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Abstract. Let M be a matroid without loops or coloops and let T (M ;x, y) be its
Tutte polynomial. In 1999 Merino and Welsh conjectured that

max(T (M ; 2, 0), T (M ; 0, 2)) ≥ T (M ; 1, 1)

holds for graphic matroids. Ten years later, Conde and Merino proposed a multi-
plicative version of the conjecture which implies the original one. In this paper we
prove the multiplicative conjecture for the family of lattice path matroids (gener-
alizing earlier results on uniform and Catalan matroids). In order to do this, we
introduce and study particular lattice path matroids, called snakes, used as build-
ing bricks to indeed establish a strengthening of the multiplicative conjecture as
well as a complete characterization of the cases in which equality holds.
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1. Introduction

An orientation of a graph G is an assignment of a direction to each edge. An
orientation of G is said to be acyclic if it has no directed cycles and totally cyclic
if each edge belongs to a directed cycle. Let τ(G) be the number of spanning trees
of G. Let α(G) be the number of acyclic orientations of G and α∗(G) the number
of totally cyclic orientations of G. The following conjectures have been raised by
Conde and Merino [8] and Merino and Welsh [14]:

Conjecture 1.1 (Graphic Merino-Welsh conjectures). For any graph G with no
bridges and no loops we have:

(1) max (α(G), α∗(G)) ≥ τ(G).
(2) α(G) + α∗(G) ≥ 2 · τ(G). (Additive)
(3) α(G) · α∗(G) ≥ τ(G)2. (Multiplicative)

Conjecture 1.1.3 is the strongest version. It is easy to verify that it implies
Conjecture 1.1.2, which in turn implies Conjecture 1.1.1. Nevertheless, the multi-
plicative version turns out to be the most manageable. There are partial results
concerning these conjectures. For a graph G on n vertices Thomassen [19] showed
that τ(G) ≤ α(G) if G has at most 16

15n edges or G has maximum degree at most 3
and τ(G) ≤ α∗(G) if G has at least 4n edges or G is a planar triangulation. Thus,
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establishing Conjecture 1.1.1 in these cases. Chávez-Lomeĺı et al. [7] proved Con-
jecture 1.1.1 for several families of graphs, including wheels and complete graphs.
Noble and Royle [16] established Conjecture 1.1.3 for the class of series-parallel
graphs.

As noticed in [8] and [14], Conjecture 1.1 can be stated in terms of the Tutte
polynomial T (G;x, y) of G since

τ(G) = T (G; 1, 1), α(G) = T (G; 2, 0) and α∗(G) = T (G; 0, 2).

We thus have the following natural generalization to matroids.

Conjecture 1.2 (Matroidal Merino-Welsh conjectures). Let M be a matroid with-
out loops or coloops and let T (M ;x, y) be its Tutte polynomial. Then:

(1) max (T (M ; 2, 0), T (M ; 0, 2)) ≥ T (M ; 1, 1).
(2) T (M ; 2, 0) + T (M ; 0, 2) ≥ 2 · T (M ; 1, 1). (Additive)
(3) T (M ; 2, 0) · T (M ; 0, 2) ≥ T (M ; 1, 1)2. (Multiplicative)

Notice that not allowing loops and coloops in M is a fundamental hypothesis
for the multiplicative version since a loop would imply T (M ; 2, 0) = 0 and a coloop
would imply T (M ; 0, 2) = 0.

An important result related to the multiplicative Merino-Welsh conjecture due to
Jackson [13] is that T (M ; b, 0) ·T (M ; 0, b) ≥ T (M ; a, a)2 for any loopless, coloopless
matroid M provided that b ≥ a(a+ 2). Conjecture 1.2.1 for paving matroids, Cata-
lan matroids, and whirls is proved in [7]. By combining the results from [7] and [13]
it can be proved inductively that paving matroids even satisfy Conjecture 1.2.3 (the
base cases need a detailed treatment).

The main contribution of the present paper is to prove Conjecture 1.2.3 for the
class of lattice path matroids (which contains, in particular, the families of Catalan
matroids and uniform matroids).

Theorem 1.3. Let M be a lattice path matroid without loops or coloops that is not
a direct sum of trivial snakes. Then,

T (M ; 2, 0) · T (M ; 0, 2) ≥ 4

3
· T (M ; 1, 1)2.

Here, a trivial snake is a pair of parallel elements. We will see that direct sums
of trivial snakes do not satisfy the inequality with the factor 4

3 but they do satisfy
Conjecture 1.2.3.

Our theorem is an improvement by a multiplicative constant, and thus it directly
implies the multiplicative version of Conjecture 1.2. Furthermore, it enables us to
characterize the lattice path matroids in which Conjecture 1.2.3. holds with equality
as precisely being the direct sums of trivial snakes (Corollary 4.4).

In Section 2 we state some basic definitions and properties in matroid theory
needed for the rest of the paper. Afterwards, in Section 3, we introduce lattice
path matroids. We define snakes (which are matroids that can be thought of as
“thin” lattice path matroids) and prove that they are graphic matroids. We provide
explicit formulas for the number of bases and acyclic orientations snakes, which are
crucial ingredients for the proof of our main result (Theorem 1.3), that will be given
in Section 4.
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2. Basic definitions and properties

There are several ways to define a matroid. We refer to [20] for a thorough
introduction into the topic. In this paper, we will define matroids in terms of their
bases. A matroid is a pair M = (E,B) consisting of a finite ground set E and a
collection B of subsets of E which satisfies:

(B0) B is non-empty.
(B1) If A and B are in B and there is an element a ∈ A \ B, then there exists

an element b ∈ B \A such that A \ {a} ∪ {b} is in B.

The elements of B are called bases. If E = ∅, then M is called empty.
It is a basic fact in matroid theory that all the bases of a matroid M have the

same cardinality. This number is the rank of the matroid. If an element a ∈ E
belongs to no base, it is called a loop. If a belongs to every base, it is called a
coloop. If a matroid has no loops and no coloops we will call it loopless-coloopless,
which we will abbreviate by LC.

If M is a matroid with base set B and ground set E then one constructs another
matroid M∗ called the dual of M with the same ground set but with base set

B∗ := {E \B : B ∈ B}.

If M and N are matroids with disjoint ground sets E and F , respectively, then
the direct sum of M and N is the matroid whose ground set is the union of E and
F , and whose bases are those sets which can be written as the union of a base of
M and a base of N . If a matroid cannot be expressed as the direct sum of two
non-empty matroids it is said to be connected, otherwise it is disconnected. Note
that every connected matroid is LC, except for matroids whose ground set consists
of a single element.

Let M be a matroid with base set B and ground set E and let S ⊆ E. The
inclusion-maximal sets of {B \ S : B ∈ B} are the bases of a new matroid M \ S
called the deletion of S. The dual construction is the contraction of S. It can be
defined as the matroid M/S := (M∗ \ S)∗. If S = {s}, then we abbreviate the
notations M \ {s} and M/{s} by M \ s and M/s, respectively. The deletion allows
us to extend the notion of rank to subsets of the ground set: For a subset A ⊆ E
we denote the rank of A by r(A) which is defined as the rank of M \ (E \A). Note
that r(E) is thus the rank of M .

A very useful algebraic invariant for matroids is the Tutte polynomial. Given a
matroid M , this is a two-variable polynomial defined as follows:

T (M ;x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

The Tutte polynomial contains important information about the matroid. Most
importantly in our context, T (M ; 1, 1) is the number of bases of M . In the case
of orientable and in particular graphic matroids, T (M ; 2, 0) and T (M ; 0, 2) count
the number of acyclic and totally cyclic orientations of the underlying graph, re-
spectively. It is also well known that the Tutte polynomial satisfies the following
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recursive property [21]:

T (M ;x, y) =


T (M \ s;x, y) + T (M/s;x, y) if s is neither a loop

nor a coloop,
xT (M \ s;x, y) if s is a coloop,
yT (M/s;x, y) if s is a loop.

We point out that when s is a loop or a coloop, M \ s = M/s. Furthermore, we
will make use of the facts that T (M ;x, y) = T (M∗; y, x) and that if L is the direct
sum of M and N , then T (L;x, y) = T (M ;x, y) · T (N ;x, y).

3. Lattice path matroids and snakes

In this section we address the class of lattice path matroids first introduced
by Bonin, de Mier, and Noy [4]. Many different aspects of lattice path matroids
have been studied: excluded minor results [2], algebraic geometry notions [9, 17,
18], complexity of computing the Tutte polynomial [5, 15], and results around the
matroid base polytope [6].

In order to define lattice path matroids, we first introduce transversal matroids.
Let A = (Aj : j ∈ J) be a set system, that is, a multiset of subsets of a finite
set E. A transversal of A is a set {xj : j ∈ J} ⊆ E of |J | distinct elements such
that xj ∈ Aj for all j. A fundamental result of Edmonds and Fulkerson [10] states
that the set of transversals of a system A = (Aj : j ∈ J) constitutes the base set
of a matroid on E. (Note that the set of transversals could be empty, but this
does not happen for the matroids considered in the paper.) The collection A is a
presentation of this matroid and any matroid that arises in such a way from a set
system is a transversal matroid.

A path in the plane is a lattice path, if it starts at the origin and only does steps
of the form +(1, 0) and +(0, 1), called North (N) and East (E), respectively. One
way to encode a lattice path P is therefore to simply identify it with a sequence
P = (p1, . . . , pr+m), where pi ∈ {N,E} for all 1 ≤ i ≤ r + m. Let {ps1 , . . . , psr}
be the set of North steps of P with s1 < · · · < sr. Clearly, if the total number
of steps of P is known, we can recover P from {s1, . . . , sr}, by setting pi = N if
i ∈ {s1, . . . , sr} and pi = E, otherwise, for all 1 ≤ i ≤ r +m. Let P = {s1, . . . , sr}
and Q = {t1, . . . , tr} be two lattice paths encoded that way, both ending at the
point (m, r), such that P never goes above Q. The latter condition is equivalent to
ti ≤ si for all 1 ≤ i ≤ r. The lattice path matroid (LPM) associated to P and Q is
the transversal matroid M [P,Q] on the ground set {1, . . . ,m+ r} and presentation
(Ai : i ∈ {1, . . . , r}) where Ai denotes the interval of integers between ti and si.
In [4, Theorem 3.3] it was proved that a subset B of {1, . . . ,m+ r} with |B| = r is
a base of M [P,Q] if and only if the associated path, which we will also denote by
B, stays in the region bounded by P and Q, see Figure 1. We call the part of the
plane enclosed by P and Q, the diagram of M [P,Q].

The uniform matroid Ur,r+n is the LPMM [P,Q] withQ = {1, . . . , r} = N · · ·N︸ ︷︷ ︸
r

E · · ·E︸ ︷︷ ︸
n

and P = {n + 1, n + 2, . . . , n + r} = E · · ·E︸ ︷︷ ︸
n

N · · ·N︸ ︷︷ ︸
r

. The k-Catalan matroid
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P

Q
B

(0,0)

(8,5) A

A
A
A
A

={1,2,3,4,5}

={4,5,6,7,8}
={5,6,7,8,9,10}
={9,10,11,12}
={11,12,13}

Q={1,4,5,9,11}
Q=NEENNEEENENEE

B={4,5,9,10,13}
B=EEENNEEENNEEN

P={5,8,10,12,13}
P=EEEENEENENENN

1

2

3

4

5

Figure 1. Left: Lattice paths P and Q from (0, 0) to (8, 5) and
a path B staying between P and Q in the diagram of M [P,Q].
Middle: The set system A1, . . . , A5 representing M [P,Q]. Right:
Representations of P , Q, and B as subsets of {1, . . . , 13} and as
words in the alphabet {E,N}.

is the LPM M [P,Q] with Q = {1, 3, . . . , 2k − 1} = NENE · · ·NE︸ ︷︷ ︸
k−pairs

and P =

{k + 1, k + 2, · · · , 2k} = E · · ·E︸ ︷︷ ︸
k

N · · ·N︸ ︷︷ ︸
k

.

It is known [4, Theorem 3.4] that the class of LPMs is closed under matroid
duality. Indeed, for an LPM M , the bases of the dual matroid M∗ correspond
to the East steps of the lattice paths in the diagram of M . Thus, reflecting the
diagram of M along the diagonal x = y, yields a diagram for M∗ and shows that
M∗ is an LPM, as well. See Figure 2. Furthermore, the class of LPMs is closed
under duality [4].

Figure 2. Presentations of an LPM and its dual.

The direct sum of LPMs in terms of their diagrams is illustrated in Figure 3.
In particular, we shall later use the fact ([4, Theorem 3.6]) that the LPM M [P,Q]
is connected if and only if the paths P and Q intersect only at (0, 0) and (m, r).
Moreover, we can detect loops and coloops in the diagram the following way. If
P and Q share a horizontal (respectively vertical) edge at step e, then e is a loop
(respectively a coloop). Therefore, LC LPMs are those in which P and Q do not
share vertical or horizontal edges.

In this paper we define a special class of LPMs, whose members are called snakes.
An LPM is called snake if it has at least two elements, is connected and has a
diagram without interior lattice points. See Figure 4 for an example. We represent
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Figure 3. Diagrams of two LPMs and their direct sum.

a snake as S(a1, a2, . . . , an) if starting from the origin its diagram encloses a1 ≥ 1
squares to the right, then a2 ≥ 2 squares up, then a3 ≥ 2 squares to the right and
so on up to an ≥ 2, where the last square counted by each ai coincides with the
first square counted by ai+1 for all i ≤ n − 1. We call S(1) the trivial snake (one
square).

a1

a3

a4

a2

Figure 4. The diagram of a snake.

The duality of LPMs depicted in Figure 2 restricts to snakes, i.e., the class of
snakes is closed under duality. An example is illustrated in Figure 5. More precisely,
the following is easy to see:

Observation 3.1. Let n be a positive integer and a1, . . . , an be integers with a1 ≥ 1
and ai ≥ 2 for all 2 ≤ i ≤ n. For the dual of S(a1, . . . , an) we have

S∗(a1, . . . , an) =


S(1, a1, . . . , an) if a1 > 1,

S(a2, . . . , an) if a1 = 1 < n,

S(1) if a1 = 1 = n.

Observation 3.1 is useful since in some of our results it allows to assume a1 ≥ 2
because (except for the trivial snake) the case S(1, a2, . . . , an) can be treated via
its dual S∗(1, a2, . . . , an) = S(a2, a3, . . . , an).
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Figure 5. The snake S(1, 5, 3, 4) and its dual S∗(1, 5, 3, 4) = S(5, 3, 4).

The rest of this section is devoted to finding exact formulas for some values of the
Tutte polynomial for snakes: T (S; 2, 0), T (S; 0, 2) and T (S; 1, 1). These formulas
will be crucial to prove our main result in Section 4. For obtaining them, it will
turn out to be useful to view snakes as graphic matroids.

To this end we introduce a special family of graphs, whose family of associ-
ated graphic matroids will turn out to coincide with the class of snakes. Let `
be a positive integer and c = (c1, c2, . . . , c`) and d = (d1, d2, . . . , d`−1) be vec-
tors of positive integers. The multi-fan F (c, d) is the graph consisting of a path

(v1, v
2
1 , . . . , v

d1
1 , v2, v

2
2 , . . . , v

d2
2 , . . . , v`−1, v

2
`−1, . . . , v

d`−1

`−1 , v`) plus a single vertex x
that is connected by a bundle of ci ≥ 1 parallel edges to vi for every 1 ≤ i ≤ `, see
Figure 6. If ` = 1, then the multi-fan F (c1) consists of a single bundle of c1 parallel
edges.

c

cc c c

d d d

x

v v v v v
1 2 3 l-1 l

1

2 3 l-1
l

l-11 2

Figure 6. A multi-fan F (c, d).

Note that the ordinary fan coincides with the multi-fan with parameters c =
(1, 1, . . . , 1) and d = (1, 1, . . . , 1). Also, a multi-fan is a series parallel graph created
by alternately adding parallel edges from x to the vi’s and adding series edges from
each vi to vi+1.

We are now ready to prove our correspondence between snakes and multi-fans.
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Theorem 3.2. Let a1, . . . , an be integers with a1 ≥ 1 and ai ≥ 2 for each i =
2, . . . , n. The snake S(a1, a2, . . . , an) is isomorphic to the graphic matroid associ-
ated to the multi-fan F (c, d), where

c =


(a1 + 1) if n = 1,

(a1, a3 − 1, . . . , a2k−1 − 1, a2k+1) if n = 2k + 1 > 1,

(a1, a3 − 1, . . . , a2k−1 − 1, 1) if n = 2k > 1.

and

d = (a2 − 1, a4 − 1, . . . , a2k − 1).

Proof. Given the intervals A1, . . . Ar(M) representing M = S(a1, a2, . . . , an) as a
transversal matroid, we associate a fan F to M , such that the vertices w1, . . . wr(M)

on the path of F correspond to A1, . . . Ar(M) in this order. Moreover, the number of
parallel edges of a vertex wi to the special vertex x of F is the number of elements
of Ai, that are not contained in any other Aj . See Figure 7 for an illustration. Note
that the parameters of F depend on those of the snake M exactly as claimed in the
statement of the theorem. Furthermore, note that by the definition of snakes, any
two consecutive intervals Ai, Ai+1 share precisely one element. This gives that the
edges incident to vertex wi of F correspond to the elements of M contained in Ai.

A1

A2

A3

A4 w1 w2 w3 w4

x1 2 3 4

4 5

5 6 7

7 8

1 2 3
6 8

4 5 7

Figure 7. A snake and its associated multi-fan.

To show that both matroids are isomorphic, we give a correspondence between
their bases. That is, we prove that the spanning trees of F are in bijection with the
transversals of A1, . . . , Ar(M). Let T be a spanning tree of G. We root T at x and
orient all its edges away from x. Now, every edge e of T corresponds to an element
of the ground set of M . We associate e to the vertex wi it is oriented to, which in
turn corresponds to an Ai containing e. Since every vertex except x has indegree
1, this mapping proves that the edges of T form a transversal of A1, . . . , Ar(M).

Conversely, suppose that we are given a transversal T = {x1, . . . xr(M)} of
A1, . . . , Ar(M). Since both the sequence of left endpoints and the sequence of right
endpoints of A1, . . . , Ar(M) are increasing, , we may assume x1 ≤ . . . ≤ xr(M) and
that xi ∈ Ai for all i. An edge corresponding to an element xi of the transversal can
be oriented towards the vertex wi representing the Ai to which xi is assigned. Since
T is a transversal, every vertex on the path of F has indegree one. This implies,
that x has outdegree at least 1. Moreover, vertex x has indegree 0. Consequently,
the obtained graph is spanning and contains no cycles. We have obtained a tree
rooted in x and oriented away from x. This gives the desired bijection. �

We remark that an alternative way of proving that snakes correspond to multi-
fans is to use [3, Theorem 6.7] where the structure of LPMs is described in terms of
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principal extensions. The following corollary will be useful later on, when treating
matroid duality with respect to snakes.

Corollary 3.3. Let a1, . . . , an be integers with a1 ≥ 1 and ai ≥ 2 for each i =
2, . . . , n. Then, the dual matroid S∗(a1, . . . , an) is isomorphic to the graphic matroid
associated to the multi-fan F (c′, d′) with

c′ =



(1, a2 − 1, a4 − 1, . . . , a2k − 1, 1) if n = 2k + 1 and a1 > 1,

(1, a2 − 1, a4 − 1, . . . , a2k−2 − 1, a2k) if n = 2k and a1 > 1,

(a2 + 1) if n = 2 and a1 = 1,

(a2, a4 − 1, . . . , a2k − 1, 1) if n = 2k + 1 and a1 = 1,

(a2, a4 − 1, . . . , a2k−2 − 1, a2k) if n = 2k and a1 = 1,

and

d′ =


(a1 − 1, a3 − 1, . . . , a2k+1 − 1) if n = 2k + 1 and a1 > 1,

(a1 − 1, a3 − 1, . . . , a2k−1 − 1) if n = 2k and a1 > 1,

(a3 − 1, a5 − 1, . . . , a2k+1 − 1) if n = 2k + 1 and a1 = 1,

(a3 − 1, a5 − 1, . . . , a2k−1 − 1) if n = 2k and a1 = 1.

Proof. Observation 3.1 yields a snake representation of S∗(a1, . . . , an). Theorem 3.2
applied to this snake yields the multi-fan as claimed above. �

The following lemma provides a formula for the number of acyclic orientations
of a multi-fan.

Lemma 3.4. Let c = (c1, . . . , c`) and d = (d1, . . . , d`−1) be vectors of positive
integers. Then

α(F (c, d)) = 2

`−1∏
j=1

(
2dj+1 − 1

)
.

Proof. First observe that parallel edges must be oriented in the same direction.
Start by orienting the first bundle of c1 parallel edges in one of the two possible
ways. Then the d1 edges between v1 and v2 together with the second bundle of
c2 parallel edges can be oriented in a total of 2d1+1 ways, all but exactly one of
which are acyclic. Then the d2 edges between v2 and v3 plus the third bundle of c3
parallel edges can be oriented in 2d2+1 − 1 acyclic ways, and so on, obtaining

2

`−1∏
j=1

(
2dj+1 − 1

)
acyclic orientations, as desired. �

Proposition 3.5. For any positive integer n and a1, . . . , an integers with a1 ≥ 1
and ai ≥ 2 for each i = 2, . . . , n, we have

T (S(a1, . . . , an); 0, 2) · T (S(a1, . . . , an); 2, 0)) = 22
n∏

i=1

(2ai − 1).(1)
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Proof. The case of the trivial snake S(1) is trivial. Now, considering the snake or
its dual we can suppose that a1 ≥ 2 by Observation 3.1. By Theorem 3.2, we can
express T (S(a1, . . . , an); 2, 0) as α(F (c, d)). Note that the vector d does not depend
on the parity of n and is the only one taken into account by Lemma 3.4. We can
thus conclude:

T (S(a1, . . . , an); 2, 0) = α(F (c, d))

= 2
n∏

i = 2
i− even

(2ai−1+1 − 1)

= 2
n∏

i = 2
i− even

(2ai − 1).

Now, we use T (S(a1, . . . , an); 0, 2) = T (S∗(a1, . . . , an); 2, 0), which we can ex-
press as α(F (c′, d′)) by Corollary 3.3. Furthermore since a1 ≥ 2 the vector d′ in
the corresponding multi-fan F (c′, d′) does not depend on the parity of n, i.e., in
both cases comprises all ai with odd index, and is the only part of the parameters
of F (c′, d′) that is taken into account by Lemma 3.4. We conclude:

T (S(a1, . . . , an); 2, 0) = T (S∗(a1, . . . , an); 0, 2)
= α(F (c′, d′))

= 2
n∏

i = 1
i− odd

(2ai−1+1 − 1)

= 2
n∏

i = 1
i− odd

(2ai − 1).

Obtaining,

T (S(a1, . . . , an); 0, 2) · T (S(a1, . . . , an); 2, 0)) = 22
n∏

i=1

(2ai − 1).

�

Now we turn our attention to T (S; 1, 1). We will count the number of bases of
a snake directly from its diagram. Let Fib(n) be the set of all binary sequences
b = (b1, . . . , bn) of length n such that there are no two adjacent 1’s.

Proposition 3.6. For any positive integer n and a1, . . . , an integers with a1 ≥ 1
and ai ≥ 2 for each i = 2, . . . , n we have

T (S(a1, . . . , an), 1, 1) =
∑

b∈Fib(n+1)

n∏
i=1

(ai − 1)1−|bi+1−bi|.(2)

Furthermore, for n > 1 the following recursion holds:

T (S(a1, . . . , an), 1, 1) =T (S(a1, . . . , an−1), 1, 1)+

(an − 1) · T (S(a1, . . . , an−1 − 1), 1, 1),
(3)

where we set S(a1, . . . , an−1 − 1) := S(a1, . . . , an−2) if an−1 = 2 and n > 2.
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Proof. Consider the snake S(a1, . . . , an). If n = 1 and a1 = 1, on both sides of
the equation we have 2. In any other case, the snake has at least two squares. By
duality, we may suppose that the snake starts with two adjacent horizontal squares,
that is a1 ≥ 2.

Let S(a1, . . . , an) = M [P,Q]. We will label some points on the paths P and Q
with 0’s and 1’s. As we explain the labeling, Figure 8 may be used as a reference
for the case n = 4. We label as follows. On the snake consider C1 the first square,
Cn+1 the last square and for each i ∈ {2, . . . , n} let Ci be the (i − 1)-th square
in which the snakes changes direction. For each square Ci let ui be its upper left
vertex and vi its lower right vertex. We label each ui with 1 if i is odd and with 0
if i is even. We label each vi with the label opposite to the one in ui.

C1

C3 C

C2

C5

4

1

0

0

1

1

0

0

1

1

0

Figure 8. Labeling of S(a1, a2, a3, a4) with zeros and ones.

Consider a lattice path within the diagram of S(a1, . . . , an). For every 1 ≤ i ≤
n+1 this lattice path has to go through exactly one of the vertices ui, vi. Therefore,
for each lattice path we can assign a binary sequence of length n + 1. We claim
that the formula in Equation (2) counts the number of lattice paths according to
their corresponding binary sequence.

First, it is impossible to go consecutively from a vertex labeled 1 to another
vertex labeled 1. Therefore all the possible binary sequences are in Fib(n + 1).
Now we take a binary sequence B = (b1, . . . , bn+1) and we count to how many
lattice paths it corresponds. Consider the segment of the path that goes from the
vertices in square Ci to the vertices in square Ci+1.

• If we go from the vertex with label 0 to the vertex with label 1 or vice
versa, there is exactly one way in which we can do it.
• There are exactly ai−1 ways to go from the vertex with label 0 to the vertex

with label 0, corresponding to the choice of the unique N -step, respectively
E-step.

Thus if the binary sequence is B, we can go from the vertices in Ci to the vertices
in Ci+1 in (ai − 1)1−|bi+1−bi| ways, and therefore there are

n∏
i=1

(ai − 1)1−|bi+1−bi|
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lattice paths with corresponding sequence equal to B. This shows that the
formula is correct.

The recursive formula can be proved using Equation (2), but we provide a combi-
natorial proof. To do so we verify whether the lattice path has gone through the up-
per right vertex of Cn or not. If it did, by definition there are T (S(a1, . . . , an−1); 1, 1)
ways of getting to that vertex and then the path to the end is completely deter-
mined. If it did not, then in square Cn the path has to go through the vertex with
label 0, which can be done in T (S(a1, . . . , an−1 − 1), 1, 1) ways. This has to be
multiplied by the an− 1 ways to complete the path avoiding the upper right vertex
of Cn. This completes the argument.

�

Notice that when a1 = a2 = . . . = an = 2 we are summing only 1’s over all the
sequences of Fib(n + 1). It is a folklore result that the number of such sequences
is the (n + 3)-rd Fibonacci number, and thus Proposition 3.6 can be regarded as
a lattice path generalization of this. Indeed, the fact that the number of spanning
trees of ordinary fans is counted by the Fibonacci numbers has been observed several
times, see [1, 11, 12].

4. The multiplicative Merino-Welsh conjecture for LPMs

We will now prove that the strongest version of Conjecture 1.2 is true for LPMs.
Notice that equality may hold. An easy example is the trivial snake. Since the Tutte
polynomial of a direct sum is the product of the polynomials of the components of
the direct sum, a direct sum of trivial snakes also yields equality.

More specifically, in this section we prove Theorem 1.3 which is an improvement
on the desired inequality by a constant factor except in the trivial cases mentioned
above.

We provide an inductive proof. The strategy is as follows:

• We prove the theorem for snakes.
• We show that any connected LPM M either is a snake, or it has an element
e such that both M \ e and M/e are connected LPMs with fewer elements.

• We state a straightforward lemma for proving the inequality for M from
the veracity of the inequality for M \ e and M/e.

• We extend the result to disconnected but LC LPM.

Before starting with the first step in the strategy, let us make a remark. In
Section 3 we have shown that snakes are series parallel graphic matroids. Therefore,
Conjecture 1.2.3 can be proved for snakes using the result in [16]. However, for
the whole strategy to work we will need to prove first the sharper inequality for
snakes. Thus we will need the precise results on the Tutte polynomial provided by
Proposition 3.5 and Proposition 3.6.

Proposition 4.1. If M is a non-trivial snake, then

T (M ; 2, 0) · T (M ; 0, 2) ≥ 4

3
· T (M ; 1, 1)2.

Proof. Let M = S(a1, . . . , an) be a non-trivial snake. We proceed by induction on
n. If n = 1, then M = S(a) and since the snake is non-trivial we have a ≥ 2. Now,
T (S(a); 1, 1) is the number of lattice paths in its diagram which is clearly a+ 1. By
Equation (1), we have to prove that
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4 · (2a − 1) ≥ 4

3
· (a+ 1)2.

Since a ≥ 2, we have a2 ≥ a+ 2. Using the binomial formula we get

4 · ((1 + 1)a − 1) ≥ 4 ·
(

1 + a+
a(a− 1)

2
− 1

)
= 2a2 + 2a =

4

3
· a2 +

2

3
· a2 + 2a ≥ 4

3
· a2 +

2

3
· (a+ 2) + 2a

=
4

3
· (a2 + 2a+ 1) =

4

3
· (a+ 1)2.

We need another induction base: the snakes S(2, a). By using Equations (1) and
(2), we need to prove that

4 · 3 · (2a − 1) ≥ 4

3
· (2a+ 1)2.

Recall that a ≥ 2. By using the binomial formula again we have

4 · 3 · (2a − 1) ≥ 12 ·
(

1 + a+
a(a− 1)

2
− 1

)
= 6a2 + 6a =

4

3
· (4a2 + 4a) +

2

3
(a2 + a) ≥ 4

3
· (4a2 + 4a+ 1)

=
4

3
· (2a+ 1)2.

This proves our induction bases. We now suppose that the conclusion is true
for 1, 2, . . . , n− 1 and we consider the snake S(a1, . . . , an−1, b) with n, b ≥ 2 and if
n = 2, then a1 ≥ 3. By using Equation (3), we have that:

T (S(a1, . . . , b), 1, 1) = T (S(a1, . . . , an−1), 1, 1) +

(b− 1) · T (S(a1, . . . , an−1 − 1), 1, 1).

We may now use the induction hypothesis. Notice that an−1 − 1 may become 1,
but only if n > 2. In this case we consider S(a1, . . . , an−2). Thus, we can always
conclude that T (S(a1, . . . , b), 1, 1) is less than or equal to

√
3

2
· 2 ·

n−1∏
i=1

(2ai − 1)1/2 +

√
3

2
· (b− 1) · 2 · (2an−1−1 − 1)1/2 ·

n−2∏
i=1

(2ai − 1)1/2

which can be factorized as

√
3

2
· 2 ·

(
n−2∏
i=1

(2ai − 1)1/2

)
·
(

(2an−1 − 1)1/2 + (b− 1) · (2an−1−1 − 1)1/2
)
.

Therefore, to get the two extra factors that we need it will be enough to prove
that for any an−1 ≥ 2 and b ≥ 2 we have

(2an−1 − 1)1/2 + (b− 1) · (2an−1−1 − 1)1/2 ≤ (2an−1 − 1)1/2 · (2b − 1)1/2.
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Dividing both sides by (2an−1 − 1)1/2 this becomes

1 +
b− 1√

2
·
(

1− 1

2an−1 − 1

)1/2

≤ (2b − 1)1/2.

We will prove that for b ≥ 2 the following stronger inequality holds

1 +
b− 1√

2
≤ (2b − 1)1/2.

By the binomial formula, 2b ≥ 1 + b+ b(b−1)
2 . Therefore,

2b − 1 ≥ b2 + b

2
≥ b2

2
+
(√

2− 1
)
b+

3

2
−
√

2 =

(
1 +

b− 1√
2

)2

.

This proves the desired inequality and thus the proposition follows by induction.
�

Proposition 4.2. Let M be a connected LPM. Then either M is a snake or M
has an element e such that both M \ e and M/e are connected LPMs different from
the trivial snake.

Proof. Suppose that M = M [P,Q] is a connected LPM that is not a snake. Let us
consider the interior lattice point of M that is highest and rightmost, say p = (x, y).
We claim that e = x+ y + 1 is the desired element of M , see Figure 9. Indeed, [2,
Corollary 2.17] states that for any element e of a connected LPM that is not the
first or the last, the contraction M/e is connected if and only if e is in at least
two sets in the presentation as a transversal matroid. Since this is the case for the
above e, M/e is connected. The connectivity of M \ e follows by duality.

O

Q

P

e

e

p=(x,y)

Figure 9. An LPM with an interior point p.

�
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The following result is valid for general matroids. A version without the 4
3 factor

is given in [13]; see also [16, Lemma 2.2]. The following proof is slightly different,
and we include it for completeness.

Lemma 4.3. Let M be a loopless and coloopless matroid and let e be an element
of its ground set. Suppose that the inequality in Theorem 1.3 holds for M \ e and
for M/e. Then, the inequality also holds for M .

Proof. We define p, q, r, s, t, u as follows:

p = T (M \ e; 2, 0), q = T (M \ e; 0, 2), r = T (M \ e; 1, 1),

s = T (M/e; 2, 0), t = T (M/e; 0, 2), u = T (M/e; 1, 1).

Since M is loopless and coloopless, we have that T (M ;x, y) = T (M \ e;x, y) +
T (M/e;x, y). Therefore, we have to prove that

(p+ s)(q + t) ≥ 4

3
· (r + u)2.

By hypothesis, we know that p · q ≥ 4
3 · r

2 and that s · t ≥ 4
3 ·u

2. Combining this
and the Cauchy-Schwartz inequality we conclude as follows:

(p+ s)(q + t) ≥
(√

pq +
√
st
)2
≥ 4

3
· (r + u)2.

�

Notice that there is nothing special about 4/3 in the lemma above in the sense
that if p · q ≥ k · r2 and s · t ≥ k · u2 then (p + s)(q + t) ≥ k(r + u)2. The value
k = 4/3 is the one that gives equality for the snake S(2).

We are now ready to prove our main result.

Proof of Theorem 1.3. First we prove the theorem for connected LPMs. In this
proof we will only refer to LPMs different from the trivial snake. We proceed by
induction on the number of elements. If the matroid has three elements, then a
connected LPM with 3 elements is either S(2) or its dual, for which we know that
the theorem is true.

Now suppose that the theorem is true for connected LPMs of less than n ele-
ments. Let M be a connected LPM with n elements. If M is a snake, then by
Proposition 4.1 the inequality holds. Otherwise, by Proposition 4.2 we can find an
element e such that both M \ e and M/e are connected LPMs. Each of these has
fewer elements than M , and thus by the inductive hypothesis the inequality holds
for both of them. Therefore using Lemma 4.3 we conclude that the inequality also
holds for M . This completes the proof for connected LPMs.

We are left with the case in which M is LC but not connected. In this case we
express M as direct sum of connected LPMs M1, M2, . . ., Mn. By our assumption
at least one of them, say M1, is not the trivial snake. For each 1 ≤ i ≤ n let

pi = T (Mi; 2, 0), qi = T (Mi; 0, 2), ri = T (Mi; 1, 1).

We know that p1 · q1 ≥ 4
3 · r

2
1 and that for each 2 ≤ i ≤ n we have pi · qi ≥ r2i .

Using the fact that the Tutte polynomial of a direct sum is the product of the Tutte
polynomials of the components we get:
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T (M ; 2, 0) · T (M ; 0, 2) =

n∏
i=1

pi ·
n∏

i=1

qi =

n∏
i=1

(pi · qi)

≥ 4

3
·

n∏
i=1

r2i =
4

3
·

(∏
i=1

ri

)2

=
4

3
· T (M ; 1, 1)2.

Therefore, the inequality is true for every LC LPM that is not a direct sum of
trivial snakes.

�

Theorem 1.3 immediately yields the following corollary which confirms the mul-
tiplicative Merino-Welsh conjecture for LPMs.

Corollary 4.4. Let M be a lattice path matroid with no loops and no coloops. Then
we have

T (M ; 2, 0) · T (M ; 0, 2) ≥ T (M ; 1, 1)2

and equality holds if and only if M is a direct sum of trivial snakes.
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