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Abstract

The goal of this monograph is to prove that any solution of the Cauchy
problem for the capillarity-gravity water waves equations, in one space di-
mension, with periodic, even in space, initial data of small size €, is almost
globally defined in time on Sobolev spaces, i.e. it exists on a time interval of
length of magnitude eV for any N, as soon as the initial data are smooth
enough, and the gravity-capillarity parameters are taken outside an excep-
tional subset of zero measure. In contrast to the many results known for
these equations on the real line, with decaying Cauchy data, one cannot
make use of dispersive properties of the linear flow. Instead, our method is
based on a normal forms procedure, in order to eliminate those contribu-
tions to the Sobolev energy that are of lower degree of homogeneity in the
solution.

Since the water waves equations are a quasi-linear system, usual normal
forms approaches would face the well known problem of losses of derivatives
in the unbounded transformations. In this monograph, to overcome such
a difficulty, after a paralinearization of the capillarity-gravity water waves
equations, necessary to obtain energy estimates, and thus local existence
of the solutions, we first perform several paradifferential reductions of the
equations to obtain a diagonal system with constant coefficients symbols, up
to smoothing remainders. Then we may start with a normal form procedure
where the small divisors are compensated by the previous paradifferential
regularization. The reversible structure of the water waves equations, and
the fact that we look for solutions even in z, guarantees a key cancellation
which prevents the growth of the Sobolev norms of the solutions.

Keywords: Capillarity-gravity water waves equations, Long-time existence, Paradifferen-
tial calculus, Normal forms. MSC 76B15, 76B45, 35Q35, 35550, 37J40, 7T0K45.
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Chapter 0O

Introduction

0.1 Main Theorem

The capillarity-gravity water waves equations describe the motion of the
interface between an incompressible irrotational fluid in a gravity field and
air, in the presence of surface tension. In the case of the one dimensional
problem with finite depth, corresponding to a two-dimensional fluid, the
velocity of the fluid is given by the gradient of an harmonic potential @,
called velocity potential, defined on the time dependent domain

0 = {(w,y) eER?—h<y< n(t,x)} .

As soon as the profile n(t, x) is known, ® is determined by the knowledge
of its restriction to y = n(t,z), say ¥(t,x) = ®(t,z,n(t,z)), and by the
Neumann boundary condition at the bottom dy®|,—_; = 0. The resulting
system on (n,) is the Craig-Sulem-Zakharov formulation of the capillarity-
gravity water waves equations

o = G(n)y

0.1.1
R R R LY

1 (09 + G(n)y)?
2 1472

where g > 0 is the acceleration of gravity, > 0 the surface tension, ' = 9,7,

H(n) = 0:[(0an)(1 + (9m)*) 4]

is the mean curvature of the wave profile, and G(7) is the Dirichlet-Neumann
operator, defined in terms of the potential ® by

G(U)T/) = (83/(1) - amnamq))(t’ z, n(t’ :C))

(see [25] and [66] for the derivation of (L)) when the surface tension van-
ishes, and the book of Lannes [53] for a presentation of different models of

1



2 CHAPTER 0. INTRODUCTION

water waves). Local and global existence of solutions for these equations
has been the object of intensive studies during the last years.

In the case k = 0, the problem of local existence of solutions with smooth
and small Cauchy data with Sobolev regularity, defined on R, has been
solved by Nalimov [58], for the infinite depth problem, and by Yosihara [65],
for finite depth (see also Craig [23]). For large Cauchy data, local existence
in infinite depth has been proved by S. Wu [61] (see [63] for the case of two
space dimensions, i.e. a 3D fluid). The similar question in finite depth (for
a variable bottom in any dimension) has been solved by Lannes [52]. The
case of local existence for the free surface incompressible Euler equation has
been settled by Lindblad [55].

Concerning the case of positive k, local existence of solutions with data
in Sobolev spaces is due to Beyer and Gunther [I7] and to Coutand and
Shkroller [22] in the case of solutions of the incompressible free boundary
Euler equation. Ifrim and Tataru [43] studied recently local existence when
the fluid has constant vorticity. The case of finite depth has been settled
by Ming and Zhang [56] and arbitrary bottoms have been considered by
Alazard, Burq and Zuily [2] for rough initial data. Finally, the problem
of local existence with Cauchy data that are periodic in space, instead of
lying in a Sobolev space on R?, has been established by Ambrose [10] and
Ambrose-Masmoudi [II] for x > 0 in the case of infinite depth, and by
Schweizer [60] for finite depth (even with a non zero vorticity). The case of
non-localized Cauchy data lying in uniformly local spaces has been treated
by Alazard, Burq and Zuily, in the case of arbitrary rough bottoms [4].

Regarding to long time existence of solutions of the water waves equa-
tions, most results have been obtained when Cauchy data are small, smooth
and decaying at infinity, which allows to exploit the dispersive properties
of the flow of the linear part of the equations. The first contribution has
been the one of Sijue Wu [62], who showed that in one space dimension, i.e.
for a two dimensional fluid of infinite depth, solutions of the water waves
equations with x = 0 exist over a time interval of exponential length e/
when the size € of the initial data goes to zero. In two space dimensions, i.e.
for three dimensional fluids, global existence with small decaying data has
been obtained independently by Germain, Masmoudi and Shatah [36] and
by Wu [64]. Global existence for small data in one space dimension has been
proved independently by Ionescu and Pusateri [45], Alazard and Delort [5]
and by Ifrim and Tataru [44], for infinite depth fluids.

For the capillarity-gravity water waves equations, i.e. when x > 0, global
existence is known in two space dimensions (three dimensional fluids) in
infinite depth by Deng, Ionescu, Pausader and Pusateri [31]. When the
surface tension is positive, but the gravity g vanishes, global solutions in
infinite depth fluids have been proved to exist by Germain, Masmoudi and
Shatah [37] in dimension 2 and by Ionescu and Pusateri [46] in dimension 1.

Finally, long time existence results have been obtained independently
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by Ifrim and Tataru [42] and Ionescu and Pusateri [46] for small data, that
do not necessarily decay at infinity. These authors proved that, in the case
k > 0, g = 0 and for infinite depth fluids, data of size € in some Sobolev
space (periodic or on the line), give rise to solutions defined on interval times
of length at least c/€? (instead of the usual lifetime in c/e that holds true
in general for a nonlinear equation with quadratic non-linearity). In [43],
Ifrim and Tataru obtain a similar result when x = 0, g > 0 and constant
vorticity. The case of a zero vorticity had been previously treated by Hunter,
Ifrim and Tataru in [41]. It is implicitly contained in the energy estimates
of Wu [61]. Very recently, Harrop-Griffiths, Ifrim and Tataru [40] obtained
a ce2 lower bound for the time of existence in the case Kk = 0, g > 0, for
irrotational incompressible fluids with finite depth.

The goal of this monograph is to get, for one dimensional space periodic
Cauchy data of size €, solutions of the water waves equations (LI with
g > 0,k > 0 defined over a time interval of length cye™V, for arbitrary N.
We shall be able to achieve this almost global existence result if the initial
datum (79, 1p) is smooth enough, even in = and 7y has zero average.

Solutions (n(t,z),v(t,z)) of (LLI]) that are even in x are called “stand-
ing waves”. This property is preserved during the evolution of (ILII]). In
this case also the velocity potential ®(¢,x,y) is even and 2m-periodic in x
and so the xz-component of the velocity field (®,,®,) vanishes at = k,
Vk € Z. Hence there is no flux of fluid through the lines = = kn, k € Z, and
a solution of the system ((LII]) physically describes the motion of a liquid
confined between two walls.

The assumption that ng has zero average is preserved during the evo-
lutions because the “mass” [ n(x)dx is a prime integral of (LLI]). The

1
component 7(t, ) of the solution will thus lie in a Sobolev space Hg+z (Th)
of periodic functions with zero mean.

Concerning 1, notice that the right hand side of (0.1 is well defined
when 9 is in a space of functions modulo constants (which is natural, as
only the gradient of the velocity potential ® has a physical meaning). Thus,
projecting the second equation on functions modulo constzlmts, we see that
we may look for 1 in an homogeneous Sobolev space H*™1 (T') of periodic
functions modulo constants.

The main result proved in this monograph is the following:

Theorem 1 (Almost global existence of periodic capillarity-gravity
waves) There is a zero measure subset N in |0, +0o[? such that, for any
(g,k) in ]0,+oc[2=N, for any N in N, there is s > 0 and, for any s > so,
there are g > 0,¢ > 0,C > 0 such that, for any € €]0, €[, any even function

1 .
(no,tbo) in Hy ' *(T,R) x H*1(T!,R) with

0l 4 + 80l <



4 CHAPTER 0. INTRODUCTION

system (I11) has a unique classical solution (n,%) defined on ] —T,, T,[xT?!
with T. > ce N, belonging to the space

0 s+3 oml rs—1 ol
Co(] = T, T.[, Hy *(T',R) x H*"1(T",R))

satisfying the initial condition n|i=o = no, Y]i=0 = Yo. Moreover, this so-
lution is even in space and it stays at any time in the ball of center 0 and

1 .
radius Ce of Hg+4(T1,R) X Hsfi(Tl,R).

The above theorem establishes almost global existence of solutions to the
capillarity-gravity water waves equations on a compact manifold, the circle,
when the parameters (g, k) avoid a zero measure subset. It is of different
nature than the results we mentioned above, for decaying Cauchy data on
the line, as there is no longer any dispersive property which makes decay
the solutions, providing long time existence.

Notice also that the assumption that the parameters (g, k) avoid a subset
of zero measure is essential for the normal forms reduction that will play a
seminal role in the proof. Without any restriction on the parameters, it is
known that resonances may occur at the level of the quadratic part of the
non-linearity (the so called “Wilton ripples”) or for higher order terms in
the Taylor expansion of the non-linearity. We refer for example to Craig
and Sulem [26] that discuss the possible dynamical instabilities that might
be generated by this phenomenon.

We do not know if the almost global solutions of the Cauchy problem
proved in Theorem [T] are global in time or not. Let us mention nevertheless
that one may construct classes of global solutions, namely time periodic and
also quasi-periodic ones.

In the case of zero surface tension, existence of small amplitude time
periodic standing wave solutions has been proved first by Plotnikov-Toland
in [59] for a fluid in finite depth, and by Iooss, Plotnikov, Toland in [51], see
also [47], [48], in the case of infinite depth. For the problem with surface
tension existence of time periodic standing wave solutions has been proved
by Alazard-Baldi [1]. Recently Berti-Montalto [16] have extended this result
proving the existence of also time quasi-periodic capillarity-gravity stand-
ing wave solutions, as well as their linear stability. All the above results
prove the existence of solutions when the parameters (g, k, h) satisfy suit-
able non-resonance conditions. Actually the problem of the existence of
periodic/quasi-periodic solutions is faced with small divisors difficulties which
are particularly hard due to the quasi-linear nature of the water waves sys-
tem (LIT).

It is well known that the existence of quasi-periodic motions is possible
just for systems with some algebraic structure which excludes “secular mo-
tions” (using the language of Celestial mechanics) and growth of the Sobolev
norms. The most common ones are the Hamiltonian and the reversible struc-
ture. The water-waves system (L)) exhibits both of them.
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In the proof of Theorem [ it is the reversible structure of (LI, and
the fact that we restrict to solutions even in x, that ensure that terms that
could generate a growth of the Sobolev norms of the standing waves actually
vanish. Let us describe the meaning of that notion of reversibility. We say
that the capillarity-gravity water waves system (L) is reversible with

respect to the involution S = [é _01} since it may be written as a dynamical

system [77 = F[Z], where the vector field F' satisfies

5]
(0.1.2) SFE[]=-F(S[4])-

Equivalently, denoting by ®' the flow of (0.LI]), the reversibility property

(012 is equivalent to
Sod'=d"0s.

We shall discuss in the next sections some intuitive reasons why the presence
of this symmetry may produce stability results.

To conclude we also mention some existence results of other global so-
lutions, as the traveling wave periodic solutions (standing waves are not
traveling because they are even in space). In dimension 2 small amplitude
traveling gravity water waves were proved by Levi-Civita [54]. In dimen-
sion 3 the existence of traveling capillarity-gravity periodic water waves has
been proved by Craig-Nicholls [24] (it is not a small divisor problem) and by
TIooss-Plotinikov [50]-[49] in the case of zero surface tension (in such a case
it is a small divisor problem).

In the following sections, we shall describe the main steps in the proof of
Theorem [ performed in Chapter Bl and Chapter @ The other chapters are
devoted to the construction of the tools needed in those two chapters, and
to the reformulation of the water waves system (I.II]) as a paradifferential
equation. For simplicity we take the depth h = 1 and the gravity g = 1.

0.2 Introduction to the proof

In this section we shall present on a very simplified model some ideas of
the normal forms method for semilinear PDESs, and we shall point out the
deep modifications that this procedure requires for proving the long time
existence Theorem [l for the quasi-linear water waves system ((.LT]). In the
following sections of this introduction, we shall explain in detail our normal
form approach, including several technical aspects of the proof.

Consider a semilinear equation of the form

(Dt — my(Dy))u = P(u,u)

(0.2.1)
U’t:O = €Uo,
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where D; = %% and m(D,) = F~'om,(€£)oF is an even Fourier multiplier
with real valued symbol that depends on some parameter x €]0, +o0o[, acting
on complex valued functions u(x) of L?(T!). In the present case

(0.2.2) ma(€) = (€ tanh €)3 (1 + ¢2)Y/?

comes from the linearization of the water waves equation at the flat surface
and zero velocity potential. Notice that since m,(§) is even in &, the operator
my(D,) leaves invariant the subspace of functions even in x. Assume that
the nonlinearity P is a polynomial, homogeneous of degree p > 2, depending
on (u,u). The first serious difficulty of (LII]), compared to (021)), is, of
course, the quasi-linear nature of the nonlinear vector field in (OLII). We
shall discuss later how to take it into account.

The initial datum ug in (2] is in the Sobolev space H*(T!,C), for
some large s. Writing the Sobolev energy inequality associated to (0.2.1]),
one gets an a priori estimate for the solutions like

t
023) [t e < @,y + O] [ Nutr N e

Since the initial datum ||u(0,-)||zs ~ €, one deduces by a bootstrap argu-
ment the a priori bound ||u(t,-)||gs = O(€) as long as [¢| is smaller than
ce PT1) for some ¢ small. As a consequence, using that ((LZ.1)) is locally
well posed in Sobolev spaces, the solution exists up to times of magnitude
ce P*t1. Nevertheless, one may get a longer existence time combining such
energy bounds to Shatah’s style normal form methods, in the framework
of periodic functions of space (instead of functions defined on R). In the
Hamiltonian setting this procedure is often called Birkhoff normal form,
that for semilinear equations is by now classical, see for example [14], [30],
[13]. The strategy is to look for some polynomial correction Q(u,u) to u,
homogeneous of degree p, such that

(0.2.4) (D¢ — my(Dg))[u + Q(u, w)] = (terms of order ¢ > p)
+ (terms of order p that do not contribute to the energy).

Then energy inequalities for this new equation imply that solutions with
initial datum of size € exist up to times of magnitude ¢=¢ > e P. If one
may repeat the process as many times as desired, one will get finally an
existence time of order e ¥ for any N. The fact that the terms of order p
that are left in ({I.Z4]) do not contribute to the energy inequality follows from
a suitable algebraic properties of the nonlinearity P. In many instances, the
Hamiltonian nature of the vector field P provides that property. Here, we
shall instead exploit another classical structure, namely reversibility, that for
semilinear PDEs has been used in [34] [35]. For the model equation (0:2.1]),
considering the involution S : v — @ acting on the space of functions even in
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x, this amounts to require that the nonlinearity satisfies P(u,u) = P(u,u).
To construct @ from P, let us limit ourselves to the case when for instance
P(u, 1) = ap u‘uP~" for a scalar coefficient a, . Notice that it satisfies the
above reversibility condition if and only if a, ¢ is real. We look for Q(u,u)
as

Q(u,u) = M(u,...,u,,...,u)
—_——— ——
0 p—L

for some p-linear map M to be determined in such a way that
(Dt — my(Dy))M (u, ..., u, @, . .., 04) = —ap eu'@~* 4 higher order terms.

Distributing the time derivative on each argument of M and replacing
Dyu, Dyu from its expression coming from ((.2.1]), we obtain

(0.2.5) (D¢ — mu(Dy))M(u,... u,d,...,a)

l
:ZM(u,...,mK(DJC)u,...,u,ﬁ,...,ﬁ)
j=1

P
- Z M(uy...,u,ty...,mg(Dg)u,..., u)
j=t+1
—my(Dy)M(u,...,u)+ higher order terms
where in the sums m,(D,) acts on the j-th component and where we used
that m,(§) is even. Denote by II,,, n in N, the spectral projector associated

to the nth mode of —A on the circle. Then as m,(§) is even, my(D,)IL,, =
my(n)IL,, so that if we replace in the right hand side of (0.Z3])

M(u,...,mg(Dy)u, ... ,u,a,...,1u)
M(u, ... ,u,t,...,mg(Dg)u,...,u)

my(Dy) M (u, ... ,u)

by respectively

Wy M (g uny ooy () o g, o g, oy gy - oo M uy)
Wy M (g, oo Mg, Ty wpgas oo e () g, oo T uy)
My (Np 1)y M (T, - Tl g, gy gy oo T )

we get for the terms homogeneous of degree p in the right hand side of (0.2.5))
the expression
(0.2.6)

Dy o(na, .. npy1) o M (T un, oo Ty ug, iy gy oo Tl up),

with the “small divisors”
p+1

)4
Dm,f(nla e anp+1) = Z ml’u(n]) - Z mli(n]) .
7=1

j=t+1
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In order to obtain ([(.2.4]), one would have thus to choose M so that
(0.2.7)

p
Dyo(n, .- npg 1)y, Mgy, ) = = (ap e [ T, uy)
j=1

for any ni,...,np41 such that Z?g e;n; = 0 for some choice of the signs
€j € {—1,+1}. Suppose that the following non-resonance condition holds:
there is Ny such that

(0.2.8) | Dys(ni,...,npr1)| > c(third largest among ny, ..., nyy1) 0
for any n1,...,np41 except in the case when
. p+1
(0.2.9) pisodd, ¢ ==——, and {ni,...,n¢} = {ne1,...,npy1},
for which Dy, ¢(n1, . ..,np41) vanishes for any . In several instances, it turns

out that, when the symbol & — m, (&) is analytic/sub-analytic and satisfies
suitable “non degeneracy” conditions, then ([(.Z8)) can be verified for any x
taken outside a subset of zero measure. This is the case, for example, for the
symbol my (&) given in ([0.2.2]), see Proposition [ below. Notice also that,
for m,(§) in (@2.2), the divisor Dy, ¢(n1,...,np+1) vanishes as well when all
frequencies ny are zero, but we ignore this point in this introduction, as we
shall dispose of it by the fact that in the water waves system ((.II]) the
function 7 has zero average and 1 is defined modulo constants.

Except in case (0.29), one may define M by division of (.Z7)). The
small divisor condition (I.Z8]) and the fact that P is semilinear imply that
M is a multilinear map that is bounded on H® for any large enough s, and
thus the associated transformation u — u+Q(u, u) is bounded and invertible
in a neighborhood of the origin of H®. In the “resonant” case (.29, the
corresponding term homogeneous of degree p, that is of the form

-1

_Hn[ [GQZ—LE H |Hnju|2nngu},
j=1

cannot be eliminated in the right hand side of ((ILZ3]), but it does not con-
tribute to the energy because the coefficient as_1, is real. In dynamical
systems language the “actions” HHnuH%2 are prime integrals of the resulting
“resonant” system. The above procedure can be iterated at higher orders.
The fact that the terms of order p that are left at each step do not contribute
to the growth of the Sobolev norms is a consequence of the preservation of
the reversible structure and the fact that we restrict to a subspace of func-
tions even in .

In trying to implement the above procedure for the complete water waves
system (0.I1I]) many considerable problems arise.
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1. The first difficulty, that is already present in the local theory of water
waves type equations, is the fact that (0I1]) is a quasi-linear system for
which a direct application of energy inequalities makes apparently lose
derivatives. This problem is now well understood (see references in sec-
tion [0.3] below) and, following the now classical approach of Alazard-
Métivier [7], we settle it writing ((ILIT]) as a paradifferential system in
terms of the so called “good unknown”. However we cannot directly
use the results in [7} 2, [6] since we have to ensure that the new parad-
ifferential system admits a polynomial expansion as the solution tends
to zero. We explain this procedure in detail in section [I.3. An impor-
tant fact is that the “good unknown” change of variable preserves the
reversible structure.

2. Before performing a normal form analysis as described above, we re-
duce the terms of the water waves para-differential system that are of
positive order to constant coefficients. This step is essential, other-
wise the transformations performed above to decrease the size of the
nonlinearity, like u 4+ Q(u, u), would be unbounded. We perform such
a reduction along the lines of the recent works of Alazard-Baldi [I]
and Berti-Montalto [I6] concerning respectively periodic and quasi-
periodic solutions of (0.LI]), ending up with a system as

(D1 = mu(D) (1 + CUs0)[§ O] = HU;1, D))V = R(U; )V

where H(U;t,§) is a diagonal matrix of Fourier multipliers of order
one (independent of x), with imaginary part of order 0, ((U;t) is a
real valued function of ¢, independent of z, and R(U;t) is a smooth-
ing operator (we neglect here another smoothing remainder Ry (U;t)U,
see (@47)). This reduction to constant coefficients of the unbounded
terms is possible because the dispersion relation £ — my(§) is super-
linear. We explain this procedure in detail in section [0.4]

3. An energy inequality for the above system implies an estimate like
([@Z3) (with p = 2) proving existence of the solution up to times ce™?
(this time corresponds essentially to local existence theory). In order
to prove almost global existence we have thus to eliminate first those
contributions to Im H and R that have a low degree of homogeneity
in U, by a normal form method similar to the one described above.
As in the model case ([ZI]), not all such terms may be eliminated,
and one has to check that those which remain do not make grow the
energy. This is a consequence of reversibility of the system, and of the
fact that our initial data are even real valued function. We explain
this in more detail in section of this introduction.
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0.3 Paradifferential formulation and good unknown

In order to start the proof, it will be useful to rewrite the water waves
equations (O.II)) as a paradifferential system. The classes of paradifferential
operators we shall need will be introduced and studied in detail in Chapters[Z]
and Bl In this introduction, let us just consider symbols given by functions
(x,§) — a(z,§), with limited smoothness in z, satisfying for some real m
estimates

(0.3.1) 0 a(w, &) < C(&)™ ", VBEN,

where (¢) = /1 + &% (the further information we shall need is to track
the dependence of these symbols with respect to the unknown dynamical
variables). One defines for u a test function or a tempered distribution, the
action of the Bony-Weyl quantization of a on u as

0PV (a)u = 5 [ V0 (12, €)uty) dyde,
where a, is the cut-off symbol whose z-Fourier transform a, (7, £) is given by
ay(n, &) = x(n/(&))a(n, &), x being a C§°(R) function equal to one close to
zero, with small enough support. If moreover the symbol a is 27 periodic in
z, then OpBW (a) acts from H*(T') to H*~™(T") for any s, and if (03I is
satisfied also by all z-derivatives of a, then the difference Op®W (a) —a(z, D)
sends H*® to H* for any s,s’. Using the paralinearization formula of Bony,
that asserts that

R(u,v) = uv — Op®W (w)v — Op®W (v)u

has a degree of smoothness equal to the sum of the degrees of smoothness
of u and v (minus some universal constant), one may write, following essen-
tially Alazard and Métivier [7] the capillarity-gravity wave equations as a
paradifferential system

(D — 0PV (Al wit,2,€) [1] = ROn9) [ 1]

where D; = %Bt, A is a matrix of symbols (that depend on ¢,z through
the functions 7,%) and R is a smoothing operator. Omne cannot obtain
immediately energy estimates for the above paradifferential system because
the eigenvalues of the matrix A have unbounded imaginary part when the
frequency & goes to infinity. This apparent loss of derivatives is not the
indication of a genuine instability of the system, but comes from the fact
that one did not write the problem using the right unknowns. This difficulty
has been overcome in several different ways: Sijue Wu [61] uses a Lagrangian
formulation of the water waves system; Alazard-Métivier [7], Alazard-Burq-
Zuily [2] and Lannes [52] use the “good unknown” of Alinhac [9], together
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with paradifferential calculus for the first two groups of authors and Nash-
Moser methods for the last one; Hunter, Ifrim and Tataru [41], as well as
the last two authors in their subsequent works [42], [44], rely on a blending
of the preceding ideas, reformulating the problem in convenient complex
coordinates.

We adopt here the point of view of the good unknown of Alinhac, rewrit-
ing in Chapter [6 the water waves equations (O.LI]) as a paradifferential
system in (n,w) where w, the good unknown, is defined by

(0.3.2) w=1v—0p>V(B)n,
the function B being given by

G +7'0 -
(0'3'3) B = B(nﬂ/f) - (?7)1¢+—ngac1/1 = az(b’z:Oa

where z is a new vertical coordinate in which the free surface of the fluid
is given by z = 0, and ®(z,z) is the harmonic velocity potential ®(z,y)
expressed in the new coordinate system (z,z). An important feature of the
new system satisfied by the new unknown is that its right hand side still
satisfies the reversibility condition (0.1.2]) as (0.I1l), while the Hamiltonian
structure is lost. The fact that the reversibility property is preserved through
the different reductions made in the proof of Theorem [ will play an essential
role in section (and section [£3]), when dealing with normal forms. We
shall discuss this issue more in detail at the end of that section.

The paradifferential water waves system satisfied by the new unknown
(n,w) may be rewritten conveniently in a new complex variable (see section
[6.3]), as presented in detail in section Introduce the Fourier multiplier
operator of order —i given by

DtanhD)1/4

AH(D):(1+I£D2

1 .
If n is in Hg+4(']I'1,]R) and 1 is in Hs_i(']I'l,]R), then w = ¢ — Op®W(B)n
belongs to the same space H 8_%('1['1, R) as well, and we introduce

(0.3.4) u = Ay (D)w + i (D).

We obtain an element of {u € H*(T% C); fr Imudz = 0}/R that we may
identify to the space H $(T!,C) of complex valued H* functions modulo
complex constants. Actually, we are interested only on the subspace of
even functions, that is endowed with the norm 1|1, u[|?,, where II, is
the spectral projector associated to the n-th mode, acting on even periodic
functions, i.e.

1 cos(nx
Myu= (u,on)on, (u,en) = ﬁ - u(x) cos(nz)dx, ¢, = \;E ) .
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The reduction of the water waves equations (0.II]) to a complex system in
the good unknown will lead in section [6.3] to the following proposition (see

Proposition [6.3.1]).

Proposition 2 (Water waves equations in complex coordinates) Let
s> K > p > 1 be integers. Let (n,v) be a continuous function of time
t, defined on some interval I C R, symmetric with respect to t = 0, with

1 )
values in the space H8+ (T, R) x s (T',R), even in x, that solves system
(C11). Define w from (n,v) by (0.-32). Assume moreover that for k < K,
the OF derivative of (n,w) belongs to HSjL4 2 (Tl R) x HS_Z_Ek(’]I‘l,IR{),
and is small enough in that space. Then the function U = [%}, with u given
by (0-37), solves a paradifferential system of the form

(0.3.5) DU = OpBWV(A(U t,2,6))U + R(U; t)U

where the 2 x 2 matriz of symbols A(U;t,x,&) has the form

AUt 2,6) = (ma(&) (1 + U 1, 2) + M jo(Us 2, ) ) [§ 9]

+ (ma(E)CUst2) + A1 o (U3 t,2,6) ) [ ]
+ M (Ui t,2,)[59] + Mo (U t,2,6)[04]

and

(0.3.6) mie(€) = (€ tanh €)'/2(1 + wg?)!/?

is a constant coefficients symbol of order 3/2,
CUst,z) = [(1+7)7%2 - 1]/2

is a real valued function of (t,x), A\j(U;t,x,€) is a symbol of order j, for
J=1,1/2,0,-1/2, with Im \; of order j—1 when j =1 or 1/2, and R(U;t)
18 a 2 X 2 matrix of smoothing operators that gain p derivatives.

Remarks: e The symbol m,; in (.3.6]) describes the dispersion relation of
the linearized system (I at n = 0, ¢» = 0. Notice that £ — my(€) is
even but, in the subspace of functions even in z, the linear frequencies of
oscillations my(n), n € N, are simple.

e One may check that the eigenvalues of the matrix A(U;t,z,§) are symbols
whose imaginary part is of order zero (actually of order —1/2). If A where
a diagonal matrix, this would imply that Op®W (A(U;t, z,€)) is self-adjoint,
modulo a bounded operator, allowing to derive energy estimates for the
solutions of (I.3.5]) for small times. Actually in Proposition Bl below we shall
diagonalize the principal symbol of the system ((L3.5]) obtaining in this way
energy estimates. The property that the imaginary parts of the eigenvalues
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have order zero is a consequence of the fact that we passed to the good
unknown. Had we not done this preliminary reduction, we would have found
eigenvalues with imaginary part of order 1/2, provoking the instability we
mentioned above.

e The matrix A satisfies three algebraic properties that will turn out to be
essential for the proof of the theorem, namely:

- The Reality condition A(U;t,z, —§) = —SA(U;t,xz,£)S, where S is the
matrix S = —[? (1)], which is the translation, in the present complex
formulation, of the involution map S introduced in section [0IL1] in the
definition (I2) of reversibility. This property of A is equivalent, at

the operator level, to

OpBWV(A(Ust,2,8))V = —SOp"V(A(U;t,2,£))SV

and reflects the fact that in system ((L33]), the second equation is
obtained from the first one by complex conjugation (i.e. that (01T
is a real system).

- The Parity preserving condition A(U;t, —x,—§) = A(U;t,z,§), that
implies that the operator OpBW(A) preserves the space of even func-
tions of z.

- The Reversibility condition A(U; —t,z,§) = —SA(Us;t,x,£)S, where
Us(t) = SU(—t). At the level of operators, this condition reads

Op"V(A(U; =, ) = =SOp"™ (A(Us3t,-))S -

We shall see below, in Lemma B.1.3] that, for the homogeneous com-
ponents A, of the symbol A introduced in ((L3.7)), the above condition
amounts to the autonomous reversibility property

Op®V (Ap(SU;-)) = =SOp"V(4,(U; )8,

so that the non-linearity F(U) = OpBW(A,(U;-))U satisfies the re-
versibility condition SF(U) = —F(SU).

The smoothing operator R(U;t) in the right hand side of (0.3.5]) satisfies
similar properties.

From a dynamical point of view we can heuristically understand why
these algebraic properties play a key role. The action of the involution S on
a vector U of complex functions even in x, of the form

U= [%] , u(z) = Zuncos(nx),

n>1
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reads u, +—> —uy, for any n > 1. Introducing action-angle variables by
the relation wu, = i/I,e"%", this involution reads (On, L) — (—=6,,1,). An
autonomous vector field written in action-angle variables

0=9g(0,1), j:f(evl)

is reversible if f(0,I) is odd in 6 and g(,I) is even in #. Now, since the
angles 0 are expected to rotate faster than the actions I, at the first or-
der we could expect the evolution of the actions to be approximated by
the f-averaged equation I(t) = 0, in accordance with the naive “averag-
ing principle”. Thus reversibility appears as a natural algebraic property,
independent of the Hamiltonian nature of a system, which may prevent a
systematic drift of the action variables, i.e. growth of Sobolev norms in the
PDE language. The concept of reversibility was introduced in KAM the-
ory by Moser [57], see also Arnold [12] and [21I] for further developments,
and then it has also been used to prove normal form stability results, see
for example the exponential estimates in [38], [39] near an elliptic equilib-
rium. Concerning PDEs we refer, for KAM results, to Zhang, Gao, Yuan
[67] for reversible derivative Schrédinger equations and Berti, Biasco, Pro-
cesi [I5] for reversible derivative wave equations, and to Faou-Grébert [35]
and Fang-Han-Zhang [34] for normal form results for semi-linear reversible
PDEs.

In view of the normal form procedure that will conclude the proof of
Theorem [ it is not sufficient to define our symbols of paradifferential op-
erators using just estimates (3J]). It will be important to know that these
symbols are polynomial in U up to the order N — 1, plus a non-homogeneous
symbol which vanishes as O(||U||V) as U — 0. More precisely, the classes
of symbols we shall use are given by finite sums

N-1
(0.3.7) AU t,2,8) = Y Ap(U, ... . Us2,€) + An(Ust, 2, €)
p=0

where Ag is a constant coefficients symbol of order m, independent of U,
and A,(U,...,U;z,§), p=1,...,N — 1, resp. Anx(U;t,x,&), are symbols
of order m that depend on U as monomials of degree p, resp. in a non-
homogeneous way vanishing at order O(||U||V) as U — 0. More precisely
Ap(Un, ..., Up;x, &) are symmetric p-linear functions of (Uy, ..., U,) satisfy-
ing bounds of the form

p
10207 Ap(Ty Ut T, Upi 2, €)] < Cln (&)™ T] T, Ul 2
1

where as above II,; is the spectral projector associated to the n;-th mode,
and g is a fixed integer. The meaning of this inequality is that each time
we make act one z-derivative on the symbol, we lose one power of n, i.e.
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one derivative acting on Uy, ...,U,. We allow a fixed extra loss of y deriva-
tives. Assuming that Uy,...,U, are in some Sobolev space HY, we see
that estimates of the form (0.3]) are satisfied by about 97 ~* space deriva~
tives of the symbol A,(U,...,U;x,§). Finally the non-homogeneous symbol
AN (U;t,z,§) satisfies similar estimates with a constant in the right hand
side which vanishes at order N when U goes to zero, see Definition In
the whole monograph, for the homogeneous symbols the dependence on time
t will enter only through the function U = U(t), while the non-homogeneous
symbols may depend explicitly on time t.

Similar decompositions, in multilinear contributions plus a remainder
vanishing at order N when U goes to zero, have to be assumed as well on the
smoothing operators. Consequently, one has to establish a symbolic calculus
for symbols of paradifferential operators that admit such a decomposition,
with remainders of the same type. This is what is done in Chapter 21
Moreover, one has to check that the paradifferential symbols in ([(35]) do
belong to such classes. This obliges us to revisit the paralinearization of the
water wave equations made in [7), [2 [6], in order to verify such a property.
This is the object of ChaptersBland Bl We show that the paralinearization
of the Dirichlet-Neumann operator gives rise to a symbol having the wanted
decomposition in multilinear contributions plus a symbol vanishing at large
order when U goes to zero. We need also to get similar information on the
smoothing remainders. Because of that, we do not make use of a variational
method to study the Dirichlet-Neumann boundary value problem as in |7, 2]
3], but we construct a paradifferential parametrix a la Boutet de Monvel [18]
19] 20], introducing classes of para-Poisson operators whose symbols have
a decomposition in multilinear terms. Next, we apply these results to the
construction of the good unknown and the paralinearization of the water
waves system. In particular, in Proposition and section [(.2]l we provide
the paralinearization formula of the Dirichlet-Neumann operator, and in
Proposition [6.2.1] the paralinearization of the equation for J;w.

Once the water waves system has been written under the paradifferential
form (33]), one may start the reasoning that will ultimately prove the
existence of its solutions over a time interval of length of order eV if the
initial data are of size ¢ and smooth enough.

As already mentioned in section [I.2] our approach consists in two main
steps. The first is a reduction of ((IL3.5]) to a nonlinear system with paradif-
ferential operators with constant coefficients symbols (in x), up to smoothing
remainders. This paradifferential reduction is presented in section [0.4l The
second step is a normal form procedure that decreases the size in U of the
non-linear terms, and it is presented in section We underline that all
the transformations used to reduce to constant coefficients the water waves
system (3.35]) up to smoothing remainders are defined by paradifferential
operators, and they are bounded maps acting on Sobolev spaces H®. Also
all the transformations in the normal form procedure are bounded maps

|

Removed refer-
ence to Wang.

]
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on Sobolev spaces H®, for s large enough. Actually the small divisors will
be compensated either by the paradifferential regularization of the symbols
defining such transformations, either by the smoothing character of the re-
mainders, as we shall explain in detail in section

Notice that it is essential for us to reduce the water waves system (0.3.5])
to constant coefficients before starting a normal forms method which reduces
the size in U of the nonlinear terms, as otherwise the quasi-linear character
of the equations would generate losses of derivatives at each transformation.
Such unbounded changes of variables would just provide a formal normal
form, similarly to the works of Craig-Worfolk [27] and Dyachenko and Za-
kharov [33], for the pure gravity equations. We mention that, in presence
of capillarity, Craig-Sulem [26] have recently proved the boundedness of the
third order Birkhoff normal form transformation. Such a construction of a
bounded normal form at order three is also related to the result in Hunter,
Ifrim and Tataru which proves an e~ 2 lifespan for the solution of the pure
gravity water waves equations with non localized data of size e in [41] (see
also the recent result of the last two authors in the case of a constant non
zero vorticity [43], and [42] for capillarity water waves equations).

In the present work, we overcome the issue of the boundedness of the
normal form using that, after reducing the water waves system to constant
coefficients in x, up to sufficiently regularizing operators, one falls into a
normal form framework similar to the one applicable for semi-linear PDEs.

0.4 Reduction to constant coefficients

In order to prove Theorem [l we are going to constuct for any integer N,
a modified energy E (U(t,)) ~ ||U(t, )qus, equivalent to the square of
the H®-Sobolev norm, that satisfies, along any small amplitude solutions of

([@33]), the bound

(0.4.1) %ES(U@, 9) = O(lU(t, ) N*2), as U 0.

This implies the energy inequality
¢
E.(U() < BUO, ) + 0| [ |0l dr

so that, if E4(U(0,-)) ~ €, one may prove by a bootstrap argument that,
if € is small enough, and ¢ satisfies [t| < ce™" for some small enough c,
then E5(U(t,-)) = O(€?), thus |U(t,-)| zs = O(e). This a priori estimate,
combined with the fact that local existence with smooth Cauchy data holds
true according to [60], implies that the solution may be extended up to times
of magnitude ce ™ (actually local existence could be deduced by system
(0Z7) below, but, to avoid further technicalities, we directly rely on the
results in [60]).
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The construction of a modified energy FE; which satisfies (0L.4.1) will
rely, as already said, on two main conceptually different procedures. First
we shall perform a series of non-linear para-differential changes of variables,
similar to the transformations used in Alazard-Baldi [I] and Berti-Montalto
[16] to reduce the linearized equations (which arise in a Nash-Moser iteration
to prove the existence of periodic and quasi-periodic solutions) to constant
coefficients. Then we shall develop a normal form method parallel to those
used by Bambusi, Delort, Grébert and Szeftel [13], [14], [30], and Faou-
Grébert [35] for semi-linear PDEs. The modified energy FE; is explicitly
constructed in (LZ429) (with ¢ = N —1).

We describe below the reduction steps, and will explain the normal form
method in the next section.

Step 1: Diagonalization of the system

We prove in section B3] using symbolic calculus, that one may replace the
matrix of symbols A in the right hand side of (.33 by a diagonal matrix,
up to a modification of the smoothing operator R(U;t). More precisely, we

get (Proposition B.3.2):

Proposition 3 (Diagonalization of the matrix symbol A) There ex-
ist 2 x 2 matrices of symbols of order 0, P(U;t,-), Q(U;t,-), such that
OpBW(P)oOpBWY(Q) —1d is a p-smoothing operator (for a large given p) so
that, if W = OpBW(Q)U, then W solves the system

(0.4.2) (Dy — Op®V( AV (U3t ) )W = R(U; )W + R'(U;)U

where R'(U;t),R"(U;t) are p-smoothing operators and A1) is a diagonal
matriz of symbols

(04.3) AV t,2,6) = (mu(©)(1 + VWU t,2) + A (U3 t,2,0)) [§ 4]
+ AV WUt 2,6)[ 9]

where () is a real valued function of (t,x), )\g»l) is a symbol of order j,
whose imaginary part is of order j — 1. Moreover, AV has a homogeneous
development of the form (I.371), and it satisfies the reality, parity preserving
and reversibility conditions.

The proof of the above proposition is made through conjugation by
paradifferential operators, in order to decrease successively the order of the
non diagonal terms in the matrix of symbols in ([(IL335]). We may easily ex-
plain the idea of that diagonalization at principal order on the form taken
by equation ([ILII) on the good unknown. In Chapter [6] we shall intro-
duce some real valued function V', depending on 7,1 such that, if we set
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c(t,z) = (14 1'?)73/2, the couple (n,w) satisfies an equation of the form
77[3] = R, where

Vo, —Dtanh D
4.4 = *

(0-4.4) P=0+ 1+ ke(t,x)D? Vo,

and R is given by the action of operators of non positive order on [ Z] , and is

at least quadratic in (1, w). Actually, the first equation in (0.4.4]) comes from

the expression (6.155]) of G(n)y and the second one follows from (6.2.8]). If
Ac(D) 0

0 —An(D) }, we obtain the operator

we conjugate the operator P by [
VO, —my(D)
O + L(t,x)m,i(D) Vo, }

up to remainders whose action on the unknown gives terms of the same form
as R. Conjugating again this system by the matrix valued multiplication
operator [é ot ;))1/2 ], we obtain
5 + VO, —c(t,z)?m, (D)
e, 2)Y2my (D) Vo,

acting on some new unknown [g } If we set u = & + i1}, we get the complex
equation
Ayu = —ic(t,2)?my(D)u + Vou

modulo again remainders as above. This is, at principal order, the diagonal-
ized equation we are seeking for. Actually in order to obtain, after having
performed the above conjugation, another paradifferential equation we have
to use above the paraproduct instead of the multiplication operator.

Step 2: Reduction to constant coefficients at principal order

The goal of the next steps is to reduce to constant coefficients the matrix
symbol AWM in (@Z3). We shall exploit in an essential way that the dis-
persion relation my(€) given by ([3.6]) is superlinear. We start making this
reduction for the principal part of the matrix symbol ((ILZ3]) given according
to (036 by the product of [(1) _01] and of (1 + C(l)(U;t,x))\/E|£|3/2. We
would like to eliminate the z-dependence in that symbol. If we make a time
dependent change of variables y = ®y(t, z), i.e. = @51(25,@/), the above
principal symbol becomes

(1 + O 1,8y (1,2)) V| (8,85 (1)) Plef2.

|y:(I>U (t,{L’)

To get a constant coefficients symbol, we cannot just choose the diffeomor-
phism ®y so that (1 + C(l)(U;t,y))my(I)&l(t,y)|3/2 = 1, namely to take

9,®5 (ty) = (1 + ¢M(U;t,y))~2/3, since @', and thus &y, must be a
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diffeomorphisms of T?, i.e. we need @51(25, y) —y to be periodic. Instead, we
choose @l}l(t,y) =y + ~(t,y) where v(t,y) is the unique periodic function
of y, with zero mean, solving the equation

Ayy(y) = (1+CU; )21+ W (U;t,y) "2 1

where ((U;t) is defined in order to make zero the space average on T!
of the ;ight handside. The difficulty that one encounters is due to the
fact that this change of variables ®; depends on U, so has only limited
smoothness. Because of that, instead of defining a new unknown function
V by the composition V = W o &, we use a paracomposition operator in
the sense of Alinhac [§]. We set V' = &7 W, where the paracomposition
operator ®7; is defined and studied in section (we provide an alternative
definition using flows). In that way, when we compute the equation satisfied
by the unknown V', we still get a paradifferential equation. More precisely,

we prove (Proposition [£1.1]):

Proposition 4 (Reduction of the highest order) If we define ®y as
above and set V = @ W, then V solves the system

(0.4.5)
(De= 0PV ([(A+¢ (U 0))mu () + AU 1,2, 6)] [§ O | +1(Us t,2,)T5) )V
=R (U;t)V + R"(U;t)U
where X is of order 1/2 with Im\ of order —1/2, p is of order one, with
Im i of order zero, R', R" are smoothing operators. Moreover, the reality,
parity preserving and reversibility conditions are still satisfied by the matriz

symbol in the left hand side of (04.5) and the smoothing operators in its
right hand side.

The next step of the proof will be to eliminate the non constant coefficients
parts of A and p up to remainders of very negative order.

Step 3: Reduction to constant coefficients at arbitrary order

Denote by F(U) a diagonal 2 x 2 matrix of symbols of order 1/2 which
is self-adjoint, up to contributions of order zero. We define in section [£2]
for any 6 between —1 and 1 the operator Qpn(0) = exp[i0OpBW (F(U))],
which is the flow generated by the linear system (€2Z3]). Symbolic calculus
shows that the diagonal matrix of symbols of order 3/2 given by

Do(Us+) = (14 ¢(Us6))me ()[4 © ]

transforms as

Qp) (—1)0p" W (Do(U3 ) Qp (1) = 0p®W (Do(Us )
+(1 +£(U;7f))OPBW<{F(U, '),mﬁ(ﬁ)}) [(1) _01} + lower order terms.
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If one conjugates system (L4.3]) by Q) (1), one obtains a similar system
with a new symbol given by

(L4 LU ) mis(€) + MU 2,€) + (1 LU ){F mi}] [§ ]
+ p(U;t,x,&)Zo + lower order terms.

We decompose A = AP + ANP | where AP is the x-average of X and ANP has
zero average. We write in the same way i = i + iNP. Solving the equation

(0.4.6) ((1+ U {Fme} + 3P [§ 0] + 3T, =0

at principal order, we reduce ourselves to the case when the contributions of
order 1 and 1/2 in ((.Z1]) have constant coefficients. Repeating the reasoning
up to some very negative order, we get (Proposition F.2.4]):

Proposition 5 (Reduction to constant coefficients of ((LZ75]) There
is a diagonal matriz F'(U) of symbols of order 1/2 such that if we set V =
Qp@)(=1)V, then V solves the system

(De = 0"V (1 + CUs M) [§ 4] - HU31,€)) )V

(0.4.7) .
= Ri(U;t)V + Ro(U; t)U

where Ry, Ry are p-smoothing operators and H is a diagonal matriz of con-
stant coefficients symbols (in x) of order one, such that Im H is of order
zero. Moreover, the reality, parity preserving and reversibility conditions
are satisfied.

Actually the constant coefficient symbols of H are of order 1/2, see the
remark after Proposition 2.4l This information is not necessary for the
subsequent normal form arguments but it is in agreement with the asymp-
totic expansion of the Floquet exponents of the periodic and quasi-periodic
solutions found in [I], [16].

In equation ((LZ.6]) it is essential that the symbol m,, defined in ([03.6)) is
of order strictly larger than 1, i.e. that the capillarity-gravity linear disper-
sion relation is superlinear. This is what allows to construct a symbol F(U)
that is of order strictly smaller than the one of i in the right hand side,
and to start the induction that eliminates all variable coefficient symbols
up to some order as negative as we want. This is also what implies that
the contributions coming from the conjugation of D; by €2 F(U)(l) enter into
the remainders, as they are of order strictly smaller than the main part. If
the linear part of the operator were just of order one, like for instance for
Klein-Gordon equations, it would be no longer possible to reduce in this way
the system to constant coefficients before performing the normal forms in-
troduced in next section. We refer to [28 [29] and references therein for long
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time existence results for quasi-linear Hamiltonian Klein-Gordon equations.

n (A7), the operators OpBW (14 (U5 t))my(€) [(1] 0 } and OpBW (Re H)
are self adjoint. Consequently, the L? energy inequality associated to that
system reads, for example in the case t > 0,

IV (2, )72 < V(0,7 +/OtHOPBW(ImH(T,S))V(ﬂ-)Hml!V(ﬂ-)HL2 dr

+ /OtIIRl(U; )V (r,) + Ro(Us)U (1, )| g2 [V (7, )| 2 -

Moreover, since the coefficients in left hand side of ((IL47]) are constant in z,
we may commute as many space derivatives as we wants with the equation,
and deduce from the above LZ-estimate a similar inequality for Sobolev
norms. As a consequence, if the symbol Im H, which is of order zero, were
vanishing as O(||U||") when U goes to zero, as well as the smoothing terms
R1, Ry, we would deduce from that the estimate

IVt ) < IV(0,)1% +C/ 1, Mo UV (Mg + 10 (7, )13, d

Using that at ¢ = 0, U is of size ¢ in H®, and that, as long as U remains
small, U and V are of the same magnitude, one would deduce from that,
by bootstrap, an a priori estimate ||U(t,-)| 7. = O(e) over a time interval
of length ce™ for some small ¢. Together with local existence theory, this
would imply that the solution may be extended up to such an interval of
time. In conclusion, to prove our main theorem, we have to show that we
may modify equation (.47 in order to ensure that Im H(U;-) and R;(U;t),
Ry(U;t) will vanish as O(U”) as U goes to zero. We shall achieve this goal
through a normal forms procedure.

0.5 Normal forms

Let B(U;t, &) be a diagonal matrix of constant coefficients symbols of or-
der zero to be determined. We conjugate system @Z1) by ‘the operator
exp(OpBw(B(U;t,§))). Setting V! = exp(OpBW(B(U;t,§)))V, we get
(0.5.1)
(D= Op"V[DiB(WU;,€) + (14 LU ) ma(€)[§ & | = H(U;t,€)] )V
= smoothing terms.

We want to choose B in order to eliminate the contributions to Im H which
are homogeneous of degree p < N. Thus we decompose

H(U;t,€) = ZH Us€) + Hy(U;t,€)
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with Hy,(Uy,...,Up; &) a symmetric p-linear map in (Uy,...,U,) with val-
ues in diagonal matrices of constant coefficient symbols, and Hy a symbol
vanishing at least at order N when U goes to zero. We look for B as

N-1
B=> By(U,...,U;{)
p=1

with B, a p-linear map. Rewriting equation ((L33]) as

DU = m(D)K + terms vanishing at least at order 1 in U,

(such terms are unbounded operators of order 3/2) where K = [(1) _01], we

may write
P
Dy(By(U,...,U)) =>_ By(U,...,U,DUU,...,U)
j=1
P
= Z B,(U,...,Umg(D)KU,U,...,U)+ terms of higher order in U.
j=1

To eliminate the lower order terms contributions in Im H, we are thus re-
duced to find B), so that

p
(0.5.2) > By(U....,Ume(D)KU,U,...,U) =ilm Hy(U,...,U)
j=1

where ]:Ip is computed recursively from H), and from By, p’ < p. Replacing
U= [%} by HEU = [H%Ju} in the first £ components and by IT;, U = [H,?ja]
in the last p — £ ones, and using that

mR(D)ICH,jfj = +m,(n;)IIE

nj?

we see that it is enough to determine B, so that

V4 p
(0.5.3) (Zm,@(nj)— Z m,.i(nj))
j=1 j=+1

x By(IL}, Uy, .. I, U T, Upen, - I Upi )
= ilm H,(IL}, Uy, .. 15 U T, Upgys - 11, Ups 6.
Thus we just have to be able to divide the right hand side of ((IL53]) by the
“small divisor”

p

)4
Di(ni,...,np) = Zmﬁ(nj) - Z my(n;)
j=1

j=t+1
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when the parameter k is taken outside a convenient subset of zero mea-
sure. Clearly, this will not be possible if p is even, £ = p/2 and one has a
two by two cancellation between terms of the first and second sum so that
Dy¢(ni,...,np) = 0. The possibility to solve nevertheless equation ((L5.3))
follows from the following proposition:

Proposition 6 (i) There is a zero measure subset N of |0, +o00| such that,
if k is taken outside N, there are Ng € N, and ¢ > 0 such that for any
ni,...,ny in N¥,

(0.5.4) Dy(n1,...,mp)| > c(ng + -+ 4 ny)~ N0

except if p is even, { =p/2 and {ny,...,n¢} = {ney1,...,np}.
(ii) In the latter case

(0.5.5) Im Hy,(IL U, TL U T, Upyg, - 11, Upi€) = 0.

Proposition [(] allows consequently to solve equation (IL5.3]) in any case, and
thus to eliminate the contributions to Im H of lower degree of homogeneity.
By the estimate ((L5.4]) the small divisor that appears dividing the right hand
side of ([@A3]) by Dy produces a loss of O(Np) derivatives on the smooth-
ness of B, as a function of x, but the associated paradifferential operator
OpBY(B,(U;t,£)) remains bounded on any H*® if U is in H° with a large
o (depending on Ny). Indeed the H*-boundedness of the paradifferential
operator OpBW(B,(U;t,€)) depends only on a finite number (independent
of s) of derivatives of U.

One may proceed in a similar way to eliminate the smoothing contri-
butions, which are homogeneous of low order in U, in the right hand side
of (@LI). More precisely, in section [£4] we shall construct iteratively, by
an analogous normal form method, quasi-invariant modified energy Sobolev
norms for the system (L0.1]), see ([£4.29)), constructing ultimately a modi-
fied energy E; satisfying ((ILAI]). We require at each iterative step a small
divisor estimate as

L p+1
(0.5.6) Z my(ng) — Z me(nj)| > cmax(ng,...,nyr1) 0
j=0 j=t+1
for any integer no, ..., np41 except in the case when
. _ b .
piseven, f= 3’ and {no,...,ne} ={ne1,...,nps1},

and we verify in Lemma 42} (i7) a cancellation similar to (L55]). No-
tice that the small divisors estimate (0.5.6]) is very weak because the right
hand side contains the maximum of all integers ng,...,np41 and not just
the third largest maxs(ng,...,np+1), as in ((LZLE)). The latter condition is
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essential for the normal form approach developed in the papers [14], [13],
[35], concerning semilinear PDEs. It could be imposed as well in the present
context. The use of the weak non resonance condition (I.5.6]) produces losses
of O(Ny) derivatives at each normal form transformation which, however, in
the present approach, are compensated by the smoothing character of the
remainders, when the Sobolev regularity of H? is large enough.

In conclusion the preceding Proposition 6, which is proved in sections
@3] and [T}, is the last remaining step in the proof of the main Theorem [I1

Idea of the proof of Proposition [6: The small divisor estimate (0.5.4)) of
Part (i) follows from more general results of Delort-Szeftel [30] concern-
ing measure estimates of sublevels of subanalytic functions. Part (ii) is a
consequence of the fact that the matrices of symbols I:Ip obtained by the
successive reductions described above still satisfy the reality, parity preserv-
ing and reversibility properties. Combined together, these three properties
may be shown to imply the vanishing of the left hand side of ((IL5.3]), see
Lemma O

As explained above, it is essential that the cancellation property (0L.5.5])
holds in the case when the left hand side of ((IL5.3]) vanishes identically. This
cancellation follows ultimately from the reversible nature of the capillarity-
gravity water waves equations ((LLI]), and it is essential for us that this
property, that holds for system ((LII]), be preserved by all the different
reductions we make. In particular, a key point is that the definition w = ¢ —
OpPW(B)n of the new unknown shows, according to ((.3.3)), that w is an odd
function (actually a linear function) of ¢. Because of that, the water waves
system satisfied by (n,w) will still satisfy the reversibility property (0.I2]).
Actually we prove in Corollary that the new water waves system in the
(n,w) variables satisfies a time dependent reversibility property.

As already mentioned elsewhere, reversibility is not the only algebraic
information that might be used to ensure the solvability of an equation of
the form (.5.3]), and so proving that the terms that could generate a growth
in modified Sobolev norms, actually vanish. An alternative property, that
has been used extensively in other works, is the Hamiltonian character of
the system. In this case, one controls a modified Sobolev energy of the solu-
tion, defined through composition of the usual Sobolev energy by canonical
transformations. In that way, one may pursue all the reductions staying in
the Hamiltonian framework. Equation ((L5.3]) is then replaced by a similar
equation at the level of Hamiltonians, often called “homological equation”,
that may be solved in all cases, except the one corresponding to (ii) of the
preceding proposition. But the contributions to the Hamiltonian generated
by the indices satisfying {n,...,n¢} = {ng41,...,np} when p is even and
¢ = p/2 depend actually only on action coordinates, and thus cannot gener-
ate growth of the energy. We refer to the works of Bambusi-Grébert [14] and
Bambusi, Delort, Grébert and Szeftel [13] were such ideas are developed for
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semi-linear equations, and to [28] 29] for the application of a similar method
to quasi-linear Klein-Gordon type equations.

We have not followed this Hamiltonian approach for the capillarity-
gravity water wave equations because the passage from the initial unknown
to the good one does not seem to preserve the Hamiltonian character of
the system. We exploit instead the reversible structure, whose preservation
through the change of the good unknown is trivial.

Let us mention that an index of notation is provided at the end of the
volume.

Acknowledgement: we thank Walter Craig and Fabio Pusateri for useful
comments which led to an improvement of the manuscript.
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Chapter 1

Main result

1.1 The periodic capillarity-gravity equations

Let h > 0 be a constant, T! = R/(27Z) the circle, and consider an incom-
pressible and irrotational perfect fluid, occupying at time t a two dimensional
domain, periodic in the horizontal variable, given by

(1.1.1) Q= {(z,y) € T" xR; —h <y <n(t,2)},

where 7 : R x T! — R is a smooth enough function such that |||z~ < h.
The velocity field in €2 is then the gradient of some harmonic function @,
called the velocity potential. The evolution of the motion of the fluid is
determined by the knowledge of the two functions

(t,z) = n(t,z), (tzy) = O(t,2,y)

defined for ¢ in some interval, z in T!, (x,%) in Q;, subject to the following
boundary conditions (see for instance the book of Lannes [53])

O = 0y® — (0,1)(0:P) on y = n(t, )
1
(1.1.2) 0% = —gn+wH(n) - 5 [(0:2)” + (9,®)?] on y = 1(t, z)
0y®=0o0ony=—h,
where g > 0 is the acceleration of gravity, x > 0 the surface tension, and
H(n) = 0:[(8em)(1 + (9zm)*) 7]
is the mean curvature. From now on, we shall write ' for 9,n. We define
¢(t’ :C) = ‘I)(t, €, n(t’ :C))

the restriction of the velocity potential ® to the free interface and, following
Zakharov [66] and Craig-Sulem [25], we express (LL2) as a system in the
variables (1, 1).

27
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Define the Dirichlet-Neumann operator G(n) of the upper boundary of
the set Q; as

(1'1'3) G(U)T/) =V 1+ le(anq)”y:n(t,x) = (ayq) - n/axq))(t’ x, n(t’ :C))

where 0, is the outward unit normal at the free interface y = n(¢, ). Accord-
ing to Craig-Sulem [25], (n,1)) satisfies the capillarity-gravity water waves
System

o = G(n)y

1.14
B = gk () - 0w +

1 (0 + G(n)y)?
2 1472 ’

Our goal is to prove that, for fixed h, and almost all values of the parameters
(g,k) €]0,4+00[?, for any fixed integer N, Cauchy data that are smooth
enough, of small enough size € > 0, even in z, generate a solution defined
on a time interval of length at least ce .

Notice that the right hand side of (ILI4)) remains invariant if we replace
(n(x),v(x)) by (n(—x),¥(—x)), so that initial data which are even in x give
rise to a solution that remains even in z at any future time t.

1.2 Statement of the main theorem

Let us introduce some notation. For n in N* we denote by II,, the or-
thogonal projector from L?(T!,C) or L?(T!,C?) to the subspace spanned
by {e™® e~"*} For any s in R, we define

HY(T' R) ™ {u e B*(T", R); / u(e)de = 0}

(1.2.1) T!

75T, R) ¥ H5(T*, R)/R.

Both H{ and the homogeneous Sobolev space H* will be endowed with the
same norm

too 5 \1/2
(1.2.2) lullig = llulge = (3 1Maul2)
n=1

Furthermore, we denote by H§., = H§ .. (T',R), H: = H: (TY,R), the
subspaces of H§(T!,R), H*(T!,R) formed by the functions even in z. Our
main result is the following:

Theorem 1.2.1 (Almost global existence of periodic capillarity-
gravity waves) There is a zero measure subset N in |0, +oo[? such that,
for any (g, k) in )0, +0o[>*~N, for any N in N, there is so > 0 and for any
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s > sg, there are ¢¢ > 0,c¢ > 0,C > 0 such that, for any e €]0, €[, any
1 s 1
function (no, o) € Hg;;j* (TY,R) x Hoy *(TY, R) satisfying

||770||Hg+% + ||’11Z)0||Hs—% < 67

system (I1.1.3)) has a unique classical solution (n, 1) defined on |—T¢, T.[xT!
with T, > ce N, belonging to the space
0 st il 75— ol
C (] —TE,TE[,H (T ,R) X Hey 4(T ,R))

0,ev

satisfying the initial condition n|i—o = 1o, V¥|t=0 = Yo. Moreover this solution

O |
stays at any time in the ball of center 0 and radius Ce of Hg;r\j‘ x Heoy 1.

Remarks: e The above theorem provides an “almost global” solution of
system (LI.4) with small smooth periodic even initial data, when the pa-
rameters (g, k) stay outside a subset of zero measure. Notice that we assume
that g > 0 and x > 0, which will be essential for our proof.

e We assume that at ¢ = 0, n has zero average. It is well known that the
quantity [r1 7(t,x) dz is conserved during the evolution, so that n(t,-) has
zero average at any time.

e The function v is taken in a Sobolev space defined modulo constants,
i.e. the homogeneous Sobolev spaces in (L2Z]). This is related to the fact
that only 0,1 has a physical meaning.

e An essential property is that the water waves system ([L.I.4]) is reversible
in the following sense. Let S be the linear involution i.e. S? =1d,

(1.2.3) S:R? - R?, with matrix [(1] —01] .

Then, denoting by F' = F(n,¢) = [28’]’33] the right hand side in (.14,
we have

(1.2.4) FoS=-SoF,

namely that Fy(n, —¢) = —Fi1(n,v) is odd in ¢ and Fy(n, —¢) = Fa(n, ) is
even in 1.

Denoting by ®! the flow of (LT, the reversibility property (LZ4]) is
equivalent to

Sod =0t 9.

In other words, if [ZZ((?Z‘;’:@‘;))] is the solution of (ILI.4]) with initial condition

7(0;10,%0) = 10, ¥(0;10,%0) = 1o, then

[ ] = [t
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is solution as well of (LI4]), and, at ¢ = 0, it takes the value [_77120 ] There-
fore, by uniqueness of the solution,

n(=t;mo,%0) = n(t;no, —vo),  —¥(=t;m0,%0) = Y(t;m0, —t0),

which may be written as

(1.2.5) (=t [0]) =s[i](ss[h])-

The reversibility of the water waves system plays an essential role in the
proof of our theorem. Together with evenness, this condition will ensure
that some quantities, that could generate a growth in modified Sobolev
norms, actually vanish, see Lemmas and

The first step in the proof of Theorem [[L2.T] will be to rewrite the water
waves system (LI4) in terms of the “good unknown” of Alinhac. This will
be essential in order to obtain energy estimates. To do so, we introduce
tools of paradifferential calculus in the next chapter.

Let us fix some notation that will be used in the rest of the monograph.
Since the quotient map induces an isometry from H§ to H*, we shall consider

(n,%) as an element of ng 3 X H(f; i, identifying thus 7 to its inverse image
through this isometry.

To simplify notation, we shall assume that the depth A is equal to 1.
Moreover, we may reduce to the case g = 1: actually, considering instead of
(n,%) the couple of functions (n(,/gt, x), \/g¢(\/gt,x)), we reduce (LTF) to
the same system, with (g, k) replaced by (1,x/g).

Let us mention that in the whole monograph, we shall denote indiffer-
ently |||[z2 or ||| zo. It should be understood that in any case the zero
frequency of functions at hand is discarded.



Chapter 2

Paradifferential calculus

2.1 Classes of symbols

We define in this chapter several classes of symbols of paradifferential oper-
ators that we shall use in the whole monograph. Our classes are essentially
standard ones, except that our symbols are depending on some functions
(that in the application will be the solution U of the equation itself), and
we control the semi-norms of the symbols from these functions.

To fix ideas, let us mention that in the whole monograph we shall deal
with parameters satisfying

(2.1.1) s>»>0>K>»>p>N

where N is the exponent in the lower bound of the existence time of The-
orem [[LZT] and p will be the smoothing degree at which we shall stop the
symbolic calculus of paradifferential operators. As explained in the intro-
duction N coincides with the number of normal form steps performed in
sections [A3] and L4l In order to implement these Birkhoff normal form
procedures we have to choose the parameter x such that the small divisor
estimate (ZI3)) of Proposition [[.T.1] holds. The effect of the small divisors
is to produce a loss of derivatives proportional to Ny and N, that may be
compensated by taking the regularizing index p > N large enough. This
requires also to develop the paradifferential calculus in Sobolev spaces H*
with a regularity s large enough, s > ¢ with ¢ > p. Moreover we look
for classical solutions U(t) of the capillarity-gravity water waves equations
which are K-times differentiable in time, with derivatives OFU in H (’_%k,
k=0,...,K, and thus we need ¢ > K. Finally, the reason why K > p is
that, in order to obtain system (£2.9]), which has constant coefficients up to
p-smoothing remainders, see also ((Lh.]]), we shall perform a large number
of conjugations, large with respect to p, of the water waves system (LI,
to obtain para-differential operators which are enough regularizing. Each
conjugation consumes one time derivative, so that we shall need K > p.

31
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We also notice that our solutions will rerglain in a small ball of the space
of C* functions of time with values in H°~ and their time derivative of
order k£ will be continuous in ¢ with values in H s—3k , for k < K.

We define below several classes of symbols and operators. We shall stick
to the following convention: for p in N, we shall denote by flp (with A
replaced by several letters, affected eventually with some indices) classes of
symbols, i.e. functions of (z,€), (or operators), which are symmetric p-linear
maps of some argument U = (Uy,...,U,) belonging to a functional space,
where each U; = Uj(t) are functions of time. The notation Ay[r] with N
in N*, r > 0 will be used for symbols (or operators) depending in a non-
homogeneous way on a function U staying in the ball of center zero, radius r
in a convenient space, and vanishing at order N when U goes to zero in that
space. Finally, ¥A,[r, N] will denote sums of functions homogeneous in U
of degree ¢, p < ¢ < N —1, defined as restrictions at Uy = --- = U, = U of a
g-linear map of zzlq, and of an element of Ax[r]. In the whole monograph, for
the homogeneous symbols (or operators) the dependence on time ¢ will enter
only through the function U = U(t), while the non-homogeneous symbols
(or operators) in Ax[r] may depend explicitly on time ¢.

Before giving the first instance where these conventions will be used, we
introduce some notation. If K isin N, [ is an interval of R, symmetric with
respect to the origin ¢t = 0, ¢ is in R, we denote by CX (I, H?(T',C?)) the
space of continuous functions U of t € I with values in H?(T', C?), which
are differentiable in t with values in H%~ (Tl C?), for any 0 < k < K, with
continuous derivatives OFU € H~ 2k(’ﬂ‘1, C?). The space CX (I, H? (T, C?))
is endowed with the norm

3k

(2.1.2)  sup|U(, )0 where (Ut )]ko = ZHat tllos
tel

We denote by C (I, H?(T',C?)) the subspace of CX (I, H?(T',C?)) made
of the functions of ¢ with values in {U € H° (T, C?);U = [%} }

Itu = (U1,...,Up) with U; in H>®(T',C?), respectively if U is in
CE(I,H? (T, C?)), we set

Go.p(U HHUHHO'a

g(IT(,p(Uv t) - H‘U( 7')”’[(,0 :

(2.1.3)

When p = 0, we set G , = 1 by convention. If U/ = (Uy,...,U,) is a p-tuple
of functions, n = (n1,...,n,) an element of (N*)P, we set

(2.1.4) U = (I, Uy, .., I, Up)
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where II,,; is the spectral projector defined before (L2I)). Finally, let us
mention that in chapters 5 and 6 we shall use similar notations where Uj
will be in H°(T!,R) or H°(T!, R?).

Definition 2.1.1 (p-homogeneous symbol) Let m in R, p in N*. We
denote by I')' the space of symmelric p-linear maps from H> (T, C?)? to
the space of C™ functions in (v,&) € T! x R

U ((z,8) = all; 2,))

satisfying the following: There is p > 0 and for any a, B € N, there is C'> 0
and for any U in H®(TY,C?)?, any n = (nq,...,n,) in (N*)?,

(2.1.5) 1050 (T, Us 2, €)| < Clnl (&)™ G0, (I, U) .
Moreover, we assume that if, for some (ng,...,np,) in N x (N*)P,
(2.1.6) ya(Il,, Uy, ... 1y, Up;-) #0,

then there is a choice of signs €, ..., €y, € {—1,1} such that 3 e;nj = 0.
When p = 0, we denote by fﬁ” the space of constant coefficient symbols

& — a(€), that satisfy inequality (Z1.0) for o = 0, with in the right hand

side the |n| factor replaced by one, and with the convention ggvo(ﬂnl/{) =1.

Remarks: e In the sequel, we shall consider functions U = (Uy,...,Up)
where U; depends also on time ¢, so that the corresponding symbols in the
above definition are functions of (¢, x, ) that we denote also by a(U;t,x,&).

e If the dependence of a on (Uy,...,U,) is polynomial with constant
coefficients in z, then, as Il,,U; is a linear combination of et Tt
condition (ZI.6) holds automatically.

. If;a € f;” and b € f;”l then ab € f;n_:lm/. Ifa e f;” then 0,a € f;” and
35@ S Pgbfl.

e Let K € N and og > %K + u+ % For o > o let consider a function

U e CE(1,H (T, C?)).

Take a in fgl, p € N*. We claim that, forall 0 <k < K, a <0 —09, S €N,
the function

(2.1.7) a(U;....U;t,x, &) = a(U(t,-),...,U(t,-);z,§)

satisfies the estimate

(2.1.8) |9f0500a(U,... . Ust &) < C&™ NU(E koo +al Ut ) o

k,o0°
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Indeed, if we make act k time derivatives on a, we have, by the p-linearity
of a in each argument U,

oL a(U(t,),..., U(t, );2,6) =

Z Z Chi. . kp xaﬂ (akIHmU() afp]:[npU(t);x7§)
nl,...,npeN* k1+...+kp=k

for suitable binomial coefficients Cy, . x,. By (215) and recalling the def-
inition of the norm (ZI.2]), each term in the right hand side of the above
sum, with for instance n1 > na,...,n,, is bounded by

p
m— o k
C(&)™ P Inf* H||3t I, U(t,)|z2 <

M o0+5 Sky 1 k —o0+5 Sk, ks
CE)™n m 107U HHUOM__hH iU g3,
p—co+ 3k 1- 1
<O Py Iy e, - AT koo rallUE )
2
where (CZLJ,)”]. stands for some ¢? sequence. Since og — %K > p+ %, we
obtain (Z.I8). In conclusion, the function a(U,...,U;t, z,§) is a symbol
of a pseudo-differential operator with limited smoothness in x, with a con-

trol of its semi-norms in terms of U, vanishing in U with degree p. Note
that the bound in (2.I.8)) is tame, namely it is linear in the highest norm

|||U(ta ')”|k2,0’0+a-

We define next symbols a(U;t, z,§) for which the U-dependence is not
homogeneous, using estimates of type (ZI1.8]), where moreover we allow also
K’ extra time derivatives in the right hand side. Forc e R, ke N, r >0, I
an interval of R, we define

(21.9)  BE(Lr)={U € CEI,H7(T',C?)); sup UL, ko <7}
tel

Definition 2.1.2 (Non-homogeneous symbol) Let m be in R, p in N,
K' < K in N, r > 0. One denotes by I'% ki p [r] the space of functions
(U,t,x, &) — a(U;t,x,§), defined for U in BK(I r), for some large enough
oo, t in I, x in TY, € in R, with complex values, such that for any 0 <
k< K-K', any 0 > og, there are C > 0, (o) €|0,r[ and for any U in
BE(1,r(0)) nCHE'(1,H7(T,C?)), any o, B in N, with a < 0 — 0

(2.1.10) (080207 a(Ust, 2, €) < CLE™ PG v 1 (UG jer 1 (U, 1),

(where, if p=0, the right hand side has to be replaced by C (€)™ 7).
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Notice that the above non-homogeneous symbols a(U;t, x, ) depend explic-
itly on the time variable ¢ (not only through the function U(t) as for the
homogeneous symbols). We introduce also a definition for the subclass of
non-homogeneous symbols that depend on time only through U.

Definition 2.1.3 (Autonomous non-homogeneous symbol) We de-
note by I' o [r,aut] the subspace of I'} o [r] made of the non-homogeneous
symbols (U,x,&) — a(U;z,€£) that satisfy estimates (Z110) with K' = 0,
the time dependence being only through U = U(t).

Remarks: e By (2.1.8), a symbol a(l;-) of fm defines, by restriction to
the diagonal, the symbol a(U,...,U;") of FKop[r aut] for any r > 0.

o If a is in I'f . [r] with K" < K —1, then dra is in TR oy [r].

elfae '} [r ]then(?gaEFKK, [r] and O, aGFKK, [r], by the fact
that we may increase the value of ¢ in Deﬁmtlon

elfae ' [r]andb e FK k47| then ab € I’%jgﬁltﬁp[r]. Let us prove
this remark. Notlce that if @« = o —|— o9, we have
(2.1.11)

1T k1400l V Bkzsaa oo < C U Nkratoo IV ka0 + N0 e 0 IV ia,actr ) -

Actually, recalling the definition (ZI2]) of the norm || - ||k », we have

ki ke
N0 Wt o tro IV s o = - D 10U, rortoo-3K EQdp Jpaatoo-3,
E{=0k,=0
k1 ko Y
< Z S leru, satoo-31 107 VI oo-g0y
=0 k4,=0

1o v s 107 v, patoo— K,

00—

by interpolation. By the last inequality, (ZIII]) follows. Taking now a €
IR g plr] and b € FKK/ [r], write for 0 < k < K — K', o, 8 in N, with
a<o—oy

Or o207 (a(Ust,z,E)b(Ust, x,€))
= > Cprom (192 00 a(U; t, 2,€)) (08205200 a(Us t, 2, €))

k1+ko=k,a1+as=q,
B1+pB2=p
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for suitable binomial coefficients C’,]:f’gf’gf Using (ZI1.10), we get

000, (a(Ust, 2, )b(U; t, x, 5))'

<C 3 (€)™ GL, o (UG (U L)
k1+ko=k,a1+az=q,
B1+P2=0

x (&)™ TG00 e 0 (UG (U t)

+q—2
<C Z <§>m+m BmUngj(’,aO|||U|||k+K’,a1+00|||U|||k+K’,oz2+00

al1tar=a

m4+m/ — -1
< CE™ M P UIRE S MU kK a0
< ()™M G 1 (UDGE gy (U )

where we used (Z.IIT]) and took o > « 4 0¢. Thus ab satisfies the estimate
(ZII0Q) of elements of F?}"f oralt]:

Finally, we define symbols that may be expressed as the sum of homoge-
neous elements of I'l", ¢ = p—1,..., N —1, plus a non-homogeneous symbol
vanishing in U at order N.

Definition 2.1.4 (Symbols) Let m be in R, p in N, K’ < K in N, r > 0,
N in N with p < N. One denotes by XI'g g [r, N] the space of functions
(U,t,x,&) = a(Ust,z,§) such that there are homogeneous symbols a, in f;n

forq=p,...,N — 1, and a non-homogeneous symbol ay in F%K/7N[r], S0
that

N—
(2.1.12) a(Ust,z,€) = Z U,...,Uyz, &) +an(U;t,,€).

We set X't [, NT = M 2L g p[r, N].

We define the subclasses of autonomous symbols XTI ( [r, N,aut] by
formula (ZI112), where ay is taken in the class I' o y[r,aut] of Defini-
tion [Z1.3. We set finally ST [r, N, aut] = N, E[% [, N, aut].

For p = N we mean that the symbol a = ap is purely non-homogeneous.

Remarks: e We have the following simple inclusions

my < magy, YU [, N C 202 [, N,
p1 < p2, YTR ko polry NI C XUR ko4 [, N
K| <K}, E0R ger plr N1 C BT g [ N

as well as the similar ones for autonomous symbols.
elfa € XTR g [r, N| and b € XT% g s [r, N] then ab € z:r%gtlp [T N
A similar property holds for autonomous symbols.
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2.2 Quantization of symbols

If (,£) — a(x,§) is a smooth symbol, one defines, for every 7 € [0,1], a
quantization of the symbol a as the operator acting on test functions u (or
on tempered distributions) by

1

(2.2.1) Op,(a)u = o /RXR T8 (ra + (1 — 1)y, E)u(y) dydE .

In the case 7 = %, one gets the Weyl quantization

1 .
(2.2.2) OpW (a)u = o /RX]R el(”‘by)ga(m ;_ y,g)u(y) dyd§

and for 7 = 1 the usual quantization

Op(au= o= [ e Ea(a, uly) dyde
27 JrRxR

These formulas are meaningful, in particular, for u in C*°(T!) (identifying

u to a 2m-periodic function, and thus to a tempered distribution). If we

decompose u in Fourier series as

nez V21 7

we may compute the oscillatory integral ([22.1), and we find out that the
action of Op_(a) on wu is given by the periodic function

ezkm

Op, (a mZ(Z n, (1 — )k + rn)a (n))m

k€EZ neZL

where a(k, €) stands for the Fourier coefficients of the periodic function z —
a(z,§). In particular, the Weyl quantization is given by

]ﬁ? ny . eikm
\/gz(z ( JQF )“("))\/g’

k€Z neZ

(2.2.3) Op™ (a)u =

and the usual quantization, corresponding to 7 = 1, by

eikx
Op(a)u = \/% Z(Z n)ﬁ(n)) E

(224) k€Z nez

= Z a(x,n)a(n) Vo

nez

If the symbol a = a(§) does not depend of x, then, for any 7 € [0, 1], the
associated operator Op_(a) = Op(a) = a(D) is the usual Fourier multiplier.
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The above formulas allow to transform the symbols between different
quantization, in particular we have

(2.2.5) Op(a) = Op™(b) where b(n,¢) = &(n,£ - g) , Vnez.

We shall need in Chapter [l an asymptotic expansion of the Weyl symbol
b in terms of the symbol a. Since the distributional kernel of the operator
Op" (b) defined in ([Z22) is the oscillatory integral

1 i(x— T+
K(Cﬂ,y):%/Re( y)gb(Ty,ﬁ)dé

we may recover the Weyl symbol b from the kernel by the inverse formula

t ty it
(2.2.6) b, ) = /RK<$ +w— et
Now, identifying an operator Op(a) with its distributional kernel, we derive
by (Z2.6]) that
1 A
(2.2.7) Op(a) = o [ € Pea(a, )i = Op™ (1)
T JR

where b is the symbol

o) = oo [ alo+ 5.6~ ) dud.

Lemma 2.2.1 Let a be in f;,”, U= U,...,U,) in H*(T,C?)?, and con-
sider the function

(2.2.8) bU;z,€) = 1/ e ¢ (L{:c+ &= () dzdC

2

(interpreted as an oscillatory integral). Then for any integer A > 1 we have
the expansion

:>

(2.2.9) bU; x, ) = Z

Qaal <8QD£ )(U;x,£)+5(u;x,5)

where D¢ = %35 and b satisfies the bounds: for any o, 3 € N, n € (N*)P,

(2210)  [92AZB(IL,U; 2, 6)] < Q(%) nfite ) m=0 G0 (IL,u)

where Q) is a polynomial of valuation larger or equal to A and degree at most
2A — 1, and p depends only on m.
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Proof:  Let x be in C§°(R), equal to one close to zero, with small enough
support. We split the integral in (Z2.8]) as the sum of

(2.2.11) o L XCEO e aUs+ 56— ¢) dadg
and
(2.2.12) o =00 e ot + 26— ¢) dadc.

We first consider the integral ([2.2.12]) with U replaced by II,U4. For any
Ny € N, we perform Ny d-integrations by parts in (Z2I2) and two 9,
integrations by parts. Thus we gain a decaying factor (z>72(C>7N° and,

using (Z.1.0)), the integral (Z2Z12]) is bounded by

€ [ 6= 6™ ™ gizage dC 068, (11,2)
< €M Ol ogh (11,

for any Ny > m+1, where we set M(m) =m+1if m > -1, M(—1) = € for
a small € > 0 and M(m) = 0 if m < —1. If we make act 8%3? derivatives
on (22.12]), we get in the same way a bound in

(e)Mm=B)=Nojy ptNotegd (11,14).

Taking Ny = Nj+ 8 + L, for some L = L(m) depending only on m, we get
a bound in /
() Nom Bt NotetPgh (1)

where p/ = p+ L. Consequently (2.Z12)) satisfies (Z2.I0) for any A (up to

a change of notation for ).
Consider next (ZZTIT]). We Taylor expand up to order 2A —1 the symbol
a(u; T+5,6— C) at the point (z, &), writing the integrand in (ZZI1]) as the

product of e~%*¢ and

(2.2.13) >

atfaa—r P! (8;)‘6?@) Uz, 5)(§)a(—C)ﬁX(@)
2A

' A
Z a!—ﬂ!/o (1—)\)2,4(5?3?61)(1/{;35-1-§7§_AC)

a+pB=2A

b ¢

Since the oscillatory integral

1

57 i€ 02 CX(C(E) T dCdz = aldag
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where 0,3 = 0 for o # 8 and d,3 = 1 for o = 3, when we plug the sum in
(2213)) for a4+ 8 < 2A — 1 inside the integral in (Z2ZIT]), we get the sum

A—1 o
> OV e pea) s, 6)
a=0

20y

in the right hand side of (2.2.9).

We are left with showing that the last term of (Z2.13]), where we replace
U by II,U, induces in the integral (Z211]) contributions satisfying estimates
(Z210]). For each X € [0, 1], the integrals we have to study are of the form

(2.2.14) / e (U 2, €, 2, () 2% CP dzdC¢
R2

where ¢ is supported for |{| < §(¢), and, by (ZL5), for any o/, € N, it
satisfies estimates as

(2215) (080 el ls2.€, 2.Q)] < Clnl o (&)™ 27' 68 (11,04)
with oo+ 8 = 2A. Let us consider first the case a < 8. We write 2%e ¢ =

(—D¢)e~%¢ and perform integrations by parts in ¢ to write (ZZ14) as

[ e =D [Pt .6, 2,0)] ded
RQ

= > Capanp / TN DR (U @, €, 2, ) dedC
R

al1tas=a

In each integral above, we write (5~?1e7%*¢ = (=D, )#~*1¢7%*C and perform
integrations by parts in z. We end up with integrals of the form

/ e DI D2 (U 2, €, 2, ) dadC .
RQ
This is of the form
(2.2.16) / e PG, U; 2, €, 2, C) dzdC
RQ

where ¢ is supported for |[¢| < §(¢) and by (2Z2I5)), and since a + 3 = 24
and a1 + ag = a, it satisfies, for any 51 € N,

00 (11, Us 2, €, 2,¢)| < Cln|Petimengym=F=ea=bigh (11,14)

(2'2'17) ’n’ 2Amon m—p1 ~0
sc(@) Inff (€)™ P68, (L)

Notice that, since o < f3, the exponent 24 — a7 is between A and 2A, for
any 0 < a1 < a. We define next the differential operator

L=(1+2%¢%) " (1-2¢)D;)
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so that L(e™%¢) = e7¥¢. We write e *¢ = L%(e™%¢) in [Z2ZI6) and we
—1
integrate by parts twice. Since Lt = <1+z2 (§>2) <1+z(§>2D<), by (ZZ17),
we gain a factor (1 + |z[(¢))~2, and taking the cut-off y in (ZZI3) into
account, we bound (Z2ZI6]) with
i

2A—a
C [0+ ) Lqciesien dads (B ) o978, 110

’ M ’Yn m ~0
<c ( @) nl# (€G3, (1, 14)

for some A < v < 2A. We have proved that (Z2ZTI4]) satisfies a bound of
the form (ZZTI0) (with derivation indices o = § = 0). The case f < « is
treated in the same way, as well as similar estimates when derivatives act
on the symbol. O

If a is a symbol in f;”, it follows from (ZZ7) and ([2:2.9]), that

1 4 A-l 5
(2.2.18) 5 . TV (U x, €) dE = ;) OpW (b)) + OpW (b)
with
-1)* a Ty
(2.2.19) bo(U;2,6) = %(am Dga)(U;z,€).

Finally notice that
def

= a(z, —¢).
We now define the para-differential quantization. Given p € N*, we fix
some smooth functions, even with respect to each of their arguments,
Xp: RPxXR—=R, peN,
xX: R xR =R,

(2.2.20) Op(a)[u] = Op(a”)[u] where a’(z,€)

satisfying, for some small § > 0, the support conditions
o
Supp xp C {(€',€) € R x R; [€'] < 6(E)}, xp = 1 for €] < 5(8),

0
Supp x € {(¢',€) € R x R; [¢] < 5(&)}, x =1 for [¢'] < S(¢).

For p = 0 we set xo = 1. We assume moreover that for any derivation
indices «, 3,

(2.2.21)

10205 xp(€,€)| < Cap§)™ 7, Ya e N,VB € NP

(2.2.22)
18295 X(€,€)] < Capl€) ™", Va, B EN.

An example of a function satisfying the last condition above, that will be
used extensively below, is x(¢',&) = x(£'/(§)), where x is a C§°(R) function,
with small enough support, equal to one on a neighborhood of zero.
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Definition 2.2.2 (Bony-Weyl quantization) If a is a symbol in le,
respectively in I'g ., [r], we set, using notation (2-17),

aXpL{x§ Z Xpn§ Hu,l’,f)
(2.2.23) ne(e)

ay(Ust,z,€) = F ' [X(€,6)a(U;1,€,6)] = x(D, &)a(U; t,z,€)

where, in the last equality, a stands for the Fourier transform relatively to
the x variable and J-"_l denotes the inverse Fourier transform relatively to
the f variable. We get symbols ay,,, ay that are smooth in x. If a is a symbol
mn Fm respectively in I'g ) [r], we define its Bony- Weyl quantization as the
opemtors o

Op"W(a(Ut;-)) = 0p™ (ay, (U;))

(2.2.24) 0pBW (a(U;t,)) = 0pW(ay (Ust, ).

Finally, if a is a symbol in XT'R g1 ,[r, N|, that we decompose as in (Z1.12),
we define its Bony- Weyl quantization as the operator
(2.2.25)

N-1
O0p"™(a(Ust, ) = Z 0p"™(aq(U, ..., U ) + Op®¥ (an(Ust, ).

For symbols belonging to the autonomous subclass ST o [r, N, aut], we shall
not write the time dependence in equality (2.2.25).

Remarks: ¢ When p = 0, elements of fg” are constant coefficient sym-
bols ¢ — a(§) (see Definition [ZT.]), and their Bony-Weyl quantization
OpPW(a) = a(D) is nothing but the Fourier multiplier associated to a(£).
e If ¢ is a symbol in f;” then a,, is in f;,” as well.
e Since the symbol a(U;t,x,&) is periodic in x, the regularized function
ay in the second line in (Z2Z23]) can be written, by (224]), as

inx

2.2.26 ay(U;t,z,§) = x(D,§)la(x,§)| = n,&)a(U;t,n, e
( ) ( §) = x(D,9)la(x,¢)] %:ZX( §a( 5)\/%

where a(U;t,n, &) denotes the Fourier coefficient of a with respect to . We
can also write a, (U;t,x,§) = K(-,&)*a(U;t, -, &) where the kernel K (z,§) =

.7:571()((5’,5)) satisfies, by (Z2Z21)-(22.22),
[0/ K(,E)lpim) < C(€)77, ¥y eN.

It follows that a, satisfies estimates of the form (ZII0) as the symbol a.
e We have (ay,)" = ay,, (ay)” = a, and so, by (Z2Z20),

(2.2.27) OpBW (a)[u] = 0p®WV(a")[a] .
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e If the symbol a(U;t, ) does not depend on ¢ then Op®W(a) is called
the para-product operator for the function a(U;¢,x).

The above definitions are independent of the cut-off functions x, x, sat-
isfying (2.2.27]), (2.2.22]), up to smoothing operators that we define now.

For a family (nq,...,n,41) of (N*)P*! we denote by
maxg(ni,...,Np41)
the second largest among the integers ny,...,np41.

Definition 2.2.3 (i) (p-homogeneous smoothing operator) Let p be
in N*, p in Ry. We denote by 7?,;” the space of (p + 1)-linear maps from
the space H®(T',C2)P x H>®(T',C) to the space H>®(T',C), symmetric in
(U1,...,Up), of the form

(Ul, e, Up+1) — R(Ul, ey Up)Up+1

that satisfy the following:

There is some p > 0, some C > 0 and, for any U = (Uy,...,U,) in
H>®(T', C?)P, any Upy1 in H®(TY,C), any n = (n1,...,n,) in (N*)P, any
no, Np+1 in N¥,

(22.28)  |[Tg R(ILU)TL,, ,, Upis | 2

maxa(ng,...,npe1)’ T
=¢ max (ny,...,np1)" Go,p+1 (Mnld, iy Upe) -
Moreover, if
(2.2.29) o Ry Uy, Ty U, Upig 0
then there is a choice of signs e, . . ., €p41 € {—1,1} such that ZSH -

(ii) (Non-homogeneous smoothing operator) Let N be in N*, K’ <
K in N, r > 0. We denote by RI_(’,)K/7N[7°] the space of maps (V,t,U) —
R(V;t)U defined on BE(I,7) x I x CK(I, H?(T',C)) for some o > 0, that
are linear in U, and such that for any s with s > o, there are C > 0,
r(s) €]0,7[ and for any V in BE(I,r(s)) N CE(I, H(T',C?)), any U in
CK(I,H*(T',C)), any 0 < k < K — K', any t € I, one has the estimate

10F ROV 0 vpge SC 30 (98w (V)G 1 (U 1)
(2.2.30) K'+k'=k
4G 101 (V)G 1 (U )Gy 1 (V1))

(iii) (Smoothing operator) Let p, N be in N*, with p < N, K' < K
N, pinRy. We denote by ER;(pK,p[r, N] the space of maps (V,t,U) —
R(V;t)U that may be written as

N—-1
(2.2.31) R(V:t)U =Y Ry(V,...,V)U + Ry(V;t)U
q=p
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for some R, in ﬁ,q_p, q=p,...,N—1and Ry in RI_(?K/7N[’I“] (for p = N we
mean that R = Ry is a purely non-homogeneous smoothing operator).

(iv) (Autonomous smoothing operators) We define, with the no-
tations of (ii) and (iii) above, the class of autonomous non-homogeneous
smoothing operators Ry, y[r,aut] as the subspace of R/, y[r] made of
those maps (U, V) — R(U)V satisfying estimates (Z230) with K' = 0, the
time dependence being only through U = U(t). In the same way, we de-
note by ER;([,)OJ;[T’ N,aut] the space of maps (U,V) — R(U)V of the form
(2.2.31) with K' = 0, where the last term belongs to Ry, yr, aut].

We have the following simple inclusions

P1 §P27 ER;(p;(,p[T,N] g ER;(p[l(/p[r7N]7
PL=p2, SRk, [T N] © ER e, [ N
Kl <K}, SRl [nN|C SR, [rN].

Remarks: e Notice that if R is in 7%;”, p > N, then (V,U) — R(V,..., VU
is in R y(raut]. Actually, for any 0 < k < K, by the multi-linearity of
R in each argument and (2.2.28)), we have

k k
HaanOR(V’ s >V)U||L2 <C Z HR(alem V... >8tpanV)8t p+1an+1UHL2
L
+u P
maxa(ni, ..., npt1)” k. kpr1
<C 10, T, V| r2110; " 1Ly, Ul 12 -

Let us bound each term in the right hand side of the above sum with for
instance m; > ng > --- > npy1. Recalling the definition of the norms

3
ZI2)-@2I3), we get, for s > o > 5k,
(2.2.32)

||8anOR(‘/,,V)U”L2 <C Z ﬁnfsngg Hn;a HCZLJ

nleMpr1 Ny 2 3 1

X Z 92/71(1/, t)g]g’,p—l(‘/’ t)ggﬂ,l(U,t)
k' +k =k
where (c%j)nj stands for some ¢? sequences. The assumption (Z229) implies
that ng < (p+ 1)ny. Then, if 0 > max{p + p + %, %}, Young inequality
for convolution of sequences implies that the product of the left hand side

stp_3
of (Z232) by n0+p 2k gives a /2-sequence, and
NOF RV, VUi SC D2 Gl (V)G (UG 1 (Vi)
Kk =k

<C Z G N1 (Vot)GRn 1 (U, )G 1 (V1)
Kk =k
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since p > N and supsc; |V (¢,-)| k0 < 7 is small. This is the second term in
the right hand side of ([2:230]) with K’ = 0. The first term appears when
for instance np41 > - > ng.

e The composition of smoothing operators R; and Ro belonging, respec-
tively, to the spaces SR k. [r, N] and ¥R .,  [r, N], is a smoothing
operator R Ry in YR, r,N]. A similar statement holds for the
autonomous subclasses.

,P1+p2 [

We study now the boundedness properties on Sobolev spaces of the
paradifferential operators (2.2.24]).

Proposition 2.2.4 (Action of a paradifferential operator) (i) Let m €
R, p € N. There is 0 > 0 such that for any symbol a in I')", the map

(2.2.33) (Ut Upy1) — Op®WV(a(Uy, ..., Up; ))Upia
extends, for any s in R, as a continuous (p + 1)-linear map
HO(TY C2)P x F15(T, C) = B*—"(T",C).

Moreover, there is a constant C, depending only on s and on (ZI1J) with
a =0 =0, such that

(2.2.34) 10p"¥ (a(@d; NUps1ll o= < CGG @)1 Ups1 =
where U = (Un, ..., Up). Finally, if for some (ng, ... ,np41) € (N*)PH2)
(2.2.35) IL,, Op® W (a(TLUd; )y, ., Ups1 Z O

then there is a choice of the signs ¢; € {—1,1}, j =0,...,p+ 1, such that
Zg“ ejn; =0, and the indices satisfy

(2.2.36) ng ~ npy1, nj<Cong, n; <Cényr1, j=1,...,p.

(ii) Letr >0, m e R, pe N, K' < K €N, a in I’%K,’p[r]. There is
o >0 and for any U in BE(I,r), the operator Op®W (a(U;t,-)) extends, for
any s in R, as a bounded linear operator from the space

CE-K'(1, H*(T',C)) — CE-K'(1, H*~™(T",C)) .

Moreover, there is a constant C, depending only on s, r and on (ZI1.10)
with 0 < a < 2,8 =0, such that, for anyt in I, any 0 < k < K — K/,

(2.2.37) 10" (0F a(Us ts D pgsis fro-my < CGFYger (U, 1) 4

so that
10P™Y (a(Us t, )V () ls—m < CGZ (U DIV ()]s -
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Remarks: e The relation ng ~ np4q in (2.2.36]) shows that the action of
OpBW(a) does not enlarge much the support of the Fourier transform of
functions.

e Notice that the paradifferential operator Op®W(a) acts on homoge-
neous spaces of functions modulo constants.

Proof: (i) Let us prove (Z2.34). Fixed U = (Uy,...,U,) we denote by

(2.2.38) b(x,§) = aXp U;z,8) = Z Xp(n, §)a(Il,U; x,§)
ne(N*)p

the regularized symbol defined in (Z2.:23]) (without indicating the time de-
pendence on t). Then b(z,§) is a periodic function of = whose Fourier coef-
ficients b((,€) = \/% Jp e 0 b(z, &) dz (¢ € Z) satisfy, according to (ZIL5)
for « =0, g =0, the bound

(2.2.39) [b(t,6)|<C > ]G, (TLald) ()™

n=(ni,...,np)€(N*)P

<C Z ]n!“Hn 7Go U

ne(N*)p

Moreover, as b({,£) = ﬁm\b(f, €), it follows from (ZILG) that in the sum
(Z2:39), the indices satisfy, for some choice of the signs €¢; € {—1,1},

p
(2.2.40) > ey ==L
j=1

If we take o — > 1, we deduce from (22Z39) and (ZZ40) the estimate
(2.2.41) 1b(£,€)] < (€)™ G5, U)
for some /!-sequence (c)y. Notice also that there is 6’ = O(6) such that

(2.2.42) D(L,E) A0 = |0 <),

Indeed, by [2221), 2223, in the sum ([Z239]), in addition to the restric-
tion Y7 e€jn; = £¢, the indices satisfy also |n| < §(§). Thus |[¢| < Cln| <
C§(¢) holds on the support of b(¢, €).

By [ZZ24) and 2238) we have OpBW(a(U;-)) = OpW(b). Denoting
by @(n) with n in Z the Fourier coefficients of u € C*°(T?!), it follows from

ZZ3) that

W _L R B ,k:—i—n/ L eikm
(2.2.43) opW (byu = %kez(gzb(k n', )u(n))m
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and, for the property on the support of lA)(E, €) proved in (2:2.42]), the sum
(Z243)) is restricted to the indices

k+n’>.

/ /
(2.2.44) [ —n'| <5'( .

This implies, in particular, that, if u is constant, so is Op*V (b)u, i.e. OpW (b)
acts on homogeneous spaces of functions modulo constants. Moreover, ac-

cording to ([ZZ41)), (22.43)), and the fact that, by (22.44]), the indices in
the sum (Z.2.43) satisfy k ~ n’, the H*~™(T") norm of OpW (b)u is bounded
from above by the product of CGg ,(U) and of

[0 32 ey )

n'€Z

S Ja(n!) (') e

n'€Z

62

£ k

<C
2
k
If u is in H® then the sequence (|@(n’)|(n/)*),vez is in £2, and, since (¢;)gez
is in ¢!, the Young inequality for sequences implies (Z2:34]).
By (2.2.43) we have that, for any ng, n,4+1 € N*,

(2.2.45)  II,,,0p®W (a(IL,U; ),y Ups1 =
1 k: + n/ e’ik‘l‘

ﬁkglo( L )ﬁp“(nl))x/ﬂ

In'|[=npi1

with the restriction (k—n’) = 3] €;n; on the indices due to (ZZ40). Thus
if (ZZ35) holds then 5™ ¢;n; = 0. Let us finally prove (Z2Z36). The sum
in (22.45) is restricted to the indices satisfying (22.44)), so that k ~ n’,

and therefore ng = [k| ~ |n/| = npt1. Moreover |n| < 5<k‘;",> and the
inequalities (Z22:36]) follow by

(2.2.46) In| < Co|k| < Cdng

since |k| = ng, and ng ~ np41. This concludes the proof.
(ii) The proof is similar. Setting b(U;t,x,§) = 8faX(U;t,x,§) for any
0 <k < K-—K', we use that (ZII0) with |a| < 2, 8 = 0, implies the bound

e
()
which replaces (Z.2Z:47]). Then (Z237)) is proved in the same way. O

16(6,6)| < 775 ()Gl p(U)

Remarks: e In the above proof, we did not use any & derivatives of
the symbol a. The statement of Proposition 2.2.4}+(i) applies when a € T}
satisfies (ZI.5]) with just &« = 5 = 0, and item (ii) applies when a € I'% ki p [r]
satisfies (2I.I0) for just |a] <2, 8= 0.
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Notice also that we did not use that x,(n,£) = 1 for [n[(¢)~! < /2, so
that the above estimates hold with any cut-off function x,, x satisfying just
the support conditions introduced in (2.2.21]).

e The proof of the preceding proposition shows that the definition (Z2.24))

of Op®W(a) where a is a symbol of Fm depends on the choice of x, only

modulo a smoothing operator in R P for any p. Actually, let X}a ), Xz()) be

cut-off functions satisfying (2.2.21) Wlth two different small do > 6; > 0. We

want to prove that, calling the difference x, = ng) — Xél), the operator

(2.2.47) RU)=0p"( > xp(n,&a(ll;))

ne(N*)p

satisfies (Z2.28)). Applying (22.34]) with s = m we derive
(2.2.48)

HHHOR(HNU)anH Up-l—l”L2 < Cnl npnp+1g8,p+1(nnua an+1Up+1) :

If 1L, R(IL Uy, \Upyr # 0, then, by ([2245) and since the indices in
Z247)) satisfy 01(€) < |n| < 62(), we deduce (arguing as for (Z2Z40))) that

Cl5np+1 S ]n! S ngnp+1 .

Consequently maxa(ni,...,np41) ~ max(ni,...,npy1) and by (Z248) the
estimate (ZZ28) holds for any p and p = po + m. The property (2.2.29)])
follows as in the above proof of Proposition 2.2.41

A similar statement holds for Op®W(a) when a is in IR g p[r]: when we
compare two definitions coming from different choices of x in ([Z2Z23)), the
difference between both operators is p-regularizing i.e. ([Z.2.30) is satisfied
when o is large enough relatively to p.

A homogeneous symbol a of f;,” induces the non-homogeneous symbol
a(U,...,U;z,§) in I'f o [r,aut], and, according to ([Z.2.23)), we can consider
the regularized symbols a,,(U,...,U;z,§) and a, (U, ...,U;z,§). It follows
that

Opw(axp(U, LUz €)) — Opw(aX(U, LUz, €))
is the restriction at Uy = --- = U, = U of a smoothing operator in 7?,;”.

o Proposition Z2Z4limplies that, if a(U; ¢, ) is in XT ", [r, N] @ Ma(C),
for some p > 0, then OpBW(a(U;t,-)) defines a smoothing operator in the
space SR [r, N] @ M3 (C). Let us prove for example that, if a(l;-) is
in f;p, then OpBW(a(U;)) is in 7?,;”. By ([2234]) with s = —p we get

O'

HHnOOpBW(a(HnU; '))an+1 10-1—1”L2 < CTlng p+1(H U, anﬂUp—i—l)
p+

and therefore, in order to prove (2.2.2§)), it is sufficient to show that

g g
ng...ng _ CmaXQ(nl,...,np+1

p —
Npi1 max(ni, ..., npy1)P

)p+u

(2.2.49)
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for some p > 0. If nyp1 = max(ng,...,npy1) then (22.49) is immediate.

Otherwise np41 < maxa(ni,...,np+1) and the second inequality in (Z230])
implies that for any j = 1,...,p, n; < Conpy1 < Comaxa(ny,...,npt1)
and max(ng,...,np41) ~ Npt1. Also in this case ([Z2749) follows.

In some instances, we shall use that operators of the form OpBW(a(V;-))
or R(V) satisfy some boundedness properties, without having to keep track
of the number of lost derivatives in a very precise way. We introduce a
notation for such classes.

Definition 2.2.5 Let p be in N, m in Ry, K' < K in N, N € N*, r > 0.
(i) We denote by M} the space of (p + 1)-linear maps from the space
H>®(T', C?)Px H*(T*,C) to the space H*(T',C), symmetric in (U, ..., Up),
of the form
(Ul, ey Up+1) — M(Ul, ey Up)Up+1
such that there is C > 0 and, for anyU = (Uy,...,Up) in H>(T, C?)?, any
Upi1 in H®(T',C), any no,npy1 in N*, n = (nq,...,n,) in (N*)P,

(2.2.50) [T M(TLU)IL,, , Upi1 | 12
<Cno+-- + np+1)mgg,p+1(nnu7 an+1Up+1)-

Moreover, we assume that if

(2.2.51) g M (I, Uy, ..o Ty U, Upit 20

then there is a choice of signs o, . .., €p41 € {—1,1} such that Zngl e;nj = 0.

(When p = 0, the above conditions just mean that M is a linear map from
H>®(T',C) to itself, satisfying estimate (Z250) and (Z2351)).

(i) We denote by MR . x[r] the space of maps (V,t,U) — M(V;t)U,
defined on BE(I,7) x I x CKX(I,H?(T",C)) for some o > 0, that are linear
in U, and such that for any s with s > o, there are C > 0, r(s) €]0,r[ and
for any V in BE(I,7(s)) N CK(I, H*(T*,C?)), any U in CK(I, H*(T',C)),
any 0 <k < K — K', any t € I, one has the estimate

(2252) [OFMMVOU)ON 3im <C 3 (07 sern (VDG (U.1)
K+ =k

+ Gk N (V)G (U )G e 1 (V, t))

We denote by M o y[r,aut] the subspace of M o n[r] made of maps (V,U) —
M(V)U that satisfy estimates (2.2.53) with K' = 0, the time dependence be-
ing only through V.=V (t).

(iii) Assume p < N. We denote by SM k. ,[r, N] the space of maps
(V,t,U) = M(V;t)U that may be written as

N-1
(2.2.53) M(Vi;t)yU = > M(V,...,V)U + My(V;t)U
q=p
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for some My in /Wgn, q=p,...,N =1 and My in M}y y[r] (forp=N
we mean that M = My is purely non-homogeneous).

We set XM [, N,aut] for the subspace of XM, [r, N] made of
sums of the form (ZZ53) with K' =0 and My taken in M y[r, aut].

Finally we denote

o M, = Un My’

® MK,K',p[T] = Unm M?,K/,p[r]

® EMK,K/,p[T7 N] = Um EM%,K’,])[T7 N] .

We shall use similar notations for autonomous maps.

Remarks: e If M is in ./T/(/% then the map (V,U) — M(V,...,V)U is
in MR ylr,aut]. Indeed conditions (2.2.50), (2.2.51]) imply that (2.2.52)
is satisfied with K/ = 0 for s > o > 1. In particular, an element of
SM g1 plr, N| sends a couple (V,U) € BE(I,7(s)) nCE-K'(1, H*(T", C))
to an element M (V;t)U in CKX=K'(I, H*=™(T",C)) for s > o > 1.

e By Definition [Z2Z.3] any smoothing operator R in ERI_{” K1 pls N de-
fines an element of XM g [r, N] for some m > 0.

o If a is in X% g [r, N], then the map (V,U) — Op®VW(a(V;t,-))U
defined by ([Z2Z25]) is in SM} g ,[r, N] according to Proposition 2.2.41

e Let a be a homogeneous symbol in f;,” and let M be an opera-
tor in ¥ M jr [, N — p] with p+ ¢ < N. Consider the function U —
a(U,...,U MU;t)U;t,x,§). Decomposing M as in (2.2.53]), we deduce by
R.13), @16), @250), Z2.51) that

(U1, Upsg) = a(Us, ..., Up1, My(Up, ..., Upiq-1)Upiqi 2, €)

defines a homogeneous symbol in I'7", . and by Z15), Z10), 2252) that
U—=a(U,....UMN_p(;U)U;-) is in I ) y[r].

o If M isin EMK,KLP[T’ N] and M in EMK,Ké,l[T’ N — p], then the map
(V,t,U) = M(V+M(V;)V;H)[U] is in XM g o ,[r, N] with K' = K+ K.

o If M is in XM g ,[r, N] and M in XM e [r, N] then the map
(Vit,U) = n(M(V;t)V)a(M(V;)U) is in SM g g1 1 4117, V] where 7 de-
notes the canonical identification of H and H{, so that the product makes
sense.

e Finally, if M is in SMJ} g [r, N] and M’ in EM%:K/@[T, N], then
M(V;t) o M'(V;t), namely the map

(V,t,U) = M(V;t)[M'(V;1)U],

. . /
is in EM?}W@—W[T’ NJ.

We end this section with a lemma that will be useful below, and that
follows from the above remarks.
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Lemma 2.2.6 Let C(U;t,-) be a matriz of symbols in XT'R g1 ,[r, N| @ M2(C)
for somem inR, K' < K —1,0<p<N, and assume that U is a solution
of an equation

(2.2.54) DU = M(U;t)U

for some M in the class My olr, N] @ M2(C). Then D:C(U;t,-) belongs
to EP%J{/_FLP[T, N] X MQ((C)

Proof: Decompose according to (2.1.12])

C(U;t,z,6) = ZC LUz, §) + COn(Ust,x, ).

Consider first the non-homogeneous symbol Cpy. By the second remark
after Definition 2T.2] the symbol D;Cx belongs to I' ;o\ y[r] @ M2(C).
Consider next the homogeneous contributions

q
DiCo(U,...,Usz,&) =>_ Cy(U,...,DU,...,Usx,¢§).
(=1 g'

Replacing D;U by M(U;t)U given by (2.2.54) and using the fourth remark
after the statement of Definition 2225l we obtain the wanted conclusion. O

2.3 Symbolic calculus

We study now the composition properties of the preceding operators. Define
the differential operator

(2.3.1) 0(Dy, D¢, Dy, Dy)) = DeDyy — DDy,
where D, = %833 and D¢, D, D¢ are similarly defined.

Definition 2.3.1 (Asymptotic expansion of composition symbol)
Let K' < K,p,p,q be in N, m,m’ be in R, r > 0.
(i) Let a be an homogeneous symbol in I')* and b in I’ZLI. For

U = (U,...,U0p), U" = Upt1,...,Upiy)
with Uj in H¥(TY,C?), 1 < j < p+gq, set U = (U, U"). We define the

formal series

(2.32) (a#b)oo(U;x,8)
+o0 1

- Z 17 (Z (Dx’D€7DyaDn))z[a(u';x@)b(u”;y,n)} et
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and the sum

l
b DI’D aD ,D u/; 9 bu”; ) T=Y,
(a#b), 0; 5 (20(D2, D, D, D)) [all's 2, bWy ]z

. =m4m/—p
modulo symbols in I'),

(i) Let a be a non-homogeneous symbol in L't r [r] and b in I’%:ch[r].
For U in BE(I,r) we define when p < o — oy

(233) (a#tb)p(U31,,)

1 ¢
- Z f'( (D$7D§7Dy7D7])) |:a(U7 t,l’,f)b(U, tayan):“xiy’
0<t<p £&=n

. +m/—
modulo symbols in T 17 " [r].

Remarks: e We shall use several times below that the first terms of the
asymptotic expansion (Z3.2]) are

U5 U ) + ool ), DU )} +

with the usual definition of the Poisson bracket {a,b} = 0:a0,b — 0,a0¢b.

e It follows from (Z3.2) and the third remark after Definition [ZT.1] that

in (i) of the definition, the symbol (a#b), is in f’;,”j;m/ modulo I’;,”J:;m P
(with an exponent p in (ZL3]) for (a#b), large enough in function of p).
This just reflects the fact that the larger p (i.e. the more precise the symbolic
calculus), the smoother the functions U; in the coeflicients must be.

In the same way, using the remarks following Definition 1.3, if a is

in I'% ;o [r] and b is in FK k1 47], then the symbol (a#b), belongs to

F%‘;{"? 'piqlr] modulo F%}nf o1ql7] (taking o in Definition large enough
with respect to ).

o If a is in ST 40 [r, N], b in S g [, N] and ¢ in ST 0 [r, N]
then

(a#tbic), € ST 1 N]

- /4
modulo a symbol in T Kn/lpJ:; ﬂﬁ/[ N]

e In the sequel we shall use the observation that if a is in XT'% ;. [, N],
b is in EF%K/’p, [r, N] and c is in EF%/K/@N [r, N] then

(2.3.4) (a#b#c), + (c#b#a), — 2abe
is a symbol in SLRRZ L5 [ N,

The main goal of this section is to extend to our classes the well known
result asserting that (a#b), is the symbol of the composition, up to smooth-
ing operators.
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Proposition 2.3.2 (Composition of Bony-Weyl operators) (i) With
the notations of (i) of the preceding Definition [Z.3]],

(2.3.5) Op"W(a(U';)) 0 Op™ (b(U"; ) — Op°™ ((a#b),(U; )

belongs to R, p;rm+m

(ii) Wzth the notations of (ii) of the preceding Definition [2.31],
(23.6)  Op"V(a(Ust,-)) o Op"V (b(U;t,-)) — Op™W ((a#b),(U; t,-))
belongs to R ;g?;;:m [r].

If a and b are symbols in the autonomous classes of Deﬁmtion 213
Fm-i—m —p

then (a#b), is in F?Jg%_q[r aut], modulo a symbol in I'y "\ Flr,aut], and

(Z238) is an autonomous smoothing operator.

Remark: According to Definition Z3.T], the symbol (a#b),(U; ) in case (i),

resp. (a#b) (U;t,-) in case (ii), is defined modulo a symbol in f‘pmgm/fp,

resp. Iy K, K/ » +q[ r|. By the last remark following Proposfmonm the parad-
ifferential operator OpBW ((atb),(U;-)), resp. OpBW((a#b) (Ust,-)), is thus

defined modulo a smoothing remainder in Rp f;erm resp. R Kp ;;7;1; [].

To prove Proposition 232, we need lemmas 2.33] and 234l Lemma
234 proves that the composition of OpBW(a) o OpBW (b) can be written as
the OpW(c) of a suitable symbol ¢ = a#b and Lemma P33 provides its
asymptotic expansion.

In order to treat at the same time conditions (i) and (ii), let us introduce
the following notation. Let a(z,§),b(x, &) be two tempered distributions in
x, smoothly depending on £. Assume that their z-Fourier transforms a(n, £),
b(n, €) are supported for |n| < 6(¢) for a small enough § > 0. Then the
integral

/ m({*-ﬁ-n) (77 §+§ ) (5*’5_%*) df*dn*

is well defined as a distribution in (£*,7*), compactly supported in [£*]| 4+
In*| < ¢§(€) for a small & > 0, smoothly depending on ¢ and acting on the
smooth function (£*,n*) — (€ +17) - Assume also that for some p € N,
any 0 < a < p, any 8 € N, we have for some constant M, g(-)

def
(2.3.7) a#b(z,§) = @)

1020/ a(w,€)| < My p(a)(€)™ "

2.3.8 ,
9 1020¢b(, €)] < Ma(b)(§)™ .

Then a+#b is also given by the oscillatory integral

(2.3.9) a#b(z,§) =

1 . kgk ok ok

[ e HIEEW I (¥ € 4 EVb(a 4yt €+ ) datdy*derdy®
™ JR4
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where o(z*, &, y*,n*) = {*y* — z*n* (which has a meaning if we remember
that, by the support assumptions on a, b, we have that |&*| + |n*| < €],
so that, to give a meaning to (23.9), it is enough to perform O+ and 0,
integrations by parts to gain x* and y* decay). We also have that

a#tb(x, &) = e3P LePuD (a2, €)b(y, n)jpmy e -

Let us prove:

Lemma 2.3.3 Assume that a(z,),b(z,§) satisfy (Z2.3.8) for some p in N*
and their x-Fourier transforms a(n, &), b(n,&) are supported for |n| < §(&)
for a small enough 6 > 0. Then for any £ in N, £ < p,

(2:3.10) 04 (b — (a#b) )] (2,€)] < Cpe()™ 70,
where, for some universal constants K, y,
(2311) ij - pr Z Z Ma’,ﬁ’(a)Ma”,B”(b) .

o' +al'=p B'4+8"=p—L

Proof: Notice first that 0% (a#b) (resp. 8% (a#b),—¢) is a linear combination
of (9% a)#(d%"'b) (resp. ((85;,@)75;&(65;”b))p_z with ¢/ + ¢ = {. Consequently,
it suffices to prove (23310 when ¢ = 0. Define for 7 in [0, 1], X* = (z*,&*),
Y* = (y*,7%) in R2, the function

o7, z,§)
1 _ i * *
- F R [a(x/75/)6(3//7nl)]‘x’::er\/ﬂ_—:v*,y/::er\/ﬂ_'y*e Zo(X.Y )dX*dY* :
§'=E+/TE" M =L+
Notice that ¢(1,z,&) = a#b(z,€) is the function defined in (23.9). By
integrations by parts, one sees that the k-th 7-derivative of ¢(7, z, &) is

1
2

afC(’T, z, 5) = /]R4 (%J(Dx’, Df’a Dy'a DU')>k[a(xla él)b(y/a 77/)]

((x7§)+\/;X*’(x7§)+ﬁy*)672iU(X*7Y*) dX*dY*g

so that Taylor formula gives, denoting the derivative 87’?0 =k,

1
a#b(z, &) — (a#b),(x, &) = 1 ; /0 O (r,2,6)1 — 1)~ Ldr.

(p—1

We may write

(2.3.12) (1, z,¢€)
= L[ Y () 4 TXT (2,€) + VY T) dX Y

w2 JRa
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where the symbol

1
(23.13)  e(@, & yn) = (50(1%/,DsuDy',Dn'))p[a(w’,ﬁ’)b(y',n')]
satisfies, recalling (2.3.8]), the estimates

(2.3.14) |03 0] e(2',€ 4/, )]

S Ky o Mo (@)Mar gro ()N (™ =2
al+a//:p
B/+B//:p

The symbol e in ([Z313) may be written as a linear combination of expres-
sions a1 (2’,&")b1(y',n'), where aq,b; may be expressed from derivatives of
a,b. Then, in the same way as (Z33.9) may be written under the form (23.7]),
we obtain a representation of ¢(?) in terms of a combination of integrals of
the form

(2.3.15) /}R2 & ay (7, € + T%)Bl (¢,¢ - T%) de*dn”,

where, because of the support properties of a, l;, the integrand is supported
on [£*] + [n*| < C§(&). Therefore we may insert in the integral (Z315]) a
cut-off x((¢*,n*)/(£)), where x is a compactly supported C*°(R) function,
equal to one close to zero. Now, expressing the Fourier transforms &1,51
from ay,b1, we get an integral of the form (Z3.I2]), with moreover the cut-
off x((¢*,n*)/(£)). This shows that in (2Z312]) we may insert x((£*,1n%)/(€))
under the integral. Performing in (Z3I2) two integrations by parts in Jg-
and in 0,~, we get an integrating factor (1+(&)|y*|)2(14(£)|z*|) 2. Finally,

using (Z3.14)), we bound (Z3.12]) by

Col&)™ ™ [ (L @) 721 + (Ol 2 dXay™,
|* |<(€)

which gives (Z3.10) with C, as in [Z3.I1]) (with other constants M, g). O

Before proceeding, we make the following remarks:

Let a(z,§) satisfy (Z3.8) with « = 0, 8 in N, with a-Fourier transform
a(z, &) supported for |2| < §(§) for some small § > 0. Then a(Z,£) may be
considered as an Z-compactly supported distribution, for each fixed &, which
is smooth in ¢, and the Definition (ZZ2) of Op"V shows that, if u is in S(R)

(2.3.16) OpW(a)u(é) = %/Rd(n,é - g)ﬂ@ —n)dn

where the integral has to be interpreted as an n-compactly supported dis-
tribution depending smoothly on ¢ acting on n — @(§ — ). Since |n| < (£)

on the support of ([2:3.16]), it follows that OpW(a)u is in S(R), and setting
(2.3.17) ar(z,§) = a(z,§)0(§/R)
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for some cut-off function 6 € C5°(R) equal to one close to zero,
OpW(ar)u — OpWV(a)u in S(R),

when R goes to +00. Moreover, formula (Z37) shows that the z-Fourier
transform of a#b is

(2.3.18)  a#b(n, & == / g— %) (n—¢,6- —) de*

and, by the support conditions [*] < §(§ + 3 — %), In—¢&*| <d(E— %), the
integrand in (Z3.18]) is supported, for  small enough, on

(2.3.19) €]+ Inl < [€]-

In addition, recalling (23.16), (Z317), [23I8]), we have that, for any u in
S(R),

OpW(ap#br)u(&) = # /]R2 @(5*,5 — %) r(n— €6~ ﬂ _ %)

xa(§ — 77) d&*dn

where, by the conditions [£*] < §( — %>, In—& <66 —14 - %>, we have,
on the support of the integrand,

=Sl temie-3-5)

As a consequence, as R goes to infinity,

Op™ (ar#tbr)u(§) — OpW(a#bu(§) in S'(R).
We shall exploit these remarks in the proof of the following lemma.

Lemma 2.3.4 Let a, b be as in (i) (resp. (ii)) of Definition[Z.31. Then

(2.3.20) 0p®WV(a) o OpBW (b) = Op™ (¢)
where
(2.3.21) cUsx,8) = ay, Uz, 6)F#by, U"; 2, 8),

with ay,, by, defined by the first formula (2Z.2.23),

(resp. where
(2.3.22) c(Ust, z,8) = ay (Ust, z, §)#b, (Ust, 2,),

with ay, by defined by the second formula (ZZ23)).
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Proof: Let us treat the case (i). By ([2.2.24]), we have
Op"W(a) 0 OpW(b) = 0p" (ay,) 0 Op™ (by,) -

Since a is an homogeneous symbol in IN’;” and b in f;”, the symbols a,,,, by,
satisfy, by (ZL5) and (Z221)), (Z2.22]), the following estimates: there is o
such that for any «, 8 € N, we have

1090 ay, U 2,€)| < Capl&)™7HGE W),
1020 by, U 2,6)| < Capl€)™ PHGE ,WU").

Moreover, by (ZI1.6]), the support of their space Fourier transforms

(2.3.23)  supp(ag, U5 (1,€)) » supp(by, U5)(n,6)) € {In] < CH(&)}

where 0 is the small constant in (Z2221]). As a consequence we have that

ay, U2, &)#by (U"; 2, €) is well defined as the oscillatory integral (Z3.9).
We are thus left with showing that

(2324) O (ay, U'5)) 0 Op™ (by, U"; ) = Op™ ((a, #bx, U )):

If we replace ay,, by, by ay, r, by, r defined as in (Z3.17]), we obtain symbols
that satisfy the assumptions of Theorem 7.9 of [32]. Indeed, by (Z.1.5]), for
any «, 8 in N, we have the estimates

1080 @y, rU's 2, )| < Cap g (O™, 1050 ay, rU";2,6)| < Cap (&)™,

and the symbol a,, r, resp. by, r, can be regarded as a function in Ss(my),

resp. Ss(ma), for any 0 < ¢ < i, with order functions my(z,£) = (§)™,

resp. ma(z, &) = (€)™ . Theorem 7.9 of [32] with h = 1 implies that formula
(23.24) holds for ay, r,by, r- By the remarks preceding the statement of
the lemma, we may pass to the limit when R goes to infinity proving (2.3.24))
and therefore (23.20). The proof of case (ii) is similar. 0

Proof of Proposition [Z32: We prove statement (i). By lemma 23] we

may write (2.3.35]) as
Op™ (ay, (U';)#by, U5 ) — OPPW ((a#b),(Us ) = Op™ (r(U; -))
where r» = r1 + ro with

™ (u’ ) = Ay, (ul; ')#qu (Z/[”; ) - (a’Xp#qu)P(u; )
TQ(U; ) = (aXp#qu)P(u; ) - (a#b)07Xp+q(u; )

By [Z310) with ¢ =0, (Z311)) and (Z15) (recall (Z38)), we have
(2.3.26) (UL Us2,)] < Cln7 (™" 78, , (LU

(2.3.25)
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Notice that the symbol r; satisfies, as a consequence of its definition (2.3.25]),

2323), 2318), (Z3I9), and the Definition 3Tl of (ay, #by, ), spectral

localization properties that ensure that OpW(r;) coincides with OpBW (ry),
if xp, Xq in the definition of r1 have been taken with small enough support.
More precisely, the space Fourier transform of r is supported for |n| < (£),
if 9 in (Z2Z2I]) is small enough. Moreover by the first remark following
the proof of Proposition [Z2.4] the estimate (Z3.26]) is enough to prove that
Op™W (r1 (I, U; -) satisties (ZZ34]) (with m replaced by m+m’—pand o ~ p).
Therefore applying (2.2.34) with s = m + m’ — p, we have, up to changing
the definition of p, for any n = (n1,...,np4e) in (N*)PT9 any nyiq41, the
bound

(2.3.27) HOPW (r1 (Il ),y i Up gl 22

ptp, mtm’—p =0
< Cln| Mptq+1 g07p+q+1(Hnu’an+q+1Up+q+1)-

Moreover, since Op" (ay, (IL,U’; ) and Op™ (by,, (IL,»U"; -)) satisfy (ZZ3H)
(since ay,, by, satisfy (ZL8])), the composed operator

Opw(axp (I U';-)) o Opw(bxq (I U"; )
satisfies the same property as well, and, by (2236]) in Proposition 2:2.4], if
Opw(ax;; (Hn/u,§ ) o OPW(qu (HWU”; ')HNp+q+1UP+q+1 # 0,

then n = (n/,n”) satisfies |n| < nptqr1 (if § in (Z221)) is small enough). A
similar statement holds for

Opw ((aXp #qu)P(HnU; '))an+q+1 U

so that when (Z3.27)) does not vanish identically, we may bound its right
hand side as

man(nl, cee 7np+q+1)u+p

max(ni, ..., Nprqr1)’

(2.3.28) C 7Goprart Mnld T, Upigin) -

Indeed, if max(ni,...,npyq) < Npig+1 then (ZI28) directly follows by
(Z327). On the other hand, if max(ni,...,npyrq) > Npigt1, then, by

In| < Npigr1, we have that maxa(ni,...,npygr1) ~ max(n,...,Npyqtr1)
and (Z3.28)) follows as well. We have proved a bound of the form ([22.28),
showing that OpW(r;) is a smoothing operator of Rp f;m+m

We have to prove a similar result for OpW (ro(U;-)) where ro(U;-) is
defined in ([Z325]). Recalling Definition 23] we notice that ro(IL,U;-) is a
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combination of symbols of the form, for 0 < ¢ < p

1 l
(§U(Dx,D§,Dy,Dn)) oy td's 2, )b(ILyU" 3y, 1)

X xp(n',€)xq(n" )] o=

7 l
_Xp+q(n/, TL”, 5) (ia(DI, Dfa Dy, Dn))
|a(TLtd's 2, )b(Trld "y, )] Iﬂg:y-
=n

Because of the properties (Z2Z21) of xp, Xq: Xp+q, the above symbol is sup-
ported in the region where

01(§) < |(n',n")] < 62(§), thus max(ny,...,npig) ~ (€),

and, since a is in f;,” and b in f;”/, it is bounded in modulus by
Clnl7(€)™ ™™ 7PG0 pyq(LLnlh)

for some o ~ p. Arguing as for r; we deduce that Op" (r2(IL,U; -)) satisfies
bounds of the form (Z228) (with p replaced by p — m — m' and p + 1
replaced by p + ¢ + 1) and therefore also OpW (r2) is a smoothing operator

of 7?,; f;erm,. This concludes the proof of (i) of the proposition.

We now prove statement (ii). By (2:3.22)) and the second line of (Z.2:24])
we may write (2.3.6]) as

Op™ (r1(Ust, ) + r2(U;t, )
where

(2 3 29) 7“1(U; t, ) = a’X(U; t, ')#bx(U§ t, ) - (ax#bX)P(U; t )
TQ(U; t ) = (ax#bX)P(U; t, ) - (a#b)ﬂyx(U; t, )

The symbol a is in I'} ;o [r] and b in F%/ K1 47]. Taking o large enough,
depending on p, we have that ([ZI.I0) holds up to the index 0 < a < p (and
similarly for b). We notice that (23.10), (Z3.II)) and (ZLI0) imply that
the symbol r; satisfies bounds

0Fdr (Us t, 2, )] < CLO™ ™ 7067 oy (ULD)

for 0 < £ < 2. By the first remark following the proof of Proposition 2.2.4]
the estimate (2237 holds, i.e.

||OpBW(afT1(U; t; '))‘|£(Hs,Hs—m—m’+p—2) S Cglz?i-K’,p—i-q(U’ t) )
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and, forany 0 < k < K — K',

187 (0P (1 (Us £, )V

Hsfmfm’prfo%k

SC Y GlnrpegU DG (V1)
K/ 4k =k

which implies the estimate (2.2.30) of a smoothing operator of R/ ;%ﬁ’;l [7],
by renaming p as p+2. (We used again that Weyl and Bony-Weyl quantiza-
tions coincide for the symbol at hand, since the space Fourier transform of
r1(U;t,z,€) is supported for || < |£]). The study of OpBW(ry) is similar,
as ro satisfies the same bounds as r; above.

The statement concerning autonomous classes follows directly from the
proof. O

Remark: The proof shows that the remainders in (23.3]), (Z3.6) have
actually better estimates than the general bounds (Z.2.28)), (2.2.30) satisfied
by smoothing operators. In (Z3.25]) the symbols 71, ry are supported so that
in (Z327), |n| < npiq+1. Consequently, for any p, there is ¢ > 0, and for
any U = (U,...,U) with |U||y» smaller than some r, the operator (Z3.5)
is bounded from H* to HstP—(mt+m’) for any s. The same assertion holds

for (2.3.6]).

2.4 Composition theorems

We state in this section the composition results that will be used systemat-
ically in the rest of the monograph. Let us consider symbols

N N
a=Y a,€ ST} [N, b= > by € X% s [r, N]
q=p q'=p’

decomposed as in ([2.1.12]). We define the symbol of EF?}W,IP L[ N,

N-1
(2.4.1) (a#b) N = Z cg(U,....U;2,8) +en(U;t, z,§),
q"=p+p’

where, for ¢ < N — 1, one sets
Uz, §) = Y (ag#by)pUs,€)
q+q'=q"

and

CN(Ua t,fL’,S) = Z (aq#bq’)p(U;t7x7§)7

q+q'>N
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the factors aq,by, ¢,¢ < N — 1, in the expression of ¢y being considered
as symbols of I'g, [r], F%:Qq, [r], according to the first remark following
Definition 2.1.3]

The following proposition is a direct consequence of Proposition

Proposition 2.4.1 (Composition) Let m,m’ be in R, K/ < K in N,
p, 0, N inN withp+p' < N, pinN,r > 0. Ifa is a symbol in YR k1 plrs N]
and b is a symbol in EP%:K,J), [r, N], then
(2.4.2)

Op"W(a(U;t,-)) 0 OpPW(b(U; t,-)) = Op®W ((a#th), n (Ust, ) + R(U; t)

where R is a smoothing operator in LR ;;%J_f; [r, N]. A similar statement

holds for autonomous classes.

We may compose as well smoothing operators and paradifferential ones. The
outcome is another smoothing operator.

Proposition 2.4.2 Let a be a symbol in XU g ,[r, N] with m > 0 and R

a smoothing operator in ER[_(? K’ p' [r, N]. Then the composition operators
Op™™W(a(Ust, ) o R(Ust),  R(Ust) o Op"™(a(Ust, "))

are in ERK o [T N A similar statement holds for autonomous classes.

p+p’

Proof: We prove the proposition for OpBW(a(U;t,-)) o R(U;t), the other

is similar. Decomposing a = Y0 a, as in (ZLIZ) and R = Zq,_p
according to (2:2.31]), we have to show, on the one hand, that

(2.4.3) Op®WV(ay(Uy, ..., Uz ) 0 Ry(Ugsts - s Ugrgr)

is an homogeneous smoothing operator in 7@;,” Tty =q+¢ < N-1
and, on the other hand, that

Op"W(ag(U,...,U;-)) o Ry(U,...,U), q+¢ > N,q,¢ <N -1
Op®W (ay ( ))oRq/(U,...,U),qu’SN—l

CAD PP (U, U2 )) 0 Ry (Us1), 0< g < N~ 1
Op"V (an ( ))ORN(U t)

are non-homogeneous smoothing operators in R Kp ;gnN[ ]

Let us first study (ZZ3]). Replacing U; by II,, U we have to consider
expressions of the form

(2.4.5) ZHnOOp (aq(HmUl,...,anUq;-))H%

oMy Ry (T, Ugits - T, Ugg )Ty Ut
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By 2233 for agy and (Z2.29) for Ry, the indices in the sum (2.4.5) satisfy,
for some choice of the signs €;, j =0,...,¢+¢ +1,

q q+q'+1
(2.4.6) Z €Ny = n{), n'o = Z SFUIE
Jj=0 J=q+1

As a consequence, ([2.4.3)) satisfies the corresponding condition (Z2:29]). We
are left with checking that (2.43]) satisfies estimates of the form (22.28]).
Combining the bound (Z2:34) (with s = m) for a4, with (Z2Z28)) for R, we
deduce, using also the second restriction to the indices in (2.4.6]), that the
L? norm of (2435 is bounded by

p+
maxs(Ng41, -« Ngtq'+1)
max(ng41, .-, Ngrq+1)"

n
(2.4.7) Cng ...ng|np|™ G011 ()
where n = (n1,...,ngyqg+1) and U = (Ur, ..., Usyq41). By the first identity
in [24.6) we bound ny < ng +ny + -+ 4+ ngy1. By the property (2.2.30])
of OpBW(a,), the indices in the sum (ZZH) satisfy ni,...,n, < ng ~ nf.
Moreover, the second identity in (ZZ06]) implies that ny < ngy1 + -+ +
Ng+q'+1, and one deduces that

max(Ng41, ..., Ngtrq+1) ~ Max(ni, ..., Ngrq+1)

(2.4.8)
max(ni,...,ny) < Cmaxs(ni,...,Ngyq+1) -

Inserting these inequalities in (ZZ4.7) we get that (2Z.4.75]) satisfies an estimate
of the form (2:2:28]), with p replaced by p — m, a new value of p, and p

replaced by g + ¢’. This proves that (ZZ5]) is a smoothing operator of
RorHm
a+q

One has next to check that each operator in (2.4.4]) belongs to R . It,mN [].
This follows from the combination of estimates (Z2.30]) and (m;wfiting
for instance OF[OpPW (an (U;t,-)) o Ry(U;t)V] as a combination of expres-
sions OpPWV(9F an (U;t, )[0F (Rn(U;t)V)] with k' + k” = k. This con-
cludes the proof. O

Let us study next “inner compositions” where we substitute to one of
the coefficients of a symbol, or of a smoothing operator, one of the maps of
Definition 2251

Proposition 2.4.3 Let K{, K} be integers with K{ + K} = K' < K, and
N,p,p' € N withp+p <N.
(i) Let a be in T')* and M be in XM rer (1, N — p|. Then

(2.4.9) U—alU,..., U MU;t)U;t,x,£)

z§ in XUR gyt N If the symbol a is independent of § (i.e. a is in
Fp according to Definition [Z20.1), so is the symbol in (2.7.9) (thus it is a
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function in EFk k1 plr,N]). Moreover if a is a symbol in I'g x. y[r] then
the symbol in (24.9) is in I'% jor NI1].

(ii) Let R be in 7%;” and let M be in ./T/llp”}b/ for some m’ > 0. Then the
composed operator

(2.4.10) R(UL, ..., U)M(Upi1, ..., Uprp)

is in ﬁ;f;,m/.

(iii) Let R be in Ry’ [r] and let M be in M%:K/7p, [r] for some m' > 0.
Then the composition R(U;t)M(U;t) is in R;(f’;,r’r;+p, [r].

(iv) Let R(V,W;t) be a smoothing operator of ERI_(/,)K{,]) [r, N, depending

linearly on W, i.e.

N-1
R(V,W;t) =Y Ry(V,...,V,W) + Rn(V,W;t)

q=p

where Ry belongs to 7%;” and Ry satisfies, instead of (2.2.30), for any
0<k<K-K|

(2.4.11) ||0FRN(V, W)U (t,-)||

gete—5k

<C Y (Grrg vV G g (WG 1 (U, 1)
K4k =k
+ giqui,Nﬂ(V’ )Gk 1 (W, t)Gin (U, )

+ G ket no (Vi G g A (WiD)Giy 1 (Vi) G, (U, t)).

Let M be in SM 1o, [, N). Then R(V, M(V;t)Wst) is in SR LE [, N,
and it is linear in W.

All statements of the proposition have their counterpart for autonomous
operators.

Proof: (i) is nothing but the fourth remark following Definition
(ii) We may write (Z4.I0) in which we replace U; by II,,.Uj, acting on
Up4p+1, and composed at the left by II,,, as

Tptp/+1

(24.12) > My R(Iy, Uy, ... 1, Up)

pt1

My My Upit o T Upe T Uy
By (22Z351)), the summation is limited to those nj,,, satisfying €, 1n),, 1 +

!
1 . .
Z?;Lg:l ejn; = 0 for some choice of the signs ¢, 4, ;. Moreover, by [2.2.28)),
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@R2350) and ny < Cmax(npi1,. .., Npipr11), the L? norm of (ZZAI2) is
bounded from above by the sum in 7}, ,; of

/ +
maxa (11, . . ., Np, Ny yp)H /

(2.4.13) C max (Np 1. .., Npipit1)

Max (N1, ..., N, Ny 1)P
0
X GO o (TLU)

where n = (n1,...,np1p+1) and IL,U = (I, Uy, . .. 7an+p/+1Up+p/+1)' As-
sume first that one of the indices among n1, ..., np4 41 is much larger than
all the other ones, say n;. If p+1 < j <p+p'+1, then n;H—l ~ nj, so that

(24.13) is smaller than

ptp
maxo(Mni,...,N /41
( ’ s p+p'+ )_m, g87p+p’+1(nnu) )
max(ni, ..., Npyp/+1)

C

If, on the other hand, 1 < j < p, we have n; > n;,H and a similar bound fol-
lows. Finally, if the second largest among n1 ..., 7,1,/41 is of the same mag-
nitude as the largest one, i.e. maxo(ni ..., Nppp41) ~ Max(ng ..., Nppp11),
a bound of the form ([2:2.28]) follows immediately (with p replaced by pu+m’).
Finally, by (2:2.29) and (2.251]), if (ZZ.12)) is non zero then Zpﬂ) eme=0
for some choice of signs ¢, € {—1,1}. Consequently, (Z4.I0) belongs to
oo
ptp’
(iii) To study R(U;t) o M(U;t), we use that for 0 < k < K — K', we
have by (2.2.30),

(2.4.14) ||OF(R(U;t) o M(U;t)V))]|

H8+p7m’7§k
< C Z (gk’JrK’ U t)gk// 1 ( (U, t)V, t)
k'+k"=k
+ Gk p—1(U, t)gk,H(, (U, 6)Gn 1 (M(U; t)V,t)).

Since, recalling (Z1.3), (Z1.2),

gk‘”l ( (U7t)‘/7t) - Z ”atk (U t)V” as— m—gk””
k<K

we may use ([Z.252]) to bound the first term in the right hand side of (Z4.14])
by

(24.15) C > (G ki (UG, (V1)
K+ =k

+ Grs k-1 (UG 1 (V)G o1 (U 1))

The last term in (Z4.14) satisfies a similar estimate. Therefore, for a new

value of o, (Z4.14) is bounded by (Z4.1I5)), proving that R(U;t)M (U;t) is

. —p+m’
in R’k prpr 7]
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(iv) We have to consider on the one hand composition of multilinear
terms of the form, for ¢ € {p,...,N =1}, ¢ € {p/,...,N — 1},

(2.4.16) Ry(Ut, ...\ Uy1, My(Uysr, .., Ugrg Wasgr41)Uy .
By (Z228), [Z2350) we get that the L2 norm of

(2.4.17) > MRy (T, Uy, .. Ty, Uy,
g

W, My (W Ugyrs - Mo, Ugig ) M Ugig +1)an U,

is bounded by

/ +
maxa (11, . . ., Ng—1, Ny, Ng)" /

!/ m
max(n,, Ng41y- .- Ngtrq'+1)
/ s Tlg+-1, s g+q'+
max (i, . .., Ng—1, My, Ng)P a

X gg,q+q/+1 (Int) -

Then following the same arguments after (Z.4.13]), using (Z2.51]) and (2:2.29)),

we prove that (ZZ.I6]) is an element of 7?,; _f;rm/.

On the other hand, we have to study the composition of
Ry(V,Mn(V; )W )U, q=p,...,N -1,
RN(V,My(V;t)Wst)U, ¢ =p,...,N -1,

and
RN(V,Mn(V;t)W;t)U .

If one combines (2.417]) and (2252)) as in the proof of (iii) above, one gets
for the composition an estimate of the form (ZZIIl), with p replaced by
p—m/, for a new value of o, and paying attention to the fact that the losses
of time derivatives K| for R, and K3 for My cumulate. This shows that we

_ /
obtain an element of R 77 [r]. O

Let us state a consequence of the preceding proposition.

Proposition 2.4.4 Let a be a symbol in f‘;’l and M in XM g1 [r, N —p],
p+p <N, asin (i) of Proposition [2.4.3. Then

(24.18) Op"™(a(U,....UW;))lw_nwiw = Op"" (e(U3t, ) + R(Us1)
where c is the symbol in XU 1/, [r, N| given by (24.9),
cU;t,") =a(U,..., U MU;t)U;t,x,£),

and R(U;t) is a smoothing operator in ¥R’y
autonomous, so is R in the right hand side of

pip |75 N for any p. If M is



66 CHAPTER 2. PARADIFFERENTIAL CALCULUS

Proof: We decompose M (U;t) = SN P! My (U, ..., U)+Mn_p(U;t) with

q'=p'
My in M, and Mn—p, in My g0, [r]. We consider first the homogeneous
terms. For ¢ =p/,...,N —p — 1 we define

Cq/(Ula sy Uerq/; ) = a(Ula sy Upfla Mq/(Upa sy Up+q/71)Up+q’; )

that, by the fourth remark following Definition 2.2.5] is an homogeneous
symbol in I ;. We want to prove that the difference

OpBW(a(Ula R Upfla W))|Mq/(Up,...,U _OpBW(Cq/(Ula R Up-l—q’))

p+a'—1Uptg/

is a smoothing operator in 7%;” o Let

Ry(Ut,...,Upiq) = OpVay, (Ur, ..., Up1, My (Up, - .., Upiq—1)Upirg's )
T X (Ur, .- Uptgrs )] -
By the definition 22Z23) of ay, and ¢y, . , the symbol in the above ex-

pression computed at II,,Uy,. .. ,an o Up+q may be written as

(24.19) > a(ly,Uy,... My, Uy,
p

Hn;Mq’ (an Ups- -+, an+q/,1 Up+q’—1)HnP+q/ Uptq; £)

X [xp(ni,... ,np,l,n;),g) — Xptq' (N15 - Npygr, §)] -

n

The two cut-offs above are equal to one for ny + -+ +nyyp < 0'(§) if &' is

small enough. Indeed, for x4 this directly follows by (ZZ.2I]). Moreover,
on the support of the nj, summation, (2Z.Z351)) implies that n;, = Z?ig €N
for some signs €, ..., €,14. As a consequence

ny4 .oy, <np 4y <)

and, if 0’ is small enough, x,(n1,...,7p-1,n,&) = 1, by (Z2Z2I]). Conse-
quently, on (ZZ4I9), we have max(ni,...,npyq) ~ (§). According to the
remarks after the proof of Proposition [Z2.4] this implies that R, is an
element of ﬁ;f: , for any p.

Concerning the non-homogeneous contribution, we define

en—p(Ust,) =a(U,..., U, My_p,(U;t)U; ")

that, by the fourth remark following Definition 2.2.5] is a symbol in I'} ;/ NIl
Recalling ([2.2.24]), the associated paradifferential operator Op®W (cy_,)
is equal to OpW(cy_p) where, by (ZZ23),

(2420) Cpr,X(U; ta x, E) = X(D, 5)[Cpr(Ua ta x, E)]
= Z X(Dag)[a(nn1U7 b 7an—1U7 anMN_p(U; t)U, t,x,f)] *

Nni,...,Np
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If we restrict the sum in (24.20) to ny +---+n, > ¢(§) for some c, it follows

from (2:234)), (2:252) that the associated operator satisfies (2.2.30) for any

p, as soon as o is large enough relatively to p, and therefore it is a smoothing
operator in R’ n[r]. We consider next the sum in (ZZ20) restricted to

the indices satisfying ny + - -- +n, < ¢(§). By (21.6), (Z226]) and 2221))

we deduce that, for ¢ small enough,

Z X(D, 5)[0’(Hn1 U, ctty an—l U, anMpr(U; t)Ua t, xz, 5)]
n1etnp <c(€)
= > a(Il,, U, ..., Uy, U T, My_p(U; )U;t, 2,8) .
nietnp<c(€)

Consequently, by (ZZ21]), the difference between the above symbol and

(2421) ay,(U,....UMU;U;t,z,8) = > xp(ni,...,np,8)

ni,...,Np

x a(Ilp, U, ... 1y, U1, My _(U; t)U; t, 2,§)

is supported on indices satisfying ny + --- + n, > ¢'[¢| for some &' > 0.
In conclusion, the difference between ([2.4.20) and (Z.4.21)) is a smoothing
operator of R’ v [r]. O

To end this subsection, we restate the Bony paralinearization formula of the
composition operator, that will be used in Chapter

Lemma 2.4.5 (Bony Paralinearization of the composition opera-
tor) Let f be a smooth C-valued function defined on a neighborhood of zero
in C2, vanishing at zero at order ¢ € N*. There isr > 0, a 1 x 2 matriz of
symbols a(U;-) in I’%Qq_l[r, aut] and a 1 X 2 matriz of smoothing operators

R(U) of RI_(?OH, [r,aut], ¢ = max(q — 1,1), for any p, such that
(2.4.22) f(U) = 0p®W(a(U;-))U + R(U)U.
Moreover, a(U;-) is given by the symbol D f(U) which is independent of &.

Remark: OpBW(a(U;-)) is the para-product for the function a(U;z) =
Df(U(z)), see Definition 2511

Proof: Notice first that if f is linear, (2.4.22]) is trivial, with R = 0, so there
is no restriction in assuming that Df(0) = 0, i.e. ¢ > 2, since this amounts
to add a linear term to f. By the paralinearization formula of Bony, we
know that f(U) = TpsaunU + R(U)U, where R(U) satisfies (ZZ30)) and

where
1

TosunU = 5= [ € el OU () dyds
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with ¢(U;z,€) = x((€)"'D)[Df(U)] for some x € C§°(R) with small enough
support, equal to one close to zero. Defining the z-periodic function b(U; x, &)
through its Fourier coefficients

b(Un,€) = &(Uin,¢ — 5), ne L,

we deduce by (ZZE) that T pnU = Op™ (b(U;-))U. We may write

bU:n.€) = x(n(e—2) ) DFO))

= X(n(&) D)) + (x(n{e~2) )~ x(nle)™) DIT)(n).
If the support of x is small enough, we thus obtain
Tpsa)U = Op™ (x((&) " D)DFUNU + Ry(U)U

where the first term is OpBW (D f(U))U, since the cut off x((€) ™' D) satisfies
the assumptions made after (ZZZI]), and the second one contributes to
R(U)U in (24.22]). Notice that according to the second remark after the
proof of Proposition 224}, the definition of OpBW (D f(U))U depends on the
choice of x only modulo a contribution to R;(U)U. 0

2.5 Paracomposition

We define in this section a paracomposition operator associated to a dif-
feomorphism x — = + B3(x) of T!. The first property of a paracomposition
operator is to be a bounded map between any Sobolev spaces, requiring for
B(x) just limited smoothness. The second property is to conjugate a para-
differential operator into another para-differential one, up to smoothing re-
mainders. Paracomposition operators have been introduced by Alinhac in
[8]. We propose below an alternative definition of paracomposition operator
using flows.

We first define the subspace of the functions formed by the symbols of
EI’(}(, i pl7s N introduced in Definition T4 which are independent of §.

Definition 2.5.1 (Functions) Let K' < K be in N, p in N, r > 0, N in
N with p < N. We denote by

o Fp (resp. Fr i plr], resp. SF i plr, N]) the subspace of Ty (resp.
I’?(7K,7p[r], resp. EI’%K,J)[T, N|]) made of those symbols that are independent
of &

e LR k1 plrs N] the restriction of elements of 2F k kv p[r, N| to the sub-
space OIS (I, HO (T, C?)) of CK(I, H?(T',C?)) defined after (Z1.2) that are
moreover real valued;

o XF i 0plr, Nyaut] = XF g o p[r, N| N EI’(}(,OJ,[T, N, aut] the subspace of
functions whose dependence on t enters only through U = U (t).
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We now consider a diffeomorphism = — x + B(U;t,x) of T! with a
function S(U;t, ) in the previous class.

Lemma 2.5.2 (Inverse diffeomorphism) Let 0 < K’ < K be in N and

B(x) def B(U;t,z) be a real valued function

(251) ,B(U, t, ) S EfK,K’71[Ta N]

for U in the space C5 (I, H?(T',C?)). If o is large enough, and U stays in
the ball of center zero and radius r in CI (I, H (T, C?)), the map

(2.5.2) Sy :x— x4+ B(U;t,x)

is, for r small enough, a diffeomorphism from T to itself, and its inverse
diffeomorphism may be written as

(2.5.3) oty = y+(Ust,y)

for some v in E]—"}%K,J[T, N].

Proof: By Definition Z51] and (ZII0), functions of Fg v 1[r] satisfy
bounds of the form

(2.5.4) [0F02B(Ust,x)| < CGL i (Ut), 0< k<K —K', a <o —oy,

if o > 09> 1and U is in BE (I,7(0)) N CHE (1, H7 (T, C?)).
Look first for a function v(U;t, ), continuous in (¢,z) € I x T!, solving
the fixed point problem

(2.5.5) Fg(y) =~, where Fp(7y) 8o (Id + 7).
By ([25.4]) applied with o =1,k = 0,0 = 09 + 1, we get

IF5(1) = F )l < Csup GER U0y =l
S

where [[v[|zee = supg zyerxm [V(E,2)[, and

[E(Mlzee < (I8l + Cilelyg}?ﬁl(U,t)llvHLw :

If C'supye;r Q}’é’,ﬁl(U, t) < 1/2, the contraction mapping theorem implies the
existence of a unique continuous function ~v(U;t, z) solving (2.5.5)) and satis-
fying ||y||ree = 2||B||Le = O(supse; g}’é’,ﬁl(U,t)). The solution + is actually
more regular. Indeed, consider the function G : I x T! x R — R defined by

G(t,z,y) Ey+BU; t,x +),
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so that G(t,z,v(U;t,z)) = 0. Condition (2.5.4]) implies that the function
is Ctin (t,), thus G is C! in (t,z,y). Moreover

DN | =

0,G)(t,2,y) =1+ (0:8)(Ust, x +y) > 1 - CGEEE (U t) >

As a consequence, the implicit function theorem implies that the function
y(U;t,x) is C! in (¢, ) and

(0B)(U;t,x +~(U;t,x))
14 (0.8)(U;t,x +~(U;t, x))

(0:8)(Ust,x +~(U;t, x))
1+ (8,8)(U;t,x +~(U;t,z))

oy(U;t,x) = —

0py(Ust,x) = —

By induction we deduce that there exist all the derivatives 9F92y(U;t,x)
for any 0 < k < K — K’ and « such that k + o < o — 0g. Moreover 8{‘“8:‘3‘7
may be written, when k£ + a > 1, as a combination of functions of the form

(2.5.6) Q(aB(U;t,x +v(Uit,x)), 0. 8(Ust,x + (Uit x)))
x T 408 YU 1,2+ 2 (U3 1,2)),
=1

where @) is some rational map of its arguments, m is a positive integer, and
Pi» ¢, U}, ¢ are non-negative integers satisfying

(2.5.7) G+ =1, Y (pi+a)<k+a—-1, pi+l<k.
=1

We shall use the interpolation inequality

(2.5.8) 108 1) -+ (03w )|z < C Y- T [lugllzee lJusllwe.ee
i=1 j##i

where @ = q1 + . .. + gm, which stems by Gagliardo-Nirenberg inequality

a1 9m 9

1-4a a 1— am
102 ur) - (@ um) [ < Cllun]l oo 1l a.oe - - 1ml| oo ® [fttmllyyo.oe

<C 2#1% ) Z#m% G
< Cllulz=™ " llullgoee - - luml z2™™ “ llumllyyo.c

< CTT (TThusllz=lluillwase)® < €7 TTlujll o lluillwaos
=1 j#i i=1 j#i
Let us estimate the modulus of (Z5.6]). By ([25.4)) applied with (k, «) = (1,0)
or (0,1), we have
08Ut & + (U3, 2))| +[0:6(Us b, 2 +(Us t, )|
< CGR (Ut < Cr.
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Then, [Z5.8), (25.7) and (2.5.4]) imply that the modulus of (2.5.6]) is bounded
by

i+
C Z 1162502 Bl 005 Bllywone

1=1 j#1

< 3 TL 600, U063 W,
i=1 j7#i

and, since @ <k—1+a < K — K'+«a—1 by (Z57), we get a bound in
OOk m-1 (UG g 1 (U, 1) < C'GEy 1 (U 1)

if o > a+ o(, where o, = 09 + K — K’'. In conclusion, we have proved that
~ satisfies bounds of the form (254 with o( replaced by oy, i.e. v belongs
to ]:K,K’,l['r]-

Assume now that 3 is in SF5 o/ [r, N]. Then

B(U:t,x) Z:@ U;z) + Bn(Ust, z)

with 3, in ]:"p/ and Oy in Fg g n[r]. In particular, £ is in Fx g 1[r], so
that, as proved above, there exists a solution v(U;t,x) in Fg g+ 1[r] of the
fixed point problem

= — Z B (U, ..., Uz +~(U;t,x)) + n(U;t,x +~v(U;t,x)) .

By Taylor expansion of each By (U,...,U;x+~(U;t,z)) at the point z, and
substituting iteratively the same expression of ~, we conclude, using the
remarks following Definitions 211l and 2Z1.3] that v is in E]-"% Kralm N
Finally the function Sy (Ust,x + v(Ust,x)) is in Fg g n[r], as it can be
verified using the formula for the derivatives of composite functions. This
concludes the proof of the lemma. O

We want to associate to the composition operator

u(@) = u(z + f(x))

a paracomposition operator. The idea is the following. We consider the
family of associated composition operators

(2.5.9) u(z) = u(x +60p(z)), 0ecR.
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The group of transformations (2.5.9)) is the flow of the transport equation

(2.5.10)

{(%u =b(U;0,t,z)0,u
u(0) = u(zx)

where the function

B(U;t,x)
1+ 608,(Ust,x)

Indeed, differentiating (Z.5.9]) we get dg(u(x +06(x))) = B(x)uy(z + 05(x)).
Moreover O, (u(z+66(x))) = (14 6054(x)) ug(x+05(x)) and we deduce that
B(x)

Op(u(x 4+ 05(x))) = m&c(u(m +06(x))),

namely u(z + 65(z)) solves (2.5.10).
The transport equation ([Z5.10) can be written as dpu = iOp(B(U; 0, -))u
with the real valued symbol

(2.5.11) b(U;0,t,z) =

< E.FK,K/J[T, N] .

(2.5.12) B=DBU:0,) ¥ BU:0,t,12,6) =bU,;0,t,2)¢.
Notice that B(U;#6,-) is in EF}QK,J[T, N]. For simplicity of notation we
shall not denote in the sequel of this section the explicit ¢ dependence of the
symbols.

As a good candidate of a para-composition operator associated to (Z.5.9]),
we consider the flow €2 B(U)(H) of the linear para-differential equation

(2.5.13) {%Qmw(@) — i0pPW (B(U;0)) Q0 (6)

Qe (0) = 1d.

The operator Qp(r7) (1) has the first property required by a para-composition
operator, namely to be a bounded map between any Sobolev spaces. Indeed
one can prove the following:

Lemma 2.5.3 Let 0 < K' < K be in N and a function 3(U;t,-) in the space
S Fx.xa(r, N| which is real valued for U in the space C (I, Ho(T',C?)).
Then there is o € Ry and, for any U € CK(I, H(T',R)), system (Z513)
has a unique solution Qg (0) defined for all |0] < 1. Moreover the flow
operator Qp)(0) is bounded on H? for any s, and there is r > 0, and, for
any s € R, a constant Cy > 0 such that, for any U € BE(I,r), for any
W e H® we have

(2.5.14) CoH Wl ize < N2y OW [l < Csl Wl -
Moreover, for any 0 < k < K — K’', we have

(25.15) 108 [y OW] -0 < CGRLW1)

.
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Proof:  The existence of the flow operator Qg (¢) follows from the fact
that the symbol B(U;#) defined in (25.12) is real. Actually, set for A > 1,

Ba(U;0,t,2,§) = B(U;0,t,2,§)x(§/X)

with x in C§°(R) equal to one close to zero. Define for any given W in H®
for some s, the function W) () as the solution of the Banach space ODE

(2.5.16) d% W(8) = iOp™Y (BA(U:9))Wa(6)

Wilo=o = W.
Let us show that we have a bound, uniform in 6 € [-1,1] and A > 1, as
(2.5.17) CH Wl < IWAO)I < Cal Wl -

Set As(€) = (1+ €33, so that |OpPW(AJ(E)W g0 = [A(D)W | o is
equivalent to the Sobolev norm ||[W{.. Notice that, since B(U;6) is a
symbol of order one, Propositions 2.3.2], Z.2.4] and the remark following the
proof of Proposition 2.33.2] imply that

[Op"Y (As), OpY (BA(U:0))]Op™™ (A7)

S

is bounded on H? for any s, with operator norm O(||U||z;») for some large
enough o, uniformly for A > 1. As ([25.I6) implies

d

S s(DIWA(0) = iOp°Y(BA(U;0))[As (D)W (6)]

+ Or2([[As(D)WA O 22U || 0 )

we deduce (Z5.I7) from the L? energy inequality

0
[A(DYWAO)[ 2 < [[As(D)W |12 + CU]| go /0 |As(DYWA(O) || 2 40|

The estimate is uniform in A since OpBW(B,) — OpBW(B,)* is uniformly
bounded on L?, as a consequence of the fact that the symbol B) is a real.

We thus get a family of functions (W) ), uniformy bounded in the space
CO([—1,1], H*) that is equicontinuous in C°([—1,1], H*') for any s’ < s. By
Ascoli theorem, we may extract a subsequence that converges in the latter
space to a limit W that solves (Z5.16]) with B replaced by B and provides
the definition of Qg (0)W = W (0). Since

0 )
2% 1250 ()W %, = 2Re (iOp" ™ (B(U;0))Qp17) (0)W, Qpan ()W) ;.

the fact that OpBW (B(U; 0)) is a self-adjoint operator of order one, and sym-
bolic calculus, imply that [[Qp ) (0)W]| ;. converges to [|Qp (0 )Wl s,
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when 6 goes to ¢, from which one deduces easily that Q Bw)(0)W is contin-
uous on [—1, 1] with values in H®. Let us notice that (25.17) applied to W
instead of Wy shows that (Z5.14]) holds true.

By a similar reasoning the norms ||S2%,_, oF'- HHS‘ 30 satisfy an analogous
inequality. More precisely, if we write

d , .
2528 (0) = i0p°Y(B(U;0))0Qp(w) (8) +i0p™Y (9, B(U30)) Qs (6)

we deduce by Duhamel principle that

0
X Qp(0) = QB(U)(H)/O Q) (1) HOp" Y (8, B(U;0))Qp () (1) dr .

Applying the estimate (Z5.14) for Qp)(0) and for Qg (0)~!, and using
Proposition 224 (in particular (2.2.37])), we get that

1@y O I os < CIW G511 (U 1),

Since 1 < 2 the estimate (Z5.15) for k = 1 follows. Iterating the above
reasoning we get, for any 1 < k < K — K’, the estimate

1O Q) (O)W |l a—s < CIW | G 12 (U 1)
and, since U € BX(I,r), we deduce (Z5.15). O
We prove below that, conjugating a para-differential operator
(2.5.18) op""(a(U;-),  a(U;-) € STR g 4[r, NJ,

with the flow Qp5(0), we still get a para-differential operator. The conjugated
operator

(2.5.19) AU)(8) = Qe (0)0DP"Y (al(U3 ) (L (0))

solves the Heisenberg equation

{%A@0w>=40#”%BaAmLAamwﬂ

(2.5.20) A(U)(0) = OpBW (a(U; 1)) .

We now solve (Z5.20) in decreasing orders showing that it admits an ap-
proximate solution of the form

A(U)(0) = Op”Y (ao(0) + a1 (0) + -+ )

with
ao(0) € STR g o[, N1, a1(0) € STR2 4 [r NT, ...
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and ag(0) is given in ([Z5.30). In particular we will prove that
(2.5.21)

ao(U; 15 t, xz, 5) = (I(U, ta T+ IB(U’ ta CC), 5(1 + 83/7(U7 t’ y)) ‘y:xﬁ-ﬁ(U?tvl’))

which is the usual formula in Alinhac para-composition theorem, see Theo-
rem [Z5.8l Notice that the symbol a; has order m — 2, twice smaller than
ag- This is an outcome of the Weyl quantization.

Before starting the proof, we first check the stability of our classes of
symbols under composition by a change of variables.

Lemma 2.5.4 Let K’ < K inN, m in R, pin N, N in N with p < N,
r > 0 small enough. Consider a symbol a in XU o/ [r, N] and functions
b,c in SFx o 1[r,N]. Then

(2.5.22) a(V; t,x +b(Vit,x), &1+ ¢(V;t, x)))

s in EF%J(/J)[T, N]. In particular, if the symbol a is independent of £, i.e.
a is a function in LF i i p[r, N], we obtain that a(V;t,x +b(V;t,x)) is in
E./—"KJ(/J,[T, N] .

Proof: We decompose

N-1

a = aq(v7 ,V,)+GN(V,t, )
q=p
N-1

b= bq'(V’ ’V7)+bN(Vata)
q'=1
N-1

C = Cq//(v’,...,v;-)—i-CN(V;t,')
q"'=1

with aq (resp. by, resp. cgv) in f‘gL (resp. ]:"q/, resp. ]:"qn) and ay (resp. by,
cn) in T o ylr] (resp. Fr k. n[r]). By a Taylor expansion at order N in
(z,€), we may write (Z5.22]) as a linear combination of terms of the form

(2.5.23) (0507 a)(Vit,2,€)b(V;t,2)" e(V;t, )"

with a, 8 in N, 0 <a+ 8 < N — 1, plus an integral remainder

(2.5.24) /01(1 - )\)N*I(@i}afa)(V; tx+ N(Vit, ), E(1+ Ne(Vit, ) dA
x b(Vit, 2)* (Ee(Vsit, x))?

with aw + f = N. Substituting in (Z5.23])) the homogeneous and non-
homogeneous symbols in the expansion of a,b,c, we obtain the following
contributions:
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e For any o, Sin N, 0 < a4+ 8< N -1,
(2.5.25) (8?8?%)(‘/; 2, &by (V;2)E e (V5 )P

with indices p < ¢ < N —1,1< ¢ ,¢” < N — 1. By the remarks following
Definition 2IT], (Z5:25) is the restriction to Vi = --- = V3 = V of an
homogeneous symbol in f;ﬂ with § =q+¢da+q¢'"B>q. If § < N —1 this
gives an homogeneous term in the expansion of ([Z5:22]). If § > N, it gives
a non-homogeneous symbol in I'g o y[r] C TR g0 y[7].

e Symbols ( 8;}85% bo‘,éﬁc » where a+ 3 < N — 1, but with at least one
index among ¢, q % equal to N By the remarks following Definition 2.T.3]
(aﬁﬁﬁaq)fﬁ is in FK,K’7q[ r] and bg,cq// is in FK,K' so that their
product gives a contribution in ' ., y[r].

e Also the integral remainder (m gives a contribution to I'} r/ n[r].

aq'+8¢" 1" 7],

Indeed the symbol £%b%c? is in I‘?(’ K, ~I7] and it is sufficient to prove that
(8%8?@)(‘/;25,3: + A0(Vit,x), (1 4+ Ae(V;t,2)) is in I‘%’}go[r], uniformly in
A € [0,1]. This can be verified by the formula for the derivative of the
composition of functions.

This concludes the proof. O

We use the following asymptotic expansion formula for the commutator,
which is derived by the composition results of para-differential operators for
the Weyl quantization.

Lemma 2.5.5 (Commutator expansion) Let a be in XTI} 1 [r, N] and
B in X g [r, N]. Then
00”7 (iB(U;)), 0p"" (a)] = Op"" ({B(U; ), a})

(2.5.26)
+ OpBW (T,g,p(B, a)) +R

with symbols

(2.5.27) {B(U;-),a} € STR g1 g4a[rs N1, 7-3,(B,a) € ST 4[r, N,

7q+1[
and a smoothing remainder
(2.5.28) Re SR [ N].

Note that the symbol r_3 ,(B, a) has order m—2. If B is a bounded family of
symbols depending on some parameter 6 € [—1,1], then the above conclusion
holds uniformly in 0.

Proof: 1t follows by Proposition 24T and formulas (Z3.2) and ([233]). Note
that the terms of even (resp. odd) rank in the asymptotic expansion of the
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symbol a# B in the Weyl quantization are symmetric (resp. antisymmetric)
n (a, B). Consequently the terms of even rank vanish in the symbol of the
commutator. d

By (Z5.26)), the equation (25.20]) is solved, at the highest order, by
Ap(U)(8) = Op"W (ag(U;6,-))

where ao(U; 6, ) = ag(0) is the solution of the transport equation

{d%ao(e) ={B(U;"-),ap(0)}

(2.5.29)
ap(U)(0) = a(U3-).

This transport equation may be solved by the methods of characteristics.
Lemma 2.5.6 The solution of the transport equation (2.5.29) is
(2.5.30) ao(U30,2,€) = a(U;6"(x,€))
where
0,0 _ . .
(2531 ¢"@,€) = (¢ +08(Us2). E(1+ 0,93 0.9)), . ps)
are the solutions of the characteristic system
{%x(s) = —b(s, z(s))
5E(5) = ba(s,2(5))&(s) -

In particular for 6 =1 we get (Z5.21). Moreover ay(0,-) € XI'g g [, NI,
with estimates uniform in |6 < 1.

(2.5.32)

Proof:  The function s — ag(s,z(s),£(s)) is constant along the solu-
tions of the Hamiltonian system generated by b(s,z)¢, namely (2.5.32]).
Hence, denoting by ¢%?(z,¢) the solution of (Z5.32) with initial condition
%00 (. &) = (x,€), the solution of the transport equation (Z5.29) is
aO(aa z, 5) = a(¢070(x7 5))
proving (Z5.30). The solutions of the Hamiltonian system (2.5.32]) are di-
rectly given by the path of diffeomorphisms
y=z+00(zx) < z=y+~(0,y), 0¢c[-1,1].
Indeed, recalling the definition of b(6, z) in (Z5II), (x(6),£(0)) defined by

o

2(6) =y +70y), £0) =l +%A0) = 17575
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is the solution of (2.5.32]) with initial condition

z(0)=y,  £0)=4¢.

Taking the inverse flow one obtains (Z5.3T]).

Finally, since a is in XI'g x [r, N] and 8 in 3 Fg g+ 1[r, V], lemma 25.4]
implies that the symbol ag(6, -) deﬁned in (Z530) is in XI'R 5 [r, N], with
estimates uniform in |0| < 1. o O

Let us now quantify how approximately A® (9) = Op®" (ag(0)) solves
(2520). By (2529) and (Z5.26) we have
(2.5.33)
9y A () = Op”" (9gao(6)) = Op"" ({B(U3-), a0 (0)})
= [0p”" (iB(U;6,-),0p"" (ao(6))] — Op”"W (r_3 ,(B, a0 (6))) — R
= [0pPY (iB(U;90,-), A9 (0)] — Op”" (r_3,(B,ag(6))) — R(9) .
Since ag(0,-) € XTI g [, N], for any 6 € [—1,1], we get, by (Z5.27) and
2.5.28),

(2.5.34) 7_3,(B,ag(0)) € SR [ NI, R(0) € SR [, N].

,q+1

Thus A(®)(6) is an approximate solution of (Z5.20) up to a symbol of order
m — 2. We define next the further approximation

(2.5.35) AW () L OpBY (a9 + a1) = AQ(0) + OpPW (a1 (6))

of the equation (Z5.20). We choose the symbol a;(U;8,-) to solve the non-
homogeneous transport equation

(2.5.36) {396“(9) —{BWU:6,-),a1(0)} = r_s,,(B.as(0))
al (0) =0.
By ([Z533]) we have

05 AN (0) = 9, A (6) + Op”" (9pas (6))
= [0p”" (iB(U;6,), AV(9)] — Op"" (r_3 ,(B, a0(0)))
— R() + OpPW (0pa1(9)) .
Hence, recalling ([2.5.35]) and using (2.5.26]), we get

99 AN (6)

= i[OpP" (B(U;6), AV (0)] + OpP" (dpar — r_3,,(B, a0)))
—i[0p"" (B(U;6), 0p"" (a1)] — R(0)

= i[OpP"(B(U;0), A (0)] + Op®" (9par — r_3,,(B, ao)
—{B(U;0,"),a1}) + Op”"W (r_s,(B,a1)) + R’
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where the symbol r_3 ,(B,a1) and the operator R' are lower order terms
that we estimate below. Since a; solves (2.5.36]) we get
(2.5.37)

9p AW (0) = i[OpPY (B(U;6, ), AV (0)] + OpPY (r_3,(B,a1)) + R'(0)
AM(0) = 0pP" (a).

The non-homogeneous transport equation (Z5.36]) can be solved by the
method of characteristics.

Lemma 2.5.7 The solution of (Z2.30) may be written as

0
(2.5.38) a1(6,2,€) = /O r s o(B(5,), ao(s,)) (6% (2, €)) ds

where ¢**(x, &) is the solution of (2.5.33) that satisfies the initial condition
¢ (x, &) = (x,€). In particular

1
(2-5-39) a1(17x7§) :/0 r—3,p(B($7')7a0(87 '))(¢1’s(x7§))ds'

Moreover the symbol a1(0,x,&) is in EI’%TK?,#H[T, N], with estimates uni-
form in 0] < 1.

Proof: Let a1(0,z,¢) be a solution of (2.5.36) and ¢**(zo, &) = ((s),£(s))
be the solution of the characteristic system ([2.5.32]) with initial condition
#*9(z0,&) = (20,&). Thus the derivative of the scalar function s +
ay(s,x(s),£&(s)) satisfies

15,00, €)= Do (s, (5),805)) — {B(Us5,),1(5, )} (5), £(5)
=1-3,(B(s,"),a0(s,"))(2(s),£(s)) -
Since a1 (0, xg, &) = 0 we deduce that

(2.5.40)  a1(0, 8™ (x0,%0)) = a1(0,2(0),£(6))
0

= [ s Bl ol (). €650 ds
6

(2-5-41) = 0 r—3,p(B($7')7a0($7'))(¢078(‘T07§0)))d$'
Setting
(2,8) = ¢"%(z0,%) <= (w0,&) = ¢""(,¢)

we deduce by (Z541]), and using the composition rule of the flow qSO’SgvaO =
%3, that

G
(2.5.42) a1(0,z,¢€) :/0 r_3,5(B(s,"), ao(s, ) (6" (,£))) ds
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which is (2.5.38)). Now (25.34)), lemma [2.5.4] and lemma[25.6]imply that the
symbol r_3 ,(B, ag)(¢%*(z, €)) is in ST 2, g1 V], with estimates uniform
in |0],|s| < 1. Thus integrating ([2.5.42]) we finally deduce that a1(0) €

EF%TK%,Q-H[T’ N], with estimates uniform in 0] < 1. O

Let us now quantify how approximately A(M)(#) defined in (2.5.35)-
(2536)) solves (Z5.20)), i.e. estimate the lower order terms in (Z537). By

lemma the symbol a1 (6, -) is in XI'% o/ [r, N], with estimates uniform
in |#] <1, and by 2527) (with m — 2 instead of m, and ¢ + 1 instead of
q), we get

rgp(B,ar) € STRE - olr N,

uniformly in |#] < 1. On the other hand the remainder R’ in (2537 is
the sum of the remainder R in ERI_{; ;%—:11 [r, N] defined in (2.5.34]) plus a

. . . mflfp J e . 7p+m+1
smaller contribution in Ry 4/ 7o, thus R’ is in ¥R e ' [r, N].

Repeating ¢ times (¢ ~ p/2) the above procedure, until the new para-
composition term may be incorporated into the remainder R, we find a
solution

(2.5.43) AD0) = OpBW (ag(0) + a1(0) + ... + ag(6))
of the equation

9o AV (0) = i[Op”" (B(U;6,-), A (0)] + R(6)

(2.5.44) {A(z) (0) = OpP"(a)

where R() is in ERI_(";?ZTI [r, N], uniformly in 6 € [—1,1].
Finally, we estimate the difference between the approximate solution

A (9) and the true conjugated operator A(6) in (25.19). We write
(2.5.45)  AY(9) — A(0) = (A9(0)2(0) — 2p(0)0p"" () (2p(6)) .

The operator
V(9) = AO(9)Q5(6) — 25(0)0p"" (a)

solves the non-homogeneous equation

eV (0) = i0OpBW (B)V(9) + R(0)Qp(6)
V(0)=0.

Thus, by Duhamel principle and (Z5.13]) we get
0
V(0) = Qp(0) /0 (Qp(r)) " R(r)Qp(r) dr
and, substituting in (2.5.45]) we get

(2.5.46) AO(0) — A(9) = Qp(0)( /0 ' (©(r) T R((7) dr ) (2p(6) "
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We finally deduce the main result for the paracomposition operator Qp(1)
associated to the diffeomorphism ®¢ in (25.2]).

Theorem 2.5.8 (Paracomposition) Let g be in N, K' < K, N € N with
g<N-—-1,r>0. Let 5(U;t,-) be a function in EFg g 1[r, N] which is real
valued for U in the space CI(I, H7(T',C?)) and consider the diffeomor-
phism @y : x— x4+ B(U;t,x). Let a(U;-) be a symbol in EF%K/7q[7", N]. If
o 1s large enough, and U stays in the ball of center zero and radius r small
enough in CK (I, H7 (T, C?)), then the flow Qpw)(0) defined in (Z5I13)
is well defined for |0] < 1, and, for any p large enough, there is a symbol
ap € EI’%K,g[r, N] such that the conjugated operator

= 0pP" (as (U3 )+ R(Us 1)

(2:5.47) Qp)(1)OP™" (a(U; ) (s (1))
where R(U;t) is in ER;(’;,TZ_H[T, N]. Moreover we have an expansion

(2.5.48) ap(Ust,x,€) = a%(U;t, x, &) + ak(U;t, z,€)

where the principal symbol a$ is given by, denoting the inverse diffeomor-

phism of ®y as in (Z2.3),

(2549)  ay(Ust,a,€) = a(Usu(t,2),0, (5 (6)), _y (1)

a} is in XI0 k14T N and the symbol al is in X2 g1l N1, Finally
ap =1 ifa=1.

The operator
(2.5.50) o 2 Qg (1)

is by definition the paracomposition operator by the diffeomorphism .
There are multilinear operators My in M, forp = 1,...,N —1 and an
operator My in My 1o n[r] such that

N-—1
(2.5.51) W =W+ MU,...,.UW + MyU; t)W .
p=1

Proof: Recalling (2.5.43]) we set

a<11> def ar(1) +...+a(1) € EF%,_KZQ%Q[T, NJ.

Moreover we know by ([25.2) and by (Z5.21) that a} is given by (Z5.49).
Then we estimate the difference (Z5.40]) taken at # = 1. The remainder

R(7) is in the class ¥R}’ ;,W;ill [r, N]. In order to prove that the operator in
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(2546 is a smoothing remainder, decomposed in homogeneous operators
plus an O(U™) term, we have to Taylor expand the flow

(2.5.52)
N—q—1
Qpr(6) = 1d + Z / 1o,c. <91<9H[ZOpBW( (U0;,)] by ... db,
J=1

4 / Loy cocret H [OPEW (B(U;0;,))] Qs (On—g) 6 - dBx_,
j=1

Consider the integral term I(U) in (25.52). We may write

N—q
(25.53) 0f ([T [0p™" (BWU;6;,)] Q) (On-W ) =
=1
J . k
S G ( T1 0PV (@ B)] O [0y W)
k1+...+kN_q+1=k 7=1

for suitable coefficients Cy, . ry_,.,- Since B(U;0) is in EF}QK/J[T, N, it
follows from Proposition 2224 and (Z5.15]) that, for any &k < K — K,

10F L@ emgimive) SC D2 G v—g(Ust)Gin 1 (Wit).
k' +k' =k

We replace in [Z5.46) Qg (0), Qpw)(7) by the right hand side of ([2.5.52),
eventually taken at some order smaller than NV — ¢, and do the same for the
analogous expansions of (Qpg ) )71, Q) (7))~!. The terms containing
at least one integral remainder provide elements of R Kp ;g??; 1+N[ |. By the
results of section [2.4] the polynomial contributions to the expansion may be
expressed from compositions of the smoothing term in (2.5.46]) with paradif-
ferential operators. We deduce that the difference A () — A(9) in (Z5.46)

is in YR K” ;/mqill”LN[r N], and renaming p — N — 1 by p, we obtain that it is

in ERKK/ el N1
Finally, recalling (Z550), the formula (Z5.51]) follows from (Z5.52]) at

f = 1 acting on W. Actually, the right hand side of this last quantity may
be written as (25.51]) by Proposition 241}, the remarks following Defini-
tion and lemma 2.5.3] O

Remark: The above proof shows that, if R(U;t) is a smoothing operator
in the class ¥R 7 [, N], then Qp)(1) o R(U;t) o (QB(U)(l))_l belongs
to SR [, N

Theorem Z5.8 shows that the time 1 flow Qp(r)(1) generated by (Z35.13])
defines a para-composition operator associated to the composition operator
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(259), providing the usual formula (2.5.47), (25.49]) in Alinhac theorem.
An advantage of the Weyl quantization is that the symbol a} in (25.48) has

two orders than less the principal symbol.

The conjugation operator Qg (0) 0 d; 0 Q) (6)

a similar way.

can be analyzed in

Proposition 2.5.9 Use the assumptions and notations of Theorem [2.5.8.
Let U be a solution of equation (2.2.53)) of lemma [2Z2.6. Then for any p
large enough, we have
(2.5.54)  Qpr)(0) 0 0 0 Qg (0) " = 0y + Q) (0) © (9Qp) (0) 1)

= 0y 4+ 0pPW (e(U; ) + R(U; 1)

where e is a symbol in ST} 1/ 4 4 [r, N] with Re(e) in STt 1 N and

+1,1
R(U;t) is a smoothing operator in YR Py, 1 4[r, N]|.

Proof: Recall that the symbol B := B(U; ) depends on the time ¢ through
the function U and that the flow Qp(0) solves (Z5.I3). Setting ¥(0) =
Qp(#) 0 0; 0 Qp(A)~! we have

oW (0) = 9p(Qp(0) 0 8, 0 QAp(0) ")
= (3993(9)) 090 Qp(0) " +Qp(0) 0 0, 0 (36Qp(0) ")
= i0p”" (B(9))25(0) 0 0 0 ()~
—QB(G)oatoQB( )~ (9025(0))2p(0) !
Op”V (B(6))¥(9) — ¥(6)iOp™" (B(6))

and therefore ¥(#) solves the Heisenberg equation

[0 or™ (s, w0)

(0) =9,.
Comparing with (Z5.54]) we write

V() =8, +Q(0). QO)=9p0)o (a0m0)"),
and we find out that Q(6) solves
£Q(0) = i[0pP" (B(U;0)),Q(0)] — iOp”V (8, B(U;0))
Q(0) =0.

This forced equation can be analyzed as above and we find that its solution
is a paradifferential operator

Q) =0p(qgo+q +...),

(2.5.55) {



84 CHAPTER 2. PARADIFFERENTIAL CALCULUS

up to a regularizing operator, where the principal symbol ¢y(0,t, ) solves

(2.5.56) {d%qo@ = (B(U:6).40(0)} — i0, B(U+6)

q0(0) =0.

By lemma 2.5.7] the solution of this non-homogeneous transport equation is

0
(2.5.57) w(,2.6) = =i [ OBU:0,6"(@.)ds.

Recalling the definition of B in (Z5.12]), and lemma [Z5.4] we get that the
function B(U; 0, ¢%3(z,€)) is in EF}(7K,71[T, N], with estimates uniform in
0,]s| < 1. By lemma ZZ6, we have also that 9,B(U;6,¢%%(z,£)) is in
EF}(,K’—HJ[T’ N] and by (Z5.57)

qo(a’ ) € EF}(,K’JA,I[T’ N] )

with estimates uniform in |#| < 1. Let us quantify how approximately
QY (0) = 0pPW (go(0)) solves [ZE5H). By ([Z5.56) and ([Z5.26) we have
9pQ"(0) = Op”" ({B(U3-), q0(0)}) — i0Op”" (B,(U; 6))
= [0pPY (iB(U;0,-), 00" (g0(0))] — OpPW (r_3,(B, q0(6)))
— R(0) —iOp”" (B,(U;0))
= [0p""(iB(U:0,-), Q" (0)] — iOp™" (0, B(U:6))
— OpPW (r_s,(B,q(9))) — R(0)
where, by (2Z527), (Z5.28) (with m =1 and ¢ = 1), for any 6 € [—1,1],
r-3,0(B,qo(0)) € EP}?K’-{—LZ[T? N], R(9) € ER;QPIJE?-H,Z [r, N].

Notice that, thanks to the Weyl quantization, the symbol r_3 ,(B, qo(¢)) has
order —1. Repeating the same argument as for Theorem 2.5.8 and renaming
p — N by p, we deduce the Proposition. O



Chapter 3

Complex formulation of the
equation and diagonalization
of the matrix symbol

In chapter [@ below, we shall obtain an equivalent form of the water waves
equations (LI4]) in terms of a complex unknown, suitable to prove energy
estimates. In this chapter, after introducing some algebraic properties of the
water waves equations, we present the general form of such paradifferential
system, see ([B:2:2))-(B.2.5]), and we state the main Theorem B.2Z.T] concerning
almost global existence of its solutions with a small initial datum. The
proof of this result is then provided in the last section of Chapter Bl and in
Chapter A

3.1 Reality, parity and reversibility properties
We denote by S the linear involution, i.e. S? =1d,
(3.1.1) S:C*— C?, with matrix — [(1] (1)] .

This is the translation in the present complex framework of the map in-
troduced in (L23]), and denoted by the same letter. We shall consider the
action of the group 7Z/27, identified to {Id, S}, on the balls of functions

BX(I,r) defined in (213,

(97 U) — Ug
(3.1.2) . L
Z]27 x Bi(I,r) — Bi(I,r)
defined by
(3.1.3) Us(t) ¥ su(—t), vtel.
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Notice that the spaces C% (I, H? (T', C?)) defined after (ZI2)) are left invari-
ant under this action. In our application to the proof of our main theorem,
the function (¢,z) — U(t,z) will be a solution to the system (B.2.2]) below
that translates system (LI4]) on the unknown U. Since any solution of

(LI4) satisfies (25, the solutions of ([3:2.2]) will satisfy the correspond-
ing property, namely the solution of that system with initial datum SU(0)

coincides with SU(—t) at any time. In other words, if U(t) is a solution of
322), the function Ug(t) defined by (BL3)) is nothing but the solution of
the same system (8.2.2) with initial datum SU(0).

We first define some algebraic properties for a matrix of symbols that
will play a crucial role in the long time existence proof.

Definition 3.1.1 Let A be an element of the class ¥XI'g . ,[r, N] @ M2(C)
i.e. a 2X 2 matriz whose entries are symbols in XU} 1 , [r, N]. Let U satisfy

SU = —U. We set
AUt 2,6 = A(U; t, 2, —€) .
The matriz A satisfies the reality condition if
(3.1.4) AU;t,x,8)Y = —SAU;t,z,€)S,
the anti-reality condition if
(3.1.5) AUt x,8)Y = SAU; t,1,€)S,
the parity preserving condition if
(3.1.6) A(U;t,—x, =€) = A(U; t,x,§) .
Finally, we say that A satisfies the reversibility condition if
(3.1.7) AU; —t,z,)S = —=SA(Ug; t, x,€)
and the anti-reversibility condition if
(3.1.8) A(U; —t,x,6)S = SA(Us; t, z,§).
Below, we shall use these properties for elements U of C% (I, H?(T!,C?))

for some large enough ¢ and K.

Remarks: e The product A(U;t,z,£)B(U;t,x,§) of matrices of symbols
A, B satisfying (35, resp. (BI10]), resp. (BLA), satisfy (BIL5), resp.
BI4), resp. (B18), as well. In addition, if A satisfies (B.1.4]), resp. B.1.7),

and B satisfies (B.1.0]), resp. (B8], then AB satisfies (8.14]), resp. (3L7).
o If a matrix A(U;t,x,€) satisfy one among the properties (3.1.4)-(B.L8)
and it is invertible, then A(U;t,z,£)~! satisfies the same property.

The reversibility and antireversibility conditions [B.I7)), (B.L.8]) may be
expressed more explicitly for the homogeneous components of the symbols,
for which the time dependence enters through U(t), see Definition ZT.T1
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Definition 3.1.2 Let A, be a matriz of homogeneous symbols in f;” ® Mo (C).
Let Uj, j = 1,...,q satisfy SU; = —(_]j. We say that A, satisfies the re-
versibility condition if

(3.1.9) A (SUL, ..., SU;x,6)S = =SA (Uy,...,Upx,§),

and the anti-reversibility condition if

(3.1.10) Ag(SUy,...,S8U4;2,8)S = SA, (U, ..., Ugpz,§).
We have the following lemma.

Lemma 3.1.3 Let A be in XI'g g ,[r, N] ® Ma(C). Decompose A accord-
ing to (Z112) as

(3.1.11) AUt z,8) = Y AgU,...,Us,&) + AN(U;t, ,€)

with Aq in f;” ® Ms(C) forqg=p,...,N=1and Ay inT} g y[r] @ M2(C).
IfAy, q=p,...,N—1 satisfies M) (resp. (3IID)) and if Ay satisfies
(Z17) (resp. (3138)), then A satisfies (I17) (resp. (Z1.38)).
Conversely, if A satisfies (IL7) (resp. (3L38)), we may find symbols
AL q=p,...,N =1, satisfying (319) (resp. (Z1I0)) such that, for any
U ="U(t) we have

(3.1.12) AU;t,z,8) = Z A/ LUz 8) + An(Ust, ) €).

Proof:  Let us write the proof for conditions [BI7) and (BI9). If A,
satisfies (B9, then according to (ZI.7) and to the definition (BI.3]) of Ug,
we have
Aq(U""vU; _t’x’g)S:A (U(_ ) ( )’x’g)s
=A (SUs( ) SUs(t),x, £)S
=—-5A (US( ) L Us(t);2,€)
=-5A (US, o Usit,x,€)

so that Ay(U,...,U;t, x,€) satisfies (B.17). Since also Ay satisfies ([B.171)
then A defined in (B.I11)) satisfies (B.17).

Conversely, assume that the matrix of symbols A in ([BIII]) satisfies
(BI). Thus each A, (U,...,U;t, z,§) for ¢ =p,...,N — 1, satisfies (BT

as well. Define from A, a new multilinear symbol

1
AL (Uy,... . Ugp,€) = §[Aq(U1,...,Uq;x,§) — SA,(SUL, ..., SUg2,€)S].
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Then, by construction, Aj satisfies (B.L3). In particular, if we replace
Ui,...,Uy by U we get by (313

(3.1.13)
1
AU, ..., Ust,x,€) = §[Aq(U, Uit 2,6)—SA(Us, ... Us; —t,2,8)S]
= A U,...,Ust,z,€)

by the condition (BI7). Hence we deduce (B.1.12]). O

Remark: From now on, each time we shall consider symbols A of the

form (BIII) satisfying the reversibility (3.I7]) or antireversibility (B8]
condition, we shall assume that the homogeneous contribution in the de-

composition of A satisfy (B.1.9]) or (BII0).

Let us introduce analogous conditions at the level of operators.

Definition 3.1.4 Let M(U;t) be a linear operator, depending on U satis-
fying SU = —U. We say that M satisfies the reality condition if

(3.1.14) MU;: )V = —SM(U;)SV,

the anti-reality condition if

(3.1.15) MU;t)V =SM(U;t)SV .
Define the map 7, acting on functions of x, by

(3.1.16) (V) (2) ¥ v(-a).

We say that M is parity preserving if

(3.1.17) M(U;t)or =70 M(U;t).

Finally, we say that M satisfies the reversibility condition if
(3.1.18) M(U;—t)S = —SM(Usg;t)

and the anti-reversibility condition if

(3.1.19) M(U;—t)S = SM(Us;t) .

Remarks: e The operator M(U;t) = OpPWV(A(U;t,-)) satisfies (B.1.14)
(resp. (BLIH), resp. BIIT), resp. (BLIR]), resp. BILIT)) if the matrix
symbol A(U;t,-) satisfies the corresponding property (B4 (resp. (B35,
resp. (B.L6), resp. BL7), resp. (BL))). Notice that since the functions

X, Xp used in (2.:2:23)) are even with respect to each of their argument, as soon
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as (B14), BI5), BI6) hold, the same is true for the Fourier truncated
symbols (2Z:2.23)).

e An operator M (U;t) satisfying the anti-reality condition (B-LI5]) maps
the subspace of 2-vectors {SV = -V} (i.e. V of the form [%D into itself.

e The operator M (U;t) satisfies the reality property (B.1.14) if and only
if iM(U;t) satisfies the anti-reality property (B.LI5]), and viceversa.

o If M (U;t) satisfies (B.I18)), respectively (B.1.19)), we say that F(U;t) =
M(U;t)U is reversible, respectively antireversible.

o If M(U;t) satisfies one among the properties (B.1.14)-([B119) and it is
invertible, then M (U;t)~! satisfies the same property.

Arguing as in the proof of lemma [B.T.3] we deduce the following lemma.

Lemma 3.1.5 If M is decomposed as in (Z2.31) or (ZZ253) as a sum
N-1
M(U;t)= > My(U,...,U)+ My(U;t)
a=p

in terms of homogeneous operators My, ¢ =p,...,N —1, and if M satisfies
the reversibility condition (31.18), respectively anti-reversibility (31.19),
we may assume that My, ¢ =p,..., N — 1, satisfy the reversibility property

(3.1.20) M,(SUy,...,SU,)S = =SM(Uy,...,Uy,),
respectively the anti-reversibility property

(3.1.21) My(SUL, ..., SU)S = SM(Uy, ..., U,).

These algebraic properties behave as follows under composition:

Lemma 3.1.6 Composition of an operator satisfying the reality property

(51.17) (resp. the reversibility property (31.18)) with one or several oper-
ators satisfying the antireality property (31.13) (resp. the anti-reversibility

property (Z113)) still satisfies the reality property (3-1.14) (resp. reversibil-
ity property (3118)). Composition of operators satisfying the parity pre-
serving property (31.17) satisfy as well the parity preserving property (Z1.17).
Composition of operators satisfying the anti-reality property (31.13) satisfy

the anti-reality property (31.13) as well.

3.2 Complex formulation of the capillarity-gravity
water waves equations

We fix from now on large integers p, N. The time (resp. space) smoothness
of the solution we shall consider will be measured by an integer K (resp. a
real number s), and we shall assume

(3.2.1) s>»>0>K>»>p>N
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where N is the exponent of 1/e in the lower bound of the time of existence
of the solutions (7. > ce~) that we want to prove (see the statement of

Theorem [[.2.T]).

We shall prove in Proposition [6.3.1] that the water waves system (L1.4])
is equivalent, for small solutions, even in z, to the following system

(Dy — Op®V (A(U; t,2,8)))U = R(U; t)U

(3.2.2)
Uli=o = €Uy

where A(U;t,-) is a two by two matrix of symbols, that may be decomposed
in the basis of M2(C) given by

(3.2.3) L=[39], £=[4], 7=033] £=[%4]

as follows:

(3.2.4) A(Ust,x,€) = (mu()(1 +((Ust,2)) + A (Ust, §))K
+ (mu€)CUs t2) + A_1 (Ust,2,€)) T

+ )‘1(Ua ta €, 5)1-2 + AO(Ua ta €, 5)‘6
where

(3.2.5) my(€) = (Etanh €)2 (1 + x€2)2 (1 — x(€)),

X(€) being an even C§°(R) function equal to one close to zero, supported
for |¢] < &;

where A;, j = 1,3,0,—3 are symbols of EF%(JJ[?“, N] for some small
enough r > 0, satisfying Im \; € EF?%’l[T, N]ifj=1or %, and such that
A(U;t, x,€) satisfies the reality, parity preserving and reversibility properties

BI174), B18) and BI1). Moreover R(U;t) in the right hand side of (8:2.2])

is a smoothing operator of ERI_(‘,’ 1111 N] @ M3 (C) that satisfies the reality,

parity preserving and reversibility properties (3.114)), BLI7), BII8). Fi-
nally the function ¢ defined in (63.7)) is an element of 2]:}3,0,1 [r, N (actually

even of the subspace E}'}%OQ[T, NJ).

The above paradifferential formulation of the water waves system is suit-
able to prove energy estimates. In some instances we shall need to write the
water waves system (B.22]) just as

(3.2.6) DU = m(D)KU + M(U; t)U

where the operator M(U;t) is the element of XM ;4 [r, N] ® Ma(C) de-
fined by the sum of OpBW (A(U; ty+) —my (§)IC) and the smoothing operator
R(U;t) in 322). Thus M (U;t)U collects all the terms of the water waves
system ([B:22) which are at least quadratic in U (but the operator M (U;t)



3.3. DIAGONALIZATION OF THE SYSTEM 91

loses derivatives). The fact that M (U;t) is in S M 4[r, N| @ M3(C) fol-
lows by the remarks after Definition Moreover, since the matrix of
symbols A satisfies (B.1.4]), BL5), (B17) and since R(U;t) in (B22]) satis-
fies (B 1.14)), BI17), (B1I8]), the operator M (U;t) satisfies as well the real-
ity, parity preserving, and reversibility properties (B.1.14]), (3.1.17), (B IIS).

We look for solutions of [BZ2) with Cauchy data Uy in HZ, (T',C?)
satisfying

SUO = —Uo, i.€. Uo = [gﬂ .

Notice that SUy = —Up implies that for any ¢, U(t) = —SU(t) since the
reality condition ([B.I.14)) implies that these two functions satisfy the same
equation with the same Cauchy data. This amounts to look for real valued
solutions of the water waves system (L.I.4)).

Theorem 3.2.1 (Almost global existence for (38.2.2])) There is a zero
measure subset N of |0, 400 and for any N in N, any x in |0, +oo[—N, there
are K in N, so in N such that, for any s > sg, there are positive constants eq,
¢, C such that for any Uy in the unit ball of Hgv(']I'l, C?), with SUy = —Uy,
for any € in |0, e[, system (FZ2) has a unique classical solution

g3
Uenk OF(] - T, T Ho 2 (T, C2)),  with T, > ceN.
Moreover, the solution satisfies

Theorem [B.Z.1] and Proposition [6.3.1] then imply Theorem [[2.11

The first part of the proof of Theorem B2 will be to reduce (3:Z2)) to an
equivalent system, where the non diagonal part of the matrix symbol (3:2.4)),
namely (mHC + A 1 )j + AL will be replaced by a symbol of very negative
order, whose associated operator may be incorporated to the smoothing
term R(U;t).

3.3 Diagonalization of the system

The goal of this subsection is to transform the matrix symbol A in the left
hand side of (B:Z2]) into a diagonal one, up to a smoothing term R(U;t).
We introduce first the class of matrices of symbols we shall use.

Definition 3.3.1 Letm be inR_, N inN, K/ < K in N, r > 0. We denote
by ER g 1r, N the set of matrices of symbols of the form

(3.3.1) PU; )=PU;t,")=1+a)Iy+BL+0OT +K
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where

min —17—§
(3.3.2) @, € ST o1, N], 7,0 € EPKJ((Z ) [r, N]

are such that P satisfies the anti-reality, parity preserving, anti-reversibility
properties (313), (31.0), (31.8), and

~ _3
(3.3.3) Im o, Im 8 € EPZI;((”I ) [r, N].
Our goal is to prove:

Proposition 3.3.2 (Diagonalization of the matrix symbol (3.2.4))
Assume that K > p+1, p € N, and that r > 0 is small enough. There exist

e matrices of symbols P(U;t,-),Q(U;t,-) in 5?(7/)71[7“, N], such that the
operator OpBW (P)oOpBWV (Q)—1d is in SRyl N1 @ Ms(C) and satisfies
(Z1.13), (3117) and (II1.13),

e symbols )\§~1) in EI’%erl,l[r, N], j= 1,% satisfying

(3.3.4) A" e S0y N]

and a function (V(U;t, ) in E]—"}%pHJ[r, N], so that the diagonal matriz

(3.3.5) AVUst,2,8) = (me(§)(1 + ¢V (U3, 7))
+ A Ust2,)) K+ AV (Ut 2, 6T

satisfies the reality (31.3), parity preserving (31.0), reversibility (F1.74)
properties,
e smoothing operators R'(U;t), respectively R"(U;t), belonging to the
| 43
space ERK[;;_QM[T, N] ® M3(C), resp. belonging to RK[,);-QLN[T] ® Ms(C),
satisfying the reality (31.13), parity preserving (3LI4) and reversibility

(Z118) properties,

such that the function W = OpBWV(Q)U solves the system
(3.3.6) (D — Op®V (AN (Ust, ) )W = R(U; )W + R"(U; t)U
on the time interval over which a solution U of system (3.22) is defined.
We shall prove three lemmas.

Lemma 3.3.3 (Parametrix) Take a matriz of symbols P in EF 1 [r, N|
and let p be in N. Then, if r is small enough, there is a matrixz of symbols

QU;") in E jor4[r, N| such that

(PW:)#QUS) = To € Elicr, [ N]
(3.3.7) min(m__

PU; )" = Q(U;-) € STk gy ) [r, N] ® Ma(C).
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Proof: As a, 3,0, in (33.0) go to zero when U is in BX(I,r) defined by
(ZI9) and r goes to zero, we see that, for r small enough (and o fixed large
enough) the matrix of symbols (recall ([B:2.3))

l+a4+y (-0

P(U;) = B+6 1+a—v

is invertible, with inverse
PU; ' =0+ +FL+0T ++9K
where, setting A = (14 a)? — 2 — 4% + 62,
(338) o =(1+a)A =1, f/=—-BA7L /= —A7L ¢ =027

We claim that the matrix P! belongs to €% 4 ,[r, N]. Indeed, since the
order of the symbols «, 3, v, § is m < 0, a Taylor expansion of A~ when
(c, B,7,6) goes to zero implies that

in(m_1 _3
o/, B € TR o [r, N, fyﬁ’ezr2§922’2>va
which is condition [B32]). Moreover, since «, /3,7, satisfy B32) and

333) the symbols o, 5’ satisfy also ([B.3.3)).
Finally, as S~' = S, the fact that P satisfies the anti-reality, parity

preserving and anti-reversibility conditions (3.1.5), (3.L6]), (L8], implies
that the inverse matrix P~! satisfies the same properties. Consequently,

P~! belongs to ER kralry N
Let us compute (P#P*I)p,N using the composition formulas (2:4.1]),

232), 233). The first term of the asymptotic expansions (23.2)), (Z3.3)),

corresponding to £ = 0, is the identity Zs. The next term, corresponding to
=1, is

1 _ -
(339) o [0eP)(@:P ") — (0:P) (0P )]
:%;P(Qfﬁp—%agﬂp—l+(@JﬁP—HanP—ﬂ.
Write then the matrix of symbols P in (3:3.1)) as

P=P+0T+9K, Py=(1+a)Iy+pL,

min —l,—§
so that, by B3.2), P — Py is in EI‘K,KQ? 2 2)[7“,]\7] ® M3(C) as well
as P7' — Pyt = —P7Y(P — Py)Py'. If in (B333), we replace P by R,
and P~! by Py 1 the error we generate is then in the space of symbols

min(m 3_3

EFK7K,71_§7_5)[7“, N] ® M3(C). On the other hand, the right hand side
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of B39) with P replaced by P, vanishes, since Py and P, 1 and their
derivatives are linear combinations of 7y and £, so that commute between
themselves. Finally, terms corresponding to ¢ > 2 in (Z32), (Z3.3) ap-
plied to compute P#P~! involve at least two O¢ derivatives, so belong to
EF’I?,_KQ/J[T, N] ® M5 (C). Consequently, as m < 0, the matrix of symbols

min m7§,72
(3.3.10) R=1Ty— (P#P ), n € EFK,K(/J ’ )[r, N] @ M,(C).

This result differs from the first condition in (B37) by the more modest

smoothing properties of R. In order to get (337 we have to construct a

matrix of symbols Q, close to P~! in the sense specified in ([3.3.7)), such that

P#Q differs from the identity Zo up to a smoother symbol. We define

(3.3.11)

Q=P '+ (P ' #R)yn + (P #R#R)x + - + (P R# - #R)px
l

for some ¢ to be chosen. In view of (Z3.1I0]), the term involving ¢’ factors R

¢ min(m—2,-2
(0 < ¢ <) in the sum (B3.11)) belongs to X'y 1. Sm 2 )[7“, N] ® M5(C).

By (3I1) and (33I0) the matrix of symbols Q — P~! is in

min m7§,72
EFK,K(’,l ’ )[T, N ® M»(C)

and therefore the second condition (B.3.7]) holds. Moreover @ satisfies (3.3.2)),
(333) as this holds for P~1.

Finally, it follows from the fact that P, P~! satisfy (.15, (316,
B1F), from the definition of R, and the remark after Definition B11] that
the same holds true for R. Moreover, again by composition, conditions

BL50), BI16), BIL8) are satisfied also by . Thus @ is in EF x/ [r, N].
To conclude the proof we just have to prove that the first property (B3.7)

holds, if £ has been taken large enough in (311)). By (3311 and (3310

we get
14
(P#Qpn =D (T2~ RI#R# - #R)  =To— (R# - #R),~

=0 v 0+1

which is equal to Zo modulo symbols of order (¢ + 1)min(m — 2, —2) as
negative as we want if £ is taken large enough. This concludes the proof. O

Lemma 3.3.4 (Step of diagonalization) Let m be in | — oo, %], K, K" in
N with K —1> K' >0, N in N*, p in N, r > 0. Consider symbols

3

N €XTE rq[r,N], b € TR goq[r, N

(3.3.12) , )
mln(m

/ _570) / 1
¢ eXly o4 [r,N], d €XTf grq[r, N]|
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satisfying
_1
(3.3.13) Im X, Imb’ € X%, [r,N], Imd € ST% s 4[r, N].
Define
(3.3.14) AUt 2, &) = (me(&) + K+ VT + L+ dT,

and assume that A’ satisfies the reality, parity preserving and reversibility
properties (3.1.7)), (31.6) and (FL74). Then there are
3

e A matriz of symbols Q in 5;;(5, 1r, N,

m—32 —
o A matriz P in E 4 1[r, N| such that (P#Q)pn — Iz is in Exlyr 1 [r, N,
e Symbols

3
(3:3.15) X' € STk jorpna [ N, ¥ € STRG [ N,
3. »
¢ € STy &1 NY,  d’ € STk gy [, N,
with

_1
(3:3.16)  Im\’, Imb" € ST %y [ Nl,  Imd" € ST% joryq4[r, V],

such that
A// — (mﬁ(é-) +)\//),C+b//j+c//£+d//l'2

satisfies the reality, parity preserving and reversibility properties (3.1.7),
(Z1.4) and (317), ,
e A smoothing operator R(U;t) in ERI_(?;Z-Ll[T’ N]® Mo (C), satisfying
conditions (3-1.14), (3117) and (FI1I3),

such that

(3.3.17) 0p®WV(Q)[D; —0p®WV (A")] = [D;—Op®W (A]OpPWV(Q)+R(U; 1).

Finally, in the case m = 3, if there are (i, (b in E}"}%K/J[T, N] such that

- N(Ust,2,€) — mel€)CL(Ust, ) € TG o[, N]
V(Ust,2,€) — ma(E)CH(U3 1, 3) € ST 01 [r, N],

then, for some function (" of E]—"}%K,H’l[r, 1], one has

(3.3.19) N'(Ust,2,€) — ma(€)C"(Ust, 3) € ST o1 11, NI,
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Note that the off-diagonal symbols b”, ¢ of A” in (3:3.15]) are of lower order
(actually 1-smoother) with respect to those of A, namely ¥, in (B.3.12).
On the other hand the order of the diagonal symbols is unchanged. This
step “consumes 1-time derivative”, i.e. note that the second index K’ +1 in

(33.15)) is larger than K’ in (3.3.12).
Proof: The eigenvalues of the matrix A'(U;t, z,€) in (B:314]) are given by

(Ut,2,€) £ ((mo + N(Ust,2,€) + ¢ Ust,2,€ — ¥ (Uit 67

when ¢ stays outside some fixed neighborhood of zero, and when U belongs
to BE(I,r), for some small enough 7 so that the argument under the square
root stays in the domain where the principal determination of that function
is well defined. Take a cut-off function x; in C*°(R), even, real valued,
0 < x1 <1, with x1 equal to zero on a convenient neighborhood of zero and
equal to one outside a larger neighborhood of zero. Define

(3.3.20) wi(Ust,x,€) =d'(U;t,z,€)
cl2 _ b12 %

—(mn(§) T )\,)2 x1(§)

which coincide with the eigenvalues of A’ outside a neighborhood of zero.

3
By B312), 3313), the symbols wi F m, () are in XT'% 4., {[r, N| and the
imaginary part of the term under the square root in (B3.20) is of order

at most —2. Together with the assumption (B.3I3]) on X, this shows that

_1
Im (wy — d') is in X% {[r, N]. It follows that the diagonal matrix of
symbols
[T ..]
0 w-

may be written as a contribution to (m,(£)+ N\’

satisfying (B3.15), (3316]). Moreover, if m =
(B318), we get that A" is of the form (3.3.19).

The fact that by assumption A’ (U;t, x, €) satisfies (3.1.4]) may be written

My (§) = m(€), NV(U;-) = N(U;-), bV(U;-) =0'(U;-)
V(U;) = - (U;), dV(U;) = =d'(U;).

+ (my(§) + N (Ust, z,6)) |1+

K+d"T, in A", with X', d"
and X, are of the form

~—

[NJ[oV]

(3.3.21)

In the same way, the reversibility condition ([B.I7]) translates as

N(U;—t,-) = N(Us;t,-), V(U;—t,:)=0b(Us;t,-)

3.3.22
( ) dU;—t,-) == (Us;t,-), d(U;—t,-)=—-d(Us;t,-).

As a consequence the symbol

C/Z _ b12

(33.23) D(U;t,3,€) = (mu(©+N (Ust,2,€)) {1+(1+m><1(§))ﬂ
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satisfies
(3.3.24) DY(U;-) = D(U;-), D(U;~t,-) = D(Ug;t,-).
A matrix which diagonalizes A’ on the domain where x1(§) =1 is
x1(§) 1 b/cl}
W :

1
b2_c'2
(1=t%=)" -7

_3
We claim that P belongs to 5? 0 1[m, N]. Indeed we may write P as

PU;t,x,6) =

— o

(3.3.25) PU;t,z,&) =1+ a)Ia+ BL+ 0T

min|{m—2,—
with symbols «, 8 in EFK K1l N] and 6 in EI‘KK<, )[r N]. Thus

a, 3,0 satisty (33.2)) with m replaced by m — 5. Moreover, it follows from
B321), B3.3.22), (3.3.24) that

( ) - Oé(U, ) Oé(U, —t, ) = a(US;t7 )

BY(U;-) = BWU;-), BU;—t,-) = B(Us;t,")

0Y(U;-) = —0(U;), 0(U;—t,) = —0(Us;t,-)

and therefore P satisfies (B.15]) and (BL8]). It obviously satisfies as well
_1

(BILG). We have seen that Im D = Im (w4 — d') +Im X" is in 3T %/ [r, N].

It follows that Im«,Im 5 are of order min(m -3 ——), S0 that B33) is

7

satisfied with m replaced by m — 2. Consequently P is in ey K, K, [r N]. Also
the matrix

(3.3.26) Pl=(0+a),-BL—-0T

_3
(when y; = 1) is in & 42, [, N]. By construction

(3.3.27) plap= |+ Y } = (mu(€) + N(U;t,z,6)K + d'T,

0 w_

- 3 -
on the domain where x; = 1, for a symbol X in X'} ., ;[r, N] with Im )\ in
1

ST g% 1 N]. Moreover, the matrix (3.3.27) satisfies (3.1.4), (B.L6) and
BL7), and (3319) is satisfied by X if we assume (3:3.18)).

We apply next to P lemma B33l with m replaced by m — 5. We obtain
Qin &, K.x01 (1, N satisfying (B3.7) (with m replaced by m — —) We write

(3.3.28) (Q#A#P),n =((Q— P H)#AHP),n + (P #AH#P), n
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Since Q — P! is of order min(m — 3,—2), A’ is of order 3/2 and P of

order m — % < 0, the first term in the right hand side has coefficients in
min(mf%,f%) . .
Uy rory [r, N] and we may write the matrix
(3.3.29) (Q—P H#A#P) , N =N'K+V'T +'L+d"T,

with A7 b", ¢, d" satisfying conditions (B.3.15]). Next we write the last term

of (3.3.28) as
(3.3.30) (P '#A'#P),y =P 'AP+R,

where R is obtained from the terms indexed by 1 < £ < p in the composition

formulas (23.2)), (Z33). By 3325), B314) and 33.26]) the matrix R is

given by the terms of rank 1 < ¢ < p in the expansion

(3.3.31) (14 )Ty — BL = 0T)#((mp + N)K + VT + L + d'T,)
#((1+ )T +BL+0T)) .

To finish the proof of lemma [3:3.4], we need the following result.
Lemma 3.3.5 The matriz R in (3:3.30) may be written as

(3.3.32) R=NK+V'T+"L+d'T

where X' V", " d" satisfy conditions (3.3.13), (3.316) and the matriz R

satisfies (31.4), (318), (3L7). Moreover, X" satisfies [3.3.19).

Proof:  Consider first those contributions to (8331)) coming from one of
the 07 factors. Since 6 is of order min(m -2, —%), and the other factors
are at most of order % (resp. 0) if they come from the middle (resp. one of
3 0). But since
we are interested only on those contributions coming from the terms of the
asymptotic expansion except the first one, we gain at least one extra order,
i.e. we obtain a contribution to (8:3.32) of order min(m -3, —1), so that
conditions (B315), (B33.16]) are largely satisfied. We are thus reduced to the
study of elements of rank at least one in the asymptotic expansion (3.3.31])
with 6 removed. Notice also that ¢ being of order min(m - %,0), the
contribution to those elements of the asymptotic expansion ([B.3.31]) satisfy
as well (3310), B3I6). We may as well discard ¢/, and are reduced to

examine terms of rank at least one in the following asymptotic expansions:

(33.33)  ((1+ )T = BL#((mx + X)K)#((L+ ) T2 + BL))

the extreme) terms, the overall order would be min(m -1

(3.3.34) (1 + )T = BL#Y ) #(L+ a)To + BL))
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(3.3.35) (1 + )Ty — BL)#(A'T2)#((1 + a)Tr + ﬁﬁ))p .

Consider first ([3:3.33]), that may be written using the relations LIC = —KL =
J, LKL = —K as

[(1+ a)# (i + X)#(1+ ) + B#(m + N)#5] K
— [+ @) # (e + X)#B + B (i + X )#(1 + a)]pj.

The expansions (2.3.2)), ([2.3.3]) (see in particular (2.3.4])) show that the terms

of rank one in the coefficients of I and J above vanish. Consequently, the
contribution to R come only from terms of rank at least two in the expansion.
As m, + X is of order % and «, 8 of order m — %, we get expressions of order
m —2 < —1, so that conditions (B31H), (3:316)) are satisfied.

In the same way, using LT = —JL =K, LTL = —T, we write (3.3.34])

as
[(1+ )b H(1+a) + B#0#6] T — [B#0#(1+ ) + (1 + a)#'#5] K

and conclude that the corresponding contribution to R are of order m — 2.
Finally, using that £ = T, write (3.3.35) as

(L Q) #(1+ ) - Bpd #8] T
+ [+ a)#d #6 — pHd#(1 + )] L.

Again, by ([234) applied with a = ¢, we see that the coefficient of Z, is
of order —1, since d’ is of order 1, so that the conditions imposed to d” in
B3I5), B3I0) are largely satisfied. In the coefficients of £, we just use
that «a, 8 are of order m — % < 0, and d’ of order 1, to conclude that terms of
rank one of the expansion are at most of order m — %, which is the condition
imposed to ¢ in (B3TI5).

To finish the proof of the lemma, we have to check that conditions (3:1.4]),
(BI6), (BL7) hold true for the matrix R. This follows from the fact that
these conditions are satisfied by A’ and that P, P~! satisfy (3.L5), (3.18),
(BL8). Notice also that ([3.3.19)) is satisfied by A"’ since the contributions to

this symbol are all of non positive order. O

End of the proof of lemma [3.34: Recall that we have constructed matri-
_3

ces P,Q in E; & 1[r, N such that, according to (3.3.28), (3.3.30), (3.3.29),

(3.3.27) and (3.3.32),

(3.3.36)  (Q#A'#P),n = A" L (my(&) + N)K+ VT + 'L + d'T

for new values of the symbols A", b” ¢ d" satisfying (3.3.15), (33.16), the
matrix A” satisfying as well (B.L5]), (B16) and BI7). We have checked
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also that (8.319]) holds under the assumptions ([B.3.18]). We are left with
showing that (3:33.17)) holds, up to a modification of the matrix A”. Compute

from (3.3.36])

(3.3.37) (D — Op®WV(4")) 0 Op®WV(Q)
= 0p"V(Q)D; — OpPV ((Q#A'#P),n) 0 Op®V (Q) + Op®V(D,Q)
= 0p"W(Q)[ Dy — OpPV(A')] — Op®V ((Q#A'#(PHQ — Tn))pv)
+0p®V(D,Q) + R(U;t)

where R(U;t), the smoothing remainder coming from (Z.33]), ([23.6]), may

be taken in ERK 1, N1 ® M2(C). Moreover, R(U;t) will satisfy condi-
tions (3114, (B:EEZI), (BII8), as it is obtained from the composition of
one operator satisfying these conditions and of operators obeying conditions

BII15), BII7) and BIIY). Because of (3.3.7), the fact that A’ is of order
3/2, and Q@ is of order < 0, the term

(3.338)  OpPY ((QAAH(PHQ — Tn))pn) € SR 1, r, N] @ Ma(C)

may be incorporated as well to R(U;t). To conclude the proof of (3317,
it remains to write

(3.3.39) Op"W(D,Q) = Op®V(A") 0 Op®V(Q) + R(U; 1)

for another smoothing operator R(U;t) in ¥R . K K, [r, N], and for a matrix

+1,1
of symbols A” satisfying the same conditions as A”. In conclusion B337),

B33R), B339 will imply B3I7) with A” replaced by A” + A” in its
rlght hand side. In order to prove (3.3.39) we remark first that since @ is in

EK &7 1[7: N, then, recalling DefinitionB.3.T), @ is in EFK K a1lr N1 ® Ms(C),
and 80, by lemma [2.2.0],

m—3

Moreover, if @ satisfies (B.1.0)) (resp. (B0, resp. (BL]])), then D;(Q satisfies
BI4) (resp. B14), resp. BLT)). If we apply (B3.71), we may write

Op"WY(D,Q) = Op®V ((D:Q#P), ) o Op"V(Q)

3
modulo an operator R(U;t) in ERZ};Z_M [r, N] @ M(C), satistying (B3.1.14)),
BII7), BIIR). Thus (3339) holds with A” = (D;Q#P), v and we are
left with checking that A” satisfies the same properties as A”. By (3.3.20)
and since P is of order zero, conditions (B3.15]) hold. We have to check
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_3
. Notice that, as P, () are in e r, N|, conditions ,
Notice th P Q Er i1

imply that we may write
3 3
P = (14 a)Zy+ BL+ order (—5), Q=0+d)y+ B L+ order (—5)

It follows that in (D;Q#P), n the only contributions of order strictly larger
than —% are multiples of Zo and £, and are of non positive order. This

shows that (33.16]) holds and concludes the proof, since [B.I4), (B,
(BI1) hold, as they do for D;Q. O

Proof of Proposition We shall apply iteratively p-times lemma
B34l obtaining off-diagonal para-differential operators which are regular-
izing enough to be incorporated to the smoothing term in (3.3.6]). Consider
a solution U of the system (3.2.2]). Apply lemma B.34]to the matrix A’ = A
of equation (BZ2) and m = 3, K’ = 1. We get a matrix 4; = A” whose co-
efficients satisfy (33.15), B316) with m = 3, K’ = 1, and B14), (3L6),
BI1), and a matrix @; in 59(,171[7“, N] such that by B3I7)

(D¢ — Op®W (A1) 0 0pPW(Q1) = 0p"W(Q1) Dy — OpPW (A)] + Ru(U; 1)

a3
with Ry in XI5 2 [r, N] © M3(C), satistying FL14), (II7) and BLIF).

We iterate the construction, getting matrices
Qe € EL M NT,  Ap = (me(&) + M)K + bpT + coL + diTy
where the coefficients Ay, by, ¢y, dp satisfy [B3.10), (B3.16) with m replaced
by 3 — (¢ — 1), and K’ replaced by ¢, A, satisfying also (3.14), (BL0) and
BI1). We get
(3.341) (D —0p"V(4y)) 0PV (Qr) 0 -+ 0 OP"V(Q1)
= 0p"™™(Qe) 0 -+ 0 Op"V(Q1) (Dy = Op"V(A)) + Re(Us1)

4B
for some new Ry(U;t) in ERK?Lﬁ71[r, N] ® Mo(C). Since

beJ € EP%7€+171[T, Nl @ M2(C), L€ Eff(7€+1721[7", N]® M5(C),

we see, by the last remark after Proposition Z2.4] that for £ = p we obtain
contributions that may be as well incorporated to the smoothing term in

. We thus define AM in taking only the remaining components
B.3.9) g only g comp
of A, ie.

ADU:t,,€) = (mye(€) + A)K +d, T

with symbols A, that may be written by (B.3.19) as m, ¢ + )\gl/)2 with )\gl/)Q

1
in ¥L'% .1 4[r N| satisfying (3.34), and with d, that brings )\gl) in (3.3.5).
We define

(3.3.42) W =0p*W(Q,) 00 0p®V (Q1)U.
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If we make act (3.3.41]) with £ = p on U, we deduce from (3.2.2))

(3.3.43) (D; — OpPYV( AW (U t, )W = R(U; t)U

ppd
for some new R(U;t) in ERK?:JFQLI[T, N] ® M3(C). To finish the proof of
the proposition, we still have to check that one may write the right hand
side of the equation (3343)) as in (3:3.6)) and to construct the matrix P. We
define

P = (Pi#--#F)pN

where Py is the matrix associated to @y by lemma B33l By B3.1), the
operator

OpPV ((Pi#Qu)p,n) — 1d = Ry(Ust) € IRE, [, N] @ My(C)
and satisfies (B.L15), BLIT), (BI19). It follows that
Op"™ (P#Q)pn) —1d = R(Ust) € SR, 1[r, N] © Ms(C)
and satisfies as well (B.L15), BLI7), B119). By (33.42]), we may write
U =0p®WV(P)YW — R(U; t)U.

Inserting this expression of U in the right hand side of (3.3.43]) repeatedly,
we see, by Proposition and the last remark following Definition 2.2.3]
that we may write R(U;t)U as R'(U;t)W + R"(U;t)U with R', R” satisfying
the properties of the statement. This concludes the proof. O



Chapter 4

Reduction to a constant
coefficients operator and
proof of the main theorem

In this chapter we shall reduce the operator OpBW(AM(U;t,-)) in (B38),
given in terms of the diagonal matrix A1) defined in (33.3)), to a constant
coefficients operator, up to smoothing operators. We shall do that first for
terms of higher order, and then for the lower order contributions.

4.1 Reduction to constant coefficients of the hig-
hest order part
We apply Proposition with p replaced by p’ = p + m, for some integer

m to be chosen in function of N (in Proposition I we require m >

N + %) Recalling the form (33.3) of the diagonal matrix A1), we may
rewrite equation (B.3.6) as the system

(41.1) DW—
Oy [+ D)+ X, 4+ 0 o w
0 —ma(€)(1+ ¢T3 )) = AL, 4 AY
= R'(U;t)W + R"(U; t)U

SV
with R'(U;t) (resp. R"(U;t)) in the class ERKZ)ZQM[T, N] ® M3(C) (resp.
43
in the class R Kppifl NIl ® M2 (C)), satisfying the reality, parity preserving,

reversibility conditions (3.I14)), (II7) and (3II8). Moreover A sat-
isfies the reality, parity preserving, reversibility conditions (314, (316]),

BIT), with coefficients verifying [B3.4]). We rewrite explicitly all these

103
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conditions as

1 1 3
)\g ) S Er}ﬂp’—f—lﬂ[ra N] ’ )\g/)Q € EP%W"FLl[r’ NL
1 1 —3
(4.1.2) mAY € ST% 40 4[r N, Im )\g/)g € X1l N,
@ ¢ 2‘}‘%#“71[7«, N, Tm¢® =0,

and, recalling that m, (&) is real valued, even, and SK = —KS, S? = I,

MVt 2, —¢) = AP (U3t 2, €)

(4.1.3) -
AUtz —€) = AL (U3t 2,6)

AWt —2,—&) = XV (U, 2,€)
(4.1.4) /\gl/)Q(U; t,—x,—£) = /\gl/)Q(U; t,z,)
(U3t —a) = (V(U;t,2)
AW —t,2,6) = AP (Ug:t,2,€)
(4.1.5) MU ~t,2,6) = N (Usit,z,€)
¢CV(U;—t,2) = (D (Us;t,2).

In Proposition 1] we shall conjugate system (A1) under the paracom-
position operator ®7; = Qp(;)Z2 defined in section induced by a diffeo-
morphism of T*,

(4.1.6) Oy (t,x) =z + B(U;t,z),

for a small periodic function 3(U;t,x) to be chosen, in such a way that in
(T13) the highest order coefficient in front of m, () is constant in the
space variable. It turns out that, denoting the inverse diffeomorphism of ®;
by

(4.1.7) o, (ty) =y +(Ust,y)

we have to choose (U;t,y) as the unique primitive with zero average of the
zero mean periodic function

(4.1.8) (14 CU;0)5[1+ (O3 t,y)] 5 — 1

where

(4.1.9) Q(U;t):Li/ (14Ot Sdy| -1
T JT1

Notice that, as ¢ (1)(U ;-) vanishes at U = 0, the above functions are well
defined for U small enough. Moreover {(U;t) is in SFp p+1,1[m N] and, by
the third condition in [@I1), satisfies ((U; —t) = ((Us; ).
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Proposition 4.1.1 (Reduction of the highest order) Let p’ = p+N+2.
There are:
o A function ((U;t) in E.F}Igp,jq’l[r, N], independent of x, satisfying

(4.1.10) C(U; —t) = ¢(Us;t),

o A symbol \N(U;t,-) in EFKerl L[, N1 such that Tm N(U;t,-) belongs to

_1
EFK?/)/HJ[T, N], satisfying

K(Utxg) AU;t,z,€)
(4.1.11) AU;t,—x,—€) = MU t,2,¢)
MNU; —t,z,8) = MUg; t, z, ),

o A symbol u(U;t,-) in EI‘}(,purm[r, N] such that Im p(U; t, -) belongs to the
class EF(I](W/_’_QJ[’I“, N] and

i (Ust,x,€) = —u(Ust,x,€)
(4.1.12) u(Ust, —z, =€) = p(Ust, 2,§)

:U’(Ua —t,x, 5) = _:U‘(U57 t,z, 5)5

43
e Operators R'(U;t) (resp. R"(U;t)) belonging to ERK?;-?—QJ[T’ N]® M3(C)

o3
(resp. RKp;jQN[T] ® My (C)) satisfying the reality, parity preserving and

reversibility conditions (3.1.19), (3117) and (3113),
such that, if we set V. = Qp(1)W = ®;W with W a solution to (£.1.1)),

then V' satisfies the system

(4.1.13) Dy — OpPV[((1 + C(U; ))mn(€) + AU t, ) )K + u(Ust, )| )V
= R'(U;t)V + R"(U;t)U.

Proof:  Applying Proposition 5.9 with K’ = p’ 4+ 1, under the change of
variable V = Qp(1)W, system (1] transforms into

(4.1.14) D,V =

Qp(1)0p"Y [ (mw(&)(1 + ¢V (U;)) + A (U)K + 2D (U3 )] Q5! )V
+(0pPW (e1(Us ) I ) V4+R(U; ) V(DR (U; t)Q5 ()V+Qp(L)R" (U t)U

where e; is in EF}(p 14217 N] with Imeg in EF[_(lp/+2 1[r, N] and R(U;t) is

in the space ¥R ” o, 1[r; N]. Thus the operator

(4.1.15) Op2W (ey(U; )T
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may be incorporated to OpZW ()T, in ([@II3). Consider next the term
(4.1.16) Qp(1)R(U;t)Q5 (1)V + Qp(1)R"(U; t)U.

Applying the remark following the proof of Theorem 258 since R'(U;t) is
in ERI_(ZI;F%J[T, N] ® M2(C), we get that

_ 43
Q)R (U; )5 (1) € SR 2T I, N @ Ma(C)

and, since p’ > p+ N + 2, we get an operator of ER;{?p’-{-l,l[r’ N] @ My (C).
The last term in (EII6) belongs as well to R;(f)p,H’N[r] ® M3(C). We
finally analyze the contribution

(4.1.17) Qp(1)0p"Y [ (mi(1+ (D) + ALK + AV T 051 (1)

that, by Theorem [2.5.8] we may write as

(4.1.18) OpW | (me(1+¢M) +210)) K + (W)aTo| + Ra(U31)

43
where Ry belongs to ERK,p;il,l[n N] ® M2(C). According to (Z5.48)-
(Z5749) the symbol (m,i(l +¢W) + )\gl/)2>q> may be expanded as

(4.1.19)  mic (€0 (5" (1 9)lymoy (1) ) (1 + CO U3, Bu (1, 2)) + (A)

1

modulo a symbol in EF;{Ep, +1.11m N]. But, according to (.17, the definition

of v as a primitive of (418,

0,(®0) " (ty) = 1+ 0 (Ust,y) = (L+ C(U: )5 (1 + ¢V (U3 t,y)) 75 .

Since by B23]), mk(§) = \/Elf\%(l + O(£72)) when [€] goes to +oo, one
checks that

me(€) = me (€A +QF L+ D) )1+ 1 +¢W)

1
belongs to X'y, 4 [r, N]. It follows that

(ma1+¢D)+A0L) = ma(€)(1 + CU0) + AR

1
modulo a symbol of XT'x*, ., ,[r, N]. Since by (I2) the imaginary term

Im )\51/)2 is of order —3, )\gl/)Q)% is a symbol of order 3 whose
(1) (1yo

imaginary part is of order —1. In the same way (A} ’)o is equal to (A )%

modulo a symbol in EF;(lp,_H 1[r, N]. Hence (L2 implies that ()\gl))q) is a

we see that (
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symbol of EF}(,p’—H,l [r, N] whose imaginary part belongs to EF(}(,p’—H,l [r, NJ.
We have thus written ([ELIR]) as

(4.1.20) Op®W ((m,()(1 + C(U3t)) + X% (U; )K + A (U;)Ia) + Ro (U t)

for symbols 5\j € EF]I'( [r,N], j = %, 1, satisfying

p+11

1

ImA; € S0 2, [ N], Im Ay € S0 [, N,

1

2
3

and a smoothing operator Ry(U;t) in ERI_(,p;El,l[T7 N] ® Mo(C). Thus also

(AI117) gives contributions of the form (ZI1.I3]).

It remains to check that the algebraic properties of reality, parity and
reversibility are preserved.

Since ¢(U;-) is even in z, by the third condition (@I, the real val-
ued function y(U;-) defined as a primitive of (£I1.8]) is an odd element of
E]:%p,_km[r, N]. Moreover v(U;—t,y) = v(Us;t,y) by the third identity
in (L5, (AI9), and its definition as a primitive of (£I1.8]). Consequently
also the function B(U;t,z) defined in (ZI6) by the inverse diffeomorphism
is odd, real valued and satisfies

(1.1.21) B(U; —t,2) = B(Us; ,)
It follows that the matrix symbol B(U;0,t,x,&)Zs, with

U.
(4.1.22) B(U;0,t,2,€) = b(U;t,0,2)§ = 5 +§((9 ﬁl(ﬁ;)t x)g,

satisfies the reality, parity preserving and anti-reversibility properties (3.1.4]),

(B.I6), (B.I.8). Hence, as the flow Qp(y(1) defined in (Z5.13) is generated
by the vector field OpPW (iB(U;-)), we deduce that

(4.1.23) Qpen(DIz, Qpen(1)7'Zy satisfy BII5), BLI7), ELI9).

These elementary properties will be checked in the proof of lemma
below. As a consequence, since R'(U;t), R"(U;t) satisfy the conditions
(BI14), BLI7) and BIIS), lemmaBL8implies that Qp(1)R'(U;1)Q5" (1)
as well as Qp(1)R"(U;t) in [AI1I6]) satisfy also the reality, parity, reversibil-
ity properties (B.1.14), (BLI7) and (BLIS]).

Similarly, since the matrix A®) in B33) satisfies (3L4), BL6) and
(BI1), the associated paradifferential operator, and thus the operator in
(AI117) obtained by its conjugation with the flow Qp(1), satisfies the real-
ity (BII4), parity preserving (B.II7) and reversibility (B.IIR]) properties.
Thus the same operator in ([4.1.18]) and (4.1.20) satisfies as well these prop-
erties. We now write (LI.20) as the sum of a paradifferential operator and
a smoothing remainder that satisfy, each of them separately, the properties
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of reality, parity preserving and reversibility. For the reversibility property,
we write (LI.20) as the sum of the paradifferential operator

2[00 (me(1 4 CU)) + A3 (U3, DK + a(U31,)T:)
— SOP™™ ((ma(1+ ((Usi =) + Ay (Usi —t,)K + i (Usi —t, )T2) S|

_ OpBW(<mR(1 . ¢(Ust) +2§(Us; —t)

)+ 5 (AUt ) + Xy (Us: ) )K

1(U3t,) = M (Us; =, )T

whose matrix symbol satisfies (3.1.7) and the smoothing operator 3 [RQ (U;t)—

SRy (Us; —t)S} that satisfies (B..I8]). Then we decompose this operator ar-
guing in a similar way to ensure also the reality and the parity conditions.
This shows that the contribution of (Z1.IT) to (AII4]) may be written as in
(£T13)), with symbols satisfying conditions (ZLI0), [EIII), (Z1.12), that
are a translation of (B.I.4), (B.LG), (BL7) for the corresponding matrices,

and with a smoothing term R'(U;t) satisfying (3.1.14)), B I.I7), BLIS).
Consider now (LITI5]) and the remainder R(U;t) in (£1.14]). By Propo-
sition [Z25.9] we have written

(4.1.24) Qg0 (1) D) (1) T2 = Op”" (e1 (U3 )Tz + R(U; 1)

as the sum of a paradifferential and a smoothing operator. We first show
that

QB(U) (1)DtQ§%U) (1)1-2 - _DtQB(U) (1)QE%U) (1)12

satisfies the reality, parity preserving and reversibility properties (B.L14]),
BII7) and BII8). By (£123) and lemma it is sufficient to prove
that DiQp)(1)Z2 satisfies (B.1.14), (3.1.17), (B.1.I8)). Recalling the defini-
tion of Q) (1) in (ZELJ) this is implied by the fact that D,0p”" (iB(U;-))Z,
satisfies (B.1.14), BI1I7), (B118), namely that 0, B(U;0,t,x,£)ZLs satisfies
BI14), BI6), (BI7T). But this follows from the fact, seen after [@LI22]),
that B(U;0,t,x,&)1y, satisfies (B.1.4]), (B.10), (B18) and the definition of
these properties. Finally we can repeat the previous argument for (ZI1.20])
to ensure a decomposition as in ([@IL24) with OpPW (e1(U;-))Z; and R(U;t)
that satisfy separately the reality, parity preserving and reversibility prop-

erties (B.1.14]), BII7) and (BIIS). O

4.2 Reduction to constant coefficient symbols

In Proposition [£1.1] we have obtained a diagonal system of the form

(4.2.1) (Dy — Op®Y(D(U3t,))V = R'(U;t)V + R"(Us t)U
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where V' = @7 W, the smoothing operators R'(U;t), R”(U;t) are, respec-

43 43
tively, in ERK/,);’_-T-QJ[T’ N] ® M3(C) and RK?;—IQ—ZN[T] ® M2 (C), and where
D(U;t,-) is a diagonal matrix of symbols of the form

(4.2.2) D(U;t,2,€) = (1+ C(U;t))mu(E)K + NU; t,2,6)K + p(Us t, z,6)Ts

where ¢ is a function of E}"%p, 41.1[m NJ, independent of z, the symbol
1

~ 1 ~ _1

Ads in XL% g q[r, N] with ImA in YT 2, [r, N], the symbol p is in
EF}(7pl+271[T, N] with Im 4 in EF?(,;)’-{-Q,I [r, N]. Moreover the matrix of sym-
bols D satisfies the reality, parity preserving and reversibility properties
BI4), B.I4), B1T), and the operators R', R” satisfy the reality, parity

preserving and reversibility properties (3.114]), (BII7), (BLIS]).

Our goal is to perform a new conjugation of the system (Z21]) in order to
replace in (£.2.2)), X and u by constant coefficients symbols, up to remainders
of very negative order. We shall conjugate ([A21]) by the flow generated by
the linear system

(4.2.3) d%QF(U)(@) = iOp"V (F(U))Qpw)(0)

where the matrix symbol F(U) = F(U;t) is self-adjoint (if F'(U) has positive
order). We first provide some properties of such auxiliary flow, proved as in

lemma 2.5.31

Lemma 4.2.1 (Auxiliary flow) Let 0 < K’ < K be integers, m < 1,
and let F' be a symbol in YT i 1[r, N] @ M2(C), modulo a symbol of or-
der zero, valued in the space of self-adjoint matrices (when U belongs to
CI (1, 77 (T, C2))).

Then there is o in Ry, and for any U in CI (I, H? (T, C?)), the system
({-Z-3) has a unique solution Qp(0) defined for 6 € [—1,1]. The linear
operator Qg (0) is bounded on H* for any s, and there is v > 0 and for
any s € R a constant Cy > 0 such that, for any U in BE(I,7), any W in
H*, any 0 in [—1,1]

(4.2.4) o Wl gzs < M@y (OW g < Csl[W ]l g
Moreover, for any k < K — K', we have
(4.2.5) 10 2@y OW g, < CGRA(WE).

’ ~1
Finally Qpqy(—0) = (QF(U)(H))
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Remark: We shall apply below this lemma for m < 1/2. Clearly if m <0
the statement follows by just an ODE argument (and the matrix F(U) does
not need to be self-adjoint). The property Qp ) (—0) = QF(U)(é?)f1 holds
because F'(U) is autonomous in the variable 6.

The flow Qg (0) inherits the following algebraic properties of the op-
erator OpBW(F(U)), where S is the involution defined in (3LI]) and 7 the
map in (BII6). Since F(U) = F(U;t) depends on the time variable ¢, we
write below also Qp(r,;.)(0) to make appear explicitly this time dependence.

Lemma 4.2.2 If OpBWV(F(U)) satisfies the reality (3.1.14), resp. parity

preserving (3117), anti-reversibility (3.1.19), property, then the flow op-
erator Qpq)(0) satisfies, for any 0, the anti-reality (Z.1.13), resp. parity

preserving (Z117), anti-reversibility (31.19), property i.e.
Qpwy(O)W = SQp (0)SW
(426) QF(U) (0) OT =TSO QF(U)(H)
QF(U;—t,~) (9) = SQF(US;t,-)(a)S :

Proof: By assumption OpBW (F(U)) satisfies respectively

Oop® (F(U) o =7100p® (F( )

W(
BW(F(U)W = —S0p"Y(F(U))SW
)
~t,-)) = SOp"V (F(Us;t,-)S .

Op*W(F(U; -

Then F()(0) defined respectively by

Q) (O)W = Qp)(0)W — SQp@n (0)SW
Qrw)(0) = Qp@)(0) o7 — 70 Qpen(0)
Qrwie,)(0) = Qpw,—,)(0) — SQp gy, (0)S

satisfies respectively

0 (6) = S0P (F(0))5600(0)
050)(0) = 0P (F(U) Q01 (0
d -

7 —Qpwy,)(0) = iSOp®W (F (Us; t))SQF(U;t,~)(0)

with zero initial condition. Consequently Q F)(0) = 0 for all § and ([A.2.6)
follows.

Let us write down the analogous properties satisfied by the paracom-
position operator ®; = Qpg)(1)Z2 defined in Theorem 258 Since the
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change of variables ®;; depends on the time variable ¢, we shall write be-
low @y (t;-)* = Qpy,)(1)Z2 instead of ®f; when we want to make appear
explicitly this time dependence.

Lemma 4.2.3 We have

Dy (t; )W = Oy (t;-) W = Dy (—t; )W
(4.2.7) Qy(t; ) o =10Py(t; )"
SOy (t;-)" = Pu(t;)"S = Cug(—t;)*S.

Proof:  Recall that Qp(,.)(0) is the scalar flow defined in [25I3]). Thus
Qpwyt,)(0)I2, in particular @y (t;-)*, commutes with S = —[?(1)]. The
operator OpBW(B(U;t,-))Zy satisfies (BLI4), (B.II7), BII9), because
B(U;t,-)Iy satisfies the reality, parity preserving and antireversibility prop-
erties (B.14), (B.1.6]), (BL8) as proved after (AI1.22)). Thus the first identity
(EZT) (with F' replaced by B) and the fact that Qpy,.)(0)Za commutes
with S, imply @y (¢;-)*W = ®y(t;-)*W. The second identity in (EZ6) di-
rectly proves ®y(t;)* o7 = 7o @y (t;-)*. Finally @y (t;-)* = Pyg(—t;-)*
follows by the third identity in (£26]) and the fact that @y (¢;-)* commutes
with S, or, more directly, by B(U;—t,-) = B(Us;t,-) according to (ZI.2I))
and ([LI1.22). All the identities in ({27 are proved. O

The main result of this section is the following one:

Proposition 4.2.4 (Reduction to constant coefficients of (4.2.1]))
For any integers N, p in N, we denote by p' the number introduced at the
beginning of section [[.1] (and in Proposition [[.1.1]). Set

3
K = integer part of p' +2p+ =N + 2,
(4.2.8) = ger part of p+2p+ 5

L =max(2p—1,N —1),

and take K > K. Let U € CK.(I,H°(T',C?)) be in BE(I,r) for r small
enough provided by lemma[{.2.1 There are

1_¢

e A family of diagonal matrices of symbols Fy(U) in EFIQ( ralr N]® Ms(C),
£=0,...,L, with Im Fy = 0, satisfying the reality m parity preserving
(31.8) and anti-reversibility (3.1.8) properties,

4+ 3
) Smoothz’ng operators Ry(U;t) in the space ERK?;Ql [r, N] @ M3(C), Ro(U;t)

in RKK N[ | ® Mo (C), satisfying the reality {3-1.13), parity preserving (3.1.17),
reverszbzlzty (Z118) properties,

o A diagonal matrix H(U;t,€) of symbols in EF}(,KJ[T, N], independent of

x, with Im H in EFK k1l N ® Mao(C), satisfying the reality (3.17), parity
preserving (3.1.0) and reversibility (Z17) properties,
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such that, if V solves the system ([f-21)), then V = Qp@en(=1)V where
F = Zé Fy, solves the system

(4.2.9) (D — Op®V((1 + (U 1)) (O)K — H(U3,6)) )V
= Ry (U;t)V + Ry(U;t)U.

Remark: Actually the constant coefficient symbols of the diagonal matrix

H(U;t,¢) are in EI’K/2K1[ N] and not just in EFKKl[ N]. Indeed the
potential order one contribution to H (U;t,&) will be given by the z-average
of the matrix symbol u(U;t,z,&)Zs in (AII3]). Since the imaginary part
of u is of order zero, we have to cope just with the average in z of the
real part. But by the first (resp. second) condition (£I.12]), the average of
Rep is an odd (resp. even) function of &, so has to vanish. This remark
is not necessary for the subsequent arguments but it provides the expected
asymptotic expansion of the Floquet exponents in the periodic and quasi-
periodic case [1], [L16].

The proof of Proposition 4.2.4] is based on an iterative algorithm which
replaces the variable coefficient diagonal symbols D(U;t, x,&) in (£22)) into
constant coeflicient symbols up to terms of very negative order whose as-
sociated paradifferential operator may be incorporated to the smoothing
remainders Ry (U;t). At each step of the iteration we get constant coef-
ficient symbols up to 1/2 smoother ones. Thus we shall perform L ~ 2p
transformations, see (LZJ]).

In order to prove (£ZJ) we study separately in the next two lemmas
the conjugation of OpBW (D(U;-)) and Dy, respectively, under the flow map
Qpy(1) generated by (£23). For simplicity of notation in the sequel we
neglect to write the explicit ¢ dependence of D(U;-) = D(U;t,-).

Lemma 4.2.5 Let r > 0, N € N, p € N be given. Let K' = p/ + 2,
L = max(2p — 1, N — 1) and assume L < K — K'. Consider a family of
1 ¢
diagonal matrices of symbols Iy in XU 2, [r, N]|®@ M2(C), £=0,...,L,
with Im Fy = 0, satisfying (3-1.4), (31.6) and (31.8). Let D(U;-) be the
diagonal matriz ({4.2.2).
_¢
Then there are diagonal matrices Gy of symbols in EP; rgeln N,

¢ =1,...,L, withImGy = 0, satisfying (3.1.4), (318) and (317), G,
depending only on Fy, ¢! < £, such that, setting F = Sk Fy, we have

(4.2.10)  Qpen(=1)0p"V(D(U;))Qpr) (1)
L
= 0p"V(D(U; ) + > 0pPWV|[Go(Us-) + (1 + (U ) {Fu(Us ), mu (§K}]

(=1
+Op"V((1+ CUs){Fo(U; ), me () 1)K + R(U 1)
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4B
where R(U;t) is an operator in ERKp;a_L 1, N] @ M3(C), satisfying the

properties (31.17), (3117) and (3IIJ).

Proof: Since

() (=0)08™ (DU ) (6)

do
= ~iQp)(=0) [0p"™ (F(U)), 0p"™(D(U: )| 2w (6)

we may write, iterating this identity, and applying Taylor formula

(4.2.11) QF(U)(— )OPBW( (U"))QF(U)(l)
L

= 0p®V(D Z AdqopBW( pyOP° " (D(U;))
(=)™ Q 0)AdLtL op®WV(D(U; ) 0
+ 0 F(U)(_ ) OpBW (F(U)) p ( ( a)) F(U)( )

x (1—6)tds
with the notation

AdopBW(F(U))B = [OPBW(F(U))7B]'

1

Notice that since F' is a diagonal matrix in EF%K,_FLJ[T, N] ® M5 (C), each
commutator [OpBW(F(U)),-] gains 1/2 unit on the order of the operators
and one order of vanishing as U goes to zero. It follows that ([AL2ZIT) is
an expansion in operators with decreasing orders and increasing degree of
homogeneity. More precisely, according to the composition result of Propo-
sition 241 formulas (Z3.2]), (Z33]), and Proposition (see also lemma
25.0), where we replace the smoothing index p by some p to be chosen
below, we may write

Ad ow (o)) 0P (D(U; ) = Op° (Cq(Us)) + Ry (U5 1)
E
where Cy(U;-) is a diagonal matrix of symbols in EI’[Q(7I§,+L7q[T, N] and R,

is a diagonal smoothing operator in

o242
RKPK’J,-L [ N ® M3 (C)

for p as large as we want. If the level L at which we stop the Taylor expansion
(£211)) is large enough, namely L > 2p — 1 and L > N — 1, then, the last
remark following Proposition 2.2.4] implies that the operator

_ 3
OpPY(Cria(Us-) € R Il © Ma(C).
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The same is true for the R;’s for ¢ = 1,...,L + 1 if we take p > p + %
Therefore
3

— +_
AdGS v (o) OPPV (DU ) € Ryl g, wlr] ® Ma(C) -

Using also (£2Z7)), if follows that the integral term in (A2.11)) is a smoothing

43
operator in R Kp}ta— 1 N1l ® Ma(C), so contributes to the last operator R in
@EZI0).
Consider now the general term in the sum (A2.11]). This is a combination
of operators of the form

(4.2.12) i [Op"V(E,), [0pPV (F,), |- [0p™V (F,), 00"V (D)) -]

with 1 < ¢ <L, 0<4¥,...,0; < L. Set |l = (¢1,...,4;). Again by Propo-
sition 4T} formulas (23.2]), (233) and Proposition 2.4.2] each operator
in (EZI2) may be written as OpBW (G, (U;-)) + Ry, (U;t), where Gy is a
diagonal matrix of symbols in

3_1
. (el+---+éq)fg

K K'+max(4;),q [, NV]

3
and R,; is a diagonal matrix in ERKp;;aLmax(gj)q[r, N] ® M3(C) (using

again that p > p + %) Notice that all the symbols Gy ; such that
b+ A+l +qg=L+1
have order 1 — g, and that, if {1 +---+ 0, +q =L+ 1, then {q,...,{, are
strictly smaller than ¢, except if ¢ = 1, {1 = £. We define the symbol G, in
the right hand side of (ZZI0), for £ = 1,..., L, as the sum of the Gy, for
which ¢y +---+4{;+q={+1and {q,...,¢, <{. The remaining symbol of
J4

order 1 — 5 is

(4.2.13) i[0p®W(F,), 0p®WV(D)].

Replace in (L213) D by its expression (£22]). By Proposition 2:4.1] and
formulas (Z32), Z33), the commutator i[OpPW (E), OpBW (MK + uZs)]
has order % — g =1- 431’ up to a smoothing remainder, and so it may be
incorporated to Gy11. The remaining operator

(4.2.14) [[0pPW (Fy), Op®Y (1 + C(Us£))m,(€) ) K]
may be written as the sum of
Op™W (1 + C(U; ) {Fr, m(£)}K)

a contribution to OpBW(Gy,2), and a smoothing operator R(U;t) as above.
The operator in (ZZI4) (of order 1 — £) is the term written in the right
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hand side of (£2.I0)), where we have distinguished the cases £ = 0 and
(=1,...,L.

Finally, the other operators OpW(G, ;) of order 1 — £ with £ > L + 1,
may be incorporated as above into the remainder Rin (m

Let us verify that Im G1 = 0. Remark that the symbol Gy is the sum
of the G ; such that ¢ +---+ /4, +q¢=2and {q,...,{, < 1. Hence ¢ = 2
and {1 = l9 = 0 (the case ¢ = 1,¢; = 1 is not allowed). So we just have to
consider

~[0p" ™ (Fy), [0p™™ (Fo), Op"Y (D)]].

Replacing D by its expression (A2:2]), we get the operator of nonpositive
order —[OpBWV(Fy), [OpBW (Fp), OpBW(AK + pZs)]], that contribute to Gy,
£ > 2, and the operator

—[0pPV(Fp), [0pV (Fy), Op®W (1 + (U £))mie ()K)])-

The principal part of this operator has symbol {Fy, { Fy, m,} }(14¢)K which
is a diagonal matrix with real entries since my, Fp, ¢ are real valued. This
shows that Im G; = 0. B

We still have to check that G, satisfies (3.1.4), (B.1.6), (BL7) and that
R(U;t) obeys BI114), BLI7), (BII8). It suffices to see that these last
three properties are verified by the left hand side of (L2I0). As Fj satis-
fies (3I4), BL0), (L) for any ¢, OpBWV(F,) satisfies (3.114)), (3-L17),
(BLI9). Hence lemma@Z2limplies that Qp(y(+0) obeys (B.LI5), (BII7),
BILI9), and, since OpBW (D) satisfies BLI14), BLI7), (BIIF), lemma

implies that the left hand side of (£21I0]) satisfies the same properties.
g

Lemma 4.2.6 Let Fy, ¢ = 0,...,L, be a family of diagonal matrices of
symbols as in lemma[{.2.5 Then there are diagonal matrices of symbols Gy,
{=1,...,L as in the statement of the preceding lemma such that

(4.2.15) Qe (=)D Qpr)(1) = Dt—l—ZOpBW (Ge(U; ) + R(U; t)
(=1

_pid
where R(U;t) is in ERK/’);&L_HJ[T, N]® Mo(C) and satisfies the reality
(3-1-13), parity preserving (3117) and reversibility (3.118) properties.

Proof: We have

d
7 (QF(U)(—9) oDyio QF(U)(9))

= —iQp ) (—0) [0p"YV(F(U)), Dy ] Qpr (6).
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Since the commutator [OpBW(F(U)),Dt] = —OpBWV(D,F(U)), we derive,
iterating the above identity and applying Taylor formula, the expansion

(4.2.16) Qpen(=1)DiQp@en(1) = Dy + Z opw () Pt
i)kt L+1 L
/ QF AdOJrBW( F(U ))Dt)QF(U)(G)(l _0) do
(=0)7, 41 BW
—he Zl Aoy () 0P (DF(U)
q
L+1 BW
/ QF AdopBW( (U))Op (DtF(U))QF(U)(a)
x (1—0)de

with the convention Ad%pBw( FUY) = Id.

1_¢
Since Fy is a diagonal matrix of symbols in XT'z 2, ., [r, N] ® M2(C),
and since U solves equation ([B:2.0)), it follows from lemma 2.2:6] that D,F}
1 ¢
is a diagonal matrix with entries in XT'} 22, ,. | |[r, N]. The general term of

the sum in the right hand side of (Z.16) is the combination of operators of
the form

jatl [OpBW(FgI), [OpBW(FzQ), [ .. [OPBW(FKQ), Op® (DthqH)} . H}
with 0 <¢g<L—-1and 0 </{y,..., 01 < L. Set Il = (41,...,0q41). By
Proposition 2Z4T] formulas ([2:32)), ([2.33]) and Proposition (applied
with the smoothing index p replaced by some g to be chosen), each of these
operators has the form OpPW (G, (U; )+ R, (U;t), where G is a diagonal
matrix of symbols belonging to

EFQ 2 (£1+ +£q+1)__

K, K'+max(£;)+1, q+1[7“ N]

and R(U;t) is in ERKp;,fmaXQ(gl)I;:ﬁJrl)[7“, N] ® M3(C). Choosing p — p
large enough (depending on L), we get that R(U;t) is in

_p+§
ERK,K?—i—max(ﬁj)—f—Lq—}—l[r’ N] ® MZ((C) .

For £ =1,...,L, we denote by Gy, the sum of the symbols G,; such that

Ui+ +Ly11+q+1 = ¢. Thus the symbol G is in EFZI%(/M,I[T’ N] @ M2(C)
and, since all the ¢; are strictly smaller than ¢, Gy depends only on Fjr, £ < £.

The other operators OpBW(G,;) of order 1 — % with £ > L + 1, may
be incorporated, by the last remark following Proposition 2.4 into the
remainder R in ([L2I5]). Finally, arguing in the same way, as we fixed L
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large enough (L > 2p — 1, L > N — 1), the integral term in (£2.16]) gives a

43
contribution belonging to RK[,)IJQPJquLLN[T] ® Ms(C).
Let us check that
iquqO;le(F(U))OpBW(DtF(U))
iL+lQF(U)(—Q)Ad(L)pBW(F(U))(OpBW(DtF))QF(U)(H)

satisfy (B.L14), B.LI7), (B.1I]).

Notice first that if F satisfies (B8], it follows immediately that DyF
satisfies (B1.7). In the same way, we see that if F' satisfies (3.14)), D;F'

satisfies (3I5). Consequently, OpBW (D, F) satisfies (3.L15), (B.II7) and
(BIIR). Moreover, by assumption, OpPW(iF) satisfies (ILI5), BLI7),
(BIT19). Remark that if an operator M satisfies (B 110 (resp. BII7),
resp. (B1.I8))) and an operator M’ satisfies (BII5) (resp. (BII7), resp.
BII9)), then [M, M’] satisfies (BLI5) (resp. (BLIT), resp. (BLIN)), so
that the general term of the sum in the right hand side of (£.2.16]), or the
term below the integral, satisfies (B.1.14]) — taking into account the extra
power of ¢ that is present — (resp. BLIT)), (BII8])). We are thus left
with showing that these properties are preserved through conjugation by
Qp@)(0) in the integral term. This follows from the fact that Qg (0)
satisfies (B1.10), (BLI7) and (B119)), as it has already be seen.

Finally, let us check that ImG; = 0. Actually, G7 is the sum of the
symbols Gy; such that ¢; 4+ --- + l441 +q = 0, so that ¢ = 0, {1 = 0,
ie. Gy = iDyFy = 0yFy. Since, by assumption Fjy is real, so is G;. This
concludes the proof. O

Proof of Proposition [ I2Z4: We set as in lemma 25 K' = p/ +2, L =
max(2p —1,N — 1) and fix K > K’ + L.

For some F = Zé F; to be determined, satisfying the assumptions of
lemma AZ5], we set V = Qp@)(=1)V. Conjugating (A2T]) with the flow
Qpw)(=1), we get

(4.2.17)  Qpy (1) (D — Op®V(D(U; ) ) Qpny (1)V
= Qpy (DR (U; )2y (DV + Qpn (-1 R"(U; 1)UL

According to lemmas and .2.6], and recalling the definition of D(U; )
in (£22), we may write (Z2I7) as

(4.2.18)  [Dy — Op®W((1 + ¢(Ust))m,(€))K

= Y0PV (Ge+ (1 + LU ) {F ma(OKY) |V
{=0

= Qp) (—D)R' (U; )@y ()V + Qe (-1)R"(U; t)U + R(U; )V
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where:
o+ 3 _pt+3
e R'(U;t) isin ERK/’);,QJ[T, N] ® M3(C), R"(U;t) is in RK?;,Q’N[T] ® Mo (C),
ot 3
R(Ust) is in SRy 2 o4 [r, N @ Ms(C),
e Gy =Repu(U;t,z,£)Iy in (£22), so that Gy is in EF}QK/J[T, N] ® My(C),
and satisfies Im Gy = 0,
e (71 is the sum of the diagonal matrices of symbols denoted by that let-

ter in (EZI0), @2I5) plus Re \(U; t,r,§)K coming from [AZZ). lem-
mas [£.2.5] and 426l and the properties of A in Proposition 1.1} imply
1

[r, N] ® M3(C) with

that G is a diagonal matrix of symbols in EI‘[? K
ImG1(U;t,z,§) = 0.

e (G2 is made from the contributions denoted by this letter in (ZZI0),
(EZT5), plus the symbol Im u(U;t, z,£)Zy coming from (LZ2). This is
a diagonal matrix of symbols in EI’%K,_FZJ[T, N] ® M3(C).

e (3 is made of the similar contributions coming from (£2Z10)), (£215)) plus
the symbol iIm \(U; ¢, z, £)K that we discarded from G;. This is a diagonal

1

matrix of symbols in EF;(?K/+371[7°, N] ® M2 (C).
e Finally, Gy, £ > 4 come from the corresponding terms in ([L2.10)), (£ZT15).
All these symbols satisfy the reality, parity-preserving and reversibility
properties (BL4), BI16), BI7), as follows from lemmas and
and the properties of the matrix D in ([£2.2).
We construct now Fy so that G,+(14¢(U;t)){Fy, m«(§)K} has constant
coefficients, which are moreover real valued when ¢ = 0, 1, i.e. when the order
of the symbol is positive. The diagonal matrix Gy may be written as

+1,1

Go=g(Ust, 2, 6T + g/ (Ust, z,£)K
_ZL
with g}, g/ in EF}( Fre11m N]. Moreover, since G and G are real,
Img),Imgy =0, Imgi,Img{=0.

We may also, up to a modification of the smoothing operators, assume that
g, g/ vanish for |¢| < . We decompose

Gy = G? + GéVD where G? = géDzz + gzD’C

and
WP = = [ Uit a s, GPUskE) = = [ Uit e
27T ’]Tl ) ) b 27T ’]I‘l bR )
gzND _ 92 _ gzD, gZ/ND _ 92/ _ QZD'

To eliminate the variable coefficients part in the left hand side of (£2I8]),
we need to find matrices of symbols

Fy = fy(Ust,z, )K + f' (Ust, x,6)T,
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such that
GP A+ (L+ (U ) {Fy,me(§)K} =0,

i.e. expanding the Poisson bracket

8 /
GNP Wt €) — (1 + g(v;t»m;(s)ﬁ(v;t,m,a ~ 0
(4.2.19)
g™ (Ut w,6) = (1 + g(U;t»m;(@ <U t,a,€) =0.
As g;NP| g/ND have zero - average and 1+((U;t) > if U is small enough,

we may find a unique pair (f;, f/) of functions with zero xr-average, solving
these equations. Notice that m/, vanishes close to zero, but we may always
truncate g,NP, g/NP outside a neighborhood of ¢ = 0, as smoothing symbols
contribute to the right hand side of ([L2Z9]). Since go, gy are real valued,

we get that f{, f{, and thus Fj, are real valued. As m is elliptic of order

1/2, we get that f;, f/, and thus Fj, belong to EFKKUr“[r, N]. We have
obtained symbols Fy such that the only remaining terms in the sum in the

left hand side of (£2I8]) is
L

~(3- 0r™V (/P Lo + g{PK) )V
£=0

This contributes to OpPW (H)V in @23), since g,P, g/P have constant co-
efficients by construction, and since their imaginary part vanishes if they are
of positive order, i.e. when ¢ = 0,1. Actually, since Gy = Re u(U; t,z,&)Zs
and p(U;t,x, &) satisfies (II2]) we deduce that its z-average vanishes at
the order 1. This proves the remark stated after Proposition [£.2.4]

We are left with proving that (314, (316), (3L8) hold for Fy, and
that the smoothing terms may be written as in ([{29]). Notice that since Gy
satisfies (B.1.4]), we have

(4.2.20) (GYD) = —S(GYP)s .
Since (£Z.T19) may be written as
OF,
GIP(Ust, ) = (L+ LU ) mi (K~

it follows from (EZ20), the fact that m/ (§) is odd and the relation SKS =
—K that (3I4) holds for Fy. In the same way, condition (B.I6]) for GIP,
together with oddness of m/ (§) implies that

8Fg 8F£
(5, ) Uit =, =€) = = (52 ) (Ust,3,€)

from which the property (B16]) for Fy follows by integration. Finally, since
GID satisfies (317, it follows from @EILIN), K2 = I, KSK = —S that
%(U; —t,) = S%(Us;t, -)S, so that Fy satisfies (3.L8]).
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Consider now the smoothing terms in the right hand side of (AL.2.I8]).
Since R'(U;t), R"(U;t), R(U;t) satisfy the reality, parity preserving and
reversibility properties (3114, BLIT), (B.II8]), and since the operator
Qp)(0) satisfies (BIT5), (B.II7) and (BII9), we conclude that the oper-
ators in the right hand side of (£2.I8]) satisfy as well (3.1.14]), (3 1.I7) and
BLI).

Moreover, since R(U;t) is in ERKp;,+L+11[T N]® M3(C) and K >
K'+ L+ 1, as follows by the definition of K in (423 (taking into account
also the translation on p that we shall perform below), we conclude that
R(U;t) is in ER;E% [r, N] ® M3(C) and so it contributes to Ry(U;t) in
). 3

In addition R"(U;t) is in R;(p;?N[T] ® M2 (C), K' < K, and, by (£2.5])
and recalling the Definition 2231 (i), we deduce that Qpw) (=1 R"(U;t) is
in R;(p;%N [r] ® M5 (C) as it satisfies (2.2.30). Thus the smoothing operator
Qrw) (=1)R"(U;t) contributes to Ry(U;t) in ([Z29).

Let us finally show that the operator Qp)(—1)R'(U;t)Qp (1) where
R'(U;t) is in ER;(p;,%l [r, N] ® M3 (C), contributes to Ry(U;t) in the right
hand side of (IA_.&.ﬂlj By (#.2.3)) and applying Taylor formula

N—-1
1
(4.2.21) Qpey(1) =1d+ > a1 GOopBWV(F(U)))*
(=1

" ﬁ /o1 Op" W (iF(U))Y Qe (0)(1 — 0)V " db.

Consider the integral term [(U) in (Z2I)). Since F(U) is a matrix of
1

symbols in 3T} ., ; 1[r, N] ® M3(C), it follows from Proposition ZZ4] in
particular (2237, and (£2.5) that for any k < K — (K’ + L),

10F IO emgiey <C Y0 Gopropnn (UG 1 (Wet).
k! +k' =k

=

Consequently, the terms obtained replacing in Qp ) (=1)R'(U;t)Qp (1),
QF(U)( ) by I(U) will provide an operator R”(U;t) belonging to the space

RKPI—;,:LN[ ] ® M2(C). If we replace p by p + %, and change accord-
ingly K' = p' + 2 into K’ given by the integer part of p' + 2 + &, (so
that, recalling definition (£Z8]), K’ < K), we get a smoothing operator of
R;(p;%N[T] ® My(C) that contributes to Ry (U;t) in (£2.9). By the compo-
sition results of section 24 in particular Proposition 224.1] we may write,
foreach £ =1,...,N —1,

(4.2.22) GOpBWV(F(U))! = OpBWY (M (U;t,-)) + Re(U;t)
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where M is a matrix of symbols in the space EF%QKH-L,E [r, N] ® M3(C) and
4
Ry(U;t) is a matrix of smoothing operators in ER;(?;?+L7€[T, N] @ Mo (C).
Then we compose each operator in (EZ.22)) at the left with Qpn (—1)R'(U; 1),
where we expand also the flow Q) (—1) as in (Z2.21)) at the order N —{—1,
instead of V. By the previous arguments we get again contributions to the
smoothing term in the right hand side of ([L29) performing as above a
translation in p. This concludes the proof. O

4.3 Normal forms

In Proposition [£.2.4] we have obtained the system (4.2.9]) which is diagonal,
up to smoothing terms, and the symbol (1+{(U;t))m(§)K—H(U;t, &) has
constant coefficients. The associated operator commutes thus to derivatives,
so that getting a Sobolev energy inequality is equivalent to getting an L2
(or HO)-energy inequality. If the symbol H were real valued, the associated
operator would be self-adjoint on H?, so that, forgetting for a while the
smoothing operators in the the right hand side of ([@29]), we would get
preservation of the H° norm (and the H*® norm) of V. It turns out that
the imaginary part of H is not zero, but only given by an operator of order
zero. In this section we shall perform a normal form construction to replace
Im H by a symbol, still of order zero, but vanishing like |[U/]|%Y_ when U goes
to zero. Consequently, the remaining non self-adjoint part of the equation
will not affect energy estimates up to a time of order ¢V, where € is the
size of the Cauchy data. In the next section [£4] we shall perform another
normal form procedure to replace the smoothing operator Ry(U;t) in the
right hand side of (£2.9)), by an operator vanishing at order N at U = 0,
like Ry(U;t), modulo again remainders that do not contribute to the energy
inequality (actually we shall only construct modified Sobolev energies).

Remark: From now on, our symbols will be always computed at U
belonging to CX (I, H? (T', C?)), with o, K large enough. In particular, the
argument U is always of the form U = [%} When we consider a matrix of
symbols A in T /1 [r, N] @ M2(C) for some K’ < K, we denote

1 -
Im (A(Ust, ) = 5-[AUst, ) — AU, )]
i
Recalling Definition Z1.4] we may decompose A = Zé\;l Ay + Ay where
A, is in f;” ® M3(C) and Ay in T'R ;o n[r] ® M2(C). We shall denote by

Im A, the matrix of g-linear forms

1 — -
(431) Z [Aq(Uh ceey UQ7 ) - Aq(_SUl, ey —;Svl—]q7 )]

so that, when restricted to U; = U for any j, with U in the above space, we
do get Im (A4(U, ..., U;")), since we have the relation U = —SU.
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Proposition 4.3.1 (Reduction of Im H) Assume that the parameter k
is outside the subset of zero measure of Proposition [711], so that estimate
(Z1.3) holds. Then there are

o a family (By(U;€))g=1,....N—1 of diagonal matrices of homogeneous sym-
bols in fg, with constant coefficients in x, whose restrictions to Uy = -+ =
U, = U with U = —SU satisfy conditions (31.3), (31.0), (31.3) (Notice
that by lemma [31.3 the last anti-reversibility condition may be expressed
equivalently through condition (Z1.10)),

e q family (H;(U;é))q:17,,,7]v of diagonal matrices of symbols with con-
stant coefficients in x,

HYU;€) € TL e Ma(C), g=1,...,N —1,

(4.3.2) 1 1
Hy(U;t,6) € T g n[r] © Ma(C),
such that the homogeneous symbols H(}, q=1,...,N — 1, are real valued,
and Im HY; is in I’%K,N[T] ® My(C), these matrices verifying the reality,
parity preserving and reversibility properties (3-14), (31.0), (3173), when
restricted to Uy = --- = Uy = U as above,

such that, if we set

N—-1
B(U;t,6) = Y By(U,...,U;€), Vi = exp(OpPV(B(U;t,€)))V
(4.3.3) -
H'(U;t,§) = Y HNU...,U;€) + Hy (U3, 6),
q=1

then V! solves the equation

(4.3.4) (D — OpPV((1 4 (U3 t))m(OK + H' (U3 t,€)) ) V*
= Ri(U;t)V! + Ro(U;3 t)U

_pt+3
where the smoothing operator Ry(U;t) is in ERKp;ﬁ[T, N] ® M2(C) and

4B
Ry (U;t) is in RK?;;QN[T] ®@ Mo (C), Ri1(U;t), Re(U;t) satisfying the reality,
parity preserving and reversibility conditions (3.1.13), (Z117) and (ZLI8).

Moreover, we may write

(4.3.5) Vi=V4+MU; )V

for some operator M(U;t) in EM i 1[r, N] ®@ Ma(C) satisfying conditions
(Z1713), (3117) and (ZI1I3). Finally, for a large enough o and any s,

one has the bound

(4.3.6) VY =Vl < CallUllgo IV ] -
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Before starting the proof of the proposition, we need to exhibit some struc-
tural properties of the symbol H in the left hand side of (£Z9]).

For p in N*, p even, we define the set

43.7)  Cpz={(n1,-..,np) € NP {n1,...,np} = {npiy,...,np}}

collecting those integer vectors (nq,...,np) of (N*)P such that there is a
bijection from the subset of the first p/2 components of (ni,...,n,) onto
the subset of the last p/2 ones. If p is odd, or p is even and /¢ 75 B define
Cp,e to be the empty set.

For any n in N*, define
(4.3.8) I, = [§ 8], I, = [99]1,,

n

the composition of the spectral projectors II, with projection from C? to
C x {0} (resp. to {0} x C). For U satisfying U = —SU, namely U of the
form U = [% , the projectors ITf can be written as follows. Denote by
(¢n)nen a real valued Hilbert basis of the space of even L? functions with
zero mean, with ¢, in the range of II,,, i.e. ¢, (z) = ﬁ cos(nx). Then if we

set 4(n) = % Jp1 u(x) cos(nx) dx, we have

(439) U= [20p, WU =a(m)eypn, T,U =a(n)e_pn,
where e = [{], e = [9].

Lemma 4.3.2 Let H,(U;&) be a matriz of constant coefficients homoge-
neous symbols in I')t @ Ma(C) for some m in R, p in N*, satisfying the real-

ity, parity preserving and reversibility properties (3.1.4)), (31.0) and (31.9).

Then for any function U even in x, satisfying SU = —U, for any even p in
N* and (ny,...,ng) in (N*)¢, £ = p, we have
(4.3.10) Im H,(IL} U, ..., 1L} U, I, U,... . 11, U;£) = 0.

As a consequence
(4.311) ImH,(U,...,U;¢§)

_Z > (V) mEB,0 U, I UL, U, T U
£=0 (n1,...,
0( éch,e)

Proof: Notice first that ([@3.I1]) is trivial when one omits the restriction in
the summation on ny,...,n,: this is just what one obtains using that Im H,,
is a symmetric function of its arguments and writing II,, = H,i'j + H;J, for

any j = 1,...,p. Therefore ([A3I1]) follows by (L310]).
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Recalling (£.3.9) we have to check by C-linearity of Im H,, that
Im Hy(on, €4y s @npeq, Onie—y ..., on,e—;§) = 0.
By (BI4]), we have
(Im Hp)(U,...,U; =€) = S(Im Hy)(U,...,U;¢)S
and by (B.I.9)
(Im H,)(SU, ..., SU; &) = =S(Im Hp)(U, ..., U;€)S
for any U satisfying SU = —U. Consequently, as p is even
(Im Hy)(U,...,U; =€) = —(Im H,) (U, ..., U;£).

Decompose U = Y II,,.U, with II,,,U given by ([£3.9). The above equality
may be written, using symmetry and C-linearity, as

> Z( Ja(n) - a(ne)a(nera) - - alny)

N1,...sNp £=0

X (ImH )((Pn1e+7- .. 7§0nee+7§0ne+1e—7 s 7@71176—; _5) =

- Z() @(ngs) - anp)alny) - a(ng)

ni,.. 7np£ 0

X (Ime)(¢n4+1e+7 sy Pnp s Png€—ys et Py 5) .
Identifying the coefficients of @(ny)-- - @(ne)@(nes1) - - - @(n,) on each side,
we get
(Im Hp)(gpnleJra s Pty Py €—5 o P €5 _5)
= _(Ime)(ganHeJra sy Pty Pni€—5 oo Pyl 5) .
In particular, if £ = § and ngy1 = n1,...,n, = ny, we obtain that
5 — (Im Hp)(‘Pnle-i-a sy Png€y, gpnz+1e—7 sy Py €5 5)

is an odd function. Making the same reasoning starting from (B.1.6])
(Im H,)(U, ..., U;—€) = Im Hy(U, ..., U;€)

we conclude that (Im Hp)(¢n,€4s- -5 @ner, Pnp €y Pn,e—3&) is also
an even function, so that it vanishes identically. This proves the lemma. O

We shall need a second lemma to prove Proposition [1.31]
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Lemma 4.3.3 Let B(U;§) be a constant coefficients matriz with entries in
Fg, satisfying

(4.3.12) B(U,...,U;€) =+SB(U,...,U;&)S

for any function U(x), even in x and satisfying SU = —U. Then for any
such U, any indices ni,...,n, in N*, any £ =0,...,p

(4.3.13) B0, ... 105,01, U, 1, U;€)
= +SB(IL,,U,... .1, UL} U,... 1} Us€)S .

Nnegy1 7

In the same way, if we assume

B(SU,...,SU:¢) = —SB(U,...,U;€)S,

then
+ + - - .
(4.3.14) B(IL; SU,... 11} SUIL,  SU, ... 1T, SU;¢E)
= —SB(I, U,... .1, UL U,..., T} U;€)S.

Proof: 'We may write using (£3.9))

B(U,...,U;¢)
p
=3 (%) Y B@iU.. LU, U.. I, U
=0 N1y, Mp
p
=) S a(m) - ang)alnga) - alny)
=0 N1,...,Np

X B(€+g0n17 s 7e+(pne7 e—‘Pan s 76—@711,;5) .

Plug this expression inside (A312]), and identify on both sides the coeffi-
cients of 4(n1)...a(ng)w(netr) ... a(ny). We get

v
B(eJrSDnl? sy €4 POny, efgpnuﬂa oo aefgpnp;é)
=F+SB(e_Onys- s Pnpr €4 Prpprs- s €490, 6)S

using that B is p-linear symmetric in its first argument. This gives (£.3.13)).
To prove the last statement of the lemma, we write using again (£.3.9)

B(SU,...,SU;¢)

p
=>(%) > B(SOLU,... SU}U ST, \U,... ST, U;¢)
=0

=(DPY(F) X0 a(m)---alng)a(ne) - alny)
(=0 N1,..Np

X B(e—(pnlv <oy €-Pny, 6+Q07Lg+17 o 7e+(pnp; 5)
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By identification with the expansion of SB(U,...,U;¢)S we get

B(BfSDm, sy €E-Pny, 6+Qpnz+1a s a6+90np;£)
= _(_1)pSB(6+SDn1’ sy €4 Pny, 6f@nz+1a oo ’679071;7;5)5

which implies (£314]). O

Proof of PropositionZ.31: We conjugate the equation ([A2.9]) by the opera-
tor exp(OpBWV(B(U;t,£))) where B(U;t,£) is a diagonal matrix of constant
coefficient symbols as in [3.3]), with B, (U;¢) in fg ® M3(C) to be chosen.
The left hand side operator in (£.2.9)) transforms into

(4.3.15)
exp(Op"V (B(U;t,€))) [ Dy — OpPV (1 + (U3 ))m (OK — H(U;t,€))]
x exp(Op"W (=B(U;t,¢)))
= Dy — Op"V[DyB(U;t,€) + (1 + ¢(U; 1))mu(§)K — H(U;,€)].

‘We now choose

(4.3.16) B(U;t,&) = Z B,(U,...,U;¢)
q=1

so that the symbol

(4.3.17) DyB(U;t,€) — H(Ust,€) = H'(U;t,¢€)

has the form H! Z 1 H 1+H 1 in (@33), with homogeneous symbols H, (}
which are real valued, (IIB::ZD holds, and Im Hy is in ' g x[r] @ Ma(C).
First we notice that, differentiating each B, in ([3.I6) and inserting the
expression (B.2.0) of DU, we get

(4.3.18) Dy(By(U,...,U;&)) = > By(U,...,U,DU,...,U;&)

+ZB U,MU:U,... U;€).

q'-1
Since we look for By (U, ..., U;§) satisfying (B.1.5]) (resp. (816, resp. (3.1.9),
these properties 1mply that 0By(U,...,U;¢) satisfies (3.10) (resp. (B.1.6),

resp. (B.L7)). Consequently, the left hand side of (A3I8)) satisfies (B.1.4)



4.3. NORMAL FORMS 127

(resp. (BL6), resp. (B.1.1)). Decomposing the right hand side in homoge-
neous contributions, we see that each of them satisfies conditions (B4,

BI0) and BI9), by lemma B13]

According to Proposition £2.4] the matrix H in the left hand side of

(4317) may be written as

N-1
(4.3.19) H(U;t,&) =Y HyU,...,U;&) + Hy(U;t,§)
q=1

where H, is a diagonal matrix of symbols of f’é with imaginary part in fg,
and where Hy is a diagonal matrix with entries in F}ﬂ k n[r] and imaginary

part in T'% .- \[r]. Moreover, these matrices of symbols satisfy the reality,

parity preserving and reversibility properties (8.1.4), (3.1.6) and (BL7) (or
(BI9) for the homogeneous components by lemma [B.1.3]).

By (@316), (£318), (£3.19) we may write the left hand side of (317

as

q=1 r_1

Since each By is in fg and M(U;t) is in ¥M 4 1[r, N] ® M2(C), Propo-
sition 243} (i) implies that each symbol B, (U, ..., M(U;t)U,...,U;§) is in
EF?QK,(]H[T’ N] ® M3(C). We may group these symbols together with H,
and Hy, according to their degree of homogeneity, and rewrite (Z3.20) as

N—-1 gq
(4.3.21) [Z By(U,...,U,mu(D)KU,...,U;&) — Hy(U,...,U; 5)}

— Hy(U;€)

where I:Iq is a diagonal matrix of symbols in f; with imaginary part in fg,
and where Hy is a diagonal matrix with entries in [k g nr] and imaginary
part in F% g.n(r]- Note that H, depends only on By, ¢ < q. Moreover
]:Iq and H N_satisfy, like H, and Hy, the reality, parity preserving and re-

versibility properties (B.L4]), (B1.6]), BL1) (or (319) for the homogeneous
component fIq), as the last sum in ({3.I8) satisfies these properties as well.

To obtain ([f3.IT), we have to choose B, in order to compensate the
imaginary part of ]:Iq in (£3.21]), so that we shall be left with only the real
part of I:Iq, g=1,...,N—1, that provides the contribution to H; in (A317),
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(@33). In other words, we want to find B, so that

q
> By(Ur,...,mu(D)KUy, ... U &) = ilm Hy(Uy, ..., Ug; €) .
q'=1

We now determine
By(I; Uy, .. 105 Up, 1y Uy, 1 Ugi €)

forany /=1,...,q,and nq,...,ns € N*. We decompose U; = > n,eN* H;tjUﬂ—
H;jUj, j=1,...,q, and since

my (D)KL, Uy = +my(nj)TT; Uy
we write this equation

¢ q
[Z my(ng) — Z mli(”q’)}
q'=1 q'=0+1
X By(TL Uy, TG U T, Uy - 1L Uyi €)

= ilm Hy(IL} Uy, TLY U, T, Upya, - 10, Uy €).

As ﬁq satisfies the assumptions of lemma [£.3.2] the right hand side vanishes
if ¢ is even, £ = 4 and {n1,...,n¢} = {ngy1,...,nq}. In all the other cases,
by Proposition [[.T.T] when the parameter « is fixed outside a subset of zero
measure, the quantity

)4
(4.3.22) Dy(ni,...,ng) = Z my(ng) — Z my(ng)
q'=1

does not vanish, and its absolute value is actually bounded from below by
cn| ™ n=(ny,... ,Nq), for some integer Ny. We may thus define

q

(4.3.23) By(U,....U0;)=> (1) > Dy(ny,...,ng)"

£=0 (n1,-,m9)#Cq 0
x idm Hy (IG5, U, ..., I U, T, U, T Us €).
The lower bound |Dy(n)| > ¢|n| ™™ implies that the constant coefficients
symbol B, satisfies estimates of the form (ZI3]) with m = 0 as Im H, does,
changing the value of u depending on Ny (actually we have to check (21.5])
just for & = 0 since By is constant in ). By the last remark after Definition
[2.1.1] we obtain symbols B, ¢ = 1,..., N — 1, which act on H? taking o
large enough with respect to p, i.e. large with respect to the number of steps
N and the loss of derivatives Ny produced by the small divisors Dy(n).
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Therefore By, is a diagonal matrix of homogeneous symbols in fg ® Mo (C).

It satisfies (B8] as H, does. Let us check that (3I.8) holds. Since H, sat-
isfies (B.1.9)), we deduce from the last statement in lemma 33| that (L3.14))
holds with B replaced by iIm H,. We deduce that

q

Bq(SU,...,SU;g):—Z@) Z Dg(nl,...,nq)_l
£=0 (n1,--,nq)¥Cq e
x iSTm Hy(1T, U, ..., T, UIL;  U,... I} U;6)S

Ne+1

Since fIq is symmetric in its first ¢ arguments and
De(ny,...,ne, g1, ... ,ng) = —Dp(npg1,...,ng,na, ..., ng),
we obtain that
B,(SU,...,5U;¢&) = SBy(U,...,U;¢)S.

This is condition (BII0) (applied to the arguments Uy = --- = U, = U),
which, if we consider B, (U, ...,U;§) as a non-homogeneous symbol, implies
the anti-reversibility condition (3.1.8)).

Let us check that B, satisfies as well (3.1.5). The matrix ilm H, satisfies
(BI4) by assumption i.e. condition (£3I2)) with the minus sign. It follows
from lemma [4.3.3] that

= V
ilm H,(IL4, U, . .., I, U, Iy, U, ... 105 U5 €)
= —Silm H,(I1,, U,..., T, U IL}, U,... T} U;€)S,

Ne41
so that, by (£3.23)

B,(U,...,Us¢ :—ZZ<%> Z Dg(’l’Ll,...,TLg,’I’Lg+1,...,TLq)71

=0 (n17 7nq)¢cqé
x Stm Hy (1L, U,...., T, U,IL}, U,... I} U:€)S

Te+1
q
:’LZ(%) Z Dyt Mgy M1y ey 1g)
= (n17 7n‘1)¢cq £
x STm H (H;MU H;qU, I, U,.... 11, U;§)S
= SB,(U,...,U;6)S.
In other words, B, satisfies (B.1.5)).

We are left with checking that (m) holds. Under the change of
variables V1 = exp(OpBW(B(U; t;f)))V, taking into account (L3.I5) and
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(£317), the system (£.2.9) transforms into

(4.3.24) (Dt — Op®W[(1 + {(U; ))m, (K + Hi(Ust, -)])‘71

= exp(OpPV(B(U;t,€))) [R1(Ust) exp(—Op®™(B(U;,€))) V1]
+exp(Op®V (B(Ut,0)) ) [Re (U3 1)U

Let us expand

PV (B(U;t, £)))"

q!

N—
(4.3.25) exp(Op®V(B(U;t,¢))) = Z + Sn(U;t).

As Sy is the remainder of an absolutely convergent series of bounded opera-
tors on H* for any s, as well as its 8k derivatives, k < K—K’, we see that the
replacement of one of the exponentials in the right hand 81de of (IE:E]) by

Sxn(U;t) brings operators satisfying the bounds (Z2:30) defining R ;. K K. N[ ].

The corresponding terms may be incorporated to Ry(U;t)V' 4+ Ry(U;t)U
in ([@34]). Consider next the sum in (£325]). By the definition ([@3.3]) of
B, and the symbolic calculus properties of Proposition 2.4.1] and Proposi-
tion (which are quite trivial here since we deal with constant coefficient
symbols), we may write that sum as

Id + Z( Op™Y(By(U, ..., Us ) + Ry(Us1))

modulo terms of the same form as Sy(U;t) in (A3.20]). Replacing the ex-
ponentials in ([L3.24]) by such a sum brings again smoothing expressions
contributing to Ry (U;t)V! + Ry(U;t)U in the right hand side of @34, by
Propositions and 2.4.31

Moreover, since B satisfies (B.1.5]), (B.1.6) and (B.L8]), the operators
Sy, OpBW(B,), R, satisfy (B.LI5), (3I.I7) and (B.ITI9). Since in [Z3.24),
Ry and Ry satisfy (31.14), BI1I7) and (BILIS]), it follows by composition

that the similar operators in (£3.4]) satisfy these properties as well. This
concludes the proof of ([E3.4). Finally, the definition (@3.3]) of V! and

([E325) show that V! may be written as (@3.5), and that (@3.8) holds, as
a consequence of the boundedness of paradifferential operators on Sobolev

spaces. a

4.4 Proof of Theorem [3.2.1]

The proof of Theorem B.2.T] will rely on a normal form construction of mod-
ified energy Sobolev norms, which are quasi-invariant. The small divisors,
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which produce losses of derivatives, are compensated by the smoothing char-
acter of the operators R;, Ry in the right hand side of [@34). We define
first the classes of multilinear forms that will be used to construct a modified

energy for (A34).

Definition 4.4.1 (Multilinear energy forms) Let p, s be in Ry, p in N.
One denotes by E;:;p the space of symmetric (p + 2)-linear forms

(U(]a SRR Up+1) — L(U(]a SRR Up+1)

defined on HOO(']I'l, C?) and satisfy?’ng for some p in Ry and all ng, ..., np1
in (N*)P2 all (Up, ..., Ups1) in H®(TE, C?)PH2

(4.4.1) |L(IL,Uo,..., 1L, ,,Ups1)| < Cmax(ng,...,np41)> "

p+1
X maxs(ng, . .. ,np+1)p+“ H 1L, Uel| 1,2
0
where maxs(no, . .., Np+1) s the third largest among those integers, and such
that
(4.4.2) L(I,,Uo,... Iy, Upr1) 0
p+1
= Z eeng = 0 for some choice of the signs ey € {—1,1}
0

and, for any Uy, ..., Upt1 satisfying SU; = —Uj,

(4.4.3) L(SUy,...,S8Ups1) = £L(Uy, ..., Upt1).
Remark: To check (£Z43]), it is enough to prove that
(4.4.4) L(SU,...,SU)=+L(U,...,U)

for any U satisfying SU = —U, as follows from the R-linearity and symmetry
of L.

We define below a multilinear form L of £,;%” that will be used in the
proof of lemma [£.4.3]

Example: Consider R an element of 7@; ? and define L(Uy,...,Upt1) to be
the symmetrization of

(4A45) (U Upsr) = /Tl(\D]SSUO)(]D\SR(Ul,...,Up)Up+1)dm.

Let us show that if s > p, we get an element of E;:;p (resp. ﬁ;::p ) if
R(Uy,...,Up) satisfies (BI2I]) (resp. (B120)). First, we have the estimate

(4.4.6) |L(pUo,... My, Uyt
< Ong’ | My Uo|| p2 Mg R, U,y - .« I, Up) Iy Upiit || 2.
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By condition (22.29)), we see that (£4.2)) holds. Moreover ([2.2.28]) implies
that the right hand side in (£4.0]) is bounded by

P+l
(4.4.7)  Cn2*maxa(ny,...,npp1) P max(ng,...,nyq1) " H 1L, Uel| 12
0

We may assume ny > ng > -+ > n,q1 and because of [@ZA2), |ng — ni| <
Cng. If ng > %nl, we have that ng ~ n; and maxa(ng,...,npy1) ~
max3(ng, . ..,Npy1) so that (@ALT) implies @AT). If ny < %nl, then ny ~
ng, so that ng < C'maxz(ng,...,np+1). Then we estimate (@47, and thus

(E4.8), by

23 p+1

)" T, Ul
0

maxs(ng, . .., Np41)

C max(ng, . .. 7”P+1)28+M( max(ng Mp+1)
yeee s p

which, for 2s > p + p, is bounded by the right hand side in (£4.1]).
Finally we check that the form defined in (45 satisfies ([L4.4]). Since

the matrix S is symmetric we have

(4.4.8) /T (IDI'S(SU))(DI*R(SU. .., SU)SU) da
- /Tl(|D|sSU)(|D|SSR(SU, ..., SU)SU) dz.

If R(Uy,...,U,) satisfies (B.1.2T)) (resp. (B1.20)) then the right hand side
in (L438) is equal to (£Z435]) (resp. minus (LZ45])) computed at Uy = -+ =

Up+1 = U . This concludes the proof.

We shall need the following properties of the multilinear forms of the
class £}

Lemma 4.4.2 (i) Let L be in ﬁ;’;p. Then for any m > 0 such that p >
m+ % and any s > p+p+m+ %, L extends as a continuous (p + 2)-linear
form on H® X -+ x H* Xx H7™ x H® x --- x H®,

(ii) Assume that p = 20 is even, and let L be in Z;::p. If U is an even
function of x, satisfying SU = —U, then for any ng,...,ng in N*,

(4.4.9) LAY U,.. I UL, U, 1L, U) =0

where ILE are defined in ([1-3.8)-(7-3-9).

(iii) Assume that the parameter k is outside the subset of zero measure
of Proposition [T11, so that estimate (Z1.3) holds, namely using notation
(4-323), for some ¢ >0 and Ny € N,

|De(ng, .., npt1)| > emax(ng, ..., npp1) "0
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for any (no, ..., npr1) in (N)PT2 if p is odd or p is even and £ # L, and for
any (no, ..., npt1) in (N*)PT2 such that
{n07 e 7n£} 7& {n5+17 e 7np+1}

when p is even and £ = g. Then, for any L in ﬁ;’;p, there is L in E;’,;HNO
such that

bS]
F
=

(4.4.10) L(U,...,m(D)KU,...,U) =iL(U,...,U)
0

<.
Il

(where m,(D)K acts on the argument corresponding to U; in the above sum,).

(iv) Let L be a multilinear form in E;’;_L and let M be an operator in
M g1 4lr, N1 @ M2(C) (see Definition[ZZ.3) satisfying conditions (Z1.15)
and (FLI8) (resp. and (31.13)). Then

(4.4.11) U= LU,...,UMU;HU,U,...,U)

may be written as the sum Zé\,{;g_q_l Ly(U,...,U) where Ly are suitable

.7 . AS,—p+m ~S,—p+m
multzl’mear forms Ly in Ep+q+q,7¢ (resp. [’p-i—q—I—q’,:l:)’ plus a term that, at
any time t, s

(4.4.12) O(|IU ()" 2G%0 vy (U 1) + Ger N (U, )Gicr y(UB)[U(E, )24

if s> 0> p, and if G% 1 (U, ) is bounded.

Proof: (i) Fix an index £y € {0,...,p + 1} and assume that Uy is in He,
0=0,...,p+1, £ # Ly, and Uy, € H*"™. The left hand side of (4T
evaluated at ng > nq > -+ > npyq is bounded by

p+1
2s—ptm_pt —s 4
Cng g™ [ ngoen, O T 10 )10l o=
0 (£6o
0<l<p+1
where (cf,, )n, is a sequence in ¢? and, by [@Z2), ng ~ n;. Summing over all

the indices no, ..., n,41 satisfying (£4.2]) one gets the conclusion.
(ii) Write condition (AZ3)) for L (with the minus sign because L is in

f;’;p ) with the vectors valued functions

a(ny) “ = .
UJ = [Tnj)]@ng = u(nj)sonjeJr + u(nj)gonje, y J= 0’ .., p+ 1,
having used the notation introduced in (£3.9]). Then, since Sey = —e_ and
Se_ = —ey, we get

L((pnoﬁ(no)e_ + wnoﬁ(no)@_, s 7@np+1ﬁ(np+1)e— + (Pnp+1a(np+1)e+)

= —(—1)p+2L(cpn0ﬁ(n0)e+—i—(pnoﬁ(no)e_, R Qpnp+1a(np+1)e++<pnp+1ﬁ(np+1)e—)'
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Using the C-linearity of L and identifying the coefficients of

@(no) - - a(ne)@(nesr) -« - (npsr)

on each side, we get

(4.4.13)  L(Pnoe—s--»Pn€— Py 1€y s Prpii€4)
= —(=1)P"2L(pngeis- -, Pyl Origy 1€y v s Prpy € )
If p is even, £ = p_J2r2 and ng = ng41,...,N0 = Npt1, we get by symmetry
L(gpnoe+, sy Prglt Pngl—s - 'a@nze*) =0

which, recalling ([A3.9]), implies (£4.9).

(iii) Decompose

p+1
Lw,...,uy= > (¥3) > raiu.. oy, U... 0 U).

141 Ng+1 0" Np+1
/=1 n0;--Mp+1

According to (ii), if p is even, and ¢ = p/2, we may assume that in the corre-

sponding sum {nog, ..., ne} # {nes1,...,np41}. In order to solve (@AM we
define L as the symmetric (p+ 2)-linear form associated to the homogeneous

map

p+1
. 2 _
(4.4.14) U—i> (45) > Di(no,....nps1)”"
/=1 1n0;--sMp+1
x LALLU,... .1} UL, U, T, U)

with Dy(no, ..., nps1) given by [@322). By (ZL3)) we have an estimate

~1
IDe(ng, ..., np11)| " < Cmax(ng, ..., np1)N°
for all indices no, ..., npt1, except those for which p is even, ¢ = p/2 and
{no,...,ne} = {ng41,...,npy1}, which are anyway excluded in the sum

(414 by the property ([@49]). This shows that L satisfies (4.1 with p,
replaced by (p — N, it + Np). Moreover L also satisfies (E4.2). To prove
that L is in £,7” N0 it remains to show that (ZZ4) holds for L with the +
sign. Write the ng, ..., npy1 sum in (£4.I4) expressing H:J,U = U(nj)en,et,

IL, U = a(n;)ep,e-. We get

(4.4.15) > Dy(no,... npr1) " i(ng) - @lng)i(ng) - - @(nper)

10,0+ Mp+1

X L(@noe-iﬂ tee 7@071564-7 Qong+1e—7 e 7Q0np+1e—)-
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The corresponding expression for L(SU, ..., SU) is (changing the indices in
the summation)

(_1)p+2 Z Dﬁ(nf-f—la"'aanrl,nO?"'anf)il
M0, Mp+1

X (ngy1) - @(npy1)i(no) - - - i(ng)

X L(Prp €4y Pripp1 €45 PrgCes - -+ > Py ).

If we use (£4.13)) and the fact that

Dy(no, ..., ne, M1y s Npy1) = —De(Npst, oo, Npt1, 10, - - -, Tp),

we see that we recover expression (LZI5) i.e. that (£4.4) holds. Finally,
the fact that (EZI0) holds trus follows from the definition of L and D,.

(iv) By the first remark after Definition and ([2252) for k = 0,
any operator M (U;t) in the class SM¥ g [r, N] @ M2(C), 0 < g < N, is
bounded from H* to H*~™ for any s large enough, and

IMU; U s-m < CGRr o (UDNUE ) s + CGr n (U, 8)Gier 1 (U 1) -

Notice that the last term comes only from the non-homogeneous part of
M(U;t). Combining this estimate with (i) of the lemma, we get that, at
any time ¢,

LU, ... MU;t)U, .., U)(t )| < CIU (IR IM U U )| o

< CGR (U DIV () + O (U, 0G5 (U DU I
so that all the terms with p + ¢ > N contribute to (£ZI2). Thus, it is
sufficient to check that if M is in M7* ® M2(C), ¢ < § < N — p, then

(Uoy - -+ Uptg1) = Lo, Upy M(Upits - s Upi ) Upgii1)

defines after symmetrization a multilinear form L satisfying the estimates of
Definition AT for elements of £, » 1™, The multilinear form L is denoted
by Ly, ¢ =G—q,0< ¢ <N —p—gq—1, in the statement of (iv). By

(2250)- (ZZ51) and since L satisfies (£41]), we get

|L(WpUo, - - . sy Upy ML, Upits - Iy Upr ) o Upgn)|

) S Mp+q

< CZ max(ng, ..., Np, n')%~P maxs(no, . . . N, /)P
n/

p+g+1
X (0 +nppr+ o npege)™ T I, U2
0
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. . - G+1 .
where the sum is restricted to the indices n’ = Zﬁfﬁ ey for some choice

of the signs ¢, € {—1,1}. The right hand side of the previous formula is
bounded by

p+q+1
Cmax(ng, ..., Mprg+1)> 7T maxz(ng, .. ., nprge1)’ H |11, Uel| 1.2
0

and therefore L satisfies (4T with p and p replaced by p — m and p +
g. Since L satisfies (£42]) and M satisfies ([Z2Z51]) we derive as well that
(A1) satisfies the corresponding condition (£4.2]). We have still to check
that condition ([@Z3]) (or (@Z44)) holds with the F (resp. £) sign if M
satisfies (B.LI5]) and (BII8) (resp. (BLI5) and (BLI9)). Let us treat the
first case, i.e. show that if M denotes some multilinear component of M,
then

(4.4.16)

L(SU,...,SU,M(SU,...,SU)SU) = =L(U,...,U,M(U,...,U)U)

for any U such that SU = —U. Notice first that by BILI5) and SU = —U,

MU,...,U\U =SMU,...,U)SU = -S(M(U,...,U)U),

so that M (U,...,U)U satisfies the same property as U. Moreover since
M satisfies the reversibility condition (BIIS]), lemma implies that
the homogeneous component M satisfies the reversibility condition (3120,
namely M(SU,...,SU)SU = —S(M(U,...,U)U). In conclusion ([@ZI6)
follows by [@Z3) applied with Uy = --- = U, = U, U,y1 = M(U,...,U)U.
O

Finally, let us state a Sobolev energy inequality that will be the starting
point of the normal forms reduction giving Theorem [3.2.11

Lemma 4.4.3 (First energy inequality) Let p € N, p > N. There are
indices s > so > 0 > K > p as in (Z11) and o family (Lp)i<p<n—1 of
multilinear forms belonging to E;:ip for any s > sg, such that the following
holds:

Let U be a solution of system (F2.2) defined for all times |—T,T| satisfy-
ing the properties of Theorem [3.21], in particular, U(t) is an even function
of x satisfying SU(t) = —U(t), for any t. Let W = OpPWV(Q(U;t,-))U
defined in Proposition [3.3.2, V = ®;W given by Proposition [{.1.1], V =
Qp@)(=1)V introduced in Proposition [J.2.4] and finally

V! = exp(Op"WV(B(U;t, )V

given by Proposition [{.3.1. Then for any s > so,

d sYr1 2 = N+2
(4.4.17) %/Tl DIV (¢, 2)) de = ; Ly(U,...,U) + O(| U, )]|NF2)
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as long as ||U(t,-)| s stays small enough. Moreover
(4.4.18) OV s < WUl < GV
for some Cs > 0.

Remark: Since SU(t) = —U(t) and each of the operators OpBWV(Q),
o, Qpw)(=1), exp(OpBW(B(U;t,€))), satisfies the anti-reality condition
(BII5) (see Proposition B.3.2] Lemmas 23l and .22, Proposition L3.T]),

then the function

7' = exp(Op™Y (B(U:1.£))) 0 Qi (1) 0 8 0 Op"™ (Q(Us 1, ))U

satisfies SV1(t) = —V1(t) as well, by the second remark after Definition
B.1.4

Proof: Notice first that by Proposition and recalling (2.1.2)-(2.1.3)),
we have the bound

(4.4.19) G (U 1) = U, )llx,s < CllUE ) s -
According to system (£3.4]), the left hand side of (4417 is equal to

(4.4.20)
2Re¢/w (IDV1) [0pPY (1 + (U3 ) (§)K + H (U3 ,€)) DIV da

+ 2Rez’/1 (DFVY(IDI* R (U: )77 da
T
+ 2Rez’/1 (DFVY)(|DI* Re(U: )U) di
T

In the first integral above, the contribution of OpBW((l + ¢(U; t))m,i(g)lC)
is zero, as this operator is self-adjoint on L?. In the same way, since H, (},
1 < g < N —1is real valued in the decomposition ([Z33) of H'(U;t,¢),
the corresponding contribution to (£4.20]) vanishes. The same is true for
Re H(U;t,€), so that the first integral in (EZ20) is actually equal to
the contribution coming from i(Im H%)(U;t,£). Since by Proposition E3.1]
Im H}; is in F%7K,N[r] ® M3(C) we get by Z2Z37) (with £ =0, s =0 and
m = 0) and (@EZI9) that the first term in (EZ20) is, for s large enough and
K > K, bounded by

O(QE,N(Ua t)”vl(ta )”2 s) = O(|’U(t7 )Hgs Hvl(t7 )H2 s) .
—pt+3
Consider the last integral in ([LZ20]). Since Ro(U;t) isin RK?;QN [r] ® M3y(C),
we get, by (ZZ30) with k = 0, and (ZZ4I9), a bound in

O(IU @ AIFF IV )
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for s, o satisfying (Z1.1]). In the second integral in (£.4.20)), we may decom-
pose the smoothing operator

ZRlp )—i—RlN(Ut)

with Ry in Rpp : and Ry n(Ust) in RKKN[ r]. By 2230) with £ = 0,
and (£4.19)), the contribution coming from the last term is bounded by

O(IIVH(t, ). Gie n (U, 1) = O(IVE (&, ) 131U (2, ) 1)

On the other hand, as we have remarked after the statement of lemma F.4.3]
that V1 = —SV!, we may write the contribution of the term Ry, to the
second integral in (£4.20) as [AIZL5). By lemma BI.5 since since R;(U,t)
satisfies the reversibility property ([B.II8]) the homogeneous smoothing op-
erators Ry, satisfy (B1.20). We have seen in the example following Defini-
tion [L4.1] that we get an expression f/p(f/l, U,...,U, V) with I~/p in f;::p
Consequently, we have written the left hand side of (£Z.I7) as

N-1
(4.4.21) L,(VYu,...,U, v
=1

bS]

+ OV U e+ 1T @IV e ) -

To deduce (AZIT) from (]E:Z[I) it is sufficient to show that (LZ.I8]) holds

and that the above terms L (V U,...,U, V') may be expressed as in the
right hand side of ([£4.1I7]). Recall that by (43.3)), Proposition [£.2.4] Propo-
sition .11}, Proposition B.3.2]

(4.4.22) V' =exp(Op”V(B(U;t,€))2pw)(—1)250p" Y (QU; L, )U -

Let us show that V! = U+ M (U;t)U for some M in YMp g1l N] @ Ma(C)

satisfying (3LI5) and EILIJ), and that [V ~ Uz, for all large
enough s, when [|U(t,)|| ;7. is small enough.

By Proposition B32] and the Definition B3] of 5?(7/)71[7“, N], there is
a matrix of symbols Q1(U;t,-) in EFKP 1l N] ® M2 (C) satisfying (315
and (B.L.8]) such that

(4.4.23) W =U + 0p®WV(Q,(U;t, )U .

By the third remark following Definition ZZZH, OpBW(Q1(U;t,-)) is an
clement of S MY, [r, N] ® My(C) and it satisfies moreover [BII5) and
(3L139). By Proposition ZZ4] a bound of the form ||OpBW (Q1(U;t, ))U|| s =
O(HUH%S) holds if s is large enough, so that [|[W| 7. ~ ||U|| s, as long as
|U|| zs stays small enough.
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Formula (Z5.5])) allows to write V = ;W as

N-1
(4.4.24) V=W+> M(U,...,U)W+ MyU;t) W
p=1

with M, in //\/lvp ® M2(C) and My in My , y[r] ® M2(C). Moreover, it
follows from the definition (Z5.50) of ®7; and (Z5.14)) that [|V|| o ~ [|[W |-
Inserting in (£4.24)) the expression of W obtained in (£4.23]), and using the
last remark after Definition [2.2.5] we deduce that V' may be written as

N-1
(4.425) V=U+MU;)U=U+ > MyU,...,U)U + My(Us;t)
p=1

for some other M, in //\/lvp ® M2(C) and My in M , y[r] ®@ M2(C), ie. for
some operator M (U;t) in the space XM ,[r, N] @ M(C). Let us check
that M(U;t) satisfies (B.I15]) and (BII9). Recalling that V = ®y(t;-)*W
and that ®y(t;-)* satisfies (L27), we get that M, and My in (£Z24) sat-
isfy (3119) and (B.II5). Since also OpBW(Q1(U;t,-)) in [@423) satisfies
(BII9) and BII5) we get that also the operators M), and My in ([Z25])

satisfy (B.119) and (F.II5).
Consider next V' = Qp ) (=1)V. By (£2Z4), we have

IVl ~ IVl ~ 10 s

if [|U||zs is small enough. Moreover, Qpn(—1)V may be expressed as in
(E221)), [EZ22), so that, combining with ([@LZ4.25]), we get a similar expres-
sion for V in terms of U, with a new M, belonging to Mp ® M2 (C), My
in My g n[r] @ Ma(C). Since the Fy in Proposition L2 satisfy (B.1.4)
and (BLY), OpPW(iF(U)) satisfies (3LI5) and BIIY), and Qpg)(—1)
does so as well. By composition, we deduce that the M,’s satisfy also
BLI5) and BILIY). Finally, we consider V! given by the expression

V1 = exp(OpBW(B(U;t,€)))V. By [@38), (EZXIS) holds. Moreover ([E3H)

and the above expression of V' in terms of U allows us to obtain an expression
for V! in terms of U similar to @Z2H). To conclude the proof of [EZIT),
we plug these expressions inside (LZ21]). By (iv) of lemma .42 we express
(#Z21) in terms of new multilinear forms L,(U,...,U) belonging to f;::p

and of remainders satisfying O(||U (¢; -)||¥ 2

s )- This concludes the proof. O

Proof of Theorem [3Z1: The proof is based on a bootstrap argument. Let
k be fixed in ]0, +00[—N where the set N is provided by Proposition [.T.11
Take N an arbitrary positive integer. We shall prove that there are constants
so > K > N and for any s > sq, there are constants

>0, ¢>0, 0<A)y<A < ---<Ag,
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such that if a solution U(t) of system (B.2.2)) exists on some time interval
I =] —T,T[ and satisfies, together with the properties of Theorem B2.1] the
bounds

(4.4.26) sup [0fU(t; )] ,.o3x < Are, k=0,... K,
=TT n

then, for € €]0, ¢ and T < ce~V, the solution U(t) actually satisfies on the
same time interval the improved bounds

(4.4.27) sup ||0FU(t;
}_TvT[

<

A—, k=0,..., K.
2

M e ge

This directly implies, taking into account the classical results of local ex-
istence (see Schweizer [60]) that the solution U may be extended up to an
interval of length ce ™V, and that (32.7)) holds.

To prove that (£4.26]) implies ([LZ4.27), let us show first that we may find

recursively multilinear forms
= 78,—p+(No+m)(p—1)+N
(4.4.28) Ly eﬁ”* 0 o lsps N1

f0r5>>K>>,0>>N,suchthat, forgq=0,...,N—1

(4.4.29) /IIDI )P dx + Z U )]
N-1 -
= > Lz()q)(U(t;')""’U(t3'))+0(HU(t;-)|gj2)_
p=q+1

The number m > 3/2 in (LZA2]) is the order of the operator M(U;t) in
M 1[r, N] @ M2(C) defined in (B.26). Notice that in (Z.Z28)) at each
step of the iteration there is a loss of derivatives proportional to Ny due to
the small divisors. It will be compensated by taking the regularizing index
p large enough with respect to the number of steps N and Nj.

Notice that if ¢ = 0, then (£4.29)) follows from (4417 with L(O) L,.

Then we proceed by induction. Assume that (£4:29]) holds at rank g — 1 for

some ¢ > 1, and define L to be the multilinear form of E p+(N0+m)(q 1)+No

given by (iii) of lemma [Z.4.2] applied to L = L(q b, Usmg B26) we have

d - ity
(4.4.30) %Lq(U(t, Sy Ults0) = zjz:%Lq(U, o U,m.(D)KU,...,U)
J
q+1
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for some operator M(U;t) in XM, [r, N] ® M3(C) for some m > 3/2,
satisfying (B.L18]). Using (iv) of lemma and (L4.19), we write the last
sum in (AZ30) as a contribution to the right hand side of ([£4.29]) at rank
q, so that adding (£Z29]) at rank ¢ — 1 and (LZ430), and using (LZI0]), we

get (A4.29) at rank q.
We integrate next (£Z4.29) at rank ¢ = N — 1 from 0 to ¢t. We get (in

the case t > 0)

N-1
VA + D Lo(U (), U )
p=1
- N-L ¢
< IV + X LU0, V() +C [ Ul dr
p=1

as long as (4.4.26]) holds. Taking into account (£4.18]) and (i) of lemma [£.4.2]
that applies to the multilinear forms Ep, 1<p<N-1,in @Z2), if p is
large enough relatively to No, N (i.e. p > (Nog+m)N + 1), we get, for some
new constant C,

t
(4.4.31) |U(t) I, < CIU0; ). +CIU ) +C/ U (7315272 dr
0

as long as ([@4.26]) holds. Taking Ay large enough relatively to C, we may
assume that

A2
SN2 0.2
(4.4.32) 1U(0: )77 < 0¢
Moreover, by (L4.26]), the integrand in the last term in the right hand side
of (@Z3T)) is bounded at any time 7 by (Age)VN 2. If € < ¢ is small enough,

and
1

E ’
it follows by (E431]), (£4.32]) and ([LZ426) that estimate (£427)) with k£ = 0
holds, for any ¢ €] — T,T[. Finally, by ([@4I9), we also deduce that the

derivatives OFU (; -) satisfy (EZ2T), if € is small enough, s > K, and taking
A1 large enough relatively to A, k=0,..., K — 1. O

T<ce™ with cCAY <
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Chapter 5

The Dirichlet-Neumann
paradifferential problem

In order to be able to derive system (B.2.2)) from the water waves equations
(CT4) in Chapter [6, we shall need a paradifferential a representation of
the Dirichlet-Neumann operator G(n). This will be obtained in section
following the method of Alazard-Métivier [7], Alazard-Burg-Zuily [2, 3] (see
also Alazard-Delort [6]). A difference with the above references is that we
need to obtain such a representation in terms of the classes of paradifferential
operators that have been introduced in Chapter 2l To do so, we shall study
in the present chapter the Dirichlet-Neumann boundary value problem in a
strip, introducing paradifferential versions of the Poisson operators of Boutet
de Monvel [I8] 19} 20].

5.1 Paradifferential and para-Poisson operators
We shall work on the strip
B:{(z,w)eRx’]I‘l;—lgng}.

The functions we shall consider will depend on (z,x) in B and on the time
parameter ¢ staying in some interval [—T,T]. We shall use the notations of
Chapter Rl for paradifferential and smoothing operators, except that here our
functions and symbols will also depend on the parameter z € [—1,0]. The
spaces measuring the smoothness of the functions at hand are the following.

Definition 5.1.1 (Space of functions on a strip) For j in N and s in
R, we define the space

F = {® e L>®([-1,0], H*(T*;C)) such that

(5.1.1) § -
0I'® € L°([-1,0], H* /(T C)), Vi = 1,....,5}

143
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together with the natural norm

(5.1.2) ||‘I)HFS = ZH@J ‘I)HLoo( [—1,0],F5=3") -
3’=0

We set F3Y = e Nsj 5

We extend first the Definitions ZT.T] and ZT.3 to symbols that de-
pend now also on the variable z. We shall use in this section only classes
of autonomous symbols, and not versions in a strip of the class of non-
homogeneous symbols of Definition In particular, the time dependence
of our (non-homogeneous) symbols will be only through their dependence
in the arguments ®, W, U,... even if we do not repeat this condition in all
statements. 5

We denote by CK (I, F7) = N& Ck(1, Ff_ik). We generalize notations
(212, (Z13) to functions depending on z setting

k
1, o = ZH@ to)l o4

J

(5.1.3) Grp(,1) = |||‘1>( W oj
0 P) = H H(I)p/”F]F’
p'=1
where in the last formula @ stands for a family ¢ = (¢4, ..., ®,) of functions
of (z,2) in [~1,0] x T!. When p = 0, we set QKO = 1 by convention.

Definition 5.1.2 (Symbols in a strip) (i) Let m be in R, p in N*. We
denote by T''[B] the space of symmetric p-linear maps from (FF)P to the
space of functions that are O in (z,x,€&) € [-1,0] x T x R

(5.1.4) D= (Py,...,0,) — ((z,x,§) — a(P; (z,x,§)))

satisfying the following: There is p > 0 and for any j,«a, B in N, there is
C >0 and for any @ in (F)P, any n = (ny,...,np) in (N*)P

(5.1.5) 1000807 a(IL, ; 2,2,€)| < Cln|* T ()P G0 (o).
Moreover, we assume that if (ng,...,np) is in N x (N*)? and if
(5.1.6) Ty a(Ily, @1, .., 1L, @p;-) # 0,

then there is a choice of signs ¢; € {—1,1} such that 3§ €jn; = 0.

When p = 0, we denote by fgL[B] the space of constant coefficient symbols
(2,€) = a(z,€), that satisfy inequality (21.0) for a = 0, with in the right
hand side the |n| factor replaced by one.
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(i) Let r > 0, K in N. We denote by '}, ; [B,7] the space of maps
(®;2,2,8) — a(P;t, z,x,€) defined for

A d
e BE(1,r,5) ¥ {U e K (1, F); Sup [ (7, )05 < 7}
c

for some large enough o, x € T, £ € R, z € [~1,0], with complex values,
such that for any 0 < k < K, any 0 < 5/ < j, any o > og, there are C > 0,
r(0) €]0,r[, and for any ® in BE (I,7(0),j)NCE(I, F?), any o, B € N with
a<o—og, anytel,

(5.17)  |0F0I 0200 a(®;2,2,6)| < CLO™ PG (8,067 (®,1)

(where, in the case p = 0, the right hand side should be read as C(£)™ 7).
(iii) We denote by XT'g  ; [B,r, N| the space of functions

(®;2,2,8) = a(®; 2,3,8)
that may be written as

N-1
(5.1.8) a(®;z,2,8) = Z ag(®,...,0;2,2,8) + an(P; 2,2, §)
a=p e

for some a4 in f;”[B], an in 'R o n[B, 7]

Remarks: e We shall have to consider occasionally symbols of I'% j7p[B, 7]
depending on a couple of functions (®,®’) with linear dependence on @',
instead of a single function ® (for example in the Proof of Proposition [6.1.4]).
In that case, if we replace in the left hand side of (BL7) a(®;z,z,£) by
a(®,D'; 2z, x,€), the right hand side of this inequality should read

(5.1.9) C©)" P [Gre” (@, Hg7] (@',1)
+ G707 (@, 0G5 (@, 1G] (@.1)] .

In the same way, we shall consider symbols of EI’%OJ@[B, r, N|, depending
on ®,®’, linear in ®’, given by

N—-1
Z aq(q)7 s 7q)7 q)lv Z,I’,f) + a’N((ba (blv z,x,f)
q=p

q—1

with aq in f’gL[B] and ay in TR ; v[B,7], linear in @'.
e We shall also use the notation a(®,;z,z,€) for symbols depending
on ® and linearly on some function (¢, z), independent of z. In this case

(5T19) has to be replaced by a similar estimate, but with QZ’{/(CI)’ ,t) and
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g”” (®’,t) replaced respectively by Gr1(¥,t) and Gr9 (1, t), and a similar
modlﬁcatlon of the notation for the elements of I’;” [B]

e If a is a symbol in XT'g;,[B,r, N], we may define the associated
paradifferential operator OpBW (a(®;-)) as in (Z2.25)), z playing the role of
a parameter. According to Proposition 2224 if ® is in BX (1,7, ) for some o
such that o —j is large enough (independently of s), then the paradifferential
operator OpBW (a(®;)) is bounded from F? to F7™™ for any s.

e In Definition 512} the functions ®; (resp. ®) belong to FS (resp. are
functions of time with values in a space Fjao), so are C valued. We shall use
also the same notation for the above spaces of symbols, when we consider
function ®;, ® that are C? valued instead of C valued.

Let us define as well smoothing operators acting on the spaces F}.

Definition 5.1.3 (Smoothing operator in a strip) Let K in N, p, N in
N, p<N,p=>0,jinN.

(i) One defines R, ?[B] as the space of (p+1)-linear maps from the space
(FX)PHL to FX, symmetric in (®1,...,9,), of the form

(q)l, ey (I>p+1) — R(‘I)l, ey (I)p)q)p-l—l s
satisfying condition (ZZ.29) and such that there is some p > 0, and for any
Jj €N, some C > 0 such that, for any & = (®1,...,®,) in (FL)P, any Ppi1
in FS, any n = (n1,...,np) in (N*)P, any ng,ny11 in N*,
(5.1.10) S[UP ]HaanOR(Hn gzs)1_[np+1(1)p+1HHO
ze|[—1,0

maxa(ni, . . np+1)

max(ni,...,npt1)""

<C

go p+1(¢’ <I)p+1)-

(ii) One defines for N in N, r > 0, R;(/,)O,j,N[B’T] as the space of maps
(®,¥) — R(®)W, that are defined on BE(I,r, j) x CK(I, FY) for some
o > 0, that are linear in ¥ and such that, for any s with s > o, there are
C > 0 and r(s) €]0,7], and for any ® in BE(I,r(s),7) N CE(I, F?), any ¥
in CK(I, F?), any 0 < k < K, any 0 < j' < j, one has the estimate

(5.1.11) ||oFR(®)W(t, M orpgn <C S (G (@, 0G5 (W)
j/ k/+k.ll k.

+ gk’ N — 1((1) t)g (\Il t)gk// 1( )) .

(iii) One denotes by SR, ; [B,r, N| the space of maps (®, ) — R(®)V¥
that may be written as

(5.1.12) R(®)V = > Ry(®,...,0)V + Ry(P)¥

with Ry in 7@;’)[8] and Ry in R;(?OJ’N[B, r].
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Remarks: o If a is a symbol in the class XI'g ; [B,7, N] and b in
EF%:O, i [B,r, N], then the composition proposition of symbolic calculus 24Tl
applies and formula (2.42]) holds with a smoothing operator in the class
ER}? OJT Z;_f;, [B,r, N| of Definition 5.1.31 i

e Let R be an homogeneous smoothing operator of R, # as defined in (i)
of Definition 22231 We claim that R defines also a smoothing operator of
R,?[B]. Indeed, since R is multilinear, given functions ®;, j =1,...,p+1
in F¥, we may compute

HR(Pr,..., 0p)0p 1= Y. Cjjp ROV, 00®,)00 0y
JitFipr1=J

for suitable binomial coefficients Cj, . ;, ;. Using (2228]) and the smooth-
ing estimates ||IL,,,0¢®|| ;—; < n;jeHCDgHFJo, ¢=1,...,p+1, one deduces
(EII0). .

e If R is an homogeneous smoothing operator of R, * then R(®, ..., ®)¥
satisfies (L.IIT]) with p — «, for any a > 1/2, instead of p.

e As in the case of symbols, we shall use the same notation for classes of
smoothing operators when we allow the arguments ®1,...,®, (resp. ®) in
(i) (resp. (ii)) of the above definition to be C? valued instead of C valued.

e Occasionally, we shall have to consider elements of 7%; P[B] acting on
functions (®1,...,Pp11) of (FX)PTL, where at least one of the arguments is
a function of F° that does not depend on z, i.e. it belongs to H>®(T*; C) (for
example in the proof of Proposition [6.1.4]). Of course, such a function is also
in F, so that the estimates (5.1.10) remain meaningful. In the same way,
we shall have to consider smoothing operators of ERI_{” 0, j7p[l”>’,7“, N] where
the argument ¥ of (B.IL12)) is a function that does not depend on z, so that
(BILII) holds with g,‘:;{l/(\lf,t) = G 1(¥,t). For simplicity, even in such
cases, we shall denote these classes of operators using the same notations.

We shall need as well para-Poisson operators, sending functions defined
on one of the boundaries of the strip B to functions defined on the whole B.
We first define the Poisson symbols.

Definition 5.1.4 (Poisson symbols) Let m be in R, p < N,Ig in N.
(i) (Homogeneous Poisson symbols) One denotes by Py (resp.
75;”’_) the space of symmetric p-linear maps defined on H>(T', C?)P

U= (U,...,U,) — ((z,ﬂf,@ - a(u%x’f))

such that for any £,7 in N, 2'0Ja(U; z,x,€) (resp. (1 + 2)0la(U;z,2,¢))
belongs to the class of symbols f;”*jf[ of Definition [2.1.1, and satisfies
bounds (Z1.3) with m replaced by m + j — £, and some p independent of ¢,
uniformly in z € [—1,0].
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In the same way, 751’,”’int denotes the space of symmetric p-linear maps
U= U,...,U0,) — ((z, 2z, &) — a(u;z,z',x,f))

with values in functions of z,2' € [~1,0], x € T, £ € R that may be written
as

(5.1.13) ar(Us 2,2 2,61, _so+a_U; 2,2 2,6)1,_Licq

where for any £, 7,5 in N, (z — z')fagagfai(u; z,72',-) belongs to f’g”rjﬂ,*z
and satisfies (Z1.3) with m replaced by m+j+j —¢ and some p independent
of £, uniformly in z, 2.

(7i) (Non-homogeneous Poisson symbols) Let r > 0. One denotes
by P;?:&tp[r] (resp. Pﬁb”&p [r]) the space of functions

(U7 Z7x7§) — G(U7 Z,I’,f)

such that for any j,¢ in N, the symbol 2°0a(U; z,-) (resp. (142)°0Ja(U; 2,-))
belongs to F%HP_K[T, aut] (see Definition [21.3), and satisfies (Z110) with
m replaced by m+j—{, K' =0, and some o, 0( independent of £, uniformly
in z € [-1,0]. _

One defines P?’én; [r] as the space of functions

(5114) G(U, 2y Zla €T, 5) - Z a:l:(U; Zs zla €T, g)lzl:(z—z’)>07
+7_

where for any integers ¢, 4, 5, (z—z')zagagjai(U; t,z,7',-) belongs to the class
F%:Sfp+]/_z[r, aut] and satisfies (Z110) with m replaced by m + j + 7' — £,
K’ =0, and some o independent of £, uniformly in z, 2.

(7ii) (Poisson symbols) One defines the Poisson symbols EP}?”&I)[T, N]
(resp. 277;?7’5?;[7“, N]) as the sum of homogeneous Poisson symbols aq in
P}f’i, q=mp,...,N—1, evaluated at (U,...,U), plus a non-homogeneous
Poisson symbol an of P?’S_LN [r],

N—
(5.1.15) a= Z ag(U,...,Usz,2",2,8) + an(U; 2,2, 2,€) .

—

<
hS]

We denote 273;(000’; [r, N] the intersection N, EP}?’SEP[T, NJ.

Remarks: e If a is a Poisson symbol in 755’“[, resp. EP}?’SE ol N
then 0,a is in 75;,”+1’i, resp. 'EPEI)_;i[T, N]. Similarly if a is a Poisson
symbol in P resp. 277}?7’6?; [r,N], then 8.a and 0..a are in P)rHhint,

resp. EP}?E;M [r, NT.
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e If @ is a Poisson symbol in 27'3}?7’0% p[r, N], resp. 2732’5?; [r, N], then Oca
is in EP}?E;i[r, N], resp. 277}?6;1“ [r,N] .

e If a is a Poisson symbol in 7517,”’+, resp. 7517,”’_, then za is in 7551_1’+,
resp. (1+ z)a is in 75;,”_1’_. Similarly if a is a Poisson symbol in 75;”’1“,
resp. EP?:&?; [r, N], then (z — 2’)a is in 75;”71’1“‘3, resp. EP}?,B;M [r, N].

o Let 6 €]0,1[. Ifaisin EP?%H; [r, N1, then |z—2'|?a is in EP?B%M [r, N].
Indeed, for any z, 2’ in [—1,0], for any «, 8 € N,

|2 — 1P 0800 ax| = |(z — 2)020; ax|?|02 0 ax |~

satisfies the estimates of a symbol in EF?I&[T, N, aut], uniformly in z, 2’.
e The following Poisson symbols

_cosh((z +1)¢)

0.+ _sinh(28) <4 -
(5116) C(Z,g) = W S PO 5 S(Z,f) = m S PO 5
and
KO(Z, Z/a 5) = (COSh 5) (C(Z, 5)8(2/, 5)1z—z’<0 + S(Za 5)6(2/, g)lz—z’>0>
c ﬁal,int

will arise in the next section.
e We associate to a Poisson symbol a(U; z, z,£) in EP;?’&EP[T, N] the cor-

responding paradifferential operator sending functions defined on T to func-
tions of (z,x) € B by applying ([22.25) for each z. We call Op®WV(a(U; z,-))
the para-Poisson operator associated to a. On the other hand, to a Poisson

symbol a in EP}?%H; [r, N] we associate the para-Poisson operator

0
Vo / 0P (a(Us 2, #, )V (<, ) d2'
—1

which sends a function V' defined on the strip B into another function of B.

According to the Definition [5.1.4] of Poisson symbols, the boundedness
properties of a paradifferential operator given in Proposition 2.2.4]l imply the
following lemma.

Lemma 5.1.5 (Action of a para-Poisson operator from the bound-
ary to the interior) Let a be a Poisson symbol in EP;?HP[T, N] (resp.

EP?’O_p[r, N]). If U is in Bg([,r) for some large enough og, then, for any
sinR, jin N, any V belonging to H*(T*,C), the function

(2,8, 2) = 20p"Y (a(U; 2, )V

(resp. (z,t,x) — (14+2)dI0pPV (a(U; 2,-))V ) is in CK (I, H>=™+=3(T!, C))
uniformly in z € [—1,0], and for any 0 < k < K

HzeagOpBW(afa(U; 2y '))VHLOO([O,ILHSfmJJ*j) < OVl g
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uniformly in t € I, the constant C depending only on ||U(t, )|Kk0o.. In
particular |OpBW(9Fa(U; 2, ) )V || ps—m < C||V | z7s-
J

To study the action of para-Poisson operators associated to symbols in
the space EP?’&H; [r, N], we introduce another scale of spaces.
Definition 5.1.6 (Space of functions on a strip) We denote by E; the
subspace of F} (introduced in Definition [51.1) given by
(5.1.17) Ei={® e F}; 80 e L¥([-1,0], B*7*+3(TY); /' =0,...,j}

together with the natural norm

j
(5.1.18) I12]l5: = [@]rs + > _ll102 2|

PR ST
j/:0 L2([_170}7Hs / +2)

_3
We denote by CE (I, E2) = N Ck(1, EJS 2k) and by |||<I>|||}E(,s7j the norm de-
3 3

fined by the first line in (51.3) with F;Tiﬁk replaced by E;iak. We set
B2 Y., B

1
Remark: We have the continuous inclusions E]s C FJS C E]s 2,

These spaces are characterized in terms of Littlewood-Paley decomposi-
tion, that we now recall. Consider a Littlewood-Paley partition of unity,

L=+ > 275,

>1

where the C* function ¢, resp. v, is supported for C~! < |¢| < C for some
constant C' > 2, resp. for || < ¢ for some ¢ > 0, 1 and ¢ being even in &.
We denote

(5.1.19) Ao =9(D), Aj=p27'D), £>1.
We have the following characterization of the spaces E7.

Lemma 5.1.7 (Littlewood-Paley characterization of E?) A function
® is in E? if and only if, for any 0 < j' < j, z € [-1,0],

(5.1.20) 18007 (2, )| p2emy < co(2)27 )
- ' (sl
HAﬁag q)HLQ([*l,OLLQ(’]Tl)) S C€2 Z( +2 ])

for a sequence (cp)e in £2(N,R) and a sequence (ci(2))¢ in £2(N,R) such that

2
1@Fs = sup D leo(2)”,  (1@Es = |1R[IFs + D -
J ZE[—LO] ¢ J 7 >0
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We also have
(5.1.21) | 8607 ®(z, |2 < ()27 )

for a sequence (¢)(z))¢ such that ZZHCQ(Z)H%Q([?LO]R) =Ys065.

Proof: By the characterization of the Sobolev spaces with a Paley-Littlewood
decomposition we have, for any 0 < j' < j,

! v N2
107 ® (2, )2y = D (118607 (2, ) 2y 2 7)
l

2 ~ -/ Z s— /+l 2
I8 e[, 210l B ) %:(HAH% | 2 (1,0}, p2(m)) 2" 2))

and (B.1.20) follows with

def (s—i!

cr(2) = max AL (2, )llpae 2
def O(s—j'+2
e = Og?}’é{jHAéai | 21,05, r2(m)) 277 T2

Finally (5I21)) follows with ¢j(z) = c(2)2¢/2. ]

The para-Poisson operators associated to a symbol of XP} (l]n; [r, N] gain

one derivative in the E7 scale (we shall use this property for instance in the

proof of lemma [(5.3.2)).

Lemma 5.1.8 (Action of a para-Poisson operator from the interior
to the interior) Let p, K be in N, » > 0, N > p and let a be a Poisson
symbol of EP;(nén;[ N). There is oo > 0 such that if U is in BE (I,r), for
any s in R, any j in N, any k < K, the para-Poisson operator

0
(5.1.22) V—>/ Op"V(0fa(U; 2,2, )V (2, ) d2’
-1

is bounded from E7 to EfH_m uniformly int € I, the bound depending only
on |U(¢, )l &0 -

Proof: We may assume k = 0 and we do not write time dependence. By
Definition [.T.4], the right hand side of (B.1.22]) may be written as
(5.1.23)

z 0
/ OpBW(a’Jr(Ua Zy z/’-))V(ZI) dz' +/ OpBW(a*(U;ZaZI,'))V(ZI) dz'.
-1 z

Denote by Ay = ¢(27¢D,) the elements of some Littlewood-Paley decom-
position as in (5.LI9). It follows from the definition of OpBW that the
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action of Op®W(a..) does not enlarge much the support of the Fourier trans-

form of functions, see (Z.2.36)), (Z2.42)-(2.2Z43)) and the first remark after

Proposition 2224 We may thus find a compactly supported function ¢ of
C§°(R*), equal to one in a large enough compact subset of R*, so that,

setting Ay = ¢(27¢D,), it results
A0p™W(ax) = 20"V (ax)Ay.

By the boundedness properties of paradifferential operators of Proposition 2.2.4],
if og is large enough, we have, for any NV,

(5.1.24) |z — z']NHAgOpBW(ai(U; 2,2, NV )2
< C2X AV () |2

the constant C' depending only on [|U(¢,-)[o,so- Since the function V (7', -)
is in Ej we get by (.I1.2I]) that

JAV (g < ()22
for some sequence (¢(z’)), that satisfies

(5.1.25) Sl < CIV ;-

Therefore (5.1.24) is bounded by CQg(m_N_S_%)cé(z’). Using (5.1.24) with
N =0and N = 2, according if |z — 2/|2/ < 1 or |z — 2/|2¢ > 1, we may thus
bound the L?(dx) norm of the action of A, on (E.I.23)), obtaining

0
6.126) a0 [ 09 @iz V| <o be)
-1

L2(T?)
with 0
4 = [ (2 =)

By the Cauchy-Schwartz inequality
0 dz' 0 |, (2")]?
~/ 2 ~ / / 4 dz'
Cé(z)| > ( . (1—1—2“2’ _ Z/DQ)( (1 _,_2@’2_2/‘)2 Z)

0 ‘cl(zl)’2
< C2—f/ 14 d /
= NI PR P

and we deduce that

(5.1.27)  sup Z2| +/ Z22£| 2)* dz

z€[=1,0]
<CZHCZ ”L2 =) <C/”VHE5
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where the last inequality is given by (5.1.25). By (5.1.26) and (B.I1.27) we
deduce that (51.22) (for k = 0) satisfies estimates (5.1.20) with j/ = 0, the

Sobolev index s replaced by s + 1 — m, and sequences c,(2) = &(2)2%/2,
c2 =22 fEl |&,(2)|*dz, and hence

0
| 0Pz 2 )V e e B
-1

and its E3™'"™-norm is bounded by IVl -
We have next to study the z-derivatives of (5.1.23]). Notice that the first
derivative is given by (B.123) with ay replaced by 9,a4, and this term may

be treated as above, plus the contribution
(5.128)  OpPW(ay(Usz2, )V (21) — 0P (a (U 2,2, )V (5,1)

Since the symbols a4 (U; 2, 2, -) are in XI'g o [r, N, aut], uniformly in 2, and
V is in L®([—1,0], H*) N LQ([—l,O],HS+%), Proposition [2.2.4] implies that
(GI28) belongs to L>®([—1,0], H*~™) N L2([—1,0],H5+%_m) with a norm
bounded by C||V||gs. Higher order 9, derivatives are treated in the same
way. g

Arguing in a similar way to Lemma [B.I.8 we have also the following
lemma concerning the action of a para-Poisson operator from the boundary
to the interior with values in the scale E3.

Lemma 5.1.9 (Action of a para-Poisson operator from the bound-
ary to the interior) Let p, K be in N, r > 0, N > p and let a be a Poisson
symbol of 273;?7’0%1)[7“, N]. There is o9 > 0 such that if U is in BE Y (I,7), for
any s in R, any j in N, any k < K, the para-Poisson operator

V — 0p®V(0fa(U;z,))V

is bounded from H*(T',C) to B, uniformly in t € I and for any j, the
bound depending only on |U(t,")| k,00-

We shall define next the natural classes of smoothing operators that
will give remainders in the symbolic calculus associated to Poisson symbols
of EP;?’Oi [, N] and EP?’&H; [r, N]. Let us introduce a variant of notation

(513]), namely define

(5.1.29) GEA(U) = U 0y = leak 2N o-ge-

J

Definition 5.1.10 (Smoothing operators from the boundary to a
strip and on a strip) Let p be in Ry, p, K in N, p < N.
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(i) We d_enote by 7?,1;“+ (Tesp. R, "~ ) the space of (p+1)-linear operators
defined on H®(T',C2)P x H*®(T',C), depending on z € [—1,0],

(Ul, RN Up+1) — R(Ul, RN Up; Z)Up+1

symmetric in (Uy,...,Uy), such that for any j,£ in N with j — £ < p,
(ZOIR(Uy, ..., Up; 2))se(-1,0) (resp. (14 2) 0IR(U, ..., Up; 2))se[-1,0]) is a
bounded family of smoothing operators ofﬁ;p“'*z defined in Definition[2.2.3,
in the sense that (ZZ28) holds with p replaced by p+ ¢ — j and some p in-
dependent of £, uniformly in z.

We denote by ﬁ;pvmt the space of (p + 1)-linear operators, defined for
(Ut,...,Up, V) in H®(T!,C%)P x E, of the form

0
(5.1.30) 14 —>/ R(Uy,...,Up; 2, 2"V (2, ) dZ
-1
symmetric in (Uy,...,Uy,), whose integral kernel depend on z,z' € [—1,0],

and may be written as

R(Ula ey Up; 2, Z/) = Z Ri(Ula ceey Up; 2, Z/)]-i(zfz/)>0
+,7

where, for any 7,5, ¢ in N with j +j' —0 < p—1,

(5.1.31) ((z = )0, RL(UY, ..., Up; 2, Z')>z7zfe[_170}

is a bounded family of smoothing operators of , in the sense that (Z.2.28)
holds with p replaced by —p + 7 + 7' — £ + 1 and some u independent of £,
uniformly in z, 2.

(ii) Let r > 0. We denote by R;(?O’%N[’I“] (resp. R}f)o’l’%[r]) the space of
maps (U, V) — R(U)V that are defined on BE(I,r) x CK(I,H(T',C))
(resp. on BE(I,r) x Cf(I,E;-’)) for some ¢ > 0 (resp. some o > j >
0), with values in CX(I, E;-Hp), that are linear in V', and such that for
any s > o, there are C > 0, r(s) €]0,7[ and for any U € BE(I,r(s)) N
CK(1,H*(T',C?)), any V in CKX(I,H(T',C)), any 0 < k < K, any j in
N, any t in I, one has a bound

(5.1.32) [OFR(U)V (¢, ')|’Es+p—%k <c( > GunUDGH (V1)
j Kk =k
+ G0 N—1 (U, )GRn 1 (V, 1) G 1 (U, t))

(resp. for any 0 < k < K, any 0 < j/ < j, any t € I, one has a bound for
any V in CK(I, E?)

(51.33) [FROWV (L vy SC( D GonUHGH (V1)
j/ k/+k//:k

+ 07 v (UDGH L (V1) G 1 (U 1))
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where we have used notation (2.1.29)).
Moreover, the operator R(U) is autonomous in the sense that the time
dependence enters only through U = U (t).
—p, £ —p,int
(iii) One denotes by SR U [r, N] (resp. TRy J[r,N]) the space of
sums of operators

N-1
V= Y Ry(U,....U;2)V + Ry(U)V
q=p
(resp.
N-1 .o
(5.1.34) V- Z /_1 Ry(U,...,U; 2,2V (2, -)dz' + RN(U)V)

with Ry in ﬁ;p’i (resp. ﬁ;p’im} g=mp,...,N—1 and Ry in R}%ﬁv[r]
—p,int
(resp. RK,OI,IJIV[T])'

Remarks: o If R is in YR/ [r, N], then R, is in SR/ [r, N, aut],
according to Definition 2.2.31

o If R is in SRy [r, N], then 0. R is in ERR{’;;{[T, N].

e Consider a homogeneous smoothing operator in R, Pt with kernel R,
as in (B.I30). Then the operator with kernel 9, R is in ﬁ;PJ'rl,int and, for
any 6 € [0,1], the operator with kernel |z — 2/|R is in R #~0nt,

e In the sequel we shall identify a non-homogeneous R(U)V in R/ éiN 7]
to the integral expression given in terms of its Schwartz kernel R(U;z, 2’)
i.e. write the action of this operator on V as

0
R(U)V:/1 Ry (U; 2,2V (<, )d? .

Notice that we characterize the homogeneous operators of 7?,; Pt 1y prop-
erties of the kernel R(Uy,...,Uy;z,2'), and the non-homogeneous ones in
R;(f) (’)%N [r] by their action between the spaces E.

e If the homogeneous smoothing operator R is in 7%; PE (resp. in 7@; piinty
then R(U)V = R(U,...,U;2)V (resp.

0
(5.1.35) RU)V = / R(U,...,U;z 2V ()d2")

-1
defines a smoothing operator of R;(f) (’f;[r] (resp. R;(f) O’i;t [r]) for any r > 0.
Let us prove this claim in the case of interior operators. Let us show that
the estimate (5.1.33]) holds for the operator (5.1.35]) when for instance k =
0,7 = 1. We have to bound

IRV oo + [ @-RNV [ gt + ROV oo
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by the right hand side of (5.1.33]) with £ = 0,5’ =1 (and N replaced by p).
Below we prove in detail the estimate for ||(0,R(U))V|| Bt According to

(i) of Definition E.II0 the operator R may be written as
R.(U,....U;2,2),_yso+R_(U,...,U; 2,2 )1, g
so that
(5.1.36)
O.RWU,....U;z7) = (R+(U, . U;z,2)—R_(U, ..., U;z,z))&(z -2
+ 0. R (U,...,U; 2,21 ,_yso+ 0.R_(U,...,U; 2,2 )1,_.iq.
Recalling lemma [5.1.7], we have to bound by the right hand side of (5.1.33))

the product of 2521 (resp. 25(3“’7%)) times the L(¢2L%(T1)) (resp.
L2(2L*(T'))) norm of each of the expressions

ARY(U,...,U;2)V(z,")

5.1.37 0
( ) Ag/ RYU,...,U;2,2\V(,-)d?
~1

where R® = (Ry — R_)|,—. and R' denotes the operator in second line in
(5136). According to Definition E.I.I0 the family of operators R satisfies
([22.28)) with p replaced by p—1, uniformly in z, and [2.2.29)), and (z—2z")?R!
satisfies (2.2.28]) with p replaced by p+¢—2, uniformly in (z, 2’) and (22.29).
We estimate the L?(T!) norm of the second expression in (5.1.37) by
(5.1.38)

> /HAanORl (I, U, ..., 0, Us 2, 2 ), V(2 0) || 2 d2

10,---sMp+1

Since R! is symmetric in its p-arguments we may limit the above sum to
indices satisfying n; < --- < n,. Moreover, recalling (5.1.19)), the index ng
is of magnitude 2, and by condition (ZZ29)) there is ¢ > 0 such that

(5.1.39) max (1, npy1) > c2°.

Consider first the case nypy1 > n,. The fact that V is in £ implies that

—s 55,0
(5.1.40) M, V(E 22 < ey (2051900 (V)
for some sequence (¢, ,(2'))n,,, satisfying
(5.1.41)
2
sup Z |y (27) < o0, Z np+1/ e, (27 d2' < +o0.
2'€[-1,0l npyq Np4+1

Moreover [[IL,; ULz < cn;n; 7G5, (U) for an ? sequence (cp,)n;. Conse-
quently, applying (ZZ28) to R! and to (z — 2/)2R! (with a gain of two units
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on p in that case), and taking into account that 2¢ ~ ng and ny < Cnptt,
we get that (G.1.38]) is bounded by CQ&p(U)QSZ?(V) times

)4

0
¢ _ _ _
(5.1.42) Z . Z /1(1 + 2%z —2))2 H 157 Cny My Oy (21) d2
no

Np1 " J=1

Ny -2 L
x (n ) M Lng—npi1|<Cnpno~t Iy <o o<np<ng 11
p+1

for some p independent of s, o, p, and noticing that the support condition
Ing — np+1] < Cny comes from (Z229). For o > p+ p+ 1, summing in

ni,...,np—1 and using (5.1.39), we bound (5.1.42) by

¢ -2 -3
(5.143) €242 N B <Oy ot

no,Np,Np+1

0
X / (14 2%z — z'])_zcnpﬂ(z') dz'.
-1

The L%(dz) norm of (5.1.43]) is bounded, using the Cauchy-Scwhartz in-
equality and performing a change of variable in the integral, by

(5144) C27€(s+p71) Z n;31|nofnp_,_1|§Cnp,now2Z ||Cnp+1 (ZI) HL2 (dz') *

n0,Mp,Mp+1

We may write ||cn, , (2')]| 12421y = 24/2(5%+1 where, by (B.I.41)) and the fact
that nyp1 > 2 (see (E139)) the sequence (&, )n, ., is in ¢2(N). Then we
write (0.1.44]) as C274s+p=3)d, where

— Z -3
de = "p 1|no—np+1ISCnp,no~2‘5np+1 :
n0,Mp,Mp+1

Since (dy), is an £ sequence, we get a contribution to the second expression
(BI37) satisfying the second estimate (EL20) of a function of B3, The
first estimate is obtained taking the L°°(dz) instead of L?(dz) norms of
(5-1.43), which leads to (5.1.44]) multiplied by 2¢/2.

Consider now (5.I.38) in the case ny41 < ny,. In this case, we use instead
of (5.L40)

—o 50,0
T, V(2 )l < ey (2016071 (V),

the estimate |[IL,,Ul|r2 < ¢, %G, (U), that n, > ¢2° (see (5.139)) and
|no — np| < Cmax(npt1,np—1). We get then for (R.I38]) an estimate by the
product of ggyp_l(U)Q&’f(V)ggvl(U) and of an expression similar to (5.1.42]).
By the same computations as above, we obtain that the estimates (5.1.20])
of an ilenllent of E5TP~" are satisfied. The second expression (5.1.37) is thus
in By
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The first expression (5.1.37)) is bounded by (5.1.42]) where we remove the
integral, take z = 2’ and replace p by p+ 1. Similar computations as above
show that |RO(U,...,U;2)V (z, -)”E8+p717 as well as |’R(U)[83V]”E8+p—l, are
bounded by the right hand side of (5.1.33]) with £ =0,7' =1 and N = p.

If one takes further 0, derivatives of (5.I36]), one gets similarly that
[°L YR, ..., U; 2,2V (') d2' is in By if V is in E?. This proves the
remark for interior operators. The corresponding statement for the classes
R (’f; [r] is proved in a similar and easier way.

e By the third remark after Proposition 224 if a is in EF;{? 0l NI,
then OpBW(a) defines an element of ER[}? 0" V). As a consequence, if a
is a Poisson symbol in EPI}p’int [r, N] as in (5LI5), then OpBW(a) is the

,0,p -
kernel of the smoothing operator in R/ O’H;t [r, N,

0
V —>/ Op®W (a(U; 2,2/ )V (¢, -)d7 .
-1

Identifying an operator with the kernel, we shall also simply write that
OpPWV(a) is in ERI_fO’H; [r, N]. Similarly if @ is in EPI_(pO’j;[T, N] then Op®W(a)

is a smoothing operator in ¥R ./, 6j; [r, NT.

Let us study now composition of operators associated to the classes of
Poisson symbols of Definition E.T.41

Proposition 5.1.11 (Composition of para-Poisson operators) Let m,m’
be in R, p,p/, K, N in N, with N >p+p', p>0.

(i) Let a(U;-) be a symbol in YTk [r, N aut] and e(U;z,z,§) be a
Poisson symbol in 273;?/(’]2, [r, N]. Set

(5.1.45) e(U;z,x,8) = (a#e)pN (resp. (e#a)pnN),

defined in (2-4.1) where z € [—1,0] is considered as a parameter. Then é is

!
a Poisson symbol in EP?J(;Z;L’;E [r, N], and

O0p"V(a(U;-)) 0 Op"Y(e(U; 2,-)), OpPW(e(U; 2,-)) 0 Op"W(a (U5 -))
may be written as
Op™W(e(Us2,)) + R(U;2)
where R(U;-) is a smoothing remainder in ER}?&ﬂzw/’i[r, N].
(ii) Let a be a symbol of XT'g o ,[r, N,aut] and let c(U; z,2’,-) be a Pois-

son symbol in EP?I(;ZE [r, N]. Set

éU;z,2,) = (a#c)p N (resp. (c#a)pN) .,
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where (z,2') is considered as a parameter. Then ¢ is a Poisson symbol in

EP}?L’J&T;’F’;% [r, N] and the operator R(U) defined by

R(U)V = [ 01 OpBWV (a(U; ) 0 OpBW(c(U; 2,2/, )V () d2’

0
— [ Op™(e(ws =, )V () e
-1

belongs to ER;(pJﬂ;w/_l’int[r, N]. Identifying R with its kernel we simply

write that R = OpBW(a(U;-)) 0 OpBW (c(U; 2,2, ) — OpBWV(E(U; 2, 2/, -)) is
in SRS I N, |

(iii) Let c;(U; z,2',-) be in EP;?S;;;[T, N] for j = 1,2, with mj € R, p;
in N with p1 +pas < N. Then

)

0
(5.1.46) éU;z,2,-) dzef/ (cl(U;z,z",-)#CQ(U; z”,z',-)) dz"
-1 PN

is a symbol in EP;?B;Tj;;’im [r, N] and the operator R(U) defined by

(5.1.47)
0 0

R(U)V:/ / OpBWV(c1(U; 2, 2", ))00pBWY (e (U; 2", 2/, NV (2) d2" d2’
—-1J-1

- /01 OpBW(E(U; 2,2 NV () dZ

.. —p+mi1+mo—1,int
is i XRE0 s [r, N].

(iv) Let ¢ be in 273;?7’5171; [r, N] and e be in EP?:(’)?;, [r, N]. Define

0
(5.1.48) U z,-) :/_1<C(U;Z,Z/,')#€(U; z',-))%Ndz'.

Then ¢ is in EP?EZ};;}’i[T, N] and the operator R(U) defined by

R(U) = /01 0PV (c(U; 2,7, -) 0o OpBWV (e(U; 2, ) d2’
— 0p"W(e(U; 2,-))

.. m+m/—1—p,+
i in ERyc g iy [r, N].
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Proof: (i) We have to consider on the one hand the case when e and a are
replaced by multilinear symbols in ﬁ;?l’i and f;n respectively. The compo-
sition result of Proposition together with Definitions B.1.4] and B.T.10]
bring the conclusion.

On the other hand, we have to check that, if a is in I'g , [, aut] and e

is in p}’?'éi;, [r], then the operator

(5.1.49) R(U; 2) = Op"Y(a(U;-)) 0 Op®W(e(U; 2,-)) — Op°"V (e(U; 2, -)) ,

tm—p,x
g,oqutqf) [r]

instance, for any integer i, the symbol z'e is in F?/a é’ [r,aut] and Proposi-
tion 2.3.2] implies that

where & = (a#e), n, belongs to R . In the case of sign +, for

ziR(U; z) = OpBW(a) ) OpBW(zie) — OpBW((a#zie)p,N)

—p+m+m'—i

is a bounded family in z of smoothing operators of RKo.q+q [r]. We
now prove that R is also a smoothing operator in R/, (;L ;T;W’Jr[r] according

to Definition [.IT.T0H(ii), i.e. R satisfies bounds of the form (BI32)). We
first notice that, since the remainder R(U;z) in (B.1.49) is the difference of
paradifferential operators, then, by (2.2.30), it does not enlarge much the
support of the Fourier transform of functions, namely there is a function ¢
in C3°(R*), equal to one on a large enough compact ring, such that, setting
Ay = 3(27tD), for £ > 0, we have

(5.1.50) AR(U; z) = AR(U; 2) A,

and a similar property for the zero frequency. Using that the operators
Z'R,i=0,1, are in R 5™ *r], it follows from (F.L50) and estimates

K,0,q+¢
(ZZ30) that

(5.1.51)  [|AcR(U; 2)V | o p—m—m
< O+ 2°120) 7168 g4 (U ) [ AV |22
+ C(l + 2£’Z‘)_1gg,q+q’—1(U7 t)gg,l(U7 t)”AZVHL22£U .

We deduce by
1AR(U; 2)V g2 < 27 =) AR 2)V || o

(5.I51) and lemma 517, the estimate

/

L2([=1,0),F5+5+p—m=—m')
< C[gg,quq'(U,t)gg,l(V,t) + gg,quq'—l(U,t)gg,l(V,t)gg,l(U,tﬂ

VR 2)V || (1 g srssomny + |REU 2)V |
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i.e. a bound of the form (5.1.32) when 7 = 0, K = 0 and s is replaced by
s+p—m—m' and N by ¢+¢’. One obtains similarly the estimates involving
0, or 0; derivatives.

(ii) We decompose a (resp. ¢) as a sum of homogeneous symbols a, of f;”

~ /7' t
(resp. cq (2 ), pf Py
(resp. of P?’ét%[r]). By the composition Proposition Z3.2] we get in the
expression of R(U) on the one hand multilinear contributions

) and of a non-homogeneous symbol of I' ; y[r, aut]

0
(5.1.52) Z/ ) Rq”,i(U" .S Us 2z, 2, -)1:|:(Z_Zl)>OV(Z/’ ) dz,
— /-

where (z — z’)z(?gag;thu is in R e uniformly in z,z’. Thus,
according to (i) of Definition B.I.I0, we get that (5.152) is a smoothing
operator of ﬁ;?+m+m ~Lint

least one nonhomogeneous component have the form

In the same way, the contributions with at

0
(5153) Z/ . RN,:I:(U; 2y 2/7 ')1:|:(z—z’)>0v(zl7 ‘) dz'
— /-

. -/ . . _ liz 3 -/ . .
where (2 — 2/)/0407, Ry v is in RGN 7 * [r] uniformly in 2,2/. In

o /—1,int
order to prove that (5.I.53) defines an operator in RN " " [r] we

have to show that it satisfies bounds of the form (5.1.33]) with p replaced by
p—m —m’ + 1. Let us consider for instance the case k = 0, 7/ = 0. Using

(5I50) and [Z230) we get
0 / / |
/1HA£RN¢(U; 2,2 )V (2 ) grstor1—m—m L (z—2)>0 A2
0 ~
<2 / NARN£(U 2, DAV s Loy
O ~
< C/ (1 + 2“2 — Z/’)_QQ&N(U, t)”AzV(Z,, ')”L2 dZIQK(S‘H)
~1

0 ~
+C [ (14202 = 272G v (V.06 (U OIAV ()] 12 227
-1

The d2’ integration makes gain one power of 27¢, that shows, using lemma
B.I7 that (BI53) satisfies (5.1.33]) with p replaced by p+1 —m —m’ (in
the case k =0, 7/ = 0).

(iii) We decompose the Poisson symbols ¢; = Y4 _¢j+li(._.50 ac-
cording to in Definition B4l Then (5.1.46]) may be written as the sum of
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the following contributions:

z

(5154) 1.0 |:/Z’ (CL-{-(U; 2, Z”, ')#02,+(U; 2”7 Zla ))p N dz"

)

)

Z ) " /A "
+/_1 (Cl,+(U7'ZaZ a')#CZ*(U’Z )2 ’.)>deZ

0
. " /A "
+/Z (Cl,*(UaZaZ a')#CQHr(UaZ ) % ’)) NdZ :|

Ps

z
+1,_ .0 {/1(017+(U; 2, 2" ) H#eq (U 2", 2, .))p,N dz"

0
+ /z/ (cL_(U; 2, 2" Vo 1 (U; 2", 2, -))dez”

)

Ps

Z/
+/ c1_(U;z, 2", Vteo (U 2", 2, dz"}
i (er,( )#co,—( ) v
Recalling Definition (1.4l the symbols

(1+ |z = 2"[(€) e+ (Us 2, 2", 3,€)

(resp. (1 + [2” — 2'|(€))%co+(U; 2", 7', 2,€)) are uniformly bounded in the
class XT'gYy , [r, N aut] (resp. XI'%%  [r, N aut] ). Combining Definition
23T of (a#b), N together with the fact that the dz"-integration brings a
O((6)™1), each of the above integrals, and thus ¢ defined by (5.L40), is a

Poisson symbol in 27?}?10;72;21’1“[ ,N]. The assertion that the operator

defined in (5.I.47) is in YR/, o ﬁ;:”_l’int [r, N] is a consequence of Propo-
sition [Z3.2] and the definition of smoothing operators, as in the proof of (i)
and (ii) above.

(iv) We write the symbol ¢ in (5.1.48) as
z 0
. ! S / . / ) /
/1(C+(U,Z,Z ,')#G(U,Z 7.))p,NdZ +/z (C_(U,Z,Z ,')#G(U,Z 7'))p,NdZ :

Using that (14 |z — 2'[{€))%ce(U; 2,2, 2,€), resp. e(U; 2, z,€), are symbols
uniformly bounded in the class XTI} o [r, N, aut], resp. XI'¢ /[r, N,aut],

we conclude, arguing as in (iii), that ¢ is in 277;?2;7;;;/1 %[, N] (gaining

one on the order because of the dz’ integration). The claim that R(U)

is in ER?E?;_;%’) ’i[r, N] follows by the composition result from Proposi-

tion [Z3.2] arguing as in the proof of (i) and (ii) above. 0

We may as well compose paradifferential and para-Poisson operators
with smoothing operators.

Proposition 5.1.12 (i) Let a be a symbol in XI'g , [r, N aut] and R
be a smoothing operator in ER}%?;Q [r, N] (resp. ERI_(?&;Z [r,N]). Then

OpPWV(a(U;-)) o R(U) is in ERR’EZ’@Q [r, N] (resp. ER;(’,’J;?f;Z [r, N]).
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(ii) Let ¢ be a Poisson symbol in 273}?7’5?;1 [r, N] and R be in ER[_(,péi;Z [r, N].
Then

0
(5.1.55) V—>/ OpPV (1 (Us 2, 2", ) o RQUIV (") d="
—1

is in SR, N].
(iii) Let c¢1 be in 273;?7’5?;1 [r, N] as above and R be in ERI}’E;Q [r, N].
Then

0
| orPVaUsz 2, ) 0 RU ) d!
-1

.. —p+m—1,£
15 in ERK7O7P1+p2 [r, N].

Proof: In the case when R is in ERI_{” (’)122 [r, N], (i) follows from the fact
that the multilinear contributions to the composition are of the form (2Z4.5]),
so they form a uniformly bounded family of elements of 7%; PTM for some p
between p; + p2 and N. If we make act zfagj or (1+ z)g(?g, we get a similar
conclusion with p replaced by p + £ — j. This shows that the multilinear
expressions belong to 7%5P+m’i, p1+p2 < p < N—1. Concerning the contri-
butions vanishing at order NV at U = 0, one has just to use the boundedness
of OpBWV(a(U;")) from E? to E7™ for any s and j, to deduce from the es-

timates (5.132) similar ones for the composition with Op®W(a(U;-)). The
case of R in YR/ (’]1;1; [r, N] is similar. o
(ii) Let ¢; v, be an homogeneous Poisson symbol in Pgb’mt for some p; <
? 1
Py < N —1 and Rpé be the kernel of an homogeneous smoothing operator

in 7?,;,’) A for some p2 < ply < N — 1. The contribution of these multilinear
2

terms to the operator in (G155 is

(5.1.56) V — /01 { /01 opBW(ch,l(Ul, o Upi2, 2, .))
o Ryt (Up 415+ Upl oy 2" 2 dz”}V(z’, N dzZ.
According to (BLI3]) and to Definition B.I.T0l we may decompose
Crp, = Crp) +Leser + ey locor, Ry =Ry (Lons+ Ry lorey.

Proceeding as in (5.1.54]), the kernel of the operator (5.1.56]) may be written
as the product of 1., /)5 and of integrals of the form

(5.1.57) /I(Z . Op®V(cyp 2 (Un,. . Ups2,2",4))

/A "
ORp/Q,:t(Up/1+17...7Up/1+p/2’z ,z)dz



164 CHAPTER 5. DIRICHLET-NEUMANN PROBLEM

where I(z,2') are intervals of integration like those in (5.1.54]), and we have

to show that if we make act (z — z’)gagag: on (GI5T), we get a bounded
famj]y of operators of ﬁj(ﬁ*/m+1)+]+] —0+1
P+

treat the case £ = j = 7/ = 0. Recalling Definition 2.2.3] we have to prove

bounds as in (Z2.28]) for

uniformly in z,2’. Let us just

(5.1.58) 3 /I(Z . Mg 0P (150, (Mo U, T, Uy 2, 2,)
ng ’

Y/
OHnaRplgyi(Hn/+1Up/1+1"“’Hn/+p/2Up/1+p/2’Z ,Z)

P1 P1
x 11 VvV dZ"

n. s /
Py +py+1

(similarly to (Z4H)) where, by (ZZ35]) (applied to ¢; 5 +) and (Z22J), the

indices in the sum (24.35]) satisfy, for some choice of the signs €;

Py Pi+po+1
/ /
(5.1.59) E €jnj = ng, ng = E €N .

As a consequence the operator in (B.I58)) satisfies, for any 2,2, the corre-
sponding condition (Z2.29). Since ¢, is in PZ’mt (see Definition [(.1.4])
we apply (Z2Z34) (with s = m) for the first operator in (.I58]). Then,
we apply (ZZ28) to Ry + and to (2 — z”)QRpéi that, according to Defi-
nition B.T.T0] is a family of smoothing operators in 7@;,; —2 uniformly in

2/, 2". Consequently we estimate the L? norm of (5.L58]) by

/ /
p+p p1+p
o o | mmaXQ(np/1+1,...,np/1+p/2+1) 1TF2
Cng ...npfl\no\ pa H 1L, Uel| 2
max (N 11 Ml 4 ph 1) P
0 / " —2 7
X ||an/1+p/2+1VHL2 /_1<1 + max(ny 41, Ny pr 1) — 2 |> dz".

. . . . -1
Changing variable in the integral we get a factor max(np/1 Lo gt 1)
andny,...,ny < Cmaxa(na, ...,y 4 ) and max(ny 1, -« Nyl 4t 1) r/w
max(ni, ...,y 4pr 1) (that we deduce as ZZ48) by n1,...,ny < ng ~ nj

and (.1.59))), imply a bound in

p—m+p PPy
= gHHwUzHLzHHnP,ﬁP,QHVHLQ

maxa (N1, . . . Nyl 1pt 1)

max(ny, ... s T 4 phy 1

) s —(p—mA1)+1
for some new /. In conclusion (G158 is in Rp/(_ip,er AR
1 2

For the terms of (B.I.50) vanishing at order N, one uses lemma (I8

together with estimates (5.1.33)) defining R/, (’]igf [r].
s Po
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(iii) is proved in a similar way as (ii). O

To conclude this section, we shall establish several composition results in-
volving the smoothing operators introduced in Definition [5.1.3], that will be
useful in Chapter G

In the sequel, we shall consider sometimes functions of (t,x) € I x T!
as functions of (z,¢,z) € [~1,0] x I x T! independent of z. In particular, a
function in CX (I, H*(T',C)) may be considered as an element of CX (1, F?),
for any j, where the space F; is defined in (5.1.).

Lemma 5.1.13 (i) Let m be in R, p positive, K,p,q,N,j inN, p+q < N,

m,int

r > 0. Let a be a Poisson symbol in XPy [r,N] and R a smoothing
operator in the class ER;(poj q[B, r, N| of Definition[l.13. Consider

(5.1.60) RU)V = /0 Op®WV(a(U; 2,2, ))R(U; 2 )V d2
-1

defined for U in BEX(I,r) and V in CK (I, H? (T, C)), for some large enough
o (and are considered as functions of z', constant in the variable 2'). Then,
forany j' <j+1, 85R(U) is a bounded family in z of smoothing operators
of SR LM [r, N,aut] (here we adopt the abuse of notation introduced in

K,0,p+q
the last remark after Definition [5.1.3).

1 L(?t in ve a Sm()()t an ()]7(3701&()1 m ER, , T or some ﬂ >
R t h Kpo 11n) 9 N / 0
see an m K PR wzt ﬂ > 3. 1)6 n

(5.1.61) R(U)V = Rint(U)[R(U)V] = /01 Rin (U; z, Z/)[R(U)V](Z/, -)dzl

forU € BE(I,7) and V in CE(I, H?(T',C)), the last expression in (7L1.61)
above being the one in terms of the Schwartz kernel of the operator.

Then, for any j' < 7, OZIR(U) is a bounded family in z of operators in
ER;(?OEJJF;LG[T, N, aut] for any € > 0.
Proof: (i) We consider on the one hand multilinear contributions, and on

the other hand those terms vanishing at least at order IV at U = 0. Let us
first consider the homogeneous terms. Let a be a symbol in Pg“im for some

p and let R be in 7%;”[8] for some q. Let us compute for instance
0

(5.1.62) 8Z/ op®W (a(Hn/L{/; 2,7, )) o R(IL,»U"; 2T
-1

/
nptat1Uptqt1 dz

where U = (Uy,...,Up), 0/ = (n1,...,np), U" = (Upt1,...,Upsq), 0" =
(Nps1,---,Nptq) and U; are functions only of x. With the notation a =
a+l, ~o+a-1, ,¢in (II3]), we may write (5.1.62) as the sum of

(5.1.63) Op®W(ay (I U'; 2, 2, ) Rl 2yt g1 Uptgrt
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(5.1.64) — Op®WV(a_ (ILUl'; 2, 2, ) R(Wnd"; 2) I, 4 Uptgit

0
(5.1.65) /_1 Op®W (ay (I U'; 2, 2, ) R(I,nld" i1 Upgqrr d2'

where a; = (0,a4)1,_.~0 + (02a-)1,_,«¢o. We make act at the left of
(G-I63), (I164), (5165 another projector I, and bound the L?(T!) norm
at fixed z. Let us make in detail the estimate for (G.LG5]). We write
(5.1.66)

0
Z / X I1,,, Op®"W (a1 (I, U'; 2, 2/, -)H%R(Hnul/{"; My Uprgrr d2
ny "

where (because of conditions (2:2.35]) and (2.2.29])) the index ny is such that

p p+g+l
(5.1.67) STemi+eny =0, emng+ Y. en;=0,
j=0 Jj=p+1

for some choice of the signs €;, ), €y € {—1,1}. By (G.L67) we deduce that,
if (B.I66) is not zero, then Y078 tatl e;n; = 0 for some choice of signs €; so

that (016D satisfies the correspondmg condition (2.2.29]).
Since a is a Poisson symbol in Pm it the remarks following Definition

B4 imply that a; = d.a is in P;,“H it and |z — 2'|%ay is in PH1-Oint
for any 6 €]0,1[. Thus |z — 2/|%; is in fz“‘l_e, uniformly in z,2’, and
Proposition 2224 implies that the L? norm of (5.1.66) is bounded by

dz'

6

O’ 1- HnU oo [ I AL, Uprarilie =
Applying (5.I.I0) to the term R that belongs to 7?,(;”[8], and integrating in
dz', we obtain a bound in

g+l
Iz m+1 pmaxy(np 1, . .. vnanqul)/hL "T
Cln'|"n 7 H 1Ujll 2 -
Max(Np41;- - - Nptq+1)

By ([2236), the sum (G.I.66) is restricted to indices nj ~ ng and (G.I1.67)
implies that ng < max(npi1,...,nptqt+1). Moreover, arguing as for (Z4.8]),
max(Np41, .-, Nptqgr1) ~ Max(ni, ..., Nppqgr1)

In'| < Cmaxa(ni,...,npiqr1)

and one gets an estimate of the form ([2.2.28)) with p replaced by p—m—1+6,
p+1 replaced by p+q+1, and for a new value of p. This proves that (5.1.65])

is in R, ;""" with € = 1 — 6 in ]0, 1|, uniformly in z, and the same holds
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for the terms (B.1.63]), (5.1.64]). Higher order 0, derivatives may be treated
R —ptmAj —14e

P+q
. . . int
Consider now the case when a is a non-homogeneous symbol in P;?Bnp 7]
1.

in the same way obtaining that aglR is in

and R is a smoothing operator in R;(poj NIB,7]. Writing @ = a;1,_,50 +
a_1, , o we have that

0

(5.1.68) az/ Oop®WV(a(U; 2,2, ) R(U; 2"V dz'
-1

is equal to

(5.1.69) Op®WV(ay(U;z 2,))R(U; 2)V — 0p®WV(a_(U; 2,2, ))R(U; 2)V

0
+ / Op®W(ay1(U; 2,2, ) R(U; 2" )V d2’
-1

where a1 = (0,a4)1,_ .0 + (0,a-)1,_,/.o. Combining estimates (5.L.1T))
for R, with the boundedness of OpBW (a+) (resp. OpPW(|z — 2/|’a1)) from
H5%P to the space H*tP~™ (resp. from H**? to HstP~m=140) that follows
by Proposition ZZ4land the fact that these symbols are in XI'%¢  ,[r, N, aut]
(resp. EI’??{]};G[T, N, aut]), we get for (B.I.69) bounds of the form (2230
with p replaced by p — (m + 1) 4+ 6, uniformly in z. We have proved that
9.R(U) is in RN [r, aut] with e = 1 — 0 in ]0, 1[. Higher 9, derivatives
are treated in the same way.

Finally, we have to consider the contributions Op” W(aN) o R, where R,
is an homogeneous smoothing term in 7@;’) [B]. Because of the third remark
after Definition 5.1.3] the associated operator Ry (U, ..., U) satisfies (5111
with p — « instead of p for a > 1/2 and we obtain that the operator (5.1.GS))
is a remainder in R0 [r aut] € R/ v [, aut], taking o + € < 1.
This concludes the proof of (i). o

(ii) Let us study first the multilinear contributions. According to Defi-
nition B.TT0Hi) we write the homogeneous smoothing operator Rjn as

0
V- / (Rint,+lz—z’>0 + Rint,f]-z—z’<0)v(z/, ')dzl
—1

where Rin +(Un, ..., Up; 2, 2') are homogeneous smoothing operators of 7%5”/“,
uniformly in z,2’. The analogous of (5.1.62) with Op®W(a) replaced by
Rini(I1,, Uy, ... 11, Up; 2, 2') is the sum (similarly to (.1.63)-(5.1.65)) of

Rint,+(Hn'ul§ 2, Z)R(Hn”u”§ Z)an+q+1 Up+q+1

_Rint,f(Hn/ul; 2, Z)R(Hn”u”; Z)an+q+1 Up+q+1

/
TMp+g+1 UP+Q+1 dz

0
(5.1.70) / Ring 1 (U’ 2, 2" ) R(ILnU"; 21T
-1
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where Rint1 = (0;Rint,+)12—2>0+ (02 Rint,— )1,—»/<0. Recalling the third re-
mark following Definition B.T.T0lwe have that |z — z’|6Rint,1 isin ﬁ;plﬂ_gvim,
that is (|z — z’|€Rim,1(Hn/U’; 2,2'))2 2¢[-1,0] is a bounded family of smooth-
ing operators of 7@; P+2=9 uniformly in z,2’. By (GILI0) and (Z2.28) we
estimate the L? norm of

0
Z Hno /_1 Rint,l(Hn’ul; 2, Z/)Hn;R(Hn”u”; Z/)an+q+l Up+q+1 dz/

!
np

by the product of H?:?HHUJHL? times

I\p' =246+
(5.1.71) Cmax?(nl’ A np)p P maxa(npy1, ... Nppgr1)?
1. —
max(ni, ..., np,np)P =20 max(npi1,...,npygr1)?

By [2229) we know that, for some choice of the signs €, ¢,

P p+q+1

/ / AN // / "

(5.1.72) €ono + Zejnj + e, =0, » T Z ein; =0.

1 p+1
Assume first that one among n1, ..., %y, Npt1, - .., Npyg+1 is much larger than

all the other ones, say n;. If 1 < j < p then, using (5.1.72)) we derive that
n,, < n, and (BITI) is bounded by

(5.1.73) maxa(ni, ..., Nprq1)? 2T0TH

max(ny, ..., Nptrqp1)” 270
for some new value of . If p+1 < 5 < p4q+1 then n; ~ max(ni, ..., Nptrq+1)
and (L.I73) follows as well. When the largest two among ny, ..., nyqq41 are
of the same magnitude, i.e maxa(ny,...,Npyrgr1) ~ Max(ny, ..., Nptg+1),

the bound (GL73) follows immediately. This proves that (G.LT0) is a
bounded family in z of smoothing operators of 7?,; PlHlte where e =1 — 6.

Consider next the contributions that are non homogeneous, i.e. for 0 <
j' < j the operator

(5.1.74) V = 3 (Rins p(U) - Ry(U, )V )(2,-)

where Rinp is in R/ p mt[ | and R, € R;(pojq[B r]. We Want to show

that (B.I74]) defines a famlly indexed by z of operators of R/, K, 0 ot q[ 7], with
bounds uniform in z. According to (2230, we have to show an estimate

(5.1.75)  [10f 8 (Ring p(U) - Ry(U,-)V) (2,

Frste’ —3k—i

<C Y G prg UG A (Vi) + Gy g1 (U )G 1 (UG 1 (V1)
E/+k"=k
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By (G.1.33) applied to Ringp with p replaced by p’, we have a bound of the
left hand side of (B.1.75]) by

(5.1.76) C| Y G5, (UG (Ry(U, )V, 1)
K/ k" =k

Y Gy (UG (R(U)V, )G} 1 (U )]

K+ =k

Recalling the notation (.I.29]), the general term in the first sum in (G.I.76])
is bounded by

k” 9
G2 U (D107 BoU VI gy
kY:O ]
k//
< G0 (ZH@ V| s+_,_k/,)
k”70

(see the remark after Definition [.I.6). The above expression is bounded
according to (B.LII]) (that we apply with p replaced by p — a with a = 3/4,
by the third remark following Definition [(.1.3]), and using that p — a > %
since p > %, by the right hand side of (B.L70]). The general term in the
second sum in (B.I76]) is bounded in the same way (changing the definition
of o in the final result). O

Finally, we shall state a result of the same type as lemma [E.1.13] when

one replaces in (B.1.60), (5161 the smoothing map R(U) by an operator
M (U; z) that may lose derivatives, but which is supported for z in a compact

subset of [—1, 0[. We shall estimate then the quantities (5.1.60]), (5.1.61]) only
for z in a neighborhood of zero.
We now consider operators M(U) = M (U; z) of the form

(5.1.77) MUV =Y My(U,...,U)V+ MyU)V,

where (Ur,...,Uyy1) = My (Ur, ..., Uy)Uyq is a family of (¢’ + 1)-linear
maps, defined on H>(T',C2)7 x H>(T', C), satisfying for each fixed z €
[—1,0] conditions (Z251]), and, for some m > 0, and for any no,...,ng+1,
the estimate

(5.1.78) 7182Zp<0\|ﬂn0 My (Hnu)an’-H Uy +1llgo

< C(no+ -+ +ng11)"G0 g 11U, Uy 1)
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with the notation & = (Ui, ...,Uy41). Moreover, we suppose that for some
06 > o0g large enough, we have for 0 < k < K the estimate

(5.1.79) sup [[0f My (U)V gy <C D" G NU G (Vi) .
—1<2<0 K 4k =k

Finally, we assume that for some § €]0, 1],
(5.1.80) MOV =0 if —2§<2z<0.
We may now state the following lemma which is a variant of lemma B.T.T3]

Lemma 5.1.14 Let m be in R, p positive, K,;p,q,N in N, p+qg < N,

m,int

r > 0. Let a be a Poisson symbol in EPKOP[T, N] and Rin be a smoothing
operator in ERI_(p(’)i;t [r, N]. Let (M(U; 2)).¢[-1,0 be a family of operators as

in (B177) satisfying (B 178)-(51.80). Define

_ 0
(5.1.81) R(U)V:/ Op®WV(a(U; 2,2, ) ) M(U; 2V d2
—1
or
~ 0
(5.1.82) ROV = / Rins(Us 2, 2\ M(U: 2)V d2'.
—1

Then dIR(U) restricted to z € [—8,0] is, for any j € N, a bounded family in
z of smoothing operators of SR, p+q[r, N,aut] for any p.

Proof:  Consider first (5.I8T). If 2’ stays in the support of M (U;2’) and
—§ < z <0, we may write

a(U;z,7,) = (z— 2N a(U; 2,7, Yw(z, )

where w is smooth for 2/ < —2§, —§ < z < 0. According to Definition 5.1.4],
for those values of z, 2/, we may write a = Zé\,/;; ay +ay where a, is a family
in (z,2') of homogeneous symbols in fgffz satisfying estimates (Z.1.0]) with
m replaced by m — £, and some u independent of £, and where ay satisfies
(ZII), with m, K’ replaced by m — ¢,0 and some o, 0 independent of £.
By [2234), and denoting U’ = (Uy,...,Uy), n' = (n1,...,ny), we have an

estimate of the form
(5.1.83) HHnOOpBW(ap/(Hn/L{/; 2,2, '))Hn;,_HV”HO

< g~ |Gy (MU ) [Tt V0
for some p independent of ¢. Moreover (2.1.6]) and (2.2.36]) imply that

/

P
(5.1.84) Z €N + €y =0, |n'| K ng ~ngy iy
0
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for some choice of signs ¢; and ep 41~ In (BL83) we replace V' by the
quantity My (Iyld" )y, Uprpgy1 whereU” = Uy, Uprigr), n' =
(Mprsas ,np/+q/), that, by (Z2.51]), is different from zero only if
p'+d+1
(5.1.85) Ny 1 = Z €51
P41

Thus, using (.I78) for My, we get for the resulting expression a bound in

(5.1.86) Cnl" “(ny + -+ np)(nyp1 + -+ npagi)™
0
X gO,p/Jrq’Jrl(Hn’ula Hn”u”a an/+q/+1 Up’+q’+1a t)
where p and m are independent of ¢. If among the indices n1,..., 7y g1

the largest two ones are of the same magnitude, an estimate of the form
(Z228) with some p, with p replaced by p’+¢’, and an arbitrary p holds triv-

ially. On the other hand, if the largest one among the indices ny, ..., "y 4q+1
is much larger than the second largest, then, by (B.L84]) and (B.I.85) we
deduce that max(ni,...,nytgy1) = max(nys1,...,Np4qg+1) and ng <

Cmax(ni,...,nytqg+1). Then by (BI86) and taking £ > p + m we de-
duce an estimate of the form (ZZ28]). This settles the case of multilinear
contributions to (5.LIT]).

If, on the other hand, we consider the contribution coming from the
non-homogeneous symbol ay term in the expression of a, and from a M (U)
satisfying (5.1.79), we use (Z2Z37) with m, K’ replaced by m — ¢, 0 and some
o independent of £. We obtain

H@fOpBW(a(U; '))M(U)V“Hoo—m+e—3k
<C ) G N (U)Gen ,(M(U)V, t)

Kk =k
which, combined with (5.1.79]), implies an estimate of the form (2230 if ¢
is taken large enough relatively to s and p. We obtain estimates for the &7
derivatives in the same way, noticing that for z in [—§,0], 2’ in the support
of M(U;2'), dla(U;z,7,-) is a bounded function of z for any j. One treats

(5IR2) in the same way. O

5.2 Parametrix of Dirichlet-Neumann problem

We consider a real valued even function 7 in CX (I, H? (T, R)) for some K
in N and some large enough o > %K . We denote by 1’ the space derivative of
n and by 7’ @7’ the quadratic map associated to the bilinear map (n1,72) —
1, (z)nb(x). This defines an homogeneous symbol of I'). In the same way
the map ' — (£ — n/(x)¢) defines an homogeneous symbol of f’%.
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We want to construct a parametrix E of the paradifferential elliptic op-
erator, acting on functions of (z,z) € [~1,0] x T, given by

(5.2.1) (1+0p"V (i @1))07 — 2i0p"Y (/€)0. — 0p°W (€?)
together with boundary conditions
(5.2.2) E|l.—o=1d, 0.F|,——1 =1d

up to smoothing operators.
Recall that we introduced after Definition B.1.4] the Poisson symbols

(5.2.3)
_ cosh((z +1)§) _ sinh(z¢)
€z 8) = cosh & S8 = Ecosh ¢

KO(Za Zla 5) = (COSh 5) (C(Za é)S(ZIa 5)1z—z’<0 + S(Za f)C(Z/, 5)12—Z’>0)

where C is in 758’+, S is in 750_1’_ and Kg is in 750_1’int. Notice that the
function Ky(z,2',&) = Ko(7/, 2,&) is symmetric in (z, 2') and

a’JKO(Za Zla 5) = (COSh 5) (azC(Z, 5)8(2/7 5)1z7z’<0 + 328(2, S)C(Zla f)lzfz/>0>

is a Poisson symbol in 758 T
The definition of the parametrix E is made precise in the following
Proposition.

Proposition 5.2.1 (Parametrix of Dirichlet-Neumann problem) Let
N € N*, p € N be given. There are v > 0 and Poisson symbols e 1(n;-)
in EP?(’?BJ[T, NJ, e_1(n;-) in 277[_(71(;7—1[7”, N], K1(n;-) in EPI_(}djrllt[r, N], which
are even as functions of (z,§) (for n(x) even), such that, if we set

€+(7’]; Z7x7§) - C(Zaé.) + €+71(7’]; Z7x7§)
(524) e—(77§ Z,.%',g) = S(z7§) + e—,l(n;zaxaf)
K(n§272/7x7§) = Ko(Z,Z/,é.) + K1(77a 2’72’,,1',5)

and if one defines, for functions g4 (z) and f(z,x),

(5.25) E(t,2)[g+,9-,f]

de, 0
5 0pPW (e1)g4 + 0PV (e-)g- + /_1 OpPWV (K (2,7, ) f(2, ) d2,

then the action of (3.21) on (2.2.3) may be written as

0
(5.2.6) f+Ry(m;2)9+ + R-(n;2)9- + /_1 Rine(m;2,2") f(2',-) &2
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where Ry (n';z) (resp. R_(n';2), resp. Rint(n;2,2")) is in ERKPJ12+[T N]
(resp. ERKpaLll [r, N], resp. ERKpaLll Mt N]). Moreover the following bound-
ary conditions hold

(5.2.7) E(t,0)[9+,9- f]= g+, (0:E)t. ~1)[g+.9-, ] =g-.
Finally

. n/ 77/2
(5.2.8) Oze41(m;2,2,8)|2=0 = me — (tanh f)gm

modulo EI’%OJ [r, N,aut].

In order to prove Proposition B.2Z.1], we start solving the boundary value
problem corresponding to (B.21))-(5.2:2]) at the level of principal symbols.
Notice that the Poisson symbols C,S and Ky in (5.2.3)) solve the following
boundary value problems

(02 -82)C(2,8) =0, C(2,8)|m0=1, 8.C(2,&)|:=—1 =0,
(02 -€°)8(2,6) =0, 8(2,8):=0=0, 0.8(2,8)].=1=1,

and
(83 - SQ)KO(Z', 2&) =6(z—2)
Ko(2,2',8)].=0 = 0, 0:Ko(2,2',€)].=—1 = 0.
In the next lemma we solve the ODE (5.2.12]) for a general small 7. For

simplicity of notation we do not write explicitly the ¢ dependence which is
irrelevant.

(5.2.9)

Lemma 5.2.2 There are symbols 63,1(U§ z,+) in EPKOl[ NJ, 60_71(77; z,-)
in Epglo’_l[r, N], K(n;2,2,-) in EPI_(lo’irft[r, N], which are even functions
of (z,€) if n is an even function in x, satisfying the boundary conditions
63,1‘2:0 = 5z€g,1!z:—1 = 69,1‘2:0 = azng’z:—l =0
(5.2.10) : ]
Kl |z=0 =0, 8ZK1 |z:71 =0,

such that, setting

S (m2,) = C(2,6) + i (m2,)
£+

(5211) 68(7%2, ) (Z’ 6 ( 2, )
K(n;2,7',) = Ko(z,7,) + K{ (52,2, ),
the unique solution of the ODE
Pu (14 9)0? - 2in/¢0. — )u=f

(5.2.12) oo = g4

0zu\Z:_1 = g—
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is given by
(5.2.13) u(z,z,€) = €% (m;2,2,&) g+ (x) + € (0 2, 2,€)g—(x)
+ /01 K% 2,2 2, &) f(,z)d7.
Moreover
(5.2.14) Pef =0, PK"=6(z—7).

Finally 8363]310 has the following expansion

/ 12

(5.2.15)  8.e%(n;2,2,8)]sm0 = §tanh§+z /25 (tanh§)§1 i

+ 77/2

modulo a symbol of EFKO 1[r, N, aut].

Proof: The solution u of the linear equation (5.212]) may be written as the
sum (5.213) where €, €2 and K solve respectively

(5.2.16) P =0, el,mo=1, 0.%.ec1=0
(5.2.17) Pe® =0, €|._0=0, 0.€"|.-_1=1
PK=6(z—2), K°.—0=0, 0.K°.—_;=0.

Dividing P by 1472, we see that €9 , e

linear equation

are the solutions of the homogeneous

(5.2.18) (02 — 2iagd. — (1 +b)&?)ed (z,2,£) =0
with the corresponding boundary conditions in (5.2.16]), (5.2.I7]), where

/ /2

n n
(5.2.19) a=a(n)= T2 b="b(n) = TR

The solutions w4 of the homogeneous equation (5.2ZI8]) (where we consider
a,b as real constants) with boundary values

(5.2.20) w+]z:0 = 1, ({9211}4_’3:_1 = 0, w_‘zzo = 0, 8zw_\Z:_1 = 1,

are, setting ¢ = ¢(a,b) = V1+b—a? —1,

(5.2.21)
(o6 o G+ DECL+ ) 1= 5 (= + V(1 +0)
B cosh(£(1 + ¢)) 1 — 1 tanh(§(1 +¢))
oot — it e OhGE(L ) tanh(€(1 + o)

cosh(€(1+¢)  &(l+0)

" (1_ ia
1+e¢

-1
tanh(£(1 + c))> .
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For a,b in a neighborhood of zero, z € [—1,0], wy are analytic functions of
a, b that satisfy the estimates

2401 000) 0w (2,6, a,b)| < C() 7

(5.2.22) , .
1+ 2) 0050 0w (2,€,a,b)| < C(&) 1.
Actually, to check the first estimate (5.2.22]), it suffices to remark that w
is of order —oo in &, as well as its derivatives, uniformly for z in [—1, —%]
On the other hand, for z in [—%, 0] and for instance £ > 0, we may write

(5.2.23) wy (2, a,b) = %604 (1 4 G(2,€, a,b))

where G as well as its derivatives is uniformly of order —oo, while the ex-
ponential factor satisfies the wanted estimates as 1 + ¢ > % for a,b small
enough.

If we expand w4 (z,&,a,b) by Taylor formula relatively to the variables
(a,b) at (0,0), we get C(z,€) as the constant term, polynomial contribu-
tions in (a,b), whose coefficients satisfy estimates of the form (5.2.22]), and
remainders, vanishing at order N at (0,0), and verifying as well (5.2.22)).
Expressing in each polynomial term a = a(n’) and b = b(n) by (£.2.19)), and
developing the functions a(n’),b(n’) as polynomials in 1’ plus a remainder
vanishing at order N at ' = 0, we have that

(5.2.24) ef = wi(z&a(n),b(r) =C(2,6) + € 1,

as in (B.2ZII)), where €} ; is a Poisson symbol in EP?(’T) 1lr, N]. We argue
similarly for

(5.2.25) e =w_(z,&a(n),b(n)) = S(z,€) + 6(171 .
Let us prove the expansion (5.2.I5]). Differentiating (5.2.27]) at z = 0 we get

ia€ cosh™2(£(1 4 ¢))

1-— lz—jfc tanh(£(1 4+ ¢))

(aszr)\z:O =ia + 5(1 + C) tanh(é(l + C)) +

The last term is in ¥I'% 7 [, N,aut]. Since {tanh({(1 + ¢)) — {tanh(§) is
in XI5 [r, N, aut] and since, by (G219,

/2

c=vV1itb—-aZ—1=——"1

1+77/27

we get
12

(02w )|.—o = & tanh(€) + iag — #Wsmnh@)

modulo a symbol in EF;(?S)J[?“, N, aut], proving the expansion (G2.15]).
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Let us obtain next the expression of K%(n;-) in (.2I1). Consider the
wronskian of the solutions (w4, w_)

W(z,é,a,b): dowy Ow_

w4 w_ '

Since the wronskian W (z) solves the differential equation 9, W (z) = 2iaW (z)
we have that W (z) = 2D (~1). By (GZ20), W(—1) = wy(—1), and,
inserting the value of w, (—1) obtained by (5.2.21]), we get

(5.2.26)

W (2,€,0,b) = €D (cosh(£(1 + ¢))) ™ (1 -

1a
1+c

-1
tanh(£(1+¢))) .
Let us define

(5.2.27) K(z,7,&, a,b)
= (er(Z’ 5) a, b)w, (Z/a 55 a, b)]_Z,Z/<0 + ’U),(Z, 5) a, b)w+ (Z/a 55 a, b)]-zfz’>0)
x W (7, &, a,b)7L.

Since wy are the solutions of the homogeneous linear equation (5.2.I8]), the
action of the differential operator in (5.2.18) on K gives §(z — 2), and the
boundary conditions (E220) imply K|,—o = 0,0,K|.—_1 = 0. Moreover,
proceeding as in (.Z23)), one checks that the coefficients K4 of 1i(z—2n>0
in (5.2.27)) satisfy estimates

(2 — ) 200 O Ks (2,2, €,a,b)] < C{g) T+,

Decomposing K+ in Taylor series in the variables (a,b) at (0,0), and ex-
pressing a, b from 1’ by (5.2.19]), we conclude that

(5.2.28) K(p; 2,7, 2,8) = K(2,7,€,a,0) (1 + 9!

is a symbol of Epg}dfgt [r, N], which has the expansion (5.ZTIIl), and the
action of the operator (1 + 7?)0? — 2in/€0, — €% on K gives 6(z — 2/),
proving the last identity in (5.2.14]).

Finally the symbols €Y., K are even in (z, &), when 7 is even, as it follows

by formulas (5.2.24), (5.229), (221), (5.2.27), noticing that, if n is even,

then b(n'), c(n'), a(n’)€ are even functions of (z,§). The proof of the lemma
is concluded. O

Proof of Proposition[5.21: We look for e4 (n;-), K(n;-) in (0.24]) as a sum
of Poisson symbols in decreasing order (forgetting the time dependence in
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the notation) of the form

p—1
€+(’I’]; Z,,I,g) = C(Z?g) + Z 61,1(773 Z,xag)

(5.2.29) e—(m;z,x,8) =8(z,8) +Ze (m; 2, 2,€)
p—1
(2,2, 2,8) = Ko(2,2,€) + > K{(n;2,2',2,€)
=0
where €9 | € EPKOl[r NJ, € | € EPKOl[r N], K9 ¢ EPKloth[r N] are

defined in lemmam, and, for j=1,...,p—1,
. efhl(n; -) are in EP;(](’)JE[T N,
o ej,,l(n; -) are in EPKl J= [r, N,
e KJ(n;-) are in EPKl ]mt[r, N].
We also require that these symbols satisfy the boundary conditions

(5.2.30) ei’1|zzo = 0, azeft,ﬂz:,l = 0, K{|Z:0 = 0, 8ZK{|Z:71 =0.

As a consequence, if E is defined by (B:23), it follows by (£.23), (GZI0)
and (0.2.30) that the boundary conditions (5.2.7]) are satisfied.

In order to prove the proposition we have thus to find symbols ezt’l, K f ,
1 <j < p—1, as above so that the action of the operator (5.2.I]) on E gives

E2ZT). ) )
Using that ' @ n/ is a symbol in I'Y, #/¢ is in '}, and that the Pois-
son symbol d%e, is in EPKOO[ N] and 0%e_ is in EPKOO[ N], by the

composition result of Proposition B.I.11] we compute

(5.2.31)
(1 +0p"V (i @ 0'))02 — 2i0p"W (1 €)0. — Op"V (£%)) 0 Op"VW (ex)
= OpPW(Pes) + Op"™ (0 @ 1 #02ex)pn — n/*O2ex)
— 2i0p"W (/) #0ze4 ) pn — (11€) Dz
— Op®WV((E#es)pn — ) + Ri(n)
where P is defined in (5212)) and where R (n) (resp. R_(n)) belongs to
ER}’)&?&[T, N] (resp. ERKPOﬂI [, ]) Recalling the definition (B.2I1]) of
the symbols €}, we have e4 = ei“’ZJ ! el 1 and, since PeY = 0 by (5ZI4),
we deduce that Pey in (5.2.31) is

p—1 }
Pey = Z Peél. .
j=1
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The other symbols in the right hand side of (5.2.31]) may be written as
5 0 i—1 0 1
Z Ejd:(ezl:? c. ,eﬂt,l ) + ‘Cp,i(eiv .. 761,1 )

where L; 1 (resp. L;, ,) belongs to EP?(({;L[T N] (resp. to EPK73’1 [r, N]),
and depends only on 6i,1, with ¢ < j, because of the Definition 23] of
(-#:), and of the fact that in the right hand side of (.Z31)), the first
term of the asymptotic expansion is removed from each expression. By
the last remark following Definition B.I.10], the paradifferential operators
OpBW(Ep,i(e(i, R efgll)) may be incorporated to the smoothing remain-
der R4 (n), and thus we may write the right hand side of (5.2Z31)) as

p—1 A
j=1

In order to prove the Proposition we need to find recursively Poisson symbols

ejtl, j=1,...,p—1 (in the classes described above), solving
j 1
Peig = ‘Cj,i(egl:’ egl:,la . 6:I: 1)
(5.2.32) € 1lz=0 =0

8Z€Z|:,1 |Z=71 = 0 .

By (5Z13)), the solution of (5.2.32]) is given by
0
. -
e = /1 Ko(n;z,z',x,§)£j7i(egc,ei71, el ) 2z, &) dY

By Proposition B LITH(iv), since K is a Poisson symbol in EPKlolgt [r, N]
and EJ + (resp. £; ) isin EP?(({;L[T N] (resp. to 277[1( 0]’1 [r, N1), we deduce
that ¢/, | is in EPKOl[T NJand ¢’ ; is in EPKOl’ [r, N].

The formula (5.2.8)) follows by (5.2.15) and the fact that >/, e;L | is a
symbol in EPK}O:; [r, N].

Finally let us construct iteratively in a similar way the Poisson symbols
KJ € EPKI Jmt[ , N1, 7=1,...,p—1, in the last line of (5229]).

First of all recall that the Poisson symbol K in (5.2.11)) satisfies PK? =
§(z—2") (see (B-2I4) and that K9 is in 277;(71(;?81: [r, N|. Moreover by (5.2.28))
and (5:2.27) we deduce that 9,K°(n;-) is in 273?(’?8?0 [r, N] as the coefficient

of §(z — 2') in the 8, derivative vanishes. Finally, by the equation PK? =
0(z — Z') and recalling the expression of P in (5.2.12]), we deduce that

Ko — (1+1*) 719z —7) isin 27?}58%[ N].
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Therefore applying the composition result of Proposition B.ITT}(ii) we get
(5.2.33) Op®WV(P) o OpPWV(K®) =6(2 — 2+ L1 + R
where (recall the definition of P in (5.2.12))

(14002 = 200, - HKO) |~ (=~ 2)

(5.2.34) £, <

belongs to 27??(”0“1 [r, N] and the smoothing operator R is in SR/ J P, N

Then we argue 1terat1vely Suppose that we have yet defined Poisson symbols
Ly,...,L; with £; € SPi ™ [r, N, and K{,...,K{"" with K{"'(n;) €
EPK] mt[ N]. Then define, for j > 1, the K7 as the solution of
PKI(n;2,2 2,8) = —Li(n; 2,2, x,8)
(5.2.35) K{l.—o=0
0. K. 1=0
(where P is the operator (5.2.12]) acting relatively to the z variable, 2’ being

a parameter) and

def

(5.2.36) Liv1 = (14002 — 2in/€0. — 52)#K{)p7N + L.

By (5:Z13)), the solution Kj 7 of (BE2335) is given by
(5.2.37) Kj(n,zz x,&) = / KO(n; 2, 2" 2, &) Li(n; 2" 2w, €) d2”

and, since K is in EPKlolgt [r, N] and £; in 27311( g %[y, N1, Proposition LTI
(iii) implies that Kj is a Poisson symbol in EPI_QO f M N]. In the same
way, since 9, K%(n;-) is in EP?(’iStO [r, N], we deduce that

. 0
0.K1(n) == [ 0K sz, 0, )L 2, ) "

is a Poisson symbol in 277;(7]'(’]?11‘“ [r, N], and, finally, using the first equation
(5:235) and recalling the definition of P in (5.2.12), we get that 82]({(77; )
is in EP}gg;lim [, N]. We conclude that the symbol £;41 defined in (5.2:36))
is in EP;?&T [r, N], because, by the first equation in (5.2.35]), the first term
in the expansion of (P#K? )p,N cancels out.

In conclusion, applying the composition result of Proposition B.ITI], we
deduce that the Poisson symbol K (n;-) = K9 + Zp L K1 (n;-) satisfies, by

OpPW (1 +1%)0? — 2in/€0. — €2)oOp™™ (K (152, 2',))
=6(z—2")+0p"V(L,) + R(n; 2,2")
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for some smoothing remainder R in ERKpo—Fll M N As OpBWV(L,) may

be incorporated to such a term (see the last remark after Definition B.110),
we obtain that the action of (ZI) on [°, OpBW (K (n; 2,2, -)) f(2') d2' gives
the first and last terms in (5.2.6]). This concludes the proof. O

5.3 Solving the Dirichlet-Neumann problem

The goal of this section is to deduce from the parametrix constructed in
section [.2]an expression for the solution of the Dirichlet-Neumann boundary

value problem (5.3.]) below.

Proposition 5.3.1 (Dirichlet-Neumann problem) Let p, N, K be given
integers. There is o > 0 such that, for any s €R, s’ € N with s—s' > o, there
is v > 0 and for any function n in CK(I, H° (T, R)) in the ball BX(I,r)

defined in (Z1.9), for any function f in the space N CF(I, Ess/i%%k) (with
E3, defined in (51.17)), any
g. € CK(ILH (T R)), g € CX(I, B \(T R)),
the boundary value problem
[(1+ 0™V (' @1))02 — 210"V (/' €)0. — Op®WV ()| u = f
(5.3.1) Ulseo = g4
8zu|z:71 = g-

has a unique solution u in & C*(I, Es_ék) Moreover, there are

e Poisson symbols ey (n;-) in EPKOO[T NJ], e_(n;-) in 277;(71(376[7“, N,
K(n;-) in EPKIOISt[ N] (which are those defined in ([5.2.7)),

e smoothing operators R, in ERKO *r, N, R_ in ERK’,)OJI “[ry N, Rins
in SR o™ [r, N,

such that for any f,g+,9— as above, the solution u to (2:31) may be
written as

(5.32) u=0p"V(es(n;2,))g4 + Op"V (e (n; 2,-))g-

s [ 0P =, N
~1

0
+ Ry(n;2)g9+ + R_(n;2)g9- + / ) Rint(n; 2, 2" ) f(2, ) d2'.

Moreover
/ /2

1+ /25

(5.3.3)  O:eq(m2,2,8)|:=0 = (tanh {)§ + ¢

modulo EF%OJ [r, N,aut].
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Proof: 1In the proof, we shall ignore the time dependence i.e. argue like if

K = 0. We look for the solution u of (531 as
U = E(taz)[g-‘mg—af] + w

where the first term is given by (5.2.5]) (and the first two lines in (5.3.2])),
and the remainder W satisfies, according to (0.2.6])-(5.2.7]),

[(1+0p" Y (0 @ )82 — 2i0p®Y (1/€). — Op®W (6%)|W

0
= —Ri(n;2)g+ — RL(m;2)g9- — / 1 R (n;2,2) f(2) d?

Wlaeo=0
OW|oe s =0

(5.3.4)

with R?2 (resp. R!, resp. Rl) in ER[}’HE*[T, N7 (resp. ERI}”’JII’TT, NJ,

int

resp. ER;(paLll’mt [r, N]). We rewrite the equation (5.3.4) as

(D2 4+ )W = LW + G
(5.3.5) W.—0 =0
DWWl 1 =0

with
LW = —0pBV (i @ 1) O2W + 2i0pBW (1 €)0. W

(5.3.6) 0
G = —R%(p;2)9+ — RL(n;2)9- — /1 Rl (ns2,2) f(2') d7.

By lemma [5.2.2] applied with n = 0, g4 = g— = 0, we may rewrite (5.3.3])
as

(5.3.7) (Id = M)W (z,x) = /01 Ko(z,2',D)G(%,-) dZ’

where Ky(z,2',€) € 750_ LIt i the Poisson symbol with constant coefficients
(in z) defined in (Z3]), and M = M (n) is the operator

0
(5.3.8) MW (z,z) ¥ / Ko(z, 7, Dy) LW (2) d2.
~1
In order to prove that W has the form described in the last line in (5.3.2)),

we have to invert the operator Id — M. This will be a consequence of the
next lemma. We denote by H the right hand side of (5.3.7]).

Lemma 5.3.2 (i) The operator M is bounded from the subspace

{we EY : w0 =0,0.w|.—_1 =0}
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to itself, and its operator norm is O g (|||l 7o) if o > 3.

(i) The right hand side H of (.371) has the same structure as G in
(5.30) except that the smoothing operators R%, R, Rl . are respectively in
SR N, SR [ NY, SR 1™ [r, N]. Moreover H|.—o = 0 and
0.H|,——1 =0.

(7ii) The operator M sends an expression of the form G in [5.3.0), satis-
fying G|.—o = 0 and 9,G|,——1 = 0, to another expression of the same type.
Moreover Z;ﬁol MP¥ sends an expression of the form G satisfying G|,—o = 0
and 0,G|,——1 = 0, to a similar expression, with R% in ER[_(?(’]?LI [r,N], RL
in SR [ N, Rl in SR ™ [r, N].

Proof: (i) By (53.8)) and the definition (5.3.6]) of L, we may write

0

(5.3.9) Muw(z,x) = / Ko(z,2', Dy)[02 w1 + Ozw] (2, -) dz'
-1

where

(5.3.10) wy =-0p"V (' @n)w, wy=2i0p"V (W w.

By Proposition 2.2.4] if w is a function of E? then w is in £ and ws in
ES7!, with HUJIHE;, + Jlwaf s < C’||77\|H(,||w||E§/ (if o > 2). Performing
integrations by parts in (E):igl), using the boundary conditions w|,—¢g =
d.w|,——1 = 0, and that K{ defined in (5.2.3)) satisfies Ko(z, 2", Dy)|,=—1 =
S(z,D;) and 0./ Ky(z,2', Dy)| =0 = 0, we rewrite (5.3.9]) as

(5.3.11) wy(2) — S(z, Dy)wa(—1) + /01 Ko(z, 7', Dy)D2wy (7)) d2’

0
—/ (0. Ko) (2,2, Dy)wa(2') d2'.
-1
We apply lemma B8 to Ky € ﬁal’int and to 0,/ Ky € 758’int, and lemma
to S € Py L= 1t follows from the previous bound on the functions
wi,ws defined in (5.3.10), that (5.311) belongs to EY,, with a norm con-
trolled from above by C||1]| g+ ||w|/£s,. Finally notice that the function Mw
defined in (53.8]) satisfies (Mw)(z,;c)\zzo =0, 0,(Mw)(z,2)|,=—1 = 0 be-
cause Ko(z,2',8)|,—0 = 0, 0,Ko(z,2',§)|.=—1 = 0 . This proves (i) of the
lemma.

(ii) follows from Proposition B.IT2H(ii)-(iii) as Ky is in 750—1,1111;'

(iii) Since G|,—9 = 0 and 9.G|.—_1 = 0 the action of M on G is given
by (53.I1), where we replace w; (resp. ws) by —OpBWV (' @ )G (resp.
2i0pBWV (1 €)G). If G has the form (5.3.6), Proposition G.II2H(i) implies
that the function wy (resp. wsq) is of the same form (B.3.6) as well, with
p replaced by p — 1 in the case wy (and actually with a cubic degree of
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homogeneity). Using (ii) and (iii) of Proposition [5.1.12] we conclude that
MG has an expression of the same form as G. Then we decompose

+00 N-2 00

Y MmG =Y Mm)*G+ Y MG

k=1 k=1 k=N—1
where, by what proved above, the first finite sum has the form of G in
(B36). To estimate the series, use that the operator norm of M(n) acting
on E% is Os(||nll-) (for some o independent of s), as we proved in item
(i) of the present lemma. Consequently 3720 | M(n)* sends an element of
R;(f) (’)ﬁ [r], R;(f) O’i’rllt [r] to an element of R;(f) é’iN[r], R;(f) (’)ir]l\t,[r], using estimates

, (5.133), the above continuity property of M (n) and the fact that

we may choose the numbers r(s) in (ii) of Definition [5.I.J0 small enough. O

For ||n]| - small enough, lemmal5:3.2} (i) implies that the operator Id—M
is invertible, and, denoting by H the right hand side of (5.3.7]), we may write
the solution W of (5.3.7) as the Neumann series

+o0
(5.3.12) W(z,x)=H+> M'H.
k=1

End of the proof of Proposition [5.3.1: By lemma [(.3.2}(ii)-(iii) the function
W(z,z) in (312 may be written as

0
Ry(n;2)9+ + R_(n; 2)g— + / ) Rint(n;2,2') f(2') d’'

in (53.2) for suitable smoothing operators Ry in YR [r, N], R_ in
SR [ N, Rin in SRS ™ r, N].

Finally the expansion (B:3.3) for e; = C+ e, ; defined in (2Z4), follows
by (23]) and (52.8]). This concludes the proof of the proposition. 0

We shall need in the next chapter a variant of Proposition [5.3.1], when
one solves, instead of (.3.1), a differential boundary value problem. Let us
introduce first a class of operators playing the same role, for boundary value
problems, as the operators of Definition 2.2.5l In the sequel, we shall con-
sider functions 7 with values in R as functions with values in C?, identifying
n to the vector [m of C2.

Definition 5.3.3 Let~m be in Ry, K;pinN withp<N,r>0,j€N.
(i) We denote by N the space of (p + 1)-linear maps of the form

(n17"'777p7(b) _>M(7717---777p)q)7

symmetric in (m,...,np), defined forny,...,np in H>®(T', C?), with values
in the space of linear maps from EX to itself, such that, for some p > 0,
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for any (n1,...,np) in H®(TY,C*P, any ® € CK(I,EY), any no,npy1 in
N*, any n' = (n1,...,np) in (N)P, any j in N,

(5:3.13) [ Tlong M (T, 71, - -+ Tl 1) i @] 0
< Clng + -+ npp)™ WG, (m, - .. 1p) G0 1 (@)

(where we used notations (Z1.3) and (51.29)). Moreover, we assume that
condition (ZZ51)) holds.

(When p = 0, the above conditions just mean that M is a linear map
from E to itself, satisfying estimate (5.3.13) and (2.2.511)).

(i1) We denote by NiZ; [r] the space of maps (n,®) — M(n)®, linear
in ® such that there are og,u in Ry so that, for any o > og, there is
r(0) €]0,7[, and for any n € BE (I,r(c)) N CE(I,HoH#(T',C?)), any ® in
CE(I, E7), one has for any 0 <k < K, any 0 < 3" < j, bounds

(5.3.14)
OO e < Co 5 (002 0G5 0T 01
K+ =k
+ G (77a )gk// 1( )) .
(iii) We denote by XN ; [r, N] the space of sums
(5.3.15) Z My( n) + My(n)

where My is in J\Z;n forq=mp,...,N =1 and My is in J\/}gj,N[r].
We denote by E./\/KJJ)[’I“, N] the union over m > 0 of the preceding spaces.

Remarks: e If M is in ./\7;” then M(n,...,n) is in N, [r] for any r, any
j. Indeed, the fact that condition ([Z:2.51]) holds for elements of ./\~/;§” implies
that, if (5.3.13) does not vanish identically, then |ng — n,11| < C|n/|. Using
this inequality, one checks that, if M is in J\Z@n, then M(n,...,n) satisfies
bounds (53.14)) for any j if o is large enough. Actually, if the largest
frequency among no,...,npy1 is ng or npyq, and if it is much larger than
ni,...,Nnp, then both of them are of the same magnitude, and one will get a
contribution to the left hand side of (5.3.14]) bounded from above by the last
term in the right hand side. On the other hand, if one among n1,...,n, is
larger than all other integers among ny, ..., np41, one will get a bound by the
first term in the right hand side of (5.3.14]), the last factor in that expression
gg—w(m, ..., Mp) (with a p possibly different from the one in (5.3.13])) coming
from that special index. Consequently M(n,...,n) is in N[%,p[r] for any r
and any j.
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In particular, an operator M(n) of YN'g ; plrs N] sends a couple (1, ®)
where 7 is in BE (I,r(0)) N CE(I, Ht*(T!,C?)) and ® in CX(I, E7) to a
function M (n)® in CK(I, E7TT).

o If M(n) belongs to N7 ;[r] then the series Yy, M(n)* defines an
operator of ./\/IO(JJ)[’I“]. Indeed, given M(n) of NI()(,]'J[T], iterating estimate
(B314) with p =1, m = 0, one gets by induction, for k < K,

1o [M () @]|| -
Ej
’ /-1 ~ .
X (G () G ()G (,1)
k' +k"=k

r S (3*’41(00)Z

3
2

+G7h 1) G (@.0)
&1\ k1%

for some constant Ax depending only on K, j, and some o, depending on
o0, . If we assume that G2, (n) = Inllx,0; < 7'(c) for a small enough

r'(o), we conclude that the series 3y, M (n)" satisfies estimates of the form
(53.14) (with m = 0) and thus defines an element of NV, IO(, iplr]

Let us consider a variant of the above spaces, obtained replacing in
BE313), (3I4) the function ® by Wm for some function 1 de-
pending only on x. Since %ﬁ?)g) is in Py (see (BII6)), lemma 5.1
implies that, for any 7,

cosh((z +1)D)

3.1
(5.3.16) cosh D

v <Clwly.

The following definition of families of operators sending functions of = to
functions of (z,x) is suggested by the estimates obtained plugging (5.3.16))

inside (0.313), (5.314).

Definition 5.3.4 Let m be in Ry, K;p in N withp < N, r >0, j € N.

(i) We denote by ./\71‘,9’”1 the space of symmetric p-linear maps of the form
M1y -y mp) — M(n,...,mp), defined on H®(TY,C?)P, with values in the
space of linear maps from HOO(']I'l,(C) to £, such that there is 1 > 0 and
for any (n,...,mp) in H®(TY,C2), any ¢ in H*®(T',C), any no,npy1 in
N*, any n' = (n1,...,np,) in (N*)?, any j in N,

(5'3'17) HHHOM(Hnlnlv oo 7an77p)an+1w”E?
< Cno + [ + np0)™ 101G, (01, - - 1p) G 1 (¥)

and such that condition (2.2.71]) holds.

(When p = 0, the above conditions just mean that M is a linear map

from H®(T',C) to EX, satisfying estimate (5.3.17) and (Z.251)).
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(ii) We denote by NKJN[ 1] the space of maps (n,v) — M(n)y, linear

in ¥, such that there are o9 and i in Ry so that, for any o > og, there is
r(o) < r and, for any n in BE(I,r(0)) N CE(I, Ho*H(TY, C?)), any ¢ in
CK(I,H?(T',C)), one has for any 0 < k < K, any 0 < j' < j, the bounds

(5.3.18)
F MV o 3o SC 3 (G na .G 0,05 16, )

j/ k/+k// k

+ G (0,161 (1)),

(7ii) One denotes by E./\/'ij[ N] the space of sums (Z:313) with M,
z’n./\/qamforq:p,...,N 1, and My mNK]N[ r].

Remarks: e By (2.3.10)), the operator % is in N2, and, if M (n)
is in XN ; ,[r, N] then the operator

cosh((1+ z)D)

v = M) cosh D

G
is an element of E/\/K]p[r N].

e Composition at the left of an operator of SN2 %3l N] by an operator
of SN% jolr; N] gives an clement of E./\/Kj L N

e It follows from estimates (B.3.I7), (B3I8]) that if M(n) is in the
space E/\/K]p[ N], then, for any 0 < jo < j, the operator 92°M(n) is
in SO0 [ N

K,j—jo:p
e If one multiplies at the left an element of the space XN [r, N]

(resp. E./\/'K]p[ N]) by a smooth function of (77,77’, ..,n©), defined on a
neighborhood of zero, that vanishes with order p at n = 0, one gets an
element of the space E./\/K]p+p [r, N] (resp. E./\/ijﬂ) [r, N]).
o Let (©,9') — a(®, ?';2,2,&) be an element of X1  ; [B, 7, N] defined
in Definition 5.1.2] linear in @’ (see the remarks after Definition [5.1.2]), and
M(n) be an operator in SN K. 1[ N] for some m/. Then, for any function
¥ (x), the map

(®,¢) = a(®,¢; 2,2,8) = a(®, M(n)y; 2, x,£)

defines an element of ¥T'g ; , +qlB,7, N|, with linear dependence in .

o If M is in ./\~/'pa’m then M(n,...,n) is in Nla(’gp[r] for any r > 0, any j.
In particular, an operator M(n) of XN'¢ ; [r, N] sends a couple (n,) where
n is in BE (I,7(0)) N CE(I,H (T, C?)) and ¢ in CX (I, H?(T',C)) to a
function M (n)y in CE(I SETTT.

o If M is an operator in SN2 %04l N| then it has the form (5.I.77) and

(BIT8) holds (with m replaced by m + w) as well as (BL79) (with some of,
large depending on K and m).
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e Consider a smoothing operator R(n) in ERI_(pojp[B r, N] (see Defini-
tion B.1.3]) and let M(n) be in SN Ko 7 Irs N1, Then the composed operator

R(n) o M(n) defines a smoothing operator of ERKpJ;Z)JFq[B,T, N] for some
m’ > m, acting on a function ¢(x). The argument is the same as in Propo-
sition 2.43H(ii)-(iii). Here we adopt the abuse of notation introduced in
the last remark after Definition [5.1.3] to denote these classes with the same
notations.

o If R(®, ') is a smoothing operator of YR/, ; [B,r, N| which is linear
in ', and M(n) in E./\/’K]q[r N], then R(®, M(n)v) is a smoothing oper-
ator of ERKpgr;r;+q[B,r, N] for some m’ > m, and using again the abuse
of notation introduced in the last remark after Definition E.1.3l The proof
is the same as for Proposition 2.4.3}+(iv), composing as above (E.II0) and
31D, or (GLIT) and (G3IS).

e Let M(n) be an operator in ENKO 1lry N — 1], for some m. Then the

1
para-product operator OpBW (M (n)1) defines an element of EN%?OJ[T, N,

linear in v, i.e. the nonhomogeneous part of OpBW (M (n)i))¢ satisfies esti-
mates of the form (5.3.I8]) (with m = 1/2 and j' = 0), where the right hand
side is replaced by

(5319) Z (gZ/O,N,Q(U,t)g (w7 ) O-+M( ) k”l(w7 )
k'+k"=k
+ Gy (it )go+p(¢7 t) k”l(w t)
+gk/N ( 7 ) k/71(1/1,t)ggu,1(1;,t)) .

We write the reasoning just for the nonhomogeneous term M in N Ia(’gn N_1l7]-
At each fixed z € [—1,0], OpBW<(M(n)w)(z; ))1[1 is the para-product of the
function (M (n)1)(z;-) by 1. Consequently, for any o,

(5.3.20)  [|9FOp™ Y (M (m)) () ¥l 030 <

C > O I )) (2 ) g 10820 oy

k1+ko=k

By (5318) (with N — 1 replaced by N — 2 and N by N — 1), we may find
some oy, large enough (depending on o¢, m and K) such that, for any z in
[—1,0], any 0 < k; < K,

108" (M () (25 )l <€ D Gy (0,)Gin, (1)
k! k" =k
As a consequence, (5.3.20)) is bounded by
c Z g]j?,Nfl(’r}at)ggf,l(w’t)ggg,l(qz’t) 9

k1+ko=k



188 CHAPTER 5. DIRICHLET-NEUMANN PROBLEM

uniformly in z. Therefore ||0FOpBW (M ()9 || o g is bounded by the
0
right hand side of (5.3.19) (Wlth O'O instead of gp). Recalling the continuous

3

embedding of FO ~2* into Eo 33k (see the first remark after Definition
B.L.6) we have proved that OpBW (M (n)i))1) satisfies an estimate of the form
(53I8) with m = 1/2 and j' = 0, as claimed.

Proposition 5.3.5 LetK beinN, N inN*, m >2, r>0,jinN. Consider
an operator M(n) of ENK] ([r,N], and operators G¢(n) of ENKJ 1y N,
(=0,1,2. Assume also that we are given a function Sy (n,v) of (z,z) € B,
supported for z € [—1, —%] and such that, for any large enough oqg, for any
J, there is some o(, > 0 with, for allk =0,..., K,

(5.3.21) Zua’ﬂ/sN O iy <C > gk, (n, )gk,,l(w, t).

k'=0 k'+k"=k

Then, eventually increasing og, for any o > oy, there is (o) < r, such that
forn in BE (I,r(0))NCE(I, HTH(T', C?)), for+ in CE(I, H(T!,C)), the
elliptic problem

(02 +02)® = Go(n)® + 0:[G1(n)®] + 92 (G2 (1) ®] + M (n)¢ + S
(5.3.22) Do =1
0.®|,—_1 =0

has a unique solution ® in CX (I, E;7m+2). If M =0 and Sy =0, then ®
is in CE(I, EY). Moreover ® may be written as

- cosh((1+2)D)

(5.3.23) b= —— Y+ My + Sn(n,9)

where M (n) is some operator in EN%?I%T, N] and the function Sy is sup-

ported for —1 < z < —% and satisfies estimates (2.3.21]) with E]JraO 2k re-
placed by E]]~+2Jr °"2% i the left hand side. Moreover, if Sy = 0 in (5.3.22),
then Sy = 0 in ([(5.3.23) and if M = 0, then M(n) is in EN?(’?J-J[T, N].

In order to prove the proposition we need the following lemma.

Lemma 5.3.6 Let Gy(n), ¢ = 0,1,2, be operators in E./\/'Kj I, N], and n
a function as in the proposition. Conszder the operator
(5.3.24)

Mol = [ Koz, D) [0 1Go)e] + 0.[C ()] + Gol)a] @

where Ko(z,2', D,) is defined in (2.2.3), acting on functions ® satisfying
(5.3.25) Bl.g=0, 0,P,__1=0.
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Then My(n) is an operator of E./\/'%J,l[r, N]. Moreover we may express
My(n) from a distributional kernel Ki(n; z,2') (with values in operators) by

0 _

(5.3.26) My(n)® — / Ra(n: 2, 2) (<, ) d2’
-1

and, more generally, for any n € N

(5.3.27) n)"d = / nw(n; 2,202, -)d2 |

where K, (n;2,2'), n > 2, are defined iteratively by

0

(5.3.28) Kpi1(n;2,2) :/ Kn(n; 2, 2" Ky (n; 2", 2') d2"

-1

and the following estimates hold: There are oy > 0, u > 0, o1 > 0 with
oo = 01 + p, and for every £ in N, any o > o0g, a constant Cy, > 0 such
that for any n in N*, for any 0 < ' < /{, for0 <k < K,

k , 0
k'—=0 -1

<0G ) Y U T )G (@, )

k' +k'"=k

Eo+€’—%k/
J

+ g (777 )gk” 1( )} .

Proof:  Since ® satisfies the boundary conditions (5.3.25]), by (5.3.9) and
(E311) we may write

(5'3'30) MO(”)(I) = GZ(n)CI)(Zv ) - 3(Z7Dm)[G1(77)‘I)(—17 )]
0
+ [ Koz, D) [DAGam®(E ) + Coln)(=, )] d

0
—/_132,1(0(2«, 2 D) (G () (2, )] d.

Since Ky is a Poisson symbol in 756 l’int, lemma [B.T.8 implies that the oper-
ator

0
(5.3.31) U— /1KO(Z’ Y, D,)U(2)dZ maps ES — Ef”,

and, similarly, since 9, Ko is in Py"™, U — f?l 0. Ko(z,2', Dy)U(Z") dz" acts
from EY to E]‘?H. It follows that (5:3:30) defines an operator of SN ; [r, N].
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Remark that (5.3.30]) provides an integral expression of the form (5.3.26l),
with the operatorial valued kernel

(z = 21)Ga(n) + 02"+ 1)S(2, Dy) 0 G (n)

(5.3.32) Ki(n;2,2)=9¢
', D;) o [D2G2(n) + Go(n)] — 82 Ko(2, 7', Dy) 0 Gi(n).

+ KO(Z7 z

We claim that K (n; 2, 2') satisfies for any 0 < k < K, 0 < ¢’ < ¢, some
@ >0, some o1 > 0 and any o > o1, the estimate

k 0 _
(5.3.33) Z af /1K1(77;z,z')(z—z')£<1>(z', N dz e
k'=0 - j
i 5 j o 50,7
< Bero Y (GLE TG (@, 1) + Gl (0, )G (@,)]

k' +k=k

for some increasing sequence of constants B,y Actually, since Ga(n) is in
E./\/'%J’l[r, N], the kernel §(z — 2')Ga(n) satisfies (5.333)) when ¢ = 0, as
follows by (5.3.14)) where we replace o¢ by o1. The estimate (5.3.33]) when
¢ > 0is trivial. Also §(z'+1)S(z, D,)G1(n) satisfies (53.33): Actually since
S(z,€) is in 750_1’_, the symbol (z 4 1)/S(z,¢) is in 750_1_&_ (see remarks
after Definition [[.1.4)), lemmalE. L9 implies that the operator (2+1)*S(z, D)
sends H°~! to EZH. Using that G1(n) satisfies (5.3.14) with m = 1, we
deduce that §(z" + 1)S(z, D, )G1(n) satisfies (5.333]) (with ¢/ = 0).

Moreover, since K is a Poisson symbol in Py LIt then (2 — 2/)( K is in
Py 176t (gee remarks after Definition [5.14), and lemma 518 implies that
the operator

0
U— / (z— 2 Ky(z, 2, D)U(Z, ) d'

-1
acts from E7 to E}’”‘Q. Similarly, since 0, Ky is in 758’int, the operator
U— fgl(z — N0, Ky(z, 2, D,)U(Z,-)dz" acts from E7 to E;MH. Using
that Ga(n) is in EN(}(JJ[T, N] and G1(n) is in E./\/'}(J-,l[r, N], we deduce from
(5314 that the two integral terms in (B.3.30) may be written under the
form (5.3.26]), with a kernel given by the last line in (5.3.32]), satisfying the

estimate (5.3.33).
The estimate (5.3.29) for n = 1 follows by (5.3.33)), setting

(5.3.34) Cro = 3K 4+ 1)Byys
and o9 = 01 + p where o7 is the index in (5.3.33)).

The expression (0.3.27) of My(n)"® for n > 2 follows by the formula
(E326) of My(n) and the iterative definition (53.28)) of K.
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Let us prove by induction (5.3.29]) for any n. Write

0 ~
An+1 o /1 Kpi1(n; 2, Z/)(Z - Z,)E‘I)(Z/a ) d?’

= 2 () [ Ralma =)

0 ~
X (/ Ki(n; 2", 2) (2" — z/)h@(z/,-)dz/)dz”
-1

We now apply the inductive estimate (5.3.:29]) to the first integral kernel.
For any ¢ < ¢, we decompose ¢/ = (¢/ —0})+ 0] with ¢ < {1, 0/ =0}, <l—1,
and we have apply (5:3.29) with o (resp. ¢') replaced by o+ ¢] (resp. ¢’ —¢}),
yielding

k
(53.35) > [0F ALl B s <Y (&) > Gera(n £
k=0

<t K4k =k
so4+-0"
X Cp oy G0 T OGERA(AT 1) + G20, (0, )G (AT )]
Next, according to (5.3.33) with o replaced by o1, ¢ = 0, £ = {1, and since
09 = 01 + i, we bound

k//
Gil(Af ) = > ||a’f”’Afl|| S
k/// 0

<2Bs 44 Z gk” ( ’t)glj’l’ﬂ((1> t)

k//+k// k//

and according to (5.3.33)) with ¢ replaced by ¢} and ¢ = /1, we get

k//
+0405 40 " e
ggﬂ 11J(A11,t Z Hat AlH cr+l’ S
k/// O
+e4+
< Bore Y [9;2/,1 " (0, )Gy (®,1)

k:'ll-l—k:g:k”
+ 078 (0, )G (@,1)].

Plugging these estimates inside (£.3.35) and using the definition of Cy, in
(5334)), we obtain that, for any 0 < k < K, the left hand side of (5:3.30)) is
bounded by

2 (3K +1)Boyd)" (K + V)Boye Y [3605 (. t)G71 (@, 1)
Kk =k

+ G20 (0, )G (@,1)] 670 (n, )"
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which implies (5.3.29) at rank n+ 1. This concludes the proof of the lemma.
g

cosh((1+2)D)

Proof of Proposition[5.3.5: Since —_ 55

1) is the solution of
(83‘{'83)(1) =0, q)|z:0 :¢, 8Z(P|Z=*1 =0,
the solution ® of the problem (5.3.22) may be written as

cosh((1 + z)D) ~

o = P
cosh D v+e

where é satisfies

(02 + 02)® = Go(n)@ + 0.[G1(n)®] + 2 [Ga(n)@] + M(n)y + S

(5.3.36) D=0
8zi|z:71 =0
where
- def cosh((1+ z)D) cosh((1+ z)D)
M) = Gon)— 7 ¥ +0: {Gl(ﬁ)ww}
h((1 D -
#02|Gal) TPy oy,

By assumption M (n) is an operator in N’ ?(’r?l[r, N] for some m > 2. Since
Gy(n) are operators in E,/\/%{ﬁl[r, NJ], ¢ = 0,1,2, the first and the third
remarks followirig Definition m imply that M(n) is in SN ?(’?_271[7“, NJ.
Notice that, if M(n) = 0, then M(n) is in EN?(’2];2 ([, NJ.

Notice also that since %1}:?)5) is in Py (see (BLI6)) and the function
¢ € CE(I,H(T',C)), then, lemma FL9 implies that ww is in
Cf(I,E;’), for any j.

By lemma applied with n =0, g = ¢g_ =0, and

f = Go(m + 0.[G1(n)@] + 82[G2(n)@] + M(n)Y + S ,

the function ® solves (5.3.36) if and only if
N o [0 N N
(1= Mon)@ = F < [ Ko(e, ', DL + S )]

where My(1)® is defined in (5.3.24)) and Ky (z, 2/, D,) in (5.2.3). Notice that
F satisfies the boundary conditions (5.3.25]). Write

(5.3.37) F =M () + /_01 Ko(z,2', Da)Sn (0, 4)(2') d2’
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where
~ 0 ~
(5.3.38) Mi(n)y = /1 Ko(z,2', D) M () dz2'.

We claim that, even if M(n) is in EN?(’ZL,ZI[T, N1, the operator M;(n) be-

longs to XN ?(’7?12[7“, N]. Actually, this follows from the fact that, by a direct
computation, recalling (5.2.3)),

0 0
82/ Ko(z,72',D)U(2") d2’ :/ K{(z,7',D;)D,U(2")d?
-1 -1
with a symbol K in 756 l’int, and, according to (5.29)),
0 0
83/ Ko(z,2,D)U(Z)dz = / Ko(z,2',D,)DXU(Z)d' + U(z).
-1 -1
As a consequence, to estimate dJ-derivatives of M;(n)y in (5338), we need
only &J~2-derivatives of M (n)y. Recalling (5.3.31) and Definition (5.3.4] we
deduce that M () belongs to EN%’TZ?[T, N]. If M(n) = 0, then M (n) is in

EN?(’,Q]'—ZJ[T? N], and Mj(n) is in E,/\/%%ﬂn ]Y]
We shall solve the equation (Id — My(n))® = F by the Neumann series

(5.3.39) o= i My(n)"F .
n=0

Since the operator My(n) is in E./\/?(J,l[r, N] as stated in lemma [(.3.6]
the second remark after Definition (.33 implies that the Neumann series
S00 o Mo(n)™ defines an operator of YN ?(,j,o[ﬁ N]. By the second remark
after Definition [(.34] it follows that the composition

(i Mo(n)") o M1 (1)
n=0

with the operator M;(n) € EN?;Z%?[r, N] in (5337)-(5.338]), gives an op-
erator M(n) in EN?{?IQ[T, N] as in (5.3.23). By the sixth remark after
Definition (£.34] the function M ()t is in Cf(I,E;’_m“). If M =0, then
My (n) is in E/\/‘?(’%J[r, N], and the operator M (n) is in SN ;,[r, N], thus
M (n)y is in CE(I, E?). Summarizing, if Sy = 0, we have proved (5.3.23)
with Sy = 0.

We are left with (5.3.39) where we replace F' by the integral term in
(B337), that is

0o 0 B
(5.3.40) > Moo ([ Koz, Do), 0)() d')
n=0 -
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By (53.27)) we may write
n)"e = / n(m;2,2)0(2, ) d’
so that, if we define K (; z,2') = S on>0 K,(n;2,7"), we have

(5.3.41)  (Id — My(n)) 1@ = ZMO )" o = /Kn,z () dY,
n=0

the convergence of 3", > K,, following from (E329), if we assume that 7 is
in BE (I,7(c,¢)), for a small enough r(c,£). For such 7, we get therefore

3
U+e—§k

’ 0 ~
oF / (z— 2K (n; 2, 2)®(2) d2’
-1 B
J

o+l+ 500,]
S Cé,a Z [g “(77’ t)gk’g,{(q)’ t)
k' +k"=k

(5.3.42) zk:
k'=0

+ G0 (0, )G 1 (@,1)].
By (5:341)), we decompose the term (5.3.40) as I + II where
(5.3.43)
0 r0 _ ~
I= H(z)/ / K(n;z,2")Ko(2", %', D)SNn(n,¥) (7, ) d'd2"
-1J-1

0 0 _ _
I = (1—6’(2))/1 /1 K(n;2z,2")Ko(2",2',D)SN(n,¥)(2,-) d2'd2"

0] and vanishing close to [—1,—1].

for § € C§°(R), equal to one on [—%, 1

Expression 17 is supported for —1 < z < —1/8 and may be written as

0 ~ ~
9 [ Rz )3nm o)) de

with the new kernel

0

Riiz,) = [ K22 Ko, D)ds"
—1

§ ag
that satisfies (5.3.42]) with E;TH 2 replaced by E; 2SR i the left hand

side (as integration against K, gains two derlvatlves). Applylng B342)
with £ = 0 and o = j + 0¢, we obtain that

k
% j+00+ 500,7 ( &

> lloFII(e, ) g0t <C Y (G (G (S, t)

— kl+k// k

G (0. )G (S ).
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If we bound QUO’J(SN, t), gJ+UO’J(SN,t) by the right hand side of (5.3.21))
(recall (51:29)), we obtain that IT satisfies a similar estimate for a conve-
nient of, (depending on j,u). Thus II contributes to the term Sy in the

right hand side of (5.3.23)).
Finally we consider the term I in (5.3.43))

1= /0 0(2)K'(n; 2, 2")Sn (0, ¥)(',-) d' .
—1

Using that the support of 6 and the support of SN(,Z’; -) stay at positive
distance (recall that Supp (0) C] —1/4,0] and Supp (Sy) C [-1,—1/4]), the
integral I may be written as

0
(5.3.44) / (z—2)'K'(n;, 2,2 )w(z,2)Sn (2, ) d2’
—1
for a suitable function w(z,z’) in C§°([—1,0] x [—1,0]) that vanishes close
to z = 2/. By the density of C§°(X) ® C§°(Y) in C§°(X x Y) we write
w(z,2) as a rapidly convergent series 3, wg(z)w? ('), with w’ in C§°(R).
This allows us to apply the estimates (5.3.42)) for (z — 2/)K’ (with o = o¢)

to (z — 2/)'K'w(z,7') in (5.3.44). In conclusion we obtain

T +6+ 500,§ (&
ZH@ ol 00+z,_k/<0 S G 0G0 (S t).
k' k" =k

Plugging (5:3.21]) in the right hand side of the above inequality, and choosing
fsothat o —m+2 <og+f<oc—m+1, we see that we obtain an estimate
of the form (B3I8), with o replaced by some convenient of, and m — 2
instead of m. Consequently, we have shown that I is in CX (1, E;.’_mH) and
it contributes to the term M (1) in the right hand side of (5:3.23]) (actually
to its non-homogeneous term in N 2;’1&2 [r]). This concludes the proof. O
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Chapter 6

Dirichlet-Neumann operator
and the good unknown

6.1 The good unknown

We introduce here the good unknown w in terms of which we shall express
the water waves equations. We follow mainly the approach of Alazard-
Métivier [7], Alazard-Burqg-Zuily [2] 3].
Recall that, given an integer K, a real number o large enough, a function
n of CK(I, H?(T',R)) with ||n(t,-)||z~ < 1, we have defined in (LILI) the
open set
O = {(w,y) ET'xR; —1<y< n(t,x)}

where we take the depth = 1. In the sequel we identify CK(1, A (T, R))
with the subspace of C% (I, H°(T!,C?)) of vector valued functions of the

form [Z] with 7 real. We shall always assume below that 1 belongs to

BE (I,r(0p)) for some given og large and r(og) > 0 small.
Let v be in CX(I, H°(T!,R)) and consider the elliptic system (at any
fixed time t € 1)

A¢(z,y) =0 in Q4

(6.1.1) Oly=n(t.a) = V(¢ )
¢
8_;|y=71 =0.

Define new coordinates (x, 2) by y = n(t,z) + 2(1 + n(t,z)) so that, in the
new coordinates system, the closure of €2; becomes the strip

B={(z,2);2eT, -1<2<0}.
We consider the function ¢(z, ) defined for (z,%) € B by

(6.1.2) o(z, 2) def oz, n(t, ) + 2(1 +n(t, x))).

197
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A direct calculus shows that ¢ solves the elliptic problem

(6.1.3) Plz=0 = ¥(t, )
0:|5=—1 =0
with
Ga(me = —(1+2)* %
(6.1.4)  Gi(mp =201+ 21 +n)dp + (1 +2)[20% + 1" (1L +n)]p
Go(n)e = —2n+n")020 — 20 (L + 10w — 1" (1 +n)g.

According to Definition (£33l the operators Gy, £ = 0,1,2, are sums of
elements of ./\7124 . By the first remark after Definition [£.3.3] we may regard
Gy as operators of N 12{3{1 [r] for any j. Then we apply Proposition B.3.3]
with an index j that will be chosen later on large enough depending on
N (see lemma BIT) and with Sy = 0, M = 0. We deduce that there
exists o9 > 0 and, for ¢ > 09, some (o) < r, such that, if n belongs to
BE (I,r(0))NCE(I, H? (T, R)) and ¢ in CX (I, H° (T',R)), equation (6.1.3)
has a unique solution ¢ in CK(I, E7), that may be written, by (5.3.23)), as

cosh((2+1)D)
cosh D

for some M (n) in EN%?]»J[’I“, N].

Remark: The equation (G.L3]) satisfied by the function ¢ is a linear ODE
in 0; with wvariable coefficients in Z. It is technically convenient, for the
constructions to follow, to have instead a solution of a linear constant coef-
ficients ODE. For this reason we introduce in (B.I0) below the function ®
that will satisfy the system (G.I.IT).

We consider first the function ¢(x, z) defined from ¢ through a change
of variables that flattens the free boundary of €, but that modifies the
bottom, namely

(6.1.5) o= Y+ M(n)y

’1+77(t,3:))

which is well defined for —(1 + n(¢,z)) < z < 0. Notice that ¢(z, z) solves
the elliptic equation

(6.1.6) o(z, 2) def Q(x, z+n(t,z)) = g(m

0? 0? 0? 0
6.1.7 — +(1+n*) == -2 —n'=—le=0
( ) (8:62 T+ )822 T ozaz " 8z>(p
and satisfies the Dirichlet boundary condition at the top ¢|.—o = (¢, z).
Then for —1 < z < 0 we also consider the function

cosh((z +1)D)

1. =
(6.1.8) po(wz) = TR

(8
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which solves
(6.1.9) (2 +8)po=0 in B

and satisfies the Neumann boundary condition at the bottom %‘?| =—1=0.

Finally, taking a cut off function x in C§°(R), supported in [—%, %], equal
to one on [—1, 1] with values in [0,1], we define the function

= def
(6.1.10) D(x,2) = x(2)p(z,2) + (1 — x)(2)po(, 2).

Notice that, if [|n(t, )|z < 3, the function ¢(x, 2) in (6.1.6) is well defined
for —1/2 < z < 0 and therefore ®(x, z) is well defined for z € [—1, 0].

Lemma 6.1.1 Let the index j chosen before (61.3) satisfy j > N+5. Then
the function ® satisfies the system

(6.1.11)
82 82 / 82 /! 8 z "~ o
(a s+ (L4772 )az2 =2 g = £><I> = M)y + Sn(n, )
(i)’zzo = ¢
0.®|.—_1 =0

where M(n) is some operator of E/\/K41[r N] (for N an arbitrary given

integer) and where SN(n,¢) is linear in 1 and, for any large enough og,
there is o(, such that, for any 0 < k < K,

(6.1.12) 107 Sn (0, ) 00+2_ak§0 S G NG (1),
K/ =k

Moreover M(n)y and Sy(n,v) are supported for —1 < z < —%.

Proof: By the definition of ® in (ELI0) and 6.1.7), B-LJ), it follows that
(6I111) is equal to

(6.1.13) f=[(1+1)02 = 21/0,0. — n"0., x(2)] (¥ — o)
+ (1= x(2)) (12020 — 211 9402100 — 0 D=0

Moreoverj is supported for —1 < z < —% because, for —1/4 < z < 0, the
function @ is equal to ¢ which is a solution of (6.L7]). Let us check that f
may be written as the right hand side of the first line in (G.ILI1]). Applying
Taylor formula to the last expression for ¢ given by (6.1.6]), we have

(6.1.14) oz, z) Z el ) (- Lx)))p

1+n(x

1 _ Azn zn(z) \N
+m/0<1—A>N MY (s ) M)
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We express in the above formula ¢ using (G.L5]). The first term in (G.1.14),
corresponding to p = 0 in the sum, is equal to

cosh((z +1)D)

D Y + M(n)y = @o + M(n)yp

£:

where M (n) is in XN ?(’Oj 1lr, N. By the first, third and fourth remarks after
Definition [5.3.4] each term

1 zn(x) \p cosh((z + 1)D
( 77()>8p( (z+1)D)

I\ T4n(x)) 2 cosh D * M(n))¢

of the sum in ([EITI4), for 1 < p < N — 1, may be written as the action of
an operator of YN %g;l[r, N] on 1, if the index j chosen before (G5 is
taken large enough rélZ‘:Ltively to N,eg. j>N+4.

In the same way, in the Taylor remainder in (G.1.14]) the argument of
the integral will be a path of operators in EN%]gl[r, N]if 7 > N +5. Thus
using (5.3I8)) (with m replaced by N and o lafgé depending on N) we see
that the Taylor remainder in (6.1.14]), and its 0, derivative, satisfy (G.I112]),
for some o, depending on N and oy.

Collecting the previous arguments we may write

¢ — o =Mn)Y+ Sn(n,¥)

where the operator M(n) is in E./\/?(’f;;l[r, N] and the functions Sy (1, ),

9.5n(n, 1) satisfy (GII2). Clearly Sy(n,v) is linear in v. Consequently
the first term in the right hand side of (61.I3]) may be written as

(140302 = 20/ 0,0. — 10. . x(2)] (¢ — o) = M(n)t + Sn(n, 1))

where M(n) is in TN ?(’]Xl[r, N] (use the third and fourth remarks after
Definition 5341 and that the commutator [022, x(2)] is the first order op-
erator (9,.x) + 2(0.x)d.) and Sy(n, ) satisfies (ELI2), as claimed in the
statement of the lemma.

Finally, since the operator C()Shc(()(:ih—%)m is in ./\~/'0a 0 (recall Definition B.3.4¢
(i)) we conclude that the second term in the right hand side of (€.I.13]) may
be written as

cosh((z +1)D)

whD V= M(n)y

(1- X(Z))(nl283 — 210,09, — 77"@)
where M (7) is the sum of homogeneous operators in J\~/18’2. |

The good unknown that allows to express the capillarity-gravity water
waves equations without artificial loss of derivatives is defined as

(6.1.15) w S |, = v~ Op"V(B)n
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where

(6.1.16) LS 0pBV(0,8)y, B=0.9|.—,
® being the function (B.LI0). To obtain an expression for w in terms of
(n,%) alone, we need to deduce from (6.1.11]) a paradifferential equation
satisfied by @ (see Lemma [6.1.3]).

We shall use the following paralinearization lemma for the product of p
functions (in the case p = 2 it gives the usual para-product decomposition
formula).

Lemma 6.1.2 (Para-product) Let uy,...,u, be p elements in HJ(T*, C),
with o > % Then we may write

p
(6.1.17) wy---up = Z(OpBW(ul sl up)ug + Rj(ug -Gy up)uj)
j=1

where R; is in 7?,;_’)1 for any p, and where i; means that the j-th term is
excluded.

Proof: Let x be an even function in C§°(R), x = 1 close to zero, with small
enough support. We decompose the product of p functions as

(6.1.18) wy---u, = i Z Hx(%) f[ I, ue

j=1ni,..,npEN* i#j I 4=1
P
+ Z O(ni,...,np) H I1,,,up
N1,...Np /=1
where
P n;
O(ni,...,np) =1— an(—)
j=lij Y
is supported for max(ng,...,n,) ~ maxa(ni,...,npy). As a consequence,

recalling Definition 2:2.3}(i), the last term in (6.LI8]) contributes to the
smoothing operators in 7?,; ?. in the right hand side of (G.LI7).

All the terms in the sum (G.I.I8]) are the same, up to permutation of the
indices. The one corresponding to j = p,

1T X(%) ﬁ I, ue,

i#p P =1

may be written, using (Z2Z4) and ([Z2ZIJ) for 7 = 1, as
1

1.1 —
(6.1.19) o

[ ey, (s, €upy) dyde
RxR
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where

(6.1.20) Ay (UL, Up—15T,8) = Z Hx< )kuz ()

n1,.-Np—1 f=1

has the form (Z2Z23]) (with p= 1 instead of p), admissible cut-off function
Xp—1(n1, ... np—1:€) = [, X( ) and a = H?;ll ug. Notice that a,,_,
is an homogeneous symbol in Fg,l supported for [n/|(€)™! small where we
denote n' = (ny,...,np_1).

We apply Lemma[2.2.TIto the symbol a,,,_, € fgfr By (2218)), (ZZ19),
227), we may write ([G.I.19), in terms of the Weyl quantization, as

(6.1.21) b)u, = Z Op™W (b )up + Op™Y (b)u,
where

(6.1.22) ba(ut, ..., up_1;2,8) = ( 12)04 Oy Déay, (u1,...,up—1;7,§)

and where b satisfies estimates of the form (ZZI0) with m = 0 and the

prefactor @ is O(( %')A) when % is small.

By (6I1.22) and (6I20), and recalling the Definition of a Bony-
Weyl operator, the first term in the sum (G.I.21)) is

OPW(bO)Up = Opw(aXp—l)up = OPBW(Ul T upfl)up

see (2.2.24).
When 1 < o < A—1, it follows from (EL22) and the definition of a,,_,

n ([6.1.20) that b, is supported for [n’| ~ (£). As a consequence each oper-
ator OpW (b,) satisfies the condition (ZZ2Z8)) that defines an homogeneous
smoothing operator of 7@; P, (recall formula (2245)). In conclusion each
Op¥W (ba)up, 1 < a < A—1, in (BI2I) has the form Rp(u,...,up—1)u, in
the right hand side of (G.I.I7)).

Finally we consider Op" (b)u,. Since Q is O(( ‘<" >| )A) when %‘ is small,

the function b satisfies by (ZZI0) bounds with an O((¢)™*) gain, as soon as
we assume enough smoothness on uy, ..., u,_1 to compensate the loss |n’|A.
Moreover b is supported for |n/|(¢) ™! small as the symbol ay,_; in ([G.I20).
This follows from (23] for b, and then for b = b — S>4=1 b, since each b,
is supported for ¢1(¢) < |n/| < ¢2(€) for some constants 0 < ¢1 < 2 < 1.
Taking A ~ p, we deduce that also OpW (b) is a smoothing operator in R 1)
and thus it contributes to the last term in (ELI7) (with j = p). Actually,
by the first remark after Proposition 2.2.4] and (Z.2.10) with o = 8 = 0,
and @ = O((l?;)p), we may apply the statement of Proposition 2.2.4] with




6.1. THE GOOD UNKNOWN 203

m = —p (even tough the estimates (Z2ZI0) do not imply that b is a symbol,
since each 8? derivative of b involves a loss in |n|”). Then the last remark

after Proposition 2224 implies that OpW (b) is in 7@; ?,. This concludes the
proof. O

Remark: When we shall apply below lemma B.1.2] we shall replace
some arguments by 7 (or one of its derivatives), which belongs to a space
of the form H{. The remaining arguments will be replaced by either a
space derivative of ¥ € H*, or by 9,, (92&), B, that may be considered
as elements of H{ (at fixed z), even though the function ® is defined only
modulo constants like ¢, since one makes always act at least one derivative
on it. This will be used without further notice in the proof of lemma
below, as well as in formulas (€.1.57), (6.2.16]), (6.2.11)), (6.2.20).

Lemma 6.1.3 Let ® be a smooth enough solution of (GL11). Then the
function ® defined by (61.10) satisfies the paradifferential equation

(6.1.23) [(1+0p® V(i ®0))02 — 2i0p®W (1/€)0. — Op®W (€)@
- _OpBW [azM(U)l/f + 8ZSN (777 1/})]77

2
+ Y _(Rim)dL® + R (n, 0L®)n) + M(n)t + Sy (n, ¥)
j=1

where M(n) is in EN?(’ZJ[T, N|, Sy is linear in 1, and such that, for any
large enough oy, there is o(, so that, for any 0 < k < K,

(6.1.24) ||355N(77,¢)\|E00+2_gk§0 > GG (W.1),
a K+ =k

and where R(n) (resp. R}'(n,@ﬁ@)) is a sum of smoothing operators of
7%; PIBl, p = 1,~2, p being an arbitmfy~positive number. Moreover R;-’ (n, &I ®)
is linear in 01® and R(n), R}(n,0.®) are local relatively to the z variable.

Finally, M(n)y and Sy (n,1) are supported for —1 < z < —%.

Remarks: e We recall that a local operator is an operator that does
not increase the support of functions. Here the expression “local relatively
to z” means that the z-support of functions does not increase.

e As stated in lemma BTl the terms M (n), Sy (n,1), that come from
the cut-off in (6.1.10]), are supported for —1 < z < —%. Because of that, they
will induce only smoothing contributions to the restriction of ® at z = 0,
see Proposition

Proof: We apply the paralinearization lemma [6.1.2] to each term in the left
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hand side of equation (G.I.IT]) at fixed z. We may write

(6.1.25) 72020 = O0p"W (1 @ )02® + 20p°W (1 ® 0@ )1/
+ R, n)02® + R(n/, 070)n/
and

(6.1.26) 217/ 9,0.® +1"0.® = Op®V (21)0,0.® + Op®W ()0, ®
+ 2OpBW(818Z<i>)77/ + OpBw(az‘i))n”
+ R(1)8,0,® + R(9,0,P)n/

+ R(1")9.® + R(3,®)n”
where, using the second remark after Definition £.1.3] R stands for a generic
smoothing operator of R, #[B] as defined in (i) of Definition 5. T.3] with p =1
when R has only one argument, and p = 2 if R has two arguments. By the
composition formula (Z330]) of Proposition 232, the sum of the first two
terms in the right hand side of (G126 is
(6.1.27) O0p®W (21/)9,0.® + OpBW ()8 ® = Op®W (2i1/€)0, P

up to a smoothing remainder R(n)d,® with R(n) in R;”, thus in R|”[B]
by the second remark after Definition .13 By (6.1.25), (6.1.26)), (G.1.27)
we may then write (.11 as
(6.1.28) [(14+ Op®V (i ® )02 — 2i0p®V (1/€)0. — Op®WV(¢?)| @

= 20V (1 ® 32®)n + 20pWV (9,0.9)1/

2 2
+ 0PN (02" + 3 Ri(m)I® + 3 R (m, 1)
j=1 g=1
+ M) + Sn (1, )
where R’(n) (vesp. R(n, dId)) is a_sum of elements of 7@;”[8], p=1,2
(resp. which is moreover linear in 97®). These operators are local in z as

we use only symbolic calculus relatively to the x variable, z being just a
parameter. Moreover, as stated in lemma 6.1} the operator M(n) is in

EN%,]XJ[T’ N] and Sy(n, ) satisty GILI2), i.c. (GIL24).

On the other hand, we compute
[(1+0p®Y (0 @ )92 — 2i0p™™ (1) 0. — OpP™ (¢*)] OpPW (9. ®)n .
Using again the composition formula (Z33]), we get
(6.1.29)  Op®W((1+ (0 @ 1) 2 D)1
—20p"W (i 82@ )11 — 20p"Y (1 820,@)n — Op™V (1" 92@)n
+Op"Y(9:8)" +20p"W (0.0,® )0 + O™V (8.97@)n
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modulo again smoothing operators as in (6.1.28]) and (6.1.29]).
Making the difference between (G.128)) and (6.1.29]), and using the defi-
nition (6.1.I6]) of ®, we get
(1 +0p"W (i @ 0))0? — 2i0p®W (n/€)0. — OpPWV (€)@
= —0p"V[((1 + (' @ )02 — 21/ 0.0, + 07 — 0"9.)0.®n
2 2
+ Y R+ Rj(n, 0L®)
j=1 j=1
+ M ()¢ + Sy (0. %)

= —0p®W [8ZM(77)1,Z) +9.Sn(n, ¢)]77
2 2
+ 3" Rim)ld + S Rl(n,01%)n
i=1 j=1
+ M(n)Y + Sn(n, 1)

where the last equality follows from substitution of (G.I.IT]) in the argument
of OpBW. This concludes the proof of (G.I1.23). 0

We may deduce from the preceding results the following expression of
the good unknown ®|,—y and its 9,P|.—o derivative.

Proposition 6.1.4 (Good unknown) Let N be in N*, K € N, p > 0 be
given. There is v > 0 and a function ag(n,)) in 2-7:}370,1[7”7 N,aut], linear

in 1, such that B = 0,®|.—q defined in [6I1B) is actually given by

(6.1.30) B(n,) = ao(n, ¥) .

Moreover there is a symbol a; in EP}(7071[T, N,aut] such that, setting
(6.1.31) w =1 —0p"™V(ao(n,¥))n,

one has

(6.1.32) 9,®|.—o = (D tanh D)w + Op®W (a1(n;-))w + Ri(n)w + Ra(n,w)n

where Ri(n), Ra(n,w) are in ¥R, ([r, N,aut], Ry being linear in w. The
symbol a1 is given by

T/ 12

(6.1.33) ar(n;z,§) = fnn,gf 3 tanhg)#

modulo a symbol in EP?(,OJ[T, N, aut].
Finally, there is o > 0 such that, for ||n|k,. small enough, there is a
function a(n,w) in 2-7:}370,1[7”7 N,aut], linear in w, even in x, such that

(6.1.34) b =w+O0p®W(a(n,w))n.

In the new variables (n,w) the involution S = [(1] 91] is unchanged.
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Proof: We have introduced in (BLI0) the function ® and we have proved in
Lemma BT that ® satisfies equation (B.LIT). Then we defined in (G1.16)
d = &—O0pPWV(9,®)n and in (BII5) the good unknown w = ¢ —OpPW (B)n
with B = 8Z<i>|zzo. Let us show first that B may be written as a function
ap(n, ) of Ef§7071[7“, N, aut] as in the statement. To do so, we notice that

equation (B.IIT) solved by ® is of the form (5.3.22)) with
Ga(n) ==, Gi(n) =20 + 0", Go(n) =0,

a~nd M(n), Sy given by lemma Since M (n) is in E./\/?(’ZJ[T, N] and
Sy satisfies (6.1.12]), we apply Proposition with m = N, j = 4. By

(5.3:23]), we may write

cosh((1+ z)D)

6.1.35 b =
( ) cosh D

¥+ M)y + Sn(n,)
where M(n) is in EN?(’XEQ[T, N] and Sy is supported for —1 < z < —% and
satisfies, for 0 < k < K and some oy,

(6.1.36) \\0fSN(777¢)(t)\\E00+2_gkSC Y SN )G (1)
a k! +k' =k

In particular, close to z =0,

sinh((1 + z)D)

6.1.37 9. =
( ) cosh D

(D) + 9-M ()3
and 0,M (n) is in TN ?(’]g;l[r, N1], by the third remark after Definition [(£.3.41
Inserting (6.1.37)) in (6.1.16]) and using the fifth remark after Definition [5.3.4],

we see that, for z close to zero, we may write

©(z,7) = ®(2,-) — 0p"W(a(n, ¥ 2,2))n

for some symbol a in the class EI’(}(707371[B, r, N], independent of £. Restrict-
ing to z = 0, we get, by the definition of w in (G115,

w =1 — Op®W(ap(n, v;))n

where ag is in EF?(,OJ[T, N,aut], and it is independent of &, ie. it is a
function of X F g 1[r, N,aut]. Moreover, by construction, ag(n,) is real
valued when 7,9 are real valued. We have thus obtained the representation
(EI3T) of w.

Let us now establish (6.I.32]). The strategy will be to prove first that
® satisfies a paradifferential equation of the form (5.3.1]), see (6.1.42)), then
use Proposition B3] to express @ from the data, see ([G.1.43]), and finally

compute 9,P|,—o from (53.2), see (GLAT).
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We recall that ® solves the equation (6.1.23]). In its right hand side we
replace in the terms R;(n)(?g@, RY(n, d1®)n the function ® by its expression
GEI35). Recalling that RY(n, dI®) is linear in AJ®, we get the following
terms, for j =1, 2,

B (o (S D)
(6.1.38) R} (0.2 (Ww M) )
R () (S (n.1))

R, 84(Sx ().

By lemma [E.T.3] the smoothing terms R}, R} belong to SRo.011B, 7, N] for
any p and any ¢, according to (iii) of Definition (1.3l Moreover, it has been
seen after (G.I.35) that M(n) is in SN ?(’fi;?[r, N], and, by the first remark

after Definition [5.3.4] that w is in ./\7(? 0. Thus, the third remark

following Definition £.3.4] implies that the operators
y [cosh((l +2)D)
cosh D

z

W+ M(n)y)

+Mm)|, j=12,

are in LN ?éjgo[r, N]. It follows from the third-last and second last remarks
following Definition [(£.3.4] that the first two lines in (G.1.38]) may be written
as

(6.1.39) R'(n)y + R (n,¥)n

where R" and R” are smoothing operators in ¥R . 5 ;[B, 7, N], for any p (up
to a renaming of p, and using the abuse of notation that has been introduced
in the last remark after Definition [5.1.3]).

The functions in the last two lines of (6.1.38]) are supported for —1 < z <
—1 ag this is true for Sy, and the operators R}, R} are local in z. Moreover,

1
by (5.111]), (6.1.386]) and the continuous embeddings £ C F; C E]s %, these

terms may be written as a function S}V(n,w) that satisfies, for any large
enough ¢, and a convenient o, > oy, for any 0 < k < K,

(61.40)  [OESNOL O agra-ge SC D GN(BGE 1(,1).
2 Kk =k

We now consider the first term OpBW[9, M (n)y]n in the right hand side of
G123). Since M (n) is in E/\/?{’XI[T, N] then 9, M (n) is in E./\f?(’gjl [r, N] by
the third remark following Definition (.34, and the last remark after Defi-
nition 534 implies that OpBW (9, M (n)1) is in EN?(’}O/E [r, N]. In conclusion

OpBW1[d, M (n)4] is an operator of the form M”(n, 1) of E./\/'?(’K? [r, N], linear

in 1, supported for —1 < z < —%, as 3ZM(n)1/J satisfies such a property.
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By (6.1.24]), the function Sj(\?) (n,9) = —O0pPWV[0.SN(n,1)]n in the right
hand side of (G.I.23]) satisfies estimates of the form

~(2 ol ol
(6.1.41) ST 0 spen 3 SC Y GRN(LDG (1),
Ey Kk =k
(for some og large depending on m, K and N) and it is supported for
—1<z2< -4

In conclusion, we have written the right hand side of (6L23]) as

(6.142) = M'(n)y + M"(n.9)n + Sx(n,4) + R ()Y + R"(1.4)n
where M', M" are in EN?(’T&[T, N] for some m, M'(n)y and M"(n,v) are

supported in —1 < z < —1, where Sy is a new function, which is the
sum of Sy in the right hand side of (G.1.23) (that satisfies (E.L24)) and
Sy, Sj(\?) in (G.140), ([E.1L4T). This Sy satisfies (E140) and is supported for
-1<z2< —%. Finally, the smoothing operators R/, R” in ER;(?07271[B, r, N]|

are given by (6.1.39).
Consequently, by ([6.1.23]) and (6.1.42)), the function ® solves an equation

of the form (531]), with f given by (6.1.42]), and

BW(

g-=Op V)0, gy =Plmo=w.

cosh D
By (5:3.2)), we may represent the solution ® as

2
(6.143) @ = OpP™ (e (n: 2w + O™ (e (s 2, ) Op™™ (——)n

+ /_01 [OPBW(K(U; 2,2,+)) + Rint(1; 2, 2)}]’(2) dz

D2
cosh D ¢) g
with Poisson symbols ey (n;-) in 277?(’%070[7", N], K(n;-) in EP[_(}dfgt [r, N] and
smoothing operators Ring in XR /- [[r, N] and Ry in YR (fcl [r, N].

We now substitute the expression of f in (6.1.42) into (GI43]). We

consider first the contribution of the last two terms R'(n)y + R"(n,)n to
(6143). By lemma B.I.13] these two contributions may be written as

(6.1.44) Ry(n)y + R (n,4)n

where 9JR}, IR}, j = 1,2, are smoothing operators in YR/, ;[r, N, aut]
for any given p, uniformly in z € [—1,0] (thus in particular 8. R, and 0. R/
are continuous in z and their restriction at z = 0 is well defined). Moreover
RY is linear in 9. Consider next

+ Ry (m; 2)w + R (n;2)0p"™ (

(61.43) " [0 (O 2.2, 9) - Ru o2, 2)] (M) M o, 0] .
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The operators M'(n), M"(n,v) € ENKO 1r, N satisfy the assumptions of
lemma [5.I.I4] in particular the support condition (5IR0). Consequently,
(6.I45) can be written as R} (n)Y + RY(n,v)n where, for z close to zero,
the derivatives &J R}, &I R are smoothing operators of YNRyolr Ny aut],
uniformly depending on z close enough to zero. Finally

(6.1.46) / 01 (OPPY (K (7: 2.2, ) + Rant (72, 2)) v (1, 0) d2

where Sy(n,1) is supported for —1 < z < —1/8. This property, together
with estimate (6.I.40) (with o( large depending on K and m), shows that
the assumptions (5.1.79), (5.L80) of lemma [5.T.14 hold for Sy (n,%) (notice
that Sy is linear in ¢ and vanishes of order N in 1), so that, applying again
lemma [B.I.T4] we conclude that (6.1.46]) has the same structure as (G.1.43))
(actually just R} (n)).

Taking a 0, derivative of (6.1.43)), and restricting to z = 0, we conclude,
using (5.33)), that 9,®|.—¢ is the sum of

(6.1.47)  0,®|.—o = (D tanh D)w + Op®W(ay (n; -))w
+ Ri(n) + Ra(n,¢)n

where ay is given by (6.I.33]), modulo a symbol in EFKO 1[r, N,aut], and

R1, Ry are smoothing operators in ERKO 1ry N, aut], Ry being linear in ),
plus

D2
cosh D

+ (0:R—(n:2)),,_,0p"" (

Since Ry is in ER;(’,’(’;E [r, N], then (9. R )|.—o is in ER;(’EII [r, N] for any p
(see the first two remarks after Definition [.I.10) and so it contributes to the
smoothing operator R;(n) in (6.1.32). Moreover, since e_ is a Poisson sym-
bol in 277?(’7_070[7“, NJ, the derivative 0,e—(n;2,+).— is in BT o[r, N, aut]
for any p, and the third remark after Proposition Z2.4] implies that the op-
erator OpPW((8.e_),—) is in YR olr, N, aut]. Therefore by Proposition
242 the first term in (BI48) contributes to Ro(n,v)n in (BLATZ). The
same conclusion holds for the last term in (6.1.48)).

To finish the proof of (6.1.32), it is enough to prove (6.L34]). Actually
(6132) is a consequence of (6.1.47), [6.I.34]) and the composition results of
(ii), (iii) and (iv) of Proposition 2.4.3]

In order to invert (G.I31]), we consider the affine map

(6.1.48)  Op®V(Dze—(n;2,+)1.=0)OP®V ( Y)n+ (9:R4(n;2)) =%

D2

cosh DT’Z))77

(6.1.49) ¥ — w+ 0p®W(ao(n, ¥))n
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(recall that ag(n,v) is linear in ). Since ag(n,®)) is in 2]:%0,1[73 N, aut],
we deduce, by Proposition 2.2.4] that there is o such that

o+ 0p"™ (a0 (n, ¥)nll .o < Nl + Cllvllzcollnllx.s

Therefore, for ||n]lx,c < 35, the map in (E1.49) is a contraction of the ball
of CK(I, H?(T',C)) with radius R > 2||w| k.. Let ¥ = O(n,w) denote the
unique fixed point in such a ball. The map O is linear in w, and, if n,w are
in CK(1, H3(T',C)) with s > o, then O(n,w) is in CK(I, H3(T',C)), with

an estimate

(6.1.50) 1€, llr,s < llwllxs + Csllwllxollnlles -

If we iterate the formula (6I3T) giving ¥ from w, we get

¥ = w+ Op”V(ap(n,w))n + Op®W (@ (n, ¥))n

where @ is obtained replacing in ag(n,%), 1 by OpBW(ag(n,))n. It-
erating the process and using (i) of Proposition 243 and the fact that
OpPW(ag(n,7)) is in EM?(,OJ[T, N, aut] by the third remark following Def-
inition 220 we may write

N-1
(6.1.51) Y =w+ > Op"V(aop(n,...,n,w))n+ O0p®V(agn(n,¥))n,
p=1

where ag , are functions in fp and ag y is a function in Fg o n[r,aut], linear
in 1. If we replace in the symbol ag n(7,7) the variable ¥ by ©(n,w), we
deduce from (61.50) that estimates of the form (2I.10) hold for the compo-
sition, so that the last term in (6. I.51]) may be written as OpBW(ag,N(n, w))n
for some function a'07 N in Fg o n|r,aut].

Finally, by (6.I31]) and since ag(n, ) is linear in v, the involution S =
[(1) 91] translates in the variables (n,w) as the same map (n,w) — (1, —w).
This concludes the proof. O

We may now provide a paradifferential expression of the Dirichlet-Neumann
operator.

Proposition 6.1.5 (Dirichlet-Neumann) Let us define

(6.1.52) V(n,0) = 0,P|.—0 — /0. P .

If n,¢ are even real valued functions, then V(n,v) is a function of the
space 2.7:}%071[7", N, aut] of Definition[2Z51] (i.e. a symbol of EP?QOJ[T, N, aut]

independent of ), for some r > 0 and any N in N, which is linear in 1),
real valued, and odd as a function of x. Moreover, there are
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e symbols bO(n;-) in LT | [r, N,aut], (n,w;-) in EI’(}(,OJ[T, N, aut],
A(n,w;-) being linear in w, even in (x,£), satisfying

(6.1.53) )Y =2, @)V =¢,

e smoothing operators Ri(n), Ra(n,w) in YRSy, [r, N,aut], for p an
arbitrary given number, Ro(n,w) being linear in w, satisfying

6.1.54 R,V =RV, Rior=70R;, j=1,2,
J J J J

where T is defined above (FI117), i.e. these operators send real valued (resp.
even) functions to real valued (resp. even) functions,
such that

(6.1.55) G(n)y = (D tanh D)w — iOp®V (V(n,)¢)n
+O0p"V (0 (; ) )w + Op" W (P (n, w; )
+ Ri(n)w + Ra(n,w)n .

Proof: We shall prove here that (6.L55) holds with 8° in EI’%OJ[T, N, aut].
The fact that b° is actually of order —1 will be shown in section [, com-
puting explicitly its principal symbol.

According to (ILI.3]), the Dirichlet-Neumann operator is given by

G)tp = (0yd = 1 02d)ly=r(t.0)
where ¢ is the velocity potential defined as the solution of (G.LT]). Using
EL6) and EII0) (® = ¢ for z close to 0), we may then express
(6.1.56) G = ((1+1?)0:% — n'0,®)|.=0.
We now provide a paradifferential expression of G(n)y in (G.I56). By

lemma [6.1.2] we write

(6.1.57)
Gt = 0:®|.—0 + Op"V (' @ 1)0:®|.—0 + 20p"V (' ® 0. ®|.—0)1/
— OpPV (17)0,®| .20 — OV (0, ®.=0)1/
+ R (n)(0®|.=0) + R" (0, 09|.=0)1/
=T+ +VII

where R'(1'), R"(1/,-) are smoothing operators in XR %, [, N,aut] (as in
item (iv) of Proposition 2.4.3]) for an arbitrary p, R” being linear in the
argument 0P|,—g, and 9P standing for either a 0, or J, derivative of ®.

Let us consider 0,®|,—. By differentiating (6.1.16]) with respect to z we
get

(6.1.58) 9.0 = 9,0 + Op®WV (92d).
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On the other hand, (1.37) shows that 8. ®|.—¢ and §?®|,_y may be written
as M(n)y for some M in M [r, N,aut] and some m (recalling the
definition of the class SN ™ [r, N] of Definition [5.34). Then, expressing
1 as a function of (n,w) as in (G.1.34]), we may write

(6.1.59) 92®|.—0 = M’ (n)w + M" (1, w)n

for operators M', M" in SM o[r, N,aut], sending real valued functions
to real valued functions, with M” linear in w. Estimates (ZZ50), ([2.2.52])
imply that such functions define symbols of order zero, independent of &, i.e.

that bounds ([ZI5), ZII0) with m = 0 are satisfied. Consequently, the
last term in (G.I58)) restricted at z = 0 may be written as

(6.1.60) OpP*W (2@ .—o)n = Op®V (L (n,w))n

where ?(n,w) is in B F g 01[r, N,aut], linear in w, and so it gives a contri-
bution to OpBW(c)n in (EL55). (We shall verify condition (6.1.53) below).

Moreover using ([6.1.58]), the expression of 0,®|,—¢ given by (6.1.32)), (6160,
we may write, using Propositions 241 and 2.4.2]

I+1I = (1d+ 0p®Y (if @ 7)) [(D tanh D)w + OpPW (a1 (n, ) )]

modulo contributions of the form OpBW (c%)n (for a different °) and of the
form of the smoothing terms in (G.L55). By symbolic calculus, we may
rewrite this as

(6.1.61) opBW((1 +1'?)(Etanh &) + (1 + 7'?)ay (n; , 5))w

modulo a contribution to the OpBW (8°(n,))w term in (GL5H) (with &° in
EF?{,OJ[T, N, aut]). Taking into account the expression of the symbol a; in

(6133), we may finally write (G.ILGI) as
(6.1.62) (D tanh D)w + i0Op®W (/€ )w.

Consider next ITI + IV. Since ®(x,0) = () by (EILI0), (EL8), (GLI),
we get, according to (6.1.34)),

(6.1.63) 0p®|omg = Opth = O, [w + 0p®WV(a(n, w; ))77}
so that, again by symbolic calculus
111+ 1V = 2i0p" (/ .®|.—0&)n — i0p™Y (1 €) [w + Op" ™ (a(n, w; -) )]

modulo again contributions to OpBW (b)w + OpBW ()5 and to the smooth-
ing terms in (G.I55). Since the symbol a(n,w) in (G.1.34) is nothing but
ap(n, ) = B = 0,®|,—o (see (6130)), we obtain

IIT + 1V = i0p®V (1] 0,®| .—0€)n — i0p®W (' )w
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still modulo the same contributions as above. Using again symbolic calculus,
we get, up to such contributions,

(6.1.64) IIT+1IV+V = iOpBW((nlazfﬁ — @C(i))]z:og)n —i0pBWV (1 €)w.

Finally we consider the terms VI+VII of (6.I57). By (6.I1.63]) and (6.1.37)
where we express ¢ by (G.1.34]), we may express Bx&)] »—0 and 83@] .—0 as the
right hand side of (6.1.59]), so that, using (ii) and (iv) of Proposition 2.4.3]
(actually just for the homogeneous components of the smoothing operator),
we deduce that

(6.1.65) VI+VII = Ri(n)w + Ra(n,w)n

contribute to the last two terms in (6.1.55]).
In conclusion, by (6.I57), (6.1.62), (6.1.64), (6.1.65), (6.1.52]) we get

G(n)y = (Dtanh D)w +i0p®W (V (1, 9)¢)n

modulo contributions to the last four terms in (G.1.55]).

The fact that V' is real valued follows from its expression (6.1.52]). More-
over, if n and ¢ are even, the solution ¢ to (6.1.1)) is even in z, so that ¢ and
©o given by (G.L6) and (E.L8) are even in z, as well as ® given by (G.LI0).
Then 9, is even in z, 9,® is odd in z, so that ([E.152) shows that V (1, )
is odd in z as claimed.

Moreover, G(n) is even and real valued by (6.1.56]) as well as the func-
tion (D tanh D)w — z'OpBW(V(n, 1/))5)77 It follows that the sum of the last
four terms in (6.1.55) is even and real valued. Consequently, we may as-
sume that 02,0 satisfy (G.L53) and are even functions of (z,¢), and that
the smoothing operators send real (resp. even) functions to real (resp. even)
functions. As a consequence, we may always replace for instance Ri(n) by
[T o Ri(n) + Ri(n) o], that ensures that the second condition in (G154 is
satisfied by Rp(n), and argue similarly for the other smoothing terms, and
for the first property in (G.I.54]). This concludes the proof.

As mentioned at the beginning of the proof, the fact that 4% is actually
of order —1 will be a consequence of some explicit computations that we
postpone to section O

6.2 Paralinearization of the water waves system

This section is devoted to write system (LI4]) (with ¢ = 1) as a paradif-
ferential system in the variables (n,w). This has been done already for the
first equation 0;n = G(n)vy in Proposition [6.1.5] see (G.I55]). In this section
we deduce from (LI4) a paradifferential equation for dyw.
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We first recall that by (6.1.16]), (€.1.30)

(6.2.1) B(n, ) = 0.9|.—0 = ao(n,¥),
and, by E.L52) and ®(x,0) = (z) (see (BLIN), (6.L0), G-L3I))
(6.2.2) V(n,¥) = 8,®|.—0 — /0. P|,—0 = 00 — 1/ B.

We also recall the linear involution
S:R?— R?, with matrix [(1] 701} ,

and we consider the Z/27Z action of the group {Id, S} on functions [Z(é’))]
defined by

n def o _ [ n(=9)
(6.2.3) L ]s® = s[a]=0 =[5 ]
(which is is the analogue in the real variables of the action introduced in
B.12)-B.13)).

The main result of this section is

Proposition 6.2.1 (Equation for d;w) Let N in N*. Let (n,v¢) be a
solution of (I.1.7)). For r >0 small enough, there exist

e Symbols az(n,-) in EF%(70’1[’I“, N,aut], aij(n,w;-) in EF}(7071[T, N, aut], and
ap(n,w;t,-) in EF%J,Q[T, N] satisfying

(6.2.4) Imay =0, Rea; € EF?{7071[T, N,aut], Ima; =—-V(n,¢)§

such that ay s linear in w (or in ¥ according if we express ¥ from w by

(61.34)),
(6.2.5) ao(n,w; —t) = ag([n, wls;t)

the homogeneous terms of ag are quadratic in w, and

(626) d;/ :aj, a](’x7§) :a](j_x7_§)7 ] :0’172
Moreover
(6:2.7) an(;,€) = —r€[(L+1/(t,2)?) 72 — 1]

modulo a symbol in EI’%OJ[T, N, aut],
e A smoothing operator Ry(n,w), resp. Ra(n,w,w), resp. Ro(n), which is
linear in w and belongs to TR, |[r, N,aut], resp. which is quadratic in w

and belongs to ERI_(?OQ[T, N, aut], resp. which belongs to ERI_(?OJ[T, N, aut],

satisfying condition (6.1.57),
such that

(6.2.8) dw = —(1+ &D2)n + Op®V(as(n; ))n + OV (a1 (n, w; -))w
+ OpBW(ao(na w3 t? ))77 + Rl (na w)w + R2(777 w, w)77 + RO(T])T/ .
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Remark: The symbol ag is the only non-autonomous time dependent term
in the right hand side of (6.2.8]). All the other terms are autonomous, namely
the time dependence enters only through n(t) and w(t).

Proof: As a consequence of (6.1.55) and (6.I3T]), and since ag is linear in

1 and ¢y is linear in w, we may write
(6.2.9) dm = G(n)p = (D tanh D) + M(n)e

for some operator M in E./\/l}go,l[r, N,aut]. We substitute this expression
inside the right hand side of the second equation (LI4]). Using the last
remark after Definition 2.2.5] we may write

(6.2.10) O = M(n)n + M'(n, )¢ + M" (n,¢,9)n

for some operators
M € XMy golr,N,aut], M',M" € XMp,[r, N,aut]

with M’ (resp. M") linear (resp. quadratic) in ¢. By (621 and (G.I.37]),

we may write also
(6.2.11) B(n,v) = 0.9|.—0 = (D tanh D)y + M""(n)

for some M" in ¥ M 4[r, N,aut]. Differentiating with respect to time we
get
O[B(n, )] = [(D tanh D) + M" (1)]0y) + O[M" (n)] ¢

and using the expression of dy¢ in (6210), this implies that

(6.2.12) 9[B(n, )] = M(n)n + M'(n,9)3 + M" (1,4, 9)n + 0:[M" (n)] ¢

for new M in XM o o[r, N,aut] and M', M" in ¥M o 1[r, N, aut] with M’
(resp. M") linear (resp. quadratic) in 1. Consider then the term 0,[M" (n)] ¥
where we expand the operator M"'(n) in XM o4[r, N,aut] as

M"(n) =M{"(n) + ...+ My_1(n) + My(n).

The homogeneous terms M;"(n), j = 1,...,N — 1, are differentiable with
respect to 1. But, since we have not assumed differentiability with respect
to 1 of the non-homogeneous autonomous term (just the estimates (2.2.52))),
we deal M}/(n) as a time dependent operator. We use the same argument of
lemma and the fact that d;n solves (6.2.9]) to conclude that 9,[M" (n)]
is in XM 4[r, N]. We may insert the terms coming from the homogeneous
contributions into the autonomous expressions (6.2.12]) and we get

(6.2.13) 0;[B(n,¥)] = M(n)n + M'(n, ) + M" (1,4, ) + [0: My ()] ¢ -
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We remark that the only term that we deal as a time dependent one is the
function [0, M}/ (n)]1. All the other terms are autonomous. The condition
of reversibility of this non-homogeneous time dependent term is that the
function [0, My/(n)] ¢ satisfies (6.25) (with ¢ instead of w) as it follows
recalling (6.2.3) (remark that we do not say that [0;M}/(n)] ¢ is quadratic
in ¢ because, in this time dependent term we do not substitute the equation
for On).

By ([EI56), (621), and since ®(z,0) = (z) (see (ELIN), (GELH),
(613]) we have

(6.2.14) Gy = (1 +0?)B(n,¢) —1/'0x1).

Thus differentiating the good unknown w defined in (6.I.15]), since 7, ¢ solve
system (LIT4) with g = 1, and using (6.2.14]), we get

(6.2.15) Oy = 9y — OpBW(B)oym — Op®WV(9,B)n

/

— () - @+ B0

Vi

— Op"V(B)[(1 +1"*)B(n,) — /0.0 — Op°V (9, B)n .

We now paralinearize the different terms in the right hand side of (G2I5I).
Applying lemma [E.1.2] and using the symbolic calculus formulas (2:3.2)),
233) (which are exact and not asymptotic ones for the symbols considered
here), we get

(6.2.16) 7'?B = O0p"" (n*)B + 20p°V (/' B)n/ + Ri(n)B + R{(n, B)n
= 0p"Y (1/*) B + 2i0p™W (/ BE)n — Op"”W (8, (' B))n
+ R'(n)w + R"(n,w)n

where R', R” (resp. R}, RY) are elements of SR ., ,[r, N, aut], with R” (resp.
RY) linear in w (resp. B) that are obtained from the smoothing operators of
lemma expressing B in terms of w by (6.211]) and (6.1.34]), and using
that by Proposition 2Z4:3] the composition R(M(U)U) or R(U)M(U) of a
smoothing operator R and of an element M of a class XM g ,[r, N, aut],
gives again a smoothing operator (up to a change of the smoothing index p,
which is in any case as large as we want). Making act Op®W (B) on (6.2.10))
and using symbolic calculus, we get

(6.2.17) Op"V(B)[(1 +7*)B] = 0p®V(B(1 + n'*))B + 2i0p"W (/' B*¢)n
— Op"W(0,(B*n))n + R'(n,w)w + R"(n,w,w)n

where R’ (resp. R”) is in ¥R/ 5[r, N,aut] and it is linear in w (resp. in

ER;([,)O,?;[T? N, aut] and quadratic in w).
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In the same way, lemma allows us to write
(6.2.18) 0/, = Op™™ () 0etp + Op®V (0,)0 + R ()0t + R" (Butp)f

with R, R” in 7~21_” . Applying Op®W(B) on (6.2.I8)), using symbolic calculus
and expressing in the smoothing operators ¢ from (n,w) by (6.I134]), we
obtain

(6.2.19)  Op®W(B) (1 8:v) = iOp®W (1 BEY + i0p°™ (B(8:0)€)1)
1 1
= 500" W (0u(Bif ) — O™ (0:[B@x)] )
+ R'(n,w)w + R"(n,w,w)n
with R/, R" in ERI_(‘,’ 0.2 N, aut], respectively linear and quadratic in w.
Applying again lemma [6.1.2] we get also

1
+ Ry(n, B)B + R{(n, B, B)n
with R} in SR, [, N,aut] linear in B, Ry in ¥R/ 5[r, N, aut] quadratic

in B. Using symbolic calculus, and expressing B in the smoothing operators
in terms of n, w, by (6.2.11]) and (6.1.34]), we get

1
(6:221) S(1+5%)B* = 0p"Y((1+1*)B)B +i0p™™ (B*/€)n
= S0PV @B )+ R (0o + R (1,0,

with R, R" in ¥R, 1[r, N,aut] and SR f ,[r, N, aut| respectively, with R’
(resp. R") linear (resp. quadratic) in w. In the same way, we write

(6222) (@) = i0p™ (D)) — ZOPPY (@20
+ R/ (n, w)w + R (n,w,w)n.

Moreover, by ([2.4.22]) applied to the remainder of Taylor formula for the

function ' — \/—177% (expanded at the order N), and using lemma [6.1.2] for
n

the polynomial terms of the expansion, we may write

/

T — 0p®V(a()) + Rn)n

NErae

where R(n) is in ER}%}I [r, N,aut] and

(6.2.23) a(y) = (1+n%)732.
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Consequently, using again symbolic calculus,

/

(6224)  0(———5) = —O0p"™ (%) + iai(a(n’)))n + R(n)n

Ve

for some other smoothing operator R(n) in ¥R/ 5[r, N, aut].

We now compute dyw from (G.2.T5). Plugginé; in the right hand side of
(62.15) the formulas (6.2.17), (6€219), (6221), ©2.22), 6.2.23), (6224
and using (G.1.30), (6.134]), we get, after simplification,

(6.2.25) Ow = —n— /@OpBW((l + 77'2)_3/252)77 - z'OpBW(((?I¢ - 77’B)§)¢
—i0p®V (B(n'B — (8:4))¢)n + Op™V (ag (n))n

+ 0p®W(ag(n,w))¥ + O0p®W (ad(n,w,w))n — Op®V (8, B)n
+ R(n)n + R'(n,w)w + R"(n,w,w)n

where R and R” are in ER;([’)OQ[T, N, aut], R” being quadratic in w, R is in
ERI_("’ 071[7“, N, aut], linear in w, the functions a8, a(l], ag belong respectively to
YFKko2[r, N aut], F g o.1[r, N,aut], XF g o2[r, N,aut], a} (resp. a3) being
linear (resp. quadratic) in w, these functions being real valued and even in
x (as follows from the evenness of n and v). Moreover

ad(n) = —gai (1 +7)732].

Notice also that by (6.211]), 0;B is real valued and even in z, as ® enjoys
the same properties.

The sum of the third and fourth terms in the right hand side of (6.2:25])
may be written, using that V = 9,9 — ' B by ([6.2.2)), as

—i0p"W (V&Y +iOp" WV (BVE)n.

Replacing v by its value coming from (GI3T]) and (G.I.30), namely ¢ =
w + OpBW(B)n, and using symbolic calculus, we get

(6.2.26) —i0pBWV(VE)w — %OpBW(V&BB)n

modulo smoothing terms as in (6.2.25]). By (6.2.23]), (6.2.26]), expressing in
V(n,v), B(n,) the variable ¢ in terms of n,w by (6.1.34]), and substituting
the expression of 9; B in ([6.2.13]), we finally get

(6.2.27) Ow = —(1 + kD*)n + Op®W (az(n; -))n + Op"W (a1 (n, w; -))w
+ 0p®WV(ao(n, wit, ))n + R(n)n + R (n,w)w + R (n,w,w)n

where
e a5 is a symbol in EF%OJ[T, N, aut], real valued, even in (x,¢) and satisfies



6.2. PARALINEARIZATION OF THE SYSTEM 219

&g = as.

e a; is a symbol in EF}(7071[7“, N,aut], even in (z,€) and satisfies ay = ay.
Moreover a; is linear in w, Rea; € EF%OJ[T, N] and Ima; = =V (n,¥)E.

® qg is in EF(}(7172[T, N], even in (x, ), satisfies aj = ag. Moreover ag is even
in ¢ and its homogeneous part is autonomous and quadratic in w.

e R(n) (resp. R'(n,w), resp. R"(n,w,w)) belongs to ER;([’)OJ[T, N, aut] (resp.
YRl Ny aut], resp. SR/, o[r, N, aut]), the operator R (resp. R”) being
linear (resp. quadratic) in w.

Actually, ay is given by s[1 — (1 +7/2)~3/2]¢2 4 a8(n) plus the function
M(n)n that comes from the first term in the expression of 9;B given by
(6213)). It satisfies the above requirements since 7 is even. Moreover, it is
given by (6.2.7) modulo a symbol of order zero.

The symbol a; is formed by an order one contribution given by —iV¢ in
(6:2:26), plus the symbol aj(n,w) that arises by the term Op®W (ad(n,w))
in (G225, where we express v by (6.134]), and keep only OpBW (a} (1, w))w.
Since V and a} are real valued, and since V is an odd function of x and a}
an even one, we get that all conditions on a; are satisfied.

The symbol ag is computed from the contribution —%OpBW(VﬁwB)n in
©228), from OpBW(aj(n,w))OpBW (a(n,w;-))n that comes from the sixth
term in the right hand side of (6:225]), where we replace ¥ by (6.1.34]), from
OpPWV(ad(n,w,w))n in (E2Z25]), and from the contribution to Op®W (9, B)n
coming from (GZI3)), that is OpBW ([0, M¥(n)]1))n. Notice that this non-
homogeneous term is the only non-autonomous one. As we proved that
[0: M}/ ()] satisfies (6.2.5) (with ¢ instead of w), we get that the function
[0, M ()] (w+OpBW (a(n,w))n) obtained substituting v by (6.1.34]), satisfies
(62.0)) as well. Moreover all the functions appearing as symbols in the above
operators are real valued and even in z, so that the requirements of the
statement are satisfied.

The fact that we may assume that R(n), R'(n,w), R"(n,w,w) satisfy
(6154) follows from the fact that d;w in the left hand side of (6227 as
well as the first four terms in the right hand side of (6.227]) are even in x
and real valued. This follows from the fact that n,w are real valued even
functions and OpBW(ag) preserves these properties because ay is even in
(z,€) and satisfies a) = ap. As a consequence, we may always replace for
instance R(n) by 5[roR(n)+R(n)ot], that ensures that the second condition
in (6.L54)) is satisfied by R(n), and argue similarly for the other smoothing
terms and for the first property in (G.1.54]). This concludes the proof. O

We summarize in a corollary the new form of the water waves system
that we have obtained by Propositions [6.1.5] and [6.2.11

Corollary 6.2.2 (Water-waves equations in (n,w) variables) Let p in
R, N in N*, K in N be given (large) numbers. There is r > 0 and there are
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e symbols ag, a1, as satisfying the properties of Proposition [6.2.1],
e symbols by(n,w;-) in EF}(7071[T, N, aut], linear in w, by(n;-) belonging
to EF;{lO 1r, N, aut], even in (z,§), satisfying

(6.2.28) Imby =—V(n,¥)¢, Reby € XT% o [r,N], by =by, b =by,

« smoothing operators Ry(n), Ri(n,w), Ra(n) and Ry(n,w), RY(n,,)
in ER;(f)O,l[r, N,aut|, with R}, Ry linear in w, Ry quadratic in w, satisfying

7

such that, for any large enough s, if a small enough function (n,v) of

1T
the space CK(I, Hg:;j‘ X Hey 1) solves system (I.1.4), then (n,w), with w
given by (G131, solves on the same time interval I the system

(6.2.29) 9yn = (D tanh D)w 4+ Op"Y (b (n,w; ))n + Op"™ (bo(n; ) Jw
+ Ri(n)w + Ry (n,w)n
drw = —(1 4 £D*)n + 0p®W (az(n; -))n + Op™™ (a1 (n, w; -))w
+ 0p®V(ao(n,w; t,-))n + Ra(n)n + Ry(n,w)w + Ry (1, w,w)n .

System (6.2.29) is reversible with respect to the involution S = [(1) _01],
namely writing (622.29) as

(6.2.30) 0[] = M(n,w;t)[ 1]

then M (n,w; —t)S = —SM([n,w]s;t) where [n,w|s is defined in (2.3) (this
condition is like (3.1.18)). For the autonomous terms of the vector field this
condition amounts to the reversibility property (1.2.4). As a consequence

any solution of (GZ29) satisfies (I.Z3). Moreover the operator M (n,w;t)
sends real valued functions into real valued functions and M(n,w;t) o T =

T o M(n,w;t) commutes with the map T defined in (F1.10]).

1
Proof: If (n,v) is in a small enough ball of center zero in CX (I, Hg;j X

Le 1

HZ, %) and w is defined by (L31), we may apply Proposition 614} that
allows us to recover ¢ from n,w by (6.1.34]). By (E1.53]), the first equation
0yn = G(n)y of the water waves system may be written as the first equation

in (6£2.29) with
by (n,w;-) = (n,w;-) —iV(n, )¢ by =0".

Then (6.1.53]) and the fact that V is real valued and odd imply that (6.2.28))
holds. Moreover by is even in (z,&) because ¢ and V(n, )¢ are even in
(x,&). The second equation in (6.2.29)) is (6.2.8).

Finally, writing (6.2.29]) as the system (6.230)), since b1 (n,w), R (n,w),
ai(n,w), Rh(n,w) are linear in w, RY(n,w,w) is quadratic in w, and the




6.3. EQUATION IN COMPLEX COORDINATES 221

symbol ag(n,w;t, ) satisfies ([6.2.5]), we deduce that the operator M (n,w;t)
satisfies M (n,w; —t)S = —SM ([n,w]s;t). Moreover the operator M (n,w;t)
sends real valued functions into real valued functions, and commutes with

T, because the symbols ag, a1, as and by, b satisfy EL}/ = aj, b}/ = bj, are even
in (z,€), and the smoothing operators Ry, R}, Ry, R), RY satisfy (6.1.54)).
This concludes the proof. O

6.3 The capillarity-gravity water waves equations
in complex coordinates

We denote by A, (D) the Fourier multiplier with symbol

Etanh &
14 k€2

(6:3.1) An©) = (224 (e))

where x is an even smooth function, equal to one close to zero and supported
for [£] < % Notice that, on the space of periodic functions with zero mean,
or on periodic functions modulo constants, the operator A, (D) is just given
by

DtanhD)1/4

(6.3.2) Au(D) = (W

We denote by A.(D)™" the inverse of A, (D) acting from the space of zero
1 Lg—1

mean functions to itself. For n in Hg;j‘ (T',R) and w in Hey *(T!,R) we

consider the complex function

(6.3.3) u = Ax(D)w + i\ (D) 'n

which belongs to the space

def

(6.3.4) Hy(T',€) < {u e Hy,(T',C); | Tmuds =0} /R

’]I‘l

where HZ,(T!, C) denotes the subspace of even functions in H*(T!,C). This
1

space is endowed with the norm |||z, = (Zf‘oo nQSHHnuH%Q)Q. Inverting

(633]) we may express

U—1u
]

L
2i - u}

(6.3.5) n=Au(D)] :

w= A (D)
where we make here a small abuse of notation, as, in contrast with ([6.33]), we
consider here AH(D)f1 as an operator sending a space of functions modulo
constants to itself.
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Notice that, since the symbol A, () in (6.3.])) is real and even, the corre-
sponding Fourier multipliers A,.;(D),A,.i(D)_1 map real valued, resp. even,
functions into real valued, resp. even, functions.

We now prove that system (6.2.29]) in the real variables (1, w), may be
written, in the complex variable U = [%] , as system ([B.2:2)). Notice first that

in these complex coordinates the real involution [3] — [,nw} considered for

system (6:229) (or (LIA])) translates into the complex involution

S:[%]H—[ﬂ], with matrix S:—[?(ﬂ

u

(that for simplicity of notation we denote with the same letter S). The real
system (6.230) may be written in the new complex coordinates as

(6.3.6) DU = X(U;)U

where Dy = 1y, the operator X (U ) satisfies the reality condition (3I14),
it is parity preserving (according to definition (BI.IT))) and reversible (ac-
cording to (BII8)), namely X(U;—t) = —SX(Us;t)S with the new invo-
lution S = —[(1)(1)}.

We provide below the para-differential structure of system (6.3.6])) which
is suitable for proving energy estimates.

Proposition 6.3.1 (Water waves equations in complex coordinates)
Let (n,w) be a solution of system (G2.29) belonging to the space

1 Lo 1
CE (1, Hy o ¥(T' R)) x CK(I, Hey *(T',R))

for some large enough s, K, some time interval I, symmetric with respect to
t =0, (n,w) being small enough in that space. Define

CWst) = [0+ o/ (t,0) 2 1]

= 5[0+ @A) (50 1),

(6.3.7)

Recall that we introduced the matrices

(6.3.8) =9, K=[%]., g=[03], £=[%¢]

and set

(6.3.9) mi(€) = (§ tanh §)'/%(1 + v€*)12(1 = x(€))

where x is as in (6.37). Let N,p be given positive integers. Then, for
r > 0 small enough, there are symbols \; in EF]KJJ[T, N], j = —%,O, %, 1,
satisfying

_1
(6.3.10) Im \; € S0% [, N], Im Ay € X1y 7 y[r, N]
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and
(i)Y =X 5= 3. ()Y =Ny, 1=0,1
(6.3.11) N (U3 1,2,) = (U3t —,~€), = 5,071
AU =t,2,8) = Aj(Usit, @, ), j = —%%
N(U; =t,2,€) = =Aj(Us; t,2,€), j=0,1

such that U = [%] with u given by (6.3.3) solves the system
(6.3.12) DU = OpBV(A(U; t,z,6)U + R(U;t)U

where A(U;t,x,€) is the matriz of symbols

(6.3.13) A(Ust,z,€) = (ma(&)(1 + C(Ust,2)) + A%)IC
+ (me()C(Ust,@) + A_1)T + Mz + ML,

that satisfies the reality, parity preserving, reversibility properties

AY(Ust,x,6) = —SA(U;t,2,6)S
(6.3.14) A(U;t,—x, &) = A(U; t,x,§)
A(U; —t,2,8) = —SA(Us;t,2,€)S

where S is the involution defined in (311), and R(U;t) is a smoothing
operator in ERI}&I[T, N] ® Mo (C) satisfying as well the reality, parity pre-
serving, reversibility properties

R(U;t)V = —SR(U;t)SV
(6.3.15) R(U;t)or =710 R(U;t)
R(U;—t) = —SR(Us;1t)S.

Remark: Some of the above symbols or smoothing operators are indeed
autonomous and belong to the corresponding smaller class with the index
K’ = 0 instead of K’ = 1. But since this fact will not be used later we
shall systematically use this weaker statement. The paradifferential system
(6312)) is the one presented in section to start the proof of Theorem
B211

Proof: Recalling ([6.3.3]), to compute the equation satisfied by u, we insert

(E220) in

(6.3.16) A = Ao(D)Ow + iAo (D) 10y,
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The linear contribution is
(6.3.17) i(D tanh D)2 (1 + kD?)2u = i0pBY (m,.(€))u

as follows from (6.3.2)) and the fact that OpBW (m,(€)), where m, (&) is the
symbol defined in (6.3:9]), coincides with the operator (D tanh D)% (1+/<;D2)%
when acting on periodic functions with zero mean or on periodic functions
modulo constants.

The only other term of order 3 comes from Op®W(as(n;-))n in the for-

mula of dyw in ([6.2:29]). Expressing 7 as a function of (u,u) as in ([63.5]), it
is given by

u—ﬂ}‘

(6.3.18) A (D)OP"Y (a2 (1; ) A (D) [ 5

We now apply the composition results in Propositions 2.4.1] and 2.4.2l By
the properties of # in Definition 3], the symbol (A, (§)#ao#Ax(§)), is

equal to as(n;z,€)A,(€)? modulo a symbol of order —1 (see in particular

(234 applied with a = ¢), and (6:3.18]) may be written as
(6.3.19) i0p®W(as(U;-))(u —1a) + iOpBw(d_% (U; ) (u — a)

+ R(U)(u—u)

3
2

3 3
where a3 is the symbol in XI'  [r, N,aut] C XT'}, {[r, N] given by
2 1 b )

N 1
(6320) (Z% = _5(12(77’ €z, g)An(é-)Q )
_1 1
a_y is a symbol in XTI ;% [r, N,aut] C XI',2 ,[r, N] and R(U) is a smooth-
2 g 1y

ing operator in ZF}?OJ[T, N,aut] C EI’;(f)Ll[r, N]. The symbol ay is given
by the right hand side of (G.2Z.7) plus a symbol dgo) of order zero. Since
A (§) defined in ([6.31]) has order —1/4, the symbol dgo) (n; 2, €)A (€)% may
be added to a_: in (6319). By (EZ71) the symbol EL% in ([63:20) may be

1
. 2
written as

5 (1X(€)°€ (€ tanh €)% (1+46%) 72 [(149/) 2 —1] = m(€)C (U3 1, 2) 471

where ( is defined in ([6.3.7]), m,(§) in (6.3.9), and 7_; /5 is a symbol of order
—% that may be incorporated to the a_;/, term in (6.3.19), up to a change
of notation. In conclusion we have written (6.3.19]), thus (6.3.I8), as

(6.3.21) i0Op®™ (m,(&)C(Ust, @) (u — w) +i0p®W (a_y o (Ust,-)) (u — )
+ R(U;t)(u —a)
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with a_y/, in EF;(%LI[T, NJ.

The symbol ay satisfies ([6.2.6]) as well as the even real symbol A, (§) de-
fined in (6:3.1). Since these properties are preserved by the composition op-
erator #, we conclude that also the symbols a 3 a_ 1 in (63.19)) satisfy them.
In addition, by ([63.7) and (639), also m,(&)((U;t, x) satisfies (G.2.6]). It
follows that also the symbol a_ 1 in (6.3.21]) satisfy these conditions. More-
over, these symbols, in particular a_i,as functions of (n,) do not depend
on ¢ (as as).

The contributions of order one to dyu in (6.3.16]) come from the term
Op®W (a1 )w in the right hand side of the second equation ([6.2.29) and from
the term Op®W(by)n of the first equation (G.229), and are given by

(6.3.22) A (DYOPPW (a1)w + iAo (D) LOpBY (b1)n .
By (624]) and Corollary we have that

(6.3.23) ap = —iV(n,)§, br=—iV(n,¥)¢

modulo a symbol of order zero. Moreover ay, by are linear in 1, even in (z, §),
and satisfy ay = a1, bY = by, as stated in Proposition [6.2.1] and Corollary
6.2.21 Substituting (6.3.23) and the expressions ([6.3.5]) of n and w, ([6.3.22])

may be written as

AD)OPPY (=i (. 6)E)A(D) (1)

+ i (D)7 0P (=i (1, 1) A(D) ()
+ 0p"W(eo +)u+ Op®W (e )

where eg 4 are symbols of order zero, even in (z,§), satisfy ég,i =eg+, and
they are linear in ¢. By symbolic calculus (i.e. Propositions2Z.41and 2.4.2]),
we may write this expression as

(6.3.24) i[Op"Y (A1 (n, ¥))u + Op®Y (Mo (n, ¥))a]

up to contributions Ry (n, ¥)u + Ra(n,¥)u with smoothing operators Ry, Ro
in ER}?OJ[T, N,aut] C ER}’AJ[T, N], where
o )y is in ST o [r, N,aut] C ST 4[r, N], with Im Ay in L% 4[r, N],
o o is in XT% o, [r, N,aut] C SI'% [, N].
Moreover the symbols Ag, A1 satisfy

(6325) 5‘2/ = _)‘Ka Af(na¢;t, —Z, _5) = )\K(U,T/);ta$af),

and A\¢(n, ¥;t,x,€), £ = 0,1, are linear in 9.
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The remaining terms involving paradifferential operators in (6.2.29) bring
to Opu in (63.I6]) the following contributions

+ i (D) " OpPY (bo (n: ) As(D) |

A(D)OPP (ao(n, wit, ) Aw(D)]

Since ay is a symbol of order zero, by of order —1, and A, (§) of order —1/4,
by symbolic calculus we may write it as

(6.3.26)  iOp™" (u_1/2)u — iOp®V (A_1j2)t + Ri(n, w; t)u + Ro(n, w; t)u

_1
where p_j/9 and A_y ) are in XT';? |[r, N]. In addition, according to the
properties of ag, by listed in Proposition 6.2.1] and Corollary [6.2.2]

(n7w7t7 —Z, _5) = HK_ (777¢;t7x7§)7
(na¢;t, -, _5) = )‘7 (77,7/)§ta$,f),

1, H_
2
sAL

NI
=

=
[N

and, since ag satisfies ([6.2.5]), as well as by which depends only on 7,
%(77? Q/Ja _t) = Iu’f% ([77’ w]Sa t) ) )‘7 (77’ ¢7 _t) = )‘7 ([77’ ¢]Sa t) ’

where [n,1]s is defined in (G.2Z3)).
In conclusion (63.16)), (63.17), (6.3.21), ([6.3.24), ([6.3:26]) imply that

1 1
. 2 2

(6.3.27)  Dyu = Op®V[my(§)(1 + <) + Arjolu — Op"WV[my ()¢ + Ay o)
+ OpBW()\l)u + OpBW()\o)ﬂ + Rl(U; t)u + RQ(U; t)ﬂ

where \; are new symbols in EF]}(JJ[T, N and satisfy

1
Im Ay /5 is of order — 2 Im A; is of order 0

(6.3.28) (5\1/2)v_: A1/2 (5\71/2_)v =A_1)2
(M) = =21, (M)’ ==X

A; are even functions of (z,§).

Notice that we have actually proved that the symbol A5 is of order —%,

and not just its imaginary part, but we conserve only those properties of the
symbols that are useful for us, and that are preserved under the reductions
of Chapter B and Chapter @ Moreover, as we have seen above

(6.3.29) Y
)\J(U’_t’x’g):)\J(U57t?x,£)a 3255_



6.3. EQUATION IN COMPLEX COORDINATES 227

(where S is now the complex involution defined in (B.1.1])).
Taking the complex conjugate of ([6.3.27]), we get, because of (Z227]),
the fact that m (&) is even in &, and (6.3.28)),

(6.3.30) Dyt = —O0p®WV[m.(€)(1 + ¢) + Ay ot + Op®V [me ()¢ + Ay jo]u
+ 0PV (A1) + Op®PWV (No)u — Ry (Us t)u — Ro(Us t)u.

Finally, we write the equations (6.3.27) and (63.30) as a system in the
variable U = [%] We get, using notation (G.3.8]),

(6.3.31) DU = OpPW([mu(§)(1 + ) + Aol K + [min(€)C + Ay 2] T
+ Mo + )\oﬁ)U + R(U;t)U

for some matrix R of smoothing operators in YR "} {[r, N]. We have finally
proved the paradifferential form (B312)-([G313) of system (B3.0).

Since SKS = =K, 595 = —J,SLS = L,5T,5 = 1o, it follows from
(6:328)) that the matrix A(U;t,-) giving the symbol in the right hand side of
(6.3.31)) satisfies the reality and parity preserving conditions (3.1.4]), (3.1.6]).
Moreover conditions (6.3.29]) are equivalent to the reversibility condition
(BIT). We have thus checked that all properties (6.3.10]) to (6.3.14])) hold.

Finally, by comparing (6.3.6]) and (63.12]) we have that

R(U;t) = X(U;t) — Op"V(A(U; ¢, ).

As stated after (6.3.6]) the operator X (U;t) satisfies the reality, parity pre-
serving, reversibility properties (B.1.14]), (B-LI7), (BI18]). Since the opera-
tor OpBWV(A(U;t,-)) satisfies as well (B.1L14), B.LI7), BLIR) (by (6.3.14))
we deduce that R(U;t) satisfies (6.3.15]). This concludes the proof. O

Remark: In the above system (63.12)), (€3.13), the symbols \; are in
the class EI’JKM[T, N] and the smoothing operator R(U;t) belongs to the
space YR’ 1[r, N| ® M2(C). This implies, recalling (ZZ37) and (Z2.30)
for k =0 and K’ = 1, that the Sobolev norms of the non-homogeneous terms
in the right hand side of (6.3.12]) may be estimated from the Sobolev norms of
U and of 0;U. This dependence of the bounds on first order time derivatives
is irrelevant to derive energy inequalities for the water waves system (6.3.12]).
On the other hand, we shall also need to estimate time derivatives of U by
the space derivatives, as claimed in ([6.3.32]) of the next proposition. For
that we use the water waves equation in its initial formulation (LI4)).

Proposition 6.3.2 Let (n,v) be a solution of system (I.1.7)) defined on
some interval I and belonging to the space
+3

. s—1
CO(L Hg,ev (T17R) x HSV 4(T17R)) :
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Let U = [%] where u is defined in (6.3.3). For any 0 < k < K there is a

constant Cy, such that, as long as U(t,-) stays in the unit ball of H*(T*, C?)
with s > K, one has the estimate

(6.3.32) 105U (&, ) g < CRlIU ) -

-
Proof: We proceed by induction. Assume that (6.3.32) has been proved

for k = 0,...,k < K — 1. The assumption ||U(t,-)||ys < 1 implies, in
particular, that

kl
(6.3.33) Y NOFU ) g < Cio
k=0

for some constant Cj, uniformly for ¢ in I. To prove 6332) with k = k' +1,
it is enough, according to (6.3.3)) and (6.3.2)), to show that

&’ k'
108wl e gareny + 10500 oiggoeny < CINUE ) e

42 o 2
By (6I131), the fact that ao(n,) is in ¥ F ko 1[r, N] and the bounds for
paradifferential operators of Proposition 2.2.4] it is enough to show that

k' k'
(6:334) 10 Ml oy g + 100l sy —gariny < CIUG ) g

2
0

or, equivalently, that
(6.3.35)

'4+1 k/+1
e * TJZ)HHsfif%(kUﬁl) + 1|0; * 77‘|Hs+%7%(k'+1) < C<||7/)HH37% + HnHHng%)

0

since. [[U7] 7 is equivalent to 6],y + [nll .,y by G, GI) and
H
(6131), (6.1.34)). One may rewrite (L14) as ’
O =Gy
Oy = F(n, 10", 0a1h, G(n)1))

where F is some analytic function vanishing at the origin. Thus we write
OF 1 = Of (Fn,of ", 000, Gln)w)) . OF Ty = OF (Gm)w).

and, since for s > K, H53K is an algebra, we may estimate the left hand

side of (6.3.34)) in terms of
k k k
10y (G(nyb)HHsf;Jrlfﬁk? 10y ”7||Hg+l*%k? Hat¢||Hs+%*%(k+l)

274 2 4
0

for k < k’. Let us first prove that, for any k < &/,

(6.3.36) 102G gr3-30 < CIUE s -

0
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We use that G(n)y is expressed from (6.1.55]) where the function V(n,)
is in X Fk 01[r, N], the symbol 8" in EF;(}O’I[T, N, & in SI% g,4[r, N], and
the smoothing remainders Rj, Rs in ERI_(‘; 071[7’, N]. According to Proposi-
tion Z224] applied to symbols of order one, [Z230) with £ = 0, K/ = 0, and
the first remark after Definition 2.2.3], we get for any k < k/

105 (GO —gi3-30 <C D2 (107 ¢l ooy ogur 10 0l 1 g0)
0 E<k Hy

as long as (6.3.33)) holds. Thus (61.34]), the fact that a(n,¢) isin XF g 91[r, N],

(63.5) and the inductive assumption ([6.3.32]) for £’ < k < £/, imply (6.3.36]).
Similarly we deduce that, for any 0 < k < &/,

k k
N0l ov g g + 107 iy < CNU@ ) s
0

. 3_3
Hsta—2

and (6.3.34) is proved. 0
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Chapter 7

Proof of some auxiliary
results

7.1 Non resonance condition

Recall that we defined in (B:Z3]), for k a positive number, and n a positive
integer

(7.1.1) my(n) = (ntanh n)%(l + fmz)%.
Moreover, if p is in N, =1 < £ < p+ 1, ng,...,npy1 are in N*, we have
defined the “small divisors”
L p+1
(7.1.2) Di(ng,...,npp1) = Zmﬁ(nj) - Z My (nj).
J=0 j=t+1

The goal of this section is to prove the following;:

Proposition 7.1.1 (Non resonance condition) There is a subset N
of 10, +oo] with zero measure such that, for any compact interval [a,b] C
10, +00|, there is an integer Ny € N, and for any k in [a,b] — N, there is a
positive constant ¢ such that the inequality

(7.1.3) De(no, ..y npr1)| > emax(ng, ..., npp1) 0

holds for any (no,...,np+1) in (N*)P*2 if p is odd or p is even and { # g,
and for any (ng,...,np+1) in (N*)PT2 such that

(7.1.4) {10y e} # (st e}

when p is even and £ = L.

To prove the proposition, we may fix a compact interval [a,b]. The assump-
tion made in the statement about ng, ..., n,4+1 means that we have to show

231
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that, given ¢ in N, ¢ > 2, and (c1, ..., ¢q) in (Z*)9, there exist Np in N, § > 0,
¢ > 0 such that for all v €]0,1][, there is a subset N, of [a,b] of measure
O(7°) such that, for any & in [a,b] — A, any integers 1 < j; < -+ < j,, We
have

(7.1.5)

q q N,
> eimi(Gi)| > CW(ZW) "
i=1 i=1

We define 7(€) = (£ tanh £)'/2 and associate to (ji,... , Jq) the points of the
interval [0, 1] defined by

q

(7.1.6) Ty = (Z(Uﬂ + T(J'z)))il, T; = Tojiy Titvq = G = 20T (ji),
=1

i =1,...,q. We denote X = [0,1]%"1 so that (z¢,...,24,C1,-..,() =
(o, ..., %q, T14q,---,%2q) € X. We shall deduce (ZI3) from Theorem 5.1
in [30], applied with the preceding space X and Y = [a,b] to the function

(7.1.7) [z, k) = i ciGin/xh + K}

i=1

and taking

(7.1.8) ple) =z [ (zi — %)(i Ci)-
=1

1<i1<i2<q

Let us check that the assumptions of Theorem 5.1 of [30] hold. The function
f is continuous and subanalytic. We have to check moreover that f is
analytic on the set {z € X;p(z) # 0} x Y. Since

(7.1.9)

q
{z € X;p(x) # 0} = {2 € X;m0 # 0,33, # 33, 1 < iy <ip < g,y ¢ #0f
1

is contained in {z(y # 0}, this is clear. Moreover, we have to verify that for
all z in X such that p(z) # 0, the function kK — f(z, ) has only finitely
many zeros in [a,b|. This is a consequence of the following lemma.

Lemma 7.1.2 Let p(x) # 0. Then the analytic function Kk — f(x, k) is not
identically zero on |a,b.

Proof: By (LI9), if p(xz) # 0, we have that xg # 0, z; # 2; if 1 < i <
Jj < qand 3>1¢ # 0. In particular, not all ¢; vanish and we may assume
Ciy > 0,...,¢;,, > 0 for some 1 < m < q. We have to prove that the function

m
(7.1.10) k— f(z,k) = Zciegm/xg + kg,
=1
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is not identically zero on [a, b] or equivalently on [0, +00]. Since xg # 0, up
to a change of notation, we may assume that x3 = 1 in (ZII0). Argue by
contradiction assuming that (7.I.I0) vanishes identically on [0, +oo.

Case 1: z;, # 0 for £ = 1,...,m. We expand in Taylor series on a
neighborhood of kK = 0

+o00
(7.1.11) V14 m:?l = Z an/-i"x?e"
n=0

with Taylor coefficients a,, that are all non zero. If we assume that (Z1.10])

with 3 = 1 vanishes identically for k € [0, +o0], plugging (ZLII]) in (TZ.IT.10)
and writing that the coefficients of k™ in the resulting expression all vanish,
we get

m
(7.1.12) > e Gt =0
(=1

for any n € N*. As all ¢;, are non zero, as well as the (;,, this implies that
the Van der Monde determinant

2 2
xill .. xflm
le ... x,[/m
(7.1.13)
2m 2m
xil . e xzm

has to vanish, which is a contradiction as we assumed x;, # 0, for any ¢ and
Case 2: One of the x;, vanishes, for instance x;; = 0. Since the z; are
two by two distincts, the other z;, are nonzero and (Z.ILI0) with 23 = 1 may

be written as
m
Ci1<i1 + Z CizCiz \ 1+ K/'CL"L?K'
=2

If this quantity vanishes, expanding as above in Taylor series at x = 0,
we conclude that again a Van der Monde determinant in the variables
(%iy, - .., T4, ) has to vanish, that contradicts the fact that z; # x; for ¢ # j.
This concludes the proof. O

End of proof of Proposition[Z1.1: As we have already seen, we have to con-
struct V, such that (ZI3]) holds if x is in [a, b] —N,. We apply Theorem 5.1
of [30], whose assumptions are satisfied because of lemmal[7.T.21 There exists
Ny in N, § >0, C > 0such that, for all N > Ny, all z € X = [0,1]%F! such
that p(z) # 0,

(7.1.14) meas {x € [a,b]; | f(z, 8)] <~lp(x)|"} < C1°|p(a)| ™’
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Define N, to be the set of £ in [a, b] such that |f(z, k)| < vlp(@)|N for some
x defined by (ZI6]) from some 1 < j; < --- < j,. Notice that

q

o) =lzo  T] (i —2i) )Gl

1<i1<i2<q 1

i) ! \Jir — Jis| > 7(i)
= (Z(‘]Z‘ " (]Z))> 1@'11;[@'23(1 Sl + 7)) X(dal + 7(4:))

satisfies

(7.1.15) C—l(zq: i)
i=1

— Ny

ol o( )
i=1

with Ny = 'f_TqH since |ji, — ji,| > 1 and 7(j;) > (tanh1)/2. Conse-
quently, the measure of the set N, is bounded from above using (Z.I.14)

and (ZI.I0) by
> CV(ZUz) "~ 0(y")

1<j1<<Jq

if NV is chosen large enough so that Nd > ¢q. Moreover, when & is outside
./\/;,, we have

@ 8)| = Alp@)] Y > cw(z )
i.e. taking (ZI7)), (C.I.6) into account

(zq: (el + 7(je)) )72 > CV(i |ji|)7NN2
= =1

which implies (TI5) with No = NNs — 2. In conclusion the set N' =
No<y<1 N5 has zero measure, and for all x € [a,b] \ NV the bound (ZI3)
holds for some ¢ > 0. O

ik ]z

7.2 Precise structure of the Dirichlet-Neumann op-
erator

The Dirichlet-Neumann operator, in one dimension, is well known to be
expressed as G(n)y in (GL55) with a symbol b of order as negative as
desired, if 1 is smooth enough. In our framework, it is sufficient to know
that 80 is of order —1, and this is the assertion that is made in the statement
of Proposition B.I.5l We prove such property in this section.
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Proposition 7.2.1 With the notation of Proposition[6.1.3, the symbol b°(n; -)
belongs to EF;&OJ [r, N,aut].

We shall use the following lemma. Recall that we have defined in (5.2.1T])
the symbol

e (m2,2,8) = C(2,€) + €1 (m; 2,2, €),

whose expllclt Value is given by wy in (5.2.21]), with C(z, ) defined in (5.2.3))
and e+ ;| in EPKO 1[r, N]. Thus the symbol ey in (:229) may be written
as

(721) €+(77§ Z,x’g) = 63(777 Z,,I,g) + 63@1(77; Z,,I,g) +oee ei_,f(??; Z,,I,g)
where eiL’l is in EP;{O’TE [r, NT.

Lemma 7.2.2 The component e}hl of the symbol ey in (Z.21) solves for
say |€] > 1 the equation

Pel y = —[¢l(sgn& —in') 20" ()€l (n; 2, 2, €)
(7.2.2) el 1lz=0 =0

1
8z€+’1‘2:_1 =0

where P = (1 +1'%)0? — 2in/€0, — &2 is the operator introduced in (5.213).

Proof: Recall that by definition el ; solves equation (B.Z32) with j = 1,
whose right hand side £; (e +) is given by the opposite of the symbols of
order one in those terms in the right hand side of (.2Z31]) that follow the
Op®W(Pe,) contribution. In other words, we obtain £; 4(e%) taking the
opposite of the principal term in

(#0250 )pn — 0?0265 ) — 20 (W €)#02€3) v — (1/€)D:¢%)
— ((€#e%)pn —%€5)
so that

1 1
(723)  Pely == | (%020} — (€, 0.0} - {3 )

for |¢| > 1. The condition PeY = 0 brings an expression for 92¢. as

/ 2
2 0 - £ &0
(724) (9ze+ == 1 + 125 € + + — 1 + D) +
Since €9 is given by w, in (5.221)), taking into account (5.2.19]), we may
write

(7.2.5) 8269F = 3 {zn —l—tanh{ﬂ} ei(n;z,w,{)

1+ n/Z 1+ ?’]/2
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modulo a symbol in 273;)5)’14_ [r, N] that may be discarded as it will play no
role in the computation of the symbol ei_J of order —1. Plugging in (T.2.4)),
we get

& 5 [(1 — /%) + 2ign tanh[wueg(n; z,1,€)

2. R S—
(7.2.6) OZey 1 +1?2) 1+72

modulo a symbol in of order —co. Note that if z stays in [—3,0] and |¢] > 1,
tanh [(f:;,)ﬂ —sgn ¢ is of order —oo. Moreover, for z in [—1, —%], the symbol

e} is of order —oo by construction. We may thus rewrite (ZZ5)), (ZZ8) as
0:¢f = E(sgng —irnf) el

2 0 2 . N=20
Ozey =& (sgng —in') "y

modulo again symbols of XPx %4 [, N]. Moreover, from (5.22T)), we deduce
1+c)

(7.2.7)

that e} may be written in the region |¢| > 1 as e?@&+2Il(
of order —oo, so that

{&, €0} = iz{&, '} (sgn & — in') %€},
{n,e}} = 2{n', &} (sgn & —in) " 'el.

for |¢] > 1, modulo symbols of EP;(:)S”’J[T, N]. If one plugs (Z.27) inside

([T23)) and uses (.2.8]), we get by a direct computation that (T.23)) is given
by

modulo symbols

(7.2.8)

—[¢l(sgn & —in) & 0t
for |£] > 1. This gives (T.22]). O

We compute now the 0, derivative of 63—,1'

Lemma 7.2.3 The solution e} | of (ZZ2) satisfies for [¢] > 1

1, (sgné&+in')?
12 1 /"
(7.2.9) (L7505 0le=0 = =50 =12

modulo a symbol in XTI [r, N,aut].

Proof: According to lemma [5.2.2] the solution e}hl of (C22) is given by
(7.2.10)

0
b1l 2,2, €) = —[€lsgné — in) 2n'(@) [ KOz, 0, O (i, )

where K is the kernel in (5.2.IT)). This kernel has been defined in the proof
of lemma (.22 as K = (1 + n'?)"'K, with K given by (5.227). It follows
that (Z.29)) is given by the product of

(7.2.11) — |¢l(sgn & — in') 7" (x)
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and of

(7.2.12) l/?l3zw_(0,§,a,bﬁu+(ch,a,b)W/(g7§7a,b)—1ei(zeq;§)dz[

According to (5.2.21]) and (5.2.20])
wy (YW () = e D% cosh((2 + 1)E(1 + ¢))
x (1- iz " tanh(£(2' +1)(1 + ¢)))

+c
and

d.w_(0) = €' cosh(£(1 +¢)) (1 — 2'1 j_

-1
. tanh(&(1 + c)))

so that the integral (Z.Z12]) is given by

0 . ecosh((z/ +1)é(1+¢) o, ,
/16 ‘ cosh(&(1 + ¢)) e?r(z ,€)dz

modulo a symbol of order —oo. Replacing eg{ by its value w4 given by
(5221]), we reduce the above integral to

0 /2
/ 27 Nel(e) g LT
-1 2[¢]

modulo a symbol of order —co. Multiplying this value of (Z.2.12)) by (T.2Z.11]),
we obtain for (.2.9) an expression that may be written as the right hand
side of this equality. O

Proof of Proposition [Z21: We want to show that, in the expression of
G(n)1 given by (6L55), the symbol b° is of order —1 (and not just of order
zero). We have thus to examine those contributions in (6.I57) given by
paradifferential operators acting on ¢ (or on w). They come from

T+ 1141V =0.9|.—0 + Op®WV (1f @ /)0, ®|.—g — Op®WV (1), ®|.— .

The smoothing term VI gives the last but one term in (G.I55). Taking
(6I5]) into account, the paradifferential operators acting on ¢ (or on w)
come from

(7.2.13) 0.®|.—0 + Op®V (1 @ )0, ®|.—0 — Op®WV ()0, ®|.—0 .

Recall that ® is given by (6.1.43]) where the symbol e; in EP%’B&T, N]
and the integral expression and the last term in the right hand side pro-
vide smoothing contributions. Note in particular that the integral term
ffl [OpBW(K(n; 2,2,))|z=0f (2) dZ in (EI.43) is smoothing because the func-
tion f(2) given by (6.1.42)) is supported for Z < —1/8 and then we use lemma
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E.1.14] (condition (5.1.79)) holds by (6.1.40]), changing the value of o). Mod-
ulo such smoothing terms, we may replace in (ZZI3) ® by Op®W (e (n;-))w.
Using symbolic calculus we are thus left with showing that the operator

(7.2.14)  Op®V (1 +1?)0p®W (9.4 ]:—0) — 10V (') Op®W (e4]:—0)
1
+ 5005 (0P (e |oco)
may be written as
(7.2.15) OpPV (¢ tanh & +b_1 (1))

where b_; is in X7, [r, N, aut].
Recall that the symbol e in (7.2ZI4]) has the form (Z.2]), namely may
be written as
ey = e?r —|—e}r71 +7r
63— = C(Z7 5) + 63—,1(77; Z,T, 5)
—1

where 63—,1 € 273;(710’:; [r, N] is the solution of (T22), r = 63,1 + el
is in E/PI_(,QO’I [r,N] and € € 273%’?570[7", N] is given by (B.2.I1), actually is
equal to wy in (BZ2I)). The contribution coming from r to (CZI4]) may
be written as OpBW (b_1(n;-))w for a symbol of order —1, since 7 is of order
—2. If we consider now the contributions of e} + e}hl to (T214]), we see
using symbolic calculus that, up to expressions of the form OpBW(b_;) with
b_1 in EF;&OJ[T, N, aut], the operator (.ZI4]) is given by a paradifferential
operator with symbol

1
(7.2.16) (1+175*)0:(e) + el 1)ls=0 + % {n'%,0.€%|.—0}
. 1 1
- “7/5(63 + 61+,1)|z=0 - 5{77'5, €3|z=0}+§77”63|z=0-

By (.ZIT), (5.23), (G-ZI0), (ZZ2) we have €% |.—o = 1,e} j].—o = 0 and

by (Z23)),
0 Etanh & + in/¢
Ocilemo = m

modulo symbols in T4 | [r, N,aut]. Inserting in (ZZI6) these formulas

and (CZ9) we get

i (sgné + 1'77/)2 l 1
1+ 72 201+ /2

. 1 .
gtanh € +ins — on {n'?,1€] +in'€}
1
—in'é + 5?7” = {tanh¢

modulo symbols in EF[_(}O,I[T, N,aut] (that depend on 7'). We have thus
obtained that (.2ZI4]) has the form (C.ZI5]), which concludes the proof. O
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