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ERDÖS-RENYI GRAPH.

FRANÇOIS DELARUE

Laboratoire Dieudonné, Université Nice-Sophia Antipolis et UMR CNRS 7351,

Parc Valrose, 06108 Nice Cedex 02, France.

Abstract. The purpose of this short article is to address a simple ex-
ample of a game with a large number of players in mean field interaction
when the graph connection between them is not complete but is of the
Erdös-Renyi type. We study the quenched convergence of the equilibria
towards the solution of a mean field game. To do so, we follow recent
works on the convergence problem for mean field games and we heav-
ily use the fact that the master equation of the asymptotic game has a
strong solution.

1. Introduction

Mean field game theory was initiated a decade ago in independent contri-
butions by Lasry and Lions [13, 14, 15] and by Huang, Caines and Malhamé
[10, 11].

The general purpose is to address stochastic differential games with a large
number of players subject to mean field interactions. Numerous works on the
theory have been dedicated to the analysis of the asymptotic formulation
of the game, which is precisely referred to as a mean field game. In his
lectures at Collège de France, see also the lecture notes by Cardaliaguet
[2], Lions [16] exposed most of the background of the analytical approach.
Since then, alternative strategies, including probabilistic ones, have been
suggested, see for instance [4] or the forthcoming monograph [5, 6] together
with the textbook [1].

The rationale for regarding the limit under the number of players is pretty
clear: Generally speaking, games with a large number of players are known
to be of a high complexity; because of the underlying mean field struc-
ture, equilibria are expected to be of a somewhat simpler structure in the
asymptotic regime. This is indeed a key feature of mean field particle sys-
tems that, asymptotically, particles are not only statistically identical but
become also independent, this latter fact being usually known as propaga-
tion of chaos, see the seminal lecture notes by Sznitman [18]. Equivalently,
the limiting behavior of a mean field particle system may be summed up
through the dynamics of a sole representative particle interacting with its
own distribution. When recast within games with a large number of players,
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propagation of chaos yields the following picture. First, an equilibrium (or
a solution) of the asymptotic mean field game should consist of a flow of
marginal distributions pµtq0¤t¤T accounting for the statistical states of the
population (when in equilibrium) at any time t P r0, T s, where T is the time
duration of the game. Second, it should suffice to focus on a typical player
(or particle) interacting with the flow pµtq0¤t¤T instead of regarding the
whole collection of players. Given pµtq0¤t¤T , the player (or particle) aims
at optimizing some strategy (say for instance its velocity if speaking of a
particle) in order to minimize its own energy, say for instance its kinetic en-
ergy (which directly depends on the velocity) together with some potential
energy (which may include the interaction with the environment). Last, the
Nash condition underpinning the notion of equilibrium says that the envi-
ronment pµtq0¤t¤T forms an equilibrium if the best response under the flow
pµtq0¤t¤T fits pµtq0¤t¤T exactly, namely if the collection of marginal laws of
the optimal state is pµtq0¤t¤T itself. In short, an equilibrium is a fixed point
for an application mapping a flow of statistical distributions onto another
flow of statistical distributions.

From the analytical point of view, fixed points may be characterized as
solutions of a forward-backward system made of two equations, a forward
Fokker-Planck equation and a backward Hamilton-Jacobi-Bellman equation.
The second one accounts for the optimization part in the search of an equi-
librium, whilst the first one is used to solve for the Nash condition. The
probabilistic approach obeys more or less the same principle, as it also relies
on a forward-backward system, but of a somewhat different structure. Pre-
cisely, this forward-backward system reads as a forward-backward stochastic
differential equation of the McKean-Vlasov type. The forward component
provides the form of the optimal trajectories of the stochastic optimiza-
tion problem whilst the McKean-Vlasov condition enforces the fixed point
constraint following from the Nash condition. Whatever the approach, the
key problem is to sort out the forward-backward structure arising in the
characterization. It is indeed known that the Cauchy-Lipschitz theory for
forward-backward systems only applies when T is small enough. Rephrased
in our setting, this says that, when T is fixed, equilibria of mean field games
cannot be systematically constructed by a straightforward contraction argu-
ment. Most of the time, it requires another method; for instance, it may be
based on a fixed point theorem without uniqueness. Subsequently, unique-
ness for mean field games is known in very few cases; for example, it holds
true when the coefficients satisfy specific monotonicity conditions, which we
shall illustrate below.

Although there is no specific reason for expecting it to hold true in full
generality, uniqueness is however an important question. When it fails, it
may be a very difficult question to select one of the equilibria. Also, unique-
ness may be very useful for justifying the convergence of equilibria of games
with finitely many players towards solutions of mean field games. Proving
the convergence of finite player games is indeed a difficult problem. When
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the finite player equilibria are taken over open loop strategies, compactness
arguments, without any need for asymptotic uniqueness, may be used, see for
instance [9, 12]; however, this strategy fails when equilibria are computed
over strategies in closed loop form. In the latter case, the only strategy
that has been known so far for tackling the convergence problem requires
uniqueness, see [3]. The idea for doing so goes back to another key object
due to Lions, which is known as the master equation. Whenever unique-
ness holds, the forward backward system used to characterize the solution
of the mean field game (whatever the approach is analytical or probabilis-
tic) may be regarded as the characteristics of a nonlinear PDE set on the
space of probability measures. This latter PDE is precisely the master equa-
tion. Whenever the master equation has a classical solution, say U , see for
instance [3, 7] for solvability results in that direction, convergence may be
proved by letting U act onto the empirical distribution of the equilibria of
the finite player game.

The purpose of this paper is to revisit all these facts, but in a somewhat
different framework of what is usually addressed in the literature. Whilst
the interactions in the finite player system that have been considered so
far are always defined on the complete graph, we here assume that some of
the particles do not directly interact with one another and, more precisely,
that the connections between all of them are given by the realization of
an Erdös-Renyi graph with a non-trivial parameter. In order to simplify,
we focus on a toy model only, for which the structure of the asymptotic
game is not too complex. In this framework, we prove that the limiting
problem is also a mean field game. Taking advantage of the simple form of
the model, we manage to simplify the master equation and to show directly,
with an affordable price, that it has a classical solution. Last, we address the
convergence of the equilibria of the finite player system when the realization
of the graph is frozen. To simplify, we assume that equilibria are taken over
open loop strategies and we make use of the master equation, as explained
above, to pass to the limit.

We present the model in Section 2. The asymptotic game is investigated
in Section 3. The convergence problem is addressed in Section 4.

2. A Toy Model

First, we introduce the finite player game we alluded to in the introduc-
tion. For the sake of simplicity, all the particles we consider below live in
R.

2.1. Particle system. In this paragraph, we are given a collection of N
real-valued Brownian motions ppW i

t q0¤t¤T qi�1,��� ,N , where T is some finite
time horizon and N is a fixed integer. These processes are assumed to be
constructed on a probability space pΩ,F ,Pq. The filtration generated by
the noises and possibly augmented with an initial σ-field F0, independent
of ppW i

t q0¤t¤T qi�1,��� ,N , is denoted by pFtq0¤t¤T .
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With each index i P t1, � � � , Nu, we associate a particle (or a player). The
dynamics of player i are of the following linear form:

dXi
t � αitdt� dW i

t , t P r0, T s.
The process pαitq0¤t¤T is called a control. It is required to be pFtq0¤t¤T
progressively-measurable and to satisfy the square-integrability condition

E
» T

0

�
αit
�2
dt   8.

Last, the initial conditions pXi
0qi�1,��� ,N are assumed to be F0-measurable,

square-integrable, independent and identically distributed.

2.2. Interactions between the particles. With each particle, say i P
t1, � � � , Nu, we associate a cost functional J i depending upon all the control
processes ppαitq0¤t¤T qi�1,��� ,N . It takes the following form:

J i
�ppαjt q0¤t¤T qj�1,��� ,N

� � E
�

1

2

�
cgX

i
T �

»
R
gpxqdµ̄N,it

	2

�
» T

0

�1

2

�
cfX

i
T �

»
R
fpxqdµ̄N,it

	2
� 1

2

�
αit
�2
�
dt

�
,

where cf and cg are two constants, which we set to 1 for simplicity, that is
cf � cg � 1. The functions f and g map R into itself. Generally speaking,
we assume them to be smooth enough, but we prefer not to detail this
assumption at this stage of the paper and to make it clear when necessary
only.

In comparison with models that have been investigated so far, the novel

point is the probability measure µ̄N,it . We call it the empirical distribution
of the particles connected to i. It is defined as

µ̄N,it � 1

Ni

Ņ

j�1

εi,jδ
Xj

t
,

where pεi,jq1¤i,j¤N is a collection of bits, that it εi,j P t0, 1u, satisfying the
symmetry condition

εi,j � εj,i, εi,i � 0.

In words, the family pεi,jq1¤i,j¤N forms an undirected graph between the
particles: i and j are connected if εi,j � 1; in particular i and j are connected
if j and i are connected. Above, Ni is the number of particles connected to
i, namely

Ni �
Ņ

j�1

εi,j .

Whenever Ni � 0, we let µ̄N,it be the null measure. In such a case this is no

longer a probability measure and the action of µ̄N,it on f (or g) is zero.
Here, the potential energy forces i to get closer to some mean state of the

particles connected to i. Of course, the form we choose here may not be
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of the most relevant form for practical applications, but it turns out to be
tractable from the mathematical point of view.

Throughout the paper, we assume that the pεi,jq1¤i j¤N are the realiza-
tions of independent and identically distributed Bernoulli random variables
of parameter p P p0, 1q. With a slight abuse of notation, we still denote by
pεi,jq1¤i j¤N the corresponding random variables. So, the graph connect-
ing the particles with one another is a realization of an Erdös-Renyi graph.
It must be stressed that the collection of random variables pεi,jq1¤i j¤N is
independent of pX0, pW i

t q0¤t¤T q. To make it clear, we define it on another
probability space pΞ,G,Pq. In particular, the realization of the graph is
completely frozen in the computation of the costs pJ iqi�1,��� ,N .

2.3. Notion of equilibria. Of course, each player is willing to minimize its
own energy. This prompts us to introduce the notion of Nash equilibrium.
As mentioned in introduction, several forms of it are conceivable. Here, we
just make use of the simplest version:

Definition 1. A tuple ppαitq0¤t¤T qi�1,��� ,N is said to be a Nash equilibrium
over open loop strategies if, for any i P t1, � � � , Nu, for any other adapted
and square-integrable strategy pβtq0¤t¤T , it holds that

J i
�pα1

t , � � � , αi�1
t , βt, α

i�1
t , � � � , αNt q0¤t¤T

� ¥ J i
�pα1

t , � � � , αNt q0¤t¤T
�
.

In short, a Nash equilibrium is a consensus between the players: there is
no incentive for any particle to leave the consensus.

In comparison with, Nash equilibria over closed loop strategies (as we
alluded to in Introduction) are taken over strategies of the form pαit �
φipt,X1

t , � � � , XN
t qq0¤t¤T for a feedback function φi from r0, T s � RN to R.

In the latter case, the dynamics for pX1
t , � � � , XN

t q0¤t¤T become a stochastic
differential equation. Under appropriate assumptions on the feedback func-
tions, it is well-solvable. If so, we have the same definition as above for a
Nash equilibrium except that, therein, we have to fix the feedback function
φi instead of the trajectory pαitq0¤t¤T , which makes a difference. In words,
this means that the player may take into account the current states of the
others to update his/her strategy. Although it sounds pretty much realistic,
we feel better not to address this case in this note.

We now introduce the asymptotic formulation. The guess is that there
should be sufficiently many edges connecting i to the rest of the population
to do as if the graph was complete. So, we expect the asymptotic game to
fit a standard mean field game. The solutions of this latter one are given by
the following two step procedure:

First Step. For a fixed flow of probability measures pµtq0¤t¤T , solve the
standard optimization problem

inf
pαtq0¤t¤T

J
�pαtq0¤t¤T �,
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where pαtq0¤t¤T is an adapted process with respect to the filtration gener-
ated by pX0, pWtq0¤t¤T q, for pX0, pWtq0¤t¤T q � pX1

0 , pW 1
t q0¤t¤T q. Above

the energy functional is given by

J
�pαtq0¤t¤T � � E

�
1

2

�
XT �

»
R
gpxqdµt

	2

�
» T

0

�1

2

�
XT �

»
R
fpxqdµt

	2
� 1

2

�
αt
�2
�
dt

�
,

where pXtq0¤t¤T solves

Xt � X0 �
» t

0
αsds�Wt, t P r0, T s.

Second Step. Find pµtq0¤t¤T such that the flow of marginal laws of the
optimal process in the first step is pµtq0¤t¤T itself.

The reader will easily understand that, with our form of interaction, the
limiting optimization problem in the first step is linear-quadratic. In this
regard, the solution is very simple and is known to be, conditional on the
realization of the initial condition, a Gaussian process. This is one of the
main rationale for the form of the toy model addressed in this note.

Notice also that the asymptotic problem would be of the same form if we
used Nash equilibria over closed loop strategies.

3. Master Equation

This section is devoted to the analysis of the mean field game.

3.1. Solvability of the mean field game. We first make use of the prob-
abilistic approach initiated in [4]. Solutions of the mean field game may be
characterized through the following forward-backward stochastic differential
equation of the McKean-Vlasov type:

dXt � �Ytdt� dWt,

dYt � ��Xt � ErfpXtqs
�
dt� ZtdWt, t P r0, T s,

YT � XT � ErgpXT qs.
(1)

Here we assume as before that the initial condition X0 of the forward compo-
nent has been prescribed. It is assumed to be F0 measurable and pWtq0¤t¤T
is assumed to be an pFtq0¤t¤T -Brownian motion with values in R, for a fil-
tration pFtq0¤t¤T that may no longer coincide with the one described in the
first section. Here, the typical example for pFtq0¤t¤T is the filtration gen-
erated by F0 and pWtq0¤t¤T . Recall also that the solution of the backward
equation is the pair pYt, Ztq0¤t¤T , which is also required to be adapted. Basi-
cally, the martingale integrand pZtq0¤t¤T is used to ensure the adaptedness.
It is assumed to be square-integrable.
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We now make use of the very simple form of the system (1). By the

change of variable pỸt � Yt �Xt, Z̃t � Zt � 1q0¤t¤T , it may be rewritten as

dXt � ��Xt � Ỹt
�
dt� dWt,

dỸt �
�
Ỹt � ErfpXtqs

�
dt� Z̃tdWt, t P r0, T s,

ỸT � �ErgpXT qs.
It is then well checked that pỸtq0¤t¤T is necessarily deterministic as the
coefficients are purely deterministic. In particular, any solution must satisfy

d

dt

�
etEpXtq

� � �etỸt,
which permits to express the forward component as

(2) etXt � X0 � EpX0q � etEpXtq � etΓt,

where pΓtq0¤t¤T is the Ornstein-Uhlenbeck process

Γt � e�t
» t

0
esdWs, t P r0, T s.

Finally, the McKean Vlasov forward backward SDE takes the form

dXt � ��Xt � Ỹt
�
dt� dWt,

dỸt �
�
Ỹt � E

�
f
�
e�tpX0 � EpX0qq � EpXtq � Γt

���
dt, t P r0, T s,

ỸT � �E
�
g
�
e�T pX0 � EpX0qq � EpXT q � ΓT

��
.

Taking the mean and recalling (2), we deduce the the following proposition,
the proof of which is straightforward.

Proposition 2. The McKean Vlasov forward backward SDE (1) is uniquely
solvable if and only if the following deterministic system is uniquely solvable:

dmt � ��mt � Ỹt
�
dt,

dỸt �
�
Ỹt � E

�
f
�
e�tpX0 � EpX0qq �mt � Γt

���
dt, t P r0, T s,

ỸT � �E
�
g
�
e�T pX0 � EpX0qq �mT � ΓT

��
,

with m0 � EpX0q as initial condition, in which case EpXtq � mt, for all
t P r0, T s.

By the new change of variable pm̄t � etmt�EpX0q, Ȳt � e�tỸtq0¤t¤T , the
above system is equivalent to

dm̄t � �e2tȲtdt, m̄0 � 0,

dȲt � e�tE
�
f
�
e�tpX0 � m̄tq � Γt

��
dt,

ȲT � �e�TE�g�e�T pX0 � m̄T q � ΓT
��
,

(3)

in which case EpXtq � e�tpm̄t�EpX0qq. The following proposition provides
conditions under which existence and uniqueness hold true.
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Proposition 3. Assume that f and g are non-increasing and Lipchitz-
continuous functions. Then, for any square-integrable initial condition X0,
there exists a unique solution to the system (3).

Proof. The result follows from a standard fact in the theory of forward-
backward systems. It suffices to observe that, whenX0 is given, the functions

R Q x ÞÑ �E
�
f
�
e�tpX0 � xq � Γt

��
, t P r0, T s,

R Q x ÞÑ �E
�
g
�
e�T pX0 � xq � ΓT

��
,

are non-decreasing and Lipschitz continuous. This permits to regard the
system (3) as a deterministic forward-backward system with non-decreasing
and Lipschitz continuous coefficients. It is then known to be uniquely solv-
able, see for instance [17]. �

Actually, we can even prove a more general stability result.

Proposition 4. Assume that f and g satisfy the same assumptions as above.
Then, there exists a constant C such that, for any two initial conditions X0

and X 1
0 of the system (1),

|Ȳ0 � Ȳ 1
0 | ¤ CE

�|X0 �X 1
0|
�
,

where pm̄t, Ȳtq0¤t¤T and pm̄1
t, Ȳ

1
t q0¤t¤T are the corresponding solutions to

(3).

Proof. Again, the proof is pretty standard. It consists in regarding the
product ppm̄1

t � m̄tqpȲ 1
t � Ȳtqq0¤t¤T . We compute

d

dt

�pm̄1
t � m̄tqpȲ 1

t � Ȳtq
�

� �e2tpỸ 1
t � Ỹtq2

� e�tpm̄1
t � m̄tq

�
E
�
f
�
e�tpX 1

0 � m̄1
tq � Γt

�� E
�
f
�
e�tpX0 � m̄tq � Γt

�	
.

Since f is Lipchitz-continuous and non-increasing, we can find a constant
C, only depending on the coefficients, such that

d

dt

�pm̄1
t � m̄tqpȲ 1

t � Ȳtq
� ¤ �e2tpȲ 1

t � Ȳtq2

� C
��m̄1

t � m̄t

��E�|X 1
0 �X0|

�
,

which yields

� pm̄1
t � m̄tqpȲ 1

t � Ȳtq �
» T
t
e2spȲ 1

s � Ȳsq2ds

¤ �pm̄1
T � m̄T qpȲ 1

T � ȲT q � CE
�|X 1

0 �X0|
� » T

t
|m̄1

s � m̄s|ds.
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Now, using the fact that g is Lipschitz-continuous and non-increasing,

� pm̄1
T � m̄T qpȲ 1

T � ȲT q
� pm̄1

T � m̄T qe�T
�
E
�
g
�
e�T pX 1

0 � m̄1
T q � ΓT

�

� E
�
g
�
e�T pX0 � m̄T q � ΓT

�	

¤ C
��m1

T � m̄T

��E�|X 1
0 �X0|

�
.

Recalling that m̄0 � m̄1
0 � 0, we end up with» T

0
e2spȲ 1

s � Ȳsq2ds

¤ C
��m1

T � m̄T

��E�|X 1
0 �X0|

�� CE
�|X 1

0 �X0|
� » T

t
|m̄1

s � m̄s|ds.

Returning to the forward equation, we deduce that

sup
0¤t¤T

|m̄t � m̄1
t|2

¤ C
��m1

T � m̄T

��E�|X 1
0 �X0|

�� CE
�|X 1

0 �X0|
� » T

t
|m̄1

s � m̄s|ds.

By a standard convexity inequality, we obtain

sup
0¤t¤T

|m̄t � m̄1
t| ¤ CE

�|X 1
0 �X0|

�
.

Plugging into the backward equation, we easily complete the proof. �

3.2. Master field. The combination of Propositions 3 and 4 permits to
define a Lipschitz continuous mapping

L2pΩ,F ,P;Rq Q X0 ÞÑ Ȳ0 P R,

which maps the initial condition of the system (1) onto the initial value of the
backward component of the system (3). Remarkably, the Lipschitz property
holds true with respect to the L1 norm. Importantly, the right-hand side
only depends on X0 through its distribution. So, the above mapping may
be regarded as a mere mapping from P2pRq into R, namely

Vp0, �q : P2pRq Q µ0 ÞÑ Ȳ0 P R,

where the right-hand side is computed for some X0 � µ0. This mapping
is Lipschitz continuous for the 1-Wasserstein distance W1 (and so for the
2-Wasserstein distance as well).

Of course, we can easily extend the argument to any initial time t0 P r0, T s
by initializing the system (1) at time t0. In words, this amounts to initialize
the system (3) at time t0 or, equivalently, in shifting it to r0, T � t0s. The
mapping Vpt0, �q is then defined as

Vpt0, �q : P2pRq Q µ0 ÞÑ Ȳt0 P R,



10 FRANÇOIS DELARUE

where the right-hand side is the solution of the backward equation in (3),
when this latter one is set on r0, T � t0s in lieu of r0, T s, eT and ΓT in the
terminal condition being replaced by eT�t0 and ΓT�t0 , and X0 being some
F0-measurable random variable with the same distribution as the initial
condition at time t0 of the system (1).

A crucial fact for the analysis of the finite player game equilibria is to
prove that the mapping V is smooth with respect to the measure argument,
or, say to simplify, that the mapping Vp0, �q is smooth. This requires to give
first a meaning to the underlying notion of derivative. To do so, we shall
use Lions’ approach to the so-called Wasserstein derivative, as introduced
in [16], see also [2, 5]. This requires to define first the lifting of Vp0, �q to
L2pΩ,F0,P;Rq, namely

V̂p0, X0q � V
�
0,LpX0q

�
,

where LpX0q is the law of X0. We then say that Vp0, �q is continuously

differentiable if the lift V̂p0, �q is Fréchet continuously differentiable. Of
course, this makes sense as long as the space pΩ,F0,Pq is rich enough so that,
for any µ0 P P2pRq, there exists a random variable X0 P L2pΩ,F0,P;Rq such
that X0 � µ0. Here, P2pRq is the space of probability measures on R with
a finite second-order moment. So, in the sequel, pΩ,F0,Pq is assumed to be
atomless, which makes it rich enough. A crucial point with Lions’ approach
to Wasserstein differential calculus is that the Fréchet derivative of V̂p0, �q,
which can be identified with a square-integrable random variable, may be
represented at point X0 as BµVp0, µ0qpX0q for a mapping BµVp0, µ0qp�q : R Q
v ÞÑ BµVp0, µ0qpvq P R. This latter function plays the role of Wasserstein
derivative of Vp0, �q in the measure argument.

Second-order derivatives may be defined accordingly. The function Vp0, �q
is said to be twice continuously differentiable if we can find, for each µ P
P2pRq, a version of R Q v ÞÑ BµVp0, µqpvq (which is a priori defined as a
function in L2pR, µ;Rq) such that P2pRq � R Q pµ, vq ÞÑ BµVp0, µqpvq is
continuous, differentiable in v when µ is fixed, and differentiable in µ when
v is fixed, with jointly continuous derivatives, namely P2pRq �R Q pµ, vq ÞÑ
BvBµVp0, µqpvq is continuous and P2pRq�R�R Q pµ, v, v1q ÞÑ B2

µVp0, µqpv, v1q
is continuous (here the variable v1 accounts for the second-order derivative
in the direction µ).

3.3. Proving the smoothness of V. Generally speaking, the smoothness
of V at order two (which the one we need for writing down the master
equation, see Subsection 3.4) is addressed in the two papers [3, 7] and in the
monograph [6]. The general method consists in proving first that Vpt, �q is a
smooth function of the measure argument for t close to T , or equivalently, in
establishing the smoothness of Vpt, �q for t P r0, T s when T is less than some
small δ ¡ 0. In order to so, f and g must be smooth enough, say bounded
and three times differentiable, with bounded derivatives. The idea is then
to show that the solution to (3) varies smoothly with X0 P L2pΩ,F ,P;Rq
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when T ¤ δ; this approach should be regarded as a flow method, but with
an initial condition in a space of infinite dimension. In this regard, the
condition T ¤ δ plays a key role, as it permits to define the successive
derivatives of the flow as the solutions of differentiated forward-backward
systems. We feel better not to detail the analysis and to refer the reader
to the aforementioned citations. The crux is then to pass from a small
time horizon T to an arbitrary time horizon. This is the point when the
Lipschitz control of V comes in. In [6] and [7], it is shown that, for a
given T ¡ 0, the analysis of the smoothness of V could be extended from
the neighborhood rT � δ, T s of the terminal time T to the whole r0, T s
by iterating backwards the small time analysis along a sequence of small
intervals of the form rT � pn � 1qδ, T � nδs, with n such that T � nδ ¡ 0.
Importantly, δ can be assumed to be the same throughout the induction.
To make it clear, it must be stressed that the time length δ, as defined right
above, depends in fact on the Lipschitz constants of f and g with respect to
the law of X0 for the distance W1, with the slight abuse that f and g are
seen as functions of the law of X0. When iterating the small time analysis
as we just described, the terminal boundary condition has to be updated on
any new interval, namely g has to be replaced by VpT �nδ, �q when working
on the interval rT � pn� 1qδ, T � nδs.

For the sake of illustration, we provide an explicit example.

Proposition 5. Assume that f is null and that g is non-increasing, bounded
and smooth, with bounded derivatives. Then, the function V is jointly con-
tinuous. It is differentiable in time and rBV{Bts is jointly continuous. Also,
for any t P r0, T s, the function Vpt, �q is differentiable with respect to the
measure argument and the function

r0, T s � P2pRq � R Q pt, µ, vq ÞÑ BµVpt, µqpvq
is bounded and continuous. It is differentiable in the variable v and in the
variable µ and the functions

r0, T s � P2pRq � R Q pt, µ, vq ÞÑ BvBµVpt, µqpvq,
r0, T s � P2pRq � R� R Q pt, µ, v, v1q ÞÑ B2

µVpt, µqpv, v1q,
are bounded and continuous.

Proof. If f � 0, the solution of the forward-backward system (3) is given by
the fixed point condition

m̄T �
» T

0
e2t�TE

�
g
�
e�T pX0 � m̄T q � ΓT

��
dt

� sinhpT qE�g�e�T pX0 � m̄T q � ΓT
��
.

(4)

In order to compute the derivative of Vp0, �q, we proceed as follows. We
consider two random variables X0 and Y in L2pΩ,F ,P;Rq, with Er|Y |2s ¤ 1
and with pX0, Y q independent of pWtq0¤t¤T . For ε P R, we call pm̄ε

t , Ȳ
ε
t q0¤t¤T



12 FRANÇOIS DELARUE

the solution to (3) when (1) is initialized with X0 � εY . Since pȲ ε
t q0¤t¤T is

constant in time,

(5) m̄ε
T � �1

2

�
e2T � 1

�
V
�
0,LpX0 � εY q�.

By Proposition 4, ��m̄ε
T � m̄0

T

�� ¤ CεE
�|Y |�.

Letting eT � e�T sinhpT q, we have

m̄ε
T � sinhpT qE�g�e�T pX0 � εY � m̄ε

T q � ΓT
��

� sinhpT qE�g�e�T �X0 � m̄0
T � εY � pm̄ε

T � m̄0
T q
�� ΓT

��
� sinhpT qE�g�e�T pX0 � m̄0

T q � ΓT
��

� εeTE
�
g1
�
e�T pX0 � m̄0

T q � ΓT
�
Y
�

� eTE
�
g1
�
e�T pX0 � m̄0

T q � ΓT
��pm̄ε

T � m̄0
T q

�Opε2q,

where the Landau symbol Opε2q is independent of X0 and Y . Recalling that
sinhpT qErgpe�T pX0 � m̄0

T q � ΓT qs � m̄0
T , we get

�
1 � eTE

�
g1
�
e�T pX0 � m̄0

T q � ΓT
��	�

m̄ε
T � m̄0

T

�
� εeTE

�
g1
�
e�T pX0 � m̄0

T q � ΓT
�
Y
��Opε2q,

that is, since g1 ¤ 0,

m̄ε
T � m̄0

T � εeT
E
�
g1
�
e�T pX0 � m̄0

T q � ΓT
�
Y
�

1 � eTE
�
g1
�
e�T pX0 � m̄0

T q � ΓT
�� �Opε2q.

Recall from (5) that

V
�
0,LpX0q

� � �e�2T e�1
T m̄0

T ,

which shows that Vp0, �q is differentiable with respect to the measure argu-
ment; also, for any µ P P2pRq and v P R,

BµVp0, µqpvq � � e�2TE
�
g1
�
e�T v � eT eTVp0, µq � ΓT

��
1 � eTE

�
g1
�
e�TX0 � eT eTVp0, µq � ΓT

�� .
It is absolutely obvious to check that BµVp0, µqpvq can be differentiated once
more with respect to µ and v, namely

BvBµVp0, µqpvq � � e�3TE
�
g2
�
e�T v � eT eTVp0, µq � ΓT

��
1 � eTE

�
g1
�
e�TX0 � eT eTVp0, µq � ΓT

�� ,
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whilst the chain rule yields

B2
µVp0, µqpv, v1q

� e�T eT BµVp0, µqpv1q
�

E
�
g2
�
e�T v � eT eTVp0, µq � ΓT

��
1 � eTE

�
g1
�
e�TX0 � eT eTVp0, µq � ΓT

��

� eTE
�
g1
�
e�T v � eT eTVp0, µq � ΓT

��
E
�
g2
�
e�T v � eT eTVp0, µq � ΓT

��
�
1 � eTE

�
g1
�
e�TX0 � eT eTVp0, µq � ΓT

���2



.

The above formulas can be extended to any time t P r0, T s (instead of the
sole t � 0). It suffices to replace T by T � t, eT by eT�t, ΓT by ΓT�t and
then Vp0, µq by Vpt, µq. By (4) and (5), it holds that

Vpt, µq � �e�pT�tq
»
R
E
�
g
�
e�pT�tqv � eT�teT�tVpt, µq � ΓT�t

��
dµpvq,

This prompts us to let

Φpt, yq � �e�pT�tq
»
R
E
�
g
�
e�pT�tqv � eT�teT�ty � ΓT�t

��
dµpvq,

for t P r0, T s and y P R. Obviously, Φ is continuously differentiable with
respect to y and

BΦ

By pt, yq � eT�t

»
R
E
�
g1
�
e�pT�tqv � eT�teT�ty � ΓT�t

��
dµpvq ¤ 0.

Notice also from Itô’s formula that

Φpt, yq

� �e�pT�tq
�»

R
E
�
g
�
e�pT�tqv � eT�teT�ty

��
dµpvq

� 1

2

» T�t
0

»
R
E
�
g2
�
e�pT�tqv � eT�teT�ty � es�pT�tqΓs

��
e2ps�pT�tqqdµpvq



,

so that Φ is continuously differentiable with respect to t. Observing that

Vpt, µq � Φ
�
t,Vpt, µq�,

we deduce from the implicit function theorem that, for any µ P P2pRq, the
function Vp�, µq is continuously differentiable. Also, for any t P r0, T s.

B
BtVpt, µq �

�
1 � BΦ

By
�
t,Vpt, µq�	�1 BΦ

Bt
�
t,Vpt, µq�.

Since V is Lipschitz-continuous in the measure argument, we deduce that
it is in fact jointly continuous. Also, all the derivatives we computed above
are jointly continuous in all their arguments (including time). �
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3.4. Form of the master equation. Returning to (1) and recalling that

pỸt � etȲtq0¤t¤T , and that pYt � Xt � Ỹtq0¤t¤T , we finally end up with the
fact that

Y0 � X0 � V
�
0,LpX0q

�
,

and more generally, by regarding Xt as the initial condition when the system
is restricted to the interval rt, T s, we also have

(6) Yt � Xt � Ỹt � Xt � V
�
t,LpXtq

�
,

which prompts us to let

Upt, x, µq � x� Vpt, µq, pt, x, µq P r0, T s � R� P2pRq.
We then claim:

Proposition 6. Assume that V satisfies the conclusion of Proposition 5,
then the function U satisfies the PDE, set on r0, T s � R� PpRq,

BtUpt, x, µq � Upt, x, µqBxUpt, x, µq � 1

2
B2
xUpt, x, µq

�
»
R
Upt, v, µqBµUpt, x, µqpvqdµpvq � 1

2

»
R
BvBµUpt, x, µqpvqdµpvq

� x�
»
R
fpvqdµpvq � 0,

(7)

for pt, x, µq P r0, T s � R� P2pRq, with the terminal boundary condition

UpT, x, µq � x�
»
R
gpvqdµpvq.

Equation (7) is called the master equation of the system (1). Notice
that, because of the special form of U , the partial derivatives of U in x here
simplify.

Proof. The proof of Proposition 6 consists in expanding (6) by means of
a suitable version of the chain rule for flows of marginal distributions of a
diffusion process, see Lemma 7, and by identifying the expansion with the
backward equation in (1). �

The following lemma is taken from [5, 7].

Lemma 7. Let pχtq0¤t¤T be a real-valued Itô process of the form

dχt � βtdt� dWt,

where pβtq0¤t¤T is a real-valued adapted process satisfying

E
» T

0
β2
t dt   8.
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Let U : r0, T s � R � PpRq Ñ R satisfy the assumption of Proposition 6.
Then, the process pUpt,Xt,LpXtqqq0¤t¤T expands as an Itô process, namely

d
�
U
�
t,Xt,LpXtq

��
�
�
BtU

�
t,Xt,LpXtq

�� BxU
�
t,Xt,LpXtq

�
βt � 1

2
B2
xU

�
t,Xt,LpXtq

�

� E
�BµU�t, x,LpXtq

�pXtqβt
�
x�Xt

� 1

2
E
�BvBµU�t, x,LpXtq

�pXtq
�
x�Xt

	
dt

� BxU
�
t,Xt,LpXtq

�
dWt,

for t P r0, T s.

4. Convergence of the Finite Games

We now address the validity of the limiting formulation. To do so, we
focus on the case when the equilibria in the finite player game are taken
over open loop strategies, see Definition 1.

Throughout this section, we assume that the conclusion of Propo-
sition 5 holds true.

4.1. First-order condition. Actually, we are going to simplify once more
the problem. Instead of addressing the convergence of the equilibria, we
shall address the convergence of the solutions to the first-order condition
that any equilibria must satisfy. Equivalently, this amounts to say that we
shall not address the existence of the equilibria.

We use the same setting as in Section 2. Namely, we are given a col-
lection of N real-valued Brownian motions ppW i

t q0¤t¤T qi�1,��� ,N , where T
is some finite time horizon and N is a fixed integer. These processes are
constructed on a probability space pΩ,F ,Pq and the filtration generated by
the noises and possibly augmented with an initial σ-field F0, independent
of ppW i

t q0¤t¤T qi�1,��� ,N , is denoted by pFtq0¤t¤T . Also, the initial conditions
pXi

0qi�1,��� ,N are assumed to be F0-measurable, square-integrable, indepen-
dent and identically distributed.

By the game version of the Pontryagin principle, see for instance [5, Chap.
2], any equilibria must satisfy the following forward-backward system:

dXi
t � �Y i

t dt� dW i
t ,

dY i
t � �

�
Xi
t �

»
R
fpxqdµ̄N,it pxq

	
dt�

Ņ

j�1

Zi,jt dW j
t ,

(8)

for t P r0, T s and i � 1, � � � , N , and with the terminal boundary condition

Y i
T � Xi

T �
»
R
gpxqdµ̄N,iT pxq.

As already explained, the solutions of the backward equations are required
to be adapted and the martingale integrands to be square-integrable. By
using the same kind of change of variable as in Section 2, we can “remove”
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the linear term in x in the backward component; thanks to [8], we can deduce
that the above system is uniquely solvable when f and g are bounded and
Lipschitz continuous.

Following the strategy introduced in [3], we let

Ȳ i
t � U

�
t,Xi

t , µ̄
N
t

�
, Z̄it � BxU

�
t,Xi

t , µ̄
N
t

� � 1, t P r0, T s,
for i P t1, � � � , Nu, with

(9) µ̄Nt � 1

N

Ņ

j�1

δ
Xj

t
, t P r0, T s.

The main strategy for addressing the convergence of the solution to (8) (as
N tends to 8) is to consider the distance between pȲ i

t q0¤t¤T and pY i
t q0¤t¤T ,

which is the purpose of the following claim.

Proposition 8. There exists a constant C, independent of N and of the
realization of the Erdös-Renyi graph, such that

sup
0¤t¤T

�
1

N

Ņ

i�1

E
�|Ȳ i

t � Y i
t |2

�


¤ C

N
� C

1

N

Ņ

i�1

E
�� 1

Ni
1Ni¥1

Ņ

j�1

�
εi,jgpXj

T q
�� 1

N

Ņ

j�1

gpXj
T q
	2�

� C

» T
0

1

N

Ņ

i�1

E
�� 1

Ni
1Ni¥1

Ņ

j�1

�
εi,jfpXj

t q
�� 1

N

Ņ

j�1

fpXj
t q
	2�

dt.

As made clear below, the proof is based on the standard Itô formula,
applied to the function:

ui : r0, T s � Rd Q pt, x1, � � � , xN q ÞÑ U
�
t, xi, µ̄Nx

�
, µ̄Nx � 1

N

Ņ

j�1

δxj .

To do so, we must explain how to compute the (Euclidean) derivatives of
ui in terms of the Wasserstein derivative of U . The following is taken from
[3, 7] or [5].

Bxiuipt, x1, � � � , xN q � BxU
�
t, xi, µ̄Nx

�� 1

N
BµU

�
t, xi, µ̄N

�pxiq
Bxjuipt, x1, � � � , xN q � 1

N
BµU

�
t, xi, µ̄Nx

�pxjq, j �� i,

B2
xiu

ipt, x1, � � � , xN q � B2
xU

�
t, xi, µ̄Nx

�� 1

N
BvBµU

�
t, xi, µ̄Nx

�pxiq
� 1

N2
B2
µU

�
t, xi, µ̄Nx

�pxi, xiq
� 1

N
BvBµU

�
t, xi, µ̄Nx

�pxiq � 1

N2
B2
µU

�
t, xi, µ̄Nx

�pxi, xiq,
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and

B2
xju

ipt, x1, � � � , xN q � 1

N
BvBµU

�
t, xi, µ̄Nx

�pxjq
� 1

N2
B2
µU

�
t, xi, µ̄Nx

�pxj , xjq, j �� i,

where, to compute the second-order derivatives, we used the fact that, in our
case, BxUpt, x, µq is constant (equal to 1) and BµUpt, x, µqpvq is independent
of x.

Proof. By applying Itô’s formula and by implementing the PDE satisfied by
U at point pt, xi, µ̄Nx q, we get

dȲ i
t � BxU

�
t,Xi

t , µ̄
N
t

��
U
�
t,Xi

t , µ̄
N
t

�� Y i
t

	
dt

� 1

N

Ņ

j�1

BµU
�
t,Xi

t , µ̄
N
t

�pXj
t q
�
U
�
t,Xj

t , µ̄
N
t

�� Y j
t

	
dt

� 1

2N2

Ņ

j�1

B2
µU

�
t,Xi

t , µ̄
N
t

�pXj
t , X

j
t qdt

�
�
Xi
t �

»
R
fpxqdµ̄Nt

	
dt

� Z̄itdW
i
t �

1

N

Ņ

j�1

BµU
�
t,Xi

t , µ̄
N
t

�pXj
t qdW j

t .

Inserting the backward equation satisfied by pY i
t q0¤t¤T and recalling that

pȲ i
t � Upt,Xi

t , µ̄
N
t qq0¤t¤T , we obtain

d
�
Ȳ i
t � Y i

t

� � BxU
�
t,Xi

t , µ̄
N
t

��
Ȳ i
t � Y i

t

�
dt

� 1

N

Ņ

j�1

BµU
�
t,Xi

t , µ̄
N
t

�pXj
t q
�
Ȳ j
t � Y j

t

�
dt

� 1

2N2

Ņ

j�1

B2
µU

�
t,Xi

t , µ̄
N
t

�pXj
t , X

j
t qdt

�
� 1

Ni

Ņ

j�1

εi,jfpXj
t q �

1

N

Ņ

j�1

fpXj
t q
	
dt

�
Ņ

j�1

�
Z̄it1i�j �

1

N
BµU

�
t,Xi

t , µ̄
N
t

�pXj
t q � Zi,jt

	
dW j

t .
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Taking the square and then the expectation, we deduce that there exists a
constant C, independent of N and i, such that, for all t P r0, T s,

dE
�|Ȳ i

t � Y i
t |2

� ¤ CE
�|Ȳ i

t � Y i
t |2

�
dt

� C
1

N

Ņ

j�1

E
�|Ȳ j

t � Y j
t |2

�
dt

� C
! 1

N
� E

�� 1

Ni

Ņ

j�1

εi,jfpXj
t q �

1

N

Ņ

j�1

fpXj
t q
	2�)

dt.

where we used the fact that the derivatives of U are bounded.
Recalling that Ȳ i

T � UpT,Xi
T , µ̄

N
T q � Xi

T � ³
R gpxqdµ̄NT pxq, taking the

mean over i P t1, . . . , Nu and appealing to Gronwall’s lemma, we obtain

sup
0¤t¤T

�
1

N

Ņ

i�1

E
�|Ȳ i

t � Y i
t |2

�


¤ C

N
� C

1

N

Ņ

i�1

E
�� 1

Ni

Ņ

j�1

�
εi,jgpXj

T q
�� 1

N

Ņ

j�1

gpXj
T q
	2�

� C

» T
0

1

N

Ņ

i�1

E
�� 1

Ni

Ņ

j�1

�
εi,jfpXj

t q
�� 1

N

Ņ

j�1

fpXj
t q
	2�

dt,

(10)

which completes the proof. �

4.2. Almost sure analysis on the graph. We now compute (with a sim-
ilar computation for the term driven by f):

1

N

Ņ

i�1

E
�� 1

Ni

Ņ

j�1

�
εi,jgpXj

T q
�� 1

N

Ņ

j�1

gpXj
T q
	2�

� E
�

1

N

Ņ

i�1

�
1Ni¥1

N2
i

Ņ

j,`�1

�
εi,jεi,`gpXj

T qgpX`
T q
�

� 1

N2

Ņ

j,`�1

gpXj
T qgpX`

T q

�

� 2

N2
E
� Ņ

i�1

1Ni¥1

Ni

Ņ

j,`�1

�
εi,jgpXj

T qgpX`
T q
��
.

(11)
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Observe that

1

N

Ņ

i�1

1Ni¥1

N2
i

Ņ

j,`�1

�
εi,jεi,`gpXj

T qgpX`
T q
�

� 1

N

Ņ

j,`�1

�� Ņ

i�1

1Ni¥1

N2
i

εi,jεi,`


gpXj

T qgpX`
T q
�

� 1

N2

Ņ

j,`�1

��
1

N

Ņ

i�1

N2

N2
i

1Ni¥1ε
i,jεi,`



gpXj

T qgpX`
T q
�
,

(12)

and,

2

N2

Ņ

i�1

1Ni¥1

Ni

Ņ

j,`�1

�
εi,jgpXj

T qgpX`
T q
�

� 2

N2

Ņ

j,`�1

�� Ņ

i�1

1Ni¥1

Ni
εi,j



gpXj

T qgpX`
T q
�

� 2

N2

Ņ

j,`�1

��
1

N

Ņ

i�1

N

Ni
1Ni¥1ε

i,j



gpXj

T qgpX`
T q
�
.

(13)

We claim:

Proposition 9. On pΞ,G,Pq, consider a sequence pεi,jqj¡i¥1 of indepen-
dent and identically distributed Bernoulli random variables of parameter
p P p0, 1q. Let εi,i � 0 and εi,j � εj,i if i ¡ j.

Then, P almost surely,

lim
NÑ8

1

N2

Ņ

j,`�1

����1 � 1

N

Ņ

i�1

N2

N2
i

1Ni¥1ε
i,jεi,`

���� � 0,

lim
NÑ8

1

N

Ņ

j�1

����1 � 1

N

Ņ

i�1

N

Ni
1Ni¥1ε

i,j

���� � 0,

where

Ni � 1

N

Ņ

j�1

εi,j .

Proof. Fix N ¥ 2 and observe, for a given i P t1, � � � , Nu, that the random
variables pεi,jqj ��i are independent and identically distributed. By Hoeffd-
ing’s inequality,

(14) @ε ¡ 0, P
���� Ni

N � 1
� p

��� ¥ ε
�
¤ exp

��2pN � 1qε2
�
.

First Step. By (14), we have

@t ¡ 0, P
�?

N � 1
��� Ni

N � 1
� p

��� ¥ t
�
¤ expp�2t2q,
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from which we deduce that, for any integer q ¥ 1,

E
���� Ni

N � 1
� p

���q� ¤ Cq

N q{2
,

for a constant Cq only depending on q. Hence,

E
����Ni

N
� p

���q� ¤ 2q�1E
���� Ni

N � 1
� p

���q�� 2q�1E
����Ni

N
� Ni

N � 1

���q�

¤ Cq

N q{2
,

(15)

where we allowed the constant Cq to vary from line to line.

Second Step. By (14), we also have, for any large enough real k ¥ 1,
precisely for 1{k ¤ p{2,

P
�N � 1

Ni
1Ni¥1 ¥ k

�
¤ P

� Ni

N � 1
¤ 1

k

�

¤ P
���� Ni

N � 1
� p

��� ¥ p

2

�

¤ exp
��pN � 1qp2

2

�
.

In particular, for any integer q ¥ 1,

E
��N � 1

Ni

	q
1Ni¥1

�
¤ q

» N
0
kq�1P

�N � 1

Ni
1Ni¥1 ¥ k

�
dk

¤ q

» 2{p

0
kq�1dk � q

» N
0
kq�1 exp

��pN � 1qp2

2

�
dk

¤ 2q

pq
�N q exp

��pN � 1qp2

2

�
.

Allowing the constant Cq to depend on p, we obtain

E
��N
Ni

	q
1Ni¥1

�
¤ Cq.(16)

By (15) and (16) and by Cauchy-Schwarz inequality,

E
����N
Ni

1Ni¥1 � 1

p

���q� � E
��N1Ni¥1

pNi

	q���p� Ni

N

���q�� 1

pq
P
�
Ni � 0

�

¤ E
��N1Ni¥1

pNi

	q���p� Ni

N

���q�� 1

pq
P
���� Ni

N � 1
� p

��� ¥ p
�

¤ Cq

N q{2
,

where we made use of (14) again to derive the last term in the second line.
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Third Step. We now prove the second claim in the statement of Proposi-
tion 9.

1

N

Ņ

j�1

����1 � 1

N

Ņ

i�1

N

Ni
1Ni¥1ε

i,j

����

¤ 1

N

Ņ

j�1

���� 1

N

Ņ

i�1

�N
Ni

1Ni¥1 � 1

p

	
εi,j

����� 1

pN

Ņ

j�1

����Nj

N
� p

����

¤ 1

N

Ņ

i�1

����NNi
1Ni¥1 � 1

p

����� 1

pN

Ņ

j�1

����Nj

N
� p

����.
Taking the power q and then the expectation under P and appealing to the
conclusions of the two first steps, we get

E

��
1

N

Ņ

j�1

����1 � 1

N

Ņ

i�1

N

Ni
1Ni¥1ε

i,j

����

q�

¤ Cq

N q{2
,

which suffices to conclude.

Fourth Step. In order to tackle the first claim, we first observe that

E
����N2

N2
i

1Ni¥1 � 1

p2

���q� ¤ E
����N
Ni

1Ni¥1 � 1

p

���2q�1{2
E
����N
Ni

1Ni¥1 � 1

p

���2q�1{2
.

By (16) and the conclusion of the second step, we deduce that

E
����N2

N2
i

1Ni¥1 � 1

p2

���q� ¤ Cq

N q{2
.

We also note that, for any given j �� `, the random variables pεi,`εi,jqi ��j,i��`
are independent and follow the same Bernoulli distribution of parameter p2.
Therefore, proceeding as in the first step, we have

E
���� 1

N

Ņ

i�1

εi,`εi,j � p2
���q� ¤ Cq

N q{2
.

In order to complete the proof, it remains to see, in analogy with the third
step, that

1

N2

Ņ

j,`�1

����1 � 1

N

Ņ

i�1

N2

N2
i

1Ni¥1ε
i,jεi,`

����

¤ 1

N

Ņ

i�1

����N
2

N2
i

1Ni¥1 � 1

p2

����� 1

N2p2

Ņ

j,`�1

����p2 � 1

N

Ņ

i�1

εi,jεi,`
����.

Taking the power q and then the expectation under P,

E

��
1

N2

Ņ

j,`�1

����1 � 1

N

Ņ

i�1

N2

N2
i

1Ni¥1ε
i,jεi,`

����

q�

¤ Cq

N q{2
,
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which yields the result. �

4.3. Final statement. From now on, we assume that pΩ,F ,Pq is equipped
with an infinite sequence of independent Brownian motions ppW i

t q0¤t¤T qi¥1

and with an infinite sequence of identically distributed and independent
initial conditions pXi

0qi¥1, both sequences being required to be independent.
Here then is the final statement.

Theorem 10. Assume that f and g are bounded and Lipschitz continuous
and that the conclusion of Proposition 5 holds true.

On pΞ,G,Pq, consider a sequence pεi,jqj¡i¥1 of independent and identi-
cally distributed Bernoulli random variables of parameter p P p0, 1q. Let
εi,i � 0 and εi,j � εj,i if i ¡ j.

Then, P almost surely,

lim
NÑ8

sup
0¤t¤T

E
�
W2pµ̄Nt , µtq2

� � 0,

where W2 denotes the 2-Wasserstein distance, pµ̄Nt q0¤t¤T is as in (9) and
pµtq0¤t¤T is equal to pLpXtqq0¤t¤T , pXtq0¤t¤T denoting the forward compo-
nent of the solution to (1).

Proof. By (11), (12) and (13), and by Proposition 9, we deduce that there
exists a sequence of random variables pδN qN¥1 constructed on pΞ,G,Pq such
that

P
�

lim
NÑ8

δN � 0
� � 1,

and
1

N

Ņ

i�1

E
�� 1

Ni

Ņ

j�1

�
εi,jgpXj

T q
�� 1

N

Ņ

j�1

gpXj
T q
	2�

¤ δN .

Proceeding similarly with the terms driven by f in (10), we deduce that

(17) sup
0¤t¤T

�
1

N

Ņ

i�1

E
�|Ȳ i

t � Y i
t |2

�
 ¤ δN ,

the details of pδN qN¥1 being allowed to change from line to line.

For any i ¥ 1, call ppX̂i
tq0¤t¤T qi¥1 the copy of pXtq0¤t¤T when driven by

pXi
0, pW i

t q0¤t¤T q instead of pX0, pWtq0¤t¤T q, namely

dX̂i
t � �U

�
t, X̂i

t ,LpX̂i
tq
�
dt� dW i

t , t P r0, T s ; X̂i
0 � Xi

0.

Then, recalling that pȲ i
t � Upt,Xi

t , µ̄
N
t qq0¤t¤T and using the Lipschitz prop-

erty of U in x and µ, we have

E
�|X̂i

t �Xi
t |2
� ¤ C

» t
0
E
�|Ȳ i

s �Y i
s |2

�
ds�C

» t
0
E
�
W2pµ̄Ns , µsq2

�
ds, t P r0, T s,

for a constant C independent of N and t. Above, we used the identity
pµt � LpX̂i

tqq0¤t¤T . Taking the mean over i and using (17), we obtain

E
�
W2pµ̄Nt , µ̂Nt q2

� ¤ δN � C

» t
0
E
�
W2pµ̄Ns , µsq2

�
ds, t P r0, T s,
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where we let

µ̂Nt � 1

N

Ņ

i�1

δX̂i
t
, t P r0, T s.

This yields

sup
0¤t¤T

E
�
W2pµ̄Nt , µ̂Nt q2

� ¤ δN �
» T

0
E
�
W2pµ̂Nt , µtq2

�
dt.

As µ̂Nt in the right-hand side is the empirical distribution of an independent
and identically distributed sample of law µt, for each t P r0, T s, the term
ErW2pµ̂Nt , µtq2s tends to 0 as N tends to 8. As sup0¤t¤T ErW2pµ̂Nt , µtq2s ¤
2 sup0¤t¤T Er|Xt|2s   8, Lebesgue’s dominated convergence theorem shows
that the integral tends to 0 as well. Hence,

lim
NÑ0

sup
0¤t¤T

E
�
W2pµ̄Nt , µ̂Nt q2

� � 0.

It remains to observe that, in fact,

lim
NÑ0

sup
0¤t¤T

E
�
W2pµ̂Nt , µtq2

� � 0,

which follows from a uniform continuity argument. Indeed, for any 0 ¤ s  
t ¤ T ,

E
����W2pµ̂Nt , µtq2 �W2pµ̂Ns , µsq2

���� ¤ CE
����W2pµ̂Nt , µtq �W2pµ̂Ns , µsq

���2�1{2

¤ CE
�
W2pµ̂Nt , µ̂Ns q2 �W2pµt, µsq2

�1{2

¤ CEr|Xt �Xs|2s
¤ Cpt� sq,

the constant C being allowed to vary from line to line. �
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