: Given a collection C of convex bodies, we wish
to color them with k colors so that any point of Rd

covered by at least p(k) of them, for some function p(k),
is covered by at least one of each color. In the primal
setting with respect to octants we can replace the point
set P with a set C of positive octants with apices in
P. Then the primal value of P coincides with the dual
value of C. Since clearly the dual problem is equivalent
if we pick negative instead of positive octants, we have:

Corollary 1.1. There exists a constant a < 6 such
that for any positive integer k, every finite set P of
translates of the negative octant can be colored with k
colors so that every point of R3 contained in at least ka

octants of P is contained in at least one of each color.

The next corollary is obtained by observing that
the intersections of a set of octants with a plane in R3

that is not parallel to any axis form a set of homothetic
triangles (see Figure 1(a)).

Corollary 1.2. There exists a constant a < 6 such
that for any positive integer k, every finite set P of
homothetic triangles in the plane can be colored with
k colors so that every point contained in at least ka

triangles of P is contained in at least one of each color.

Finally, using standard arguments, the latter result
can be extended to infinite sets, and cast as a cover-
decomposability statement.
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(a) From octants to triangles.
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(b) From octants to bottomless rectan-

gles.

Figure 1: Special cases of the octant coloring problem.

Corollary 1.3. There exists a constant a < 6 such
that for any positive integer k, every locally finite ka-
fold covering of the plane by homothetic triangles is
decomposable into k coverings.

The proof of Theorem 1.1 is given in Section 3.

Intervals, bottomless rectangles, and sweep-
ing algorithms. It is well-known that a theorem simi-
lar to Corollary 1.3 holds for the simpler case of intervals
on the real line. Rado [30] observed that every k-fold
covering of the real line by intervals can be decomposed
into k coverings.

In the second part of the paper, we study the
problem of maintaining a decomposition of a set of
intervals under insertion. In this problem, we are
given a positive integer k, a collection of intervals
on the real line, and for each such interval a real
number representing an insertion time. This collection
represents a set of intervals that evolves over time,

time

t

a b

Figure 2: Intervals under insertion and bottomless
rectangles.

in which the intervals present at time x are exactly
those whose insertion time is at most x. We can now
wonder whether there exists a function p(k) such that
the following holds: there exists a k-coloring of the
intervals in the collection S such that, at any time, any
point that is covered by at least p(k) intervals present
at that time is covered by at least one of each color.

This can be conveniently represented in the plane
by representing each interval [a, b] with insertion time
t as an axis-aligned rectangle with vertex coordinates
(a,−t), (b,−t), (b,−∞), (a,−∞), hence viewing time as
going downward in the vertical direction. We refer
to such rectangles, with a bottom edge at infinity, as
bottomless rectangles. Now the k-coloring must be such
that every point p ∈ R2 that is contained in at least
p(k) such rectangles must be contained in at least one
of each color. Hence the problem is actually about
decomposition of coverings by bottomless rectangles. We
illustrate this point of view in Figure 2. Also note
that bottomless rectangles can be seen as degenerate
homothetic triangles, which we will make use of for
Corollary 1.5.

We now observe that bottomless rectangles can be
formed by intersecting a negative octant with a vertical
plane, as depicted on Figure 1(b). Hence we can
formulate a new corollary of our main Theorem.

Corollary 1.4. There exists a constant a < 6 such
that for any positive integer k, every finite set P of
bottomless rectangles in the plane can be colored with
k colors so that every point contained in at least ka

rectangles of P is contained in at least one of each
color. Equivalently, every collection of intervals, each
associated with an insertion time, can be k-colored so
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that at any time, every point covered by at least ka

intervals present at this time is covered by at least one
of each color.

With respect to the model of intervals with inser-
tion times it is natural to ask whether it is possible
to maintain a decomposition of a set of intervals un-
der insertion, without knowing the future insertions in
advance. In Section 4, we answer this question in the
negative even if coloring decisions can be delayed.

More precisely, we rule out the existence of a semi-
online algorithm:

A semi-online k-coloring algorithm must consider
the intervals in their order of insertion time. At any
time, an interval in the sequence either has one of the k
colors, or is left uncolored. Any interval can be colored
at any time, but once an interval is assigned a color, it
keeps this color forever.

A semi-online k-coloring algorithm is said to be
colorful of value d if it maintains at all times that the
colors that are already assigned are such that any point
contained in at least d intervals is contained in at least
one of each of the k colors.

In order to obtain that there is no semi-online
colorful coloring algorithm of bounded value, we prove
a stronger statement about the less restrictive proper
coloring problem. We call a semi-online k-coloring
algorithm proper of value d if it maintains at all times
that the colors that are already assigned are such that
any point contained in at least d intervals is contained in
at least two of distinct colors. Our theorem says that for
all natural numbers k, d, there is no semi-online proper
k-coloring algorithm of value d.

Theorem 1.2. For all natural numbers k, d, there is
no semi-online algorithm that k-colors intervals under
the operation of inserting intervals, so that at any time,
every point covered by at least d intervals is covered by
at least two of distinct colors.

Since any semi-online colorful coloring algorithm is
also proper, we obtain that there is no such algorithm
of bounded value.

Note that in the bottomless rectangle model a
semi-online colorful coloring algorithm corresponds to
sweeping the set of rectangles top to bottom with a line
parallel to the x-axis and assigning colors irrevocably
to already swept rectangles such that at any time
every point contained in d of the already swept ones is
contained in at least one of each color. Similarly, one can
define sweeping line algorithms for coloring homothetic
triangles, where the point set is swept top to bottom
by a line parallel to one of the sides of the triangles.
For octants a sweeping plane algorithm would sweep

the point set from top to bottom with a plane parallel
to the x, y-plane. Since bottomless rectangles can be
viewed as a special case of either we can summarize:

Corollary 1.5. For all natural numbers k, d, there is
no sweeping line (plane) coloring algorithm in the above
sense such that for any set of bottomless rectangles, or
triangles, or octants, at any time every point contained
in d of the already swept ranges is contained in at least
one of each color.

Since for octants primal and dual problem are
equivalent by Corollary 1.5 no such sweeping plane
algorithm exists for the primal octant problem either.

We remark that Corollary 1.5 is in contrast with
another recent result in [5], which deals with the primal
version of the problem. It can be expressed as coloring
points appearing on a line in such a way that at all times
any interval containing p(k) points contains one point
of each color, or equivalently, coloring point sets in the
plane such that every bottomless rectangle containing
p(k) points contains a point of each color. In [5] it is
shown that in this case a linear upper bound on p(k)
can be achieved with a semi-online coloring algorithm
or equivalently a sweeping line algorithm.

2 Previous Results

The covering decomposition problem was first posed by
János Pach in the years 1980-1986 [23, 24]. This was
originally motivated by the problem of determining the
densities of the densest k-fold packings and the thinnest
k-fold coverings of the plane with a given plane convex
body (see Section 2.1 in [8] for a complete historical
account). In particular, he posed the following problem:

Is it true that for any plane convex polygon C and
for any integer k, there exists an integer p = p(C, k)
such that every p-fold covering of the plane with homo-
thetic copies of C can be decomposed into k coverings?

Our contribution is a first step forward in the positive
direction, since it shows that p(C, k) = O(k6) provided
that C is a triangle and the covering is locally finite
(Corollary 1.3). To our knowledge, this is the first poly-
nomial bound for cover-decomposability of homothetic
copies of a polygon.

Tremendous progress has been made recently in
understanding the conditions for the existence of a
function p(k) for a given range space, that is, geo-
metric hypergraphs induced by a family of bodies in
Rd. Linear upper bounds have been obtained for half-
planes [4, 32], and translates of a convex polygon in the
plane [33, 28, 3, 16]. A restricted version of this prob-
lem involving unit balls is shown to be solvable using the
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probabilistic method in the well-known book from Alon
and Spencer [2]. The function p(k) has been proved
not to exist for range spaces induced by concave poly-
gons [29], axis-aligned rectangles [12, 25], lines in R2,
and disks [27]. Note that the indecomposability results
for axis-aligned rectangles imply the same for orthants
in R4, since arbitrary such rectangles can be formed
by intersecting four-dimensional orthants with a well-
chosen plane in R4.

Previous results on octants. Pálvölgyi proved the
indecomposability of coverings by translates of a convex
polyhedron in R3 [29]. His proof, however, does not
hold for unbounded polyhedra with three facets. This
prompted the first author of the current manuscript to
pose the problem of decomposability of coverings by
octants. This was solved by Keszegh and Pálvölgyi, who
showed that p(2) 6 12 in this case [19]. Since we will
reuse this theorem in our proof, it is worth reproducing
it here.

Theorem 2.1. ([19]) There exists a constant c 6 12
such that every finite collection P ⊂ R3 of points can
be 2-colored so that every negative octant containing at
least c points of P contains at least one of each color.

In the past two years, the above result was improved
and generalized. First, Keszegh and Pálvölgyi proved
that Theorem 2.1 implies that p(k) is bounded for every
k [20]. Note that this is not obvious, as one could well
imagine that for some range spaces, p(2) is bounded,
but not p(k) for some k > 2. Their upper bound on
p(k), however, is doubly exponential in k. In particular,

their proof implies p(k) 6 122
k

.
Later, the current authors gave a polynomial upper

bound on p(k), but restricted to the special case of
homothetic triangles in the plane, where points are to
be colored [9]. The proof uses a new technique involving
recoloring each color class of a k-coloring with two colors
in order to obtain a 2k-coloring.

Finally, in May 2013, an unpublished manuscript
from Keszegh and Pálvölgyi was communicated to us
by János Pach, in which an improved polynomial upper
bound was given for the same special case of homoth-
etic triangles [21]. This improvement makes use of a
lemma stating the so-called self-coverability property of
triangles.

We managed to harness the power of these obser-
vations for the general case of octants. In particu-
lar, we reuse the recoloring algorithm given from [9] in
Lemma 3.2, and also give a three-dimensional general-
ization of the self-coverability lemma of [21] in the form
of Lemma 3.1.

Previous results on online coloring problems
and proper colorings of geometric hypergraphs.
Semi-online algorithms have proved to be useful in an
interesting special case of the problem with octants,
in which all points considered in Theorem 1.1 lie on a
vertical plane. This setting can be thought of as points
appearing on a line, and we want to color the points
with k colors such that at any time, any set of p(k)
consecutive points contains at least one of each color.
This problem has been studied by a number of authors,
whose results were compiled in a joint paper [5]. In
particular, they showed that under this restriction, we
have 1.6k 6 p(k) 6 3k−2. The upper bound is achieved
using a semi-online algorithm, that does not require
the knowledge of the future point insertions, and never
recolors a point. This also amounts to coloring primal
range spaces induced by bottomless rectangles with a
sweeping line algorithm, i.e., coloring points such that
bottomless rectangles containing many of them contain
all colors.

In contrast to our negative result about semi-online
algorithms, a larger class of algorithms called quasi-
online has led to a short proof that p(2) = 3 in the
setting corresponding to our Corollary 1.4, see [18], and
is indeed also used to obtain Theorem 2.1 in [19].

Clearly, colorful 2-colorings and proper 2-colorings
coincide, but also for a larger number of colors proper
colorings of geometric hypergraphs have been consid-
ered in the primal and dual setting. There are results
for bottomless rectangles [17], halfplanes [15, 17], oc-
tants [10], rectangles [12, 1, 25], and disks [27, 31].

Similarly to our Theorem 1.2 Keszegh, Lemons, and
Pálvölgyi consider online proper coloring algorithms
(points must be colored on arrival). While it is easy
to see that there is an optimal online algorithm to color
points such that quadrants are colorful, they show that
there is no online proper coloring algorithm of bounded
value in the primal setting of bottomless rectangles and
octants. This is implied by Theorem 1.2 and indeed the
proof methods have similarities. In [18] the quality of
online algorithms is then measured as a function of the
input size.

In another vein, Bar-Noy, Cheilaris, Olonetsky, and
Smorodinsky [7, 6] considered conflict-free colorings in
an online setting. There, the problem is to maintain
that every d-covered point p is covered by one interval
whose color is unique among all intervals covering p.

Other related results. In 2010, Kasturi Varadarajan
gave a feasibility result for the fractional set cover
packing problem with fat triangles (Corollary 2 in
[34]). This problem can be seen as a fractional variant
of the covering decomposition problem. This result
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involves the construction of so-called quasi-uniform ε-
nets. This construction was recently improved by Chan,
Grant, Könemann, and Sharpe [11]. These results
are essentially motivated by the design of improved
approximation algorithms for geometric versions of the
weighted set cover problem. However, they can also
be seen as an intermediate step between the problem
of finding small ε-nets and the covering decomposition
problem, which involves partitioning a set into ε-nets
(see our conclusion for a discussion on this relation).

3 Proof of Theorem 1.1

In what follows, we will use the shorthand notation
[n] = {1, 2, . . . , n}, for a positive integer n. We will
refer to the three coordinates of a point p as px, py,
and pz, respectively. The negative octant with apex
(px, py, pz) ∈ R3 is the set {(x, y, z) ∈ R3 : x 6 px, y 6
py, z 6 pz}. Similarly the positive octant of (px, py, pz)
is {(x, y, z) ∈ R3 : x > px, y > py, z > pz}. For
convenience we also allow the coordinates of an apex to
be equal to∞. In what follows, an octant will generally
be considered to be negative, unless explicitly stated
otherwise. For two points p, q ∈ R3, we say that p
dominates q whenever the negative octant with apex p
contains q, or, equivalently, whenever p is greater than
q coordinate-wise. We say that a set of points P ⊂ R3

is independent whenever no point in P is dominated by
another. Finally, we say that a point set is in general
position whenever no two points have the same x, y, or
z-coordinates. By a standard perturbation argument it
suffices to prove Theorem 1.1 for point sets in general
position.

Lemma 3.1. For every finite independent set P ⊂ R3 in
general position, there exists a collection N of negative
octants such that:

(i) |N | = 2|P|+ 1,
(ii) the octants in N do not contain any point of P in

their interior,
(iii) all points of R3 that do not dominate any point in

P are contained in
⋃N .

Proof. Let n = |P|. We prove the lemma by induction
on n. For n = 0 we take the negative octant covering
the whole space with apex (∞,∞,∞). If P = {p}, then
we take the octants with apices (px,∞,∞), (∞, py,∞),
and (∞,∞, pz). For n > 1 we consider the points of
N in order of increasing z-coordinates. Let us denote
them by p1, p2, . . . , pn in this order. Note that since P
is independent, we have pi,x < pj,x or pi,y < pj,y for
every i, j ∈ [n] such that j < i.

Suppose, for the sake of induction, that there exists
such a collection Nn−1 for the first n − 1 points of P.

We then consider the next point pn and construct a
new collection Nn. We do this in three steps. First,
we include in Nn all the octants of Nn−1 that do not
contain pn. Then for each octant Q′ ∈ Nn−1 such that
pn ∈ Q′, we let Q be the octant having the same apex
as Q′, but with its z-coordinate changed to pn,z. We
add each such octant Q to Nn. Finally, we add two new
octants to Nn. The first octant, Ln (for left) will have
the point (pn,x, y,∞) as apex, where y = min({pj,y :
1 6 j < i, pj,x < pn,x} ∪ {∞}). The second, Bn (for
bottom), will have the point (x, pn,y,∞) as apex, where
x = min({pj,x : 1 6 j < i, pj,y < pn,y} ∪ {∞}). See
Figure 3 for an illustration.

x

y

pn

Ln

Bn
pj

Figure 3: Octants Ln and Bn in the proof of Lemma 3.1.

The first property on the cardinality of Nn holds
by construction, as we add exactly two octants at
each iteration. The second property can be checked
as follows. First, by the induction hypothesis, octants
in Nn−1 avoid p1, . . . , pn−1. Those octants from Nn−1
which avoid pn were copied to Nn and others have their
z-coordinate modified in a way to avoid pn. Finally, the
two new octants Ln and Bn have their interiors disjoint
from P by definition and the fact that P is independent.

In order to verify the third property, let us consider
a point p′ that is not dominating any point of P. First
suppose that p′z < pn,z. By induction, there exists an
octant in Nn−1 containing p′. This octant is either
contained in Nn, or has its counterpart in Nn with a
modified z-coordinate. In both cases, p′ is covered by
this octant in Nn. Now suppose that p′z > pn,z. We
can further suppose that p′ neither belongs to Ln nor
to Bn. Then either p′x > x, or p′y > y, where x and y
are the two values used to define Ln and Bn. Let us
suppose that p′x > x, the other case being symmetric.
Let pj , j < n, be the point realizing the minimum in the
definition of x. We must have p′y < pj,y, as otherwise
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p′ would dominate pj . Then p′ must be covered by an
octant Q ∈ Nn−1 whose y-coordinate is smaller than
pj,y, as otherwise Q would contain pj . But by definition
pj,y < pn,y, hence Q does not contain pn and therefore
also belongs to Nn. In all cases, p′ is contained in an
octant of Nn and the third property holds. �

Note that the upper bound on the size of N in
Lemma 3.1 is tight. For example, consider the point sets
Pn = {(i,−i,−i) | i = 1, . . . , n}. Indeed, Lemma 3.1
and the fact that it is tight for all point sets that are
in general postition and do not lie in a plane containing
the all-ones vector can be deduced from a more general
theorem of Scarf [14].

In order to prove our main theorem, we will use
Theorem 2.1, due to Keszegh and Pálvölgyi. We
proceed to describe a coloring algorithm that achieves
the bound of Theorem 1.1. We do this in two steps.
First, we consider the case where the points to color
form an independent set.

Lemma 3.2. Let c be a constant satisfying the property
in Theorem 2.1. For any positive integer k, every
finite independent set P ⊂ R3 in general position can
be colored with k colors so that every negative octant
containing at least cklog2(2c−1) points of P contains at
least one of each color.

Proof. For k = 2, we know there exists a 2-coloring of P
satisfying the property of Theorem 2.1. Suppose now,
as an induction hypothesis, that we have a k-coloring
φ of P such that every octant containing at least p(k)
points contains at least one of each color. Label the
colors of φ by 1, . . . , k.

We now describe a 2k-coloring φ′. For i ∈ [k], let
Pi = φ−1(i) be the set of points with color i. We
know from Theorem 2.1 that there exists a 2-coloring
φi : Pi → {i′, i′′} of Pi such that every octant containing
at least c points of Pi contains at least one of each
color i′ and i′′. We now define φ′ as the 2k-coloring
obtained by partitioning each color class in this way. We
now claim that the coloring φ′ is such that any octant
containing at least (2c− 1)p(k) points contains at least
one of each of the 2k colors.

For the sake of contradiction, let Q be an octant
containing at least (2c − 1)p(k) points of P, but not
any point of color i′ in φ′. Let PQ ⊆ P be the set of
points contained in Q. If Q does not contain any point
of color i′, it means that it contains at most c−1 points
of φ−1(i). Let Pi = φ−1(i) ∩ PQ be the points of color
i in φ contained in Q.

From Lemma 3.1 and the fact that PQ ⊂ P is an
independent set, we know that there exists a collection
N of at most 2(c−1)+1 = 2c−1 octants whose interiors

do not contain any point of Pi, but that collectively
cover all points of PQ \ Pi. Indeed, after intersecting
with Q we can assume that N covers precisely PQ \ Pi

and no other point of P.
Hence from the pigeonhole principle, one of the

octants N ∈ N contains at least d((2c − 1)p(k) − (c −
1))/(2c− 1)e = p(k) points of PQ in its interior, but no
point of Pi. From the general position assumption, we
can find an octant contained in N that contains exactly
p(k) points of PQ, but no point of Pi. But this is a
contradiction with the induction hypothesis, since this
octant should have contained a point of color i in φ.

It remains to solve the following recurrence, with
starting value p(2) = c:

p(2k) 6 (2c− 1)p(k)

p(k) 6 c(2c− 1)dlog2 ke−1

< cklog2(2c−1)

�

We now describe our algorithm for coloring an
arbitrary set of points in general position. This requires
a new definition.

Given a set P of points in general position in R3,
the minimal points of P is the subcollection of points
of P that are not dominating any other point of P.
In general, we define the ith layer Li of P as its
minimal points for i = 1, and as the minimal points
of P \ ⋃16j<i Lj for i > 1. By definition each layer is
an independent set of points.

Lemma 3.3. Let c be a constant satisfying the property
in Theorem 2.1. For any positive integer k, every finite
set P ⊂ R3 in general position can be colored with k
colors so that every negative octant containing at least
c(k − 1)klog2(2c−1) points of P contains at least one of
each color.

Proof. We will color the points of P by considering the
successive layers one by one, starting with the minimal
points. For each layer Li, we do the following:

• precolor the points of Li with colors in [k], as is
done in Lemma 3.2,

• for each point p ∈ Li:

– consider the set of points Dp = {q ∈ P :
q dominated by p};

– if p is precolored with a color that is not used
for any point in Dp then this color is the final
color of p;

– otherwise pick any color not present on points
in Dp and color p with it; if all k colors are
used within Dp, leave p uncolored.
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The main observation here is that although the recol-
oring step harms the validity of the coloring within a
single layer, it is globally innocuous, since any octant
containing the point p in the ith layer also contains all
the points in Dp, from the previous layers. Thus, any
octant containing p contains a point colored by the same
color as the precolor of p. Note that each point in the
ith layer must dominate at least one point from each
i − 1 earlier layers. This forces the invariant that any
octant containing a point of the ith layer contains points
with at least i distinct colors. In particular, any octant
containing a point of the kth layer will contain all the
colors.

The analysis is now straightforward. Suppose that
an octant contains at least c(k− 1)klog2(2c−1) points. If
it contains a point of the kth layer, then it contains all k
colors. Otherwise, it must contain points of at most k−1
layers, and from the pigeonhole principle, it contains at
least c(k − 1)klog2(2c−1)/(k − 1) = cklog2(2c−1) points in
a single layer. Then the precoloring of this single layer
guarantees each octant of size at least cklog2(2c−1) to be
colorful. �

Now Theorem 1.1 follows by replacing c by 12 in
the expression of Lemma 3.3, yielding a ' 5.58.

4 Proof of Theorem 1.2

Proof. We say that a point of the real line is d-covered,
if it is contained in exactly d intervals presented so far.
We shall define for every d and n an adversarial strategy
S(d, n) for presenting intervals such that the following
is true:

(i) Every semi-online proper k-coloring algorithm of
value at most d executed against S(d, n) yields
k points p1, . . . , pk such that for every i ∈ [k],
the point pi is eventually covered by exactly ti
intervals, all of which have color i, and

(ii) t1 + . . .+ tk > n.

Clearly, if for some semi-online k-coloring algorithm
A there is a point eventually covered by at least d
intervals, all of which have the same color, then the
value of A is at least d + 1. Thus if S(d, kd) exists
and satisfies (i) and (ii), then there is no semi-online
k-coloring algorithm of value at most d, which proves
the theorem.

We prove the existence of S(d, n) by a double
induction on d and n. Strategies S(d, 0) are vacuous
as (i) and (ii) for n = 0 hold for the empty set of intervals
and any set of k distinct points p1, . . . , pk. We define
S(d, n), for n > 0, once we have defined S(d−1, k(d−1))
and S(d, n− 1).

Before continuing let us present the following useful
claim.
Claim. Consider a set I of intervals already presented,
I ∈ I, and I ′ /∈ I such that I ′ ⊂ I and I ′ ∩ J = ∅ for
all J ∈ I \ I. If S(d− 1, k(d− 1)) exists we can present
the intervals of S(d − 1, k(d − 1)) inside I ′ forcing any
semi-online algorithm of value at most d to color I.

Proof. We present the intervals for S(d − 1, k(d − 1))
completely inside I ′. If the algorithm does not color I
then it can be seen as a k-coloring algorithm of value at
most d−1 executed against S(d−1, k(d−1)). We already
know that there is no such algorithm and therefore every
k-coloring algorithm of value at most d has to color
interval I. �

Now, we are ready to define S(d, n) for n >
0. First present two families of intervals, both re-
alizing strategy S(d, n − 1), disjointly next to each
other. By (i) there exist two sets of k points each,
p1, p2, . . . , pk and p′1, . . . , p

′
k, and non-negative integers

t1, . . . , tk, t
′
1, . . . , t

′
k such that pi is ti-covered and all its

intervals are colored with i and also p′i is t′i-covered and
all its intervals are colored with i, for every i ∈ [k].
Moreover, by (ii) we have t1 + . . . + tk > n and
t′1 + . . .+ t′k > n.

If there exists some i ∈ {1, . . . , k} with ti 6= t′i
then the sequence of maxima mi = max(ti, t

′
i) satisfies

m1 + . . . + mk > n + 1. Thus, taking for each i ∈
{1, . . . , k} the point from {pi, p′i} that corresponds to
the larger value of ti, t

′
i, we obtain a set of k points

satisfying (i) and (ii).
Hence we assume without loss of generality that

ti = t′i for all i ∈ {1, . . . , k}. Then we present
one additional interval I that contains all the points
p′1, . . . , p

′
k but none of the points p1, . . . , pk. Moreover,

I is chosen big enough so that there exists some I ′ ⊂ I
that is disjoint from all the other intervals presented
so far. We present the intervals realizing strategy
S(d− 1, k(d− 1)) inside I ′, forcing I to be colored (see
Figure 4). Let j be the color of I. Then p′j is now
contained in exactly t′j + 1 intervals all of which are
colored with j. Thus ({p1, . . . , pk} \ pj) ∪ {p′j} is a set
of k points satisfying (i) and (ii), which concludes the
proof. �

Discussion and Open Problems

A well-studied problem in discrete geometry is to iden-
tify properties of range spaces, or geometric hyper-
graphs, that allow one to find small ε-nets. It is
known, for instance, that range spaces of bounded VC-
dimension have ε-nets of size O( 1

ε log 1
ε ) (See for in-

stance Chapter 10 in Matoušek’s lectures [22]).
The coloring problem that we consider can be cast
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S(d, n− 1) S(d, n− 1) S(d− 1, k(d− 1))

I

Figure 4: Defining strategy S(d, n) once S(d− 1, k(d− 1)) and S(d, n− 1) are defined, in the case where ti = t′i
for all i ∈ [k].

as the problem of partitioning a point set into k ε-nets
for ε = p(k)/n. In fact, it is one of the negative result
for covering decomposition that formed the basis of a
construction of Pach and Tardos for proving superlinear
lower bounds on the size of ε-nets [26]. One can realize
that if p(k) = O(k) for a given range space, it implies
that this range space also has ε-nets of size O(1/ε).
The latter is known to hold for range spaces induced
by octants [13]. Whether p(k) = O(k) for octants is
therefore an interesting open problem.

Naturally, many other intermediate open questions
lie in the way of a general answer to Pach’s problem
on cover-decomposability of homothetic convex poly-
gons. For instance, what can we say about homothetic
squares?

Another interesting open question concerns the pri-
mal problem, in which points are colored with k col-
ors so that every region containing p(k) points contains
a point of each color. We have shown that if regions
are octants, then no semi-online algorithm can prove
p(k) < ∞, while for bottomless rectangles the best-
known bound p(k) 6 3k−2 is achieved by a semi-online
algorithm [5]. It is open whether some semi-online al-
gorithm can prove p(k) <∞ for homothetic triangles.
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