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Abstract: An unsteady cavitation model in liquid hydrogen flow is studied in the
context of compressible, two-phase, one-fluid inviscid solver. This is accomplished by
applying three conservation laws for mixture mass, mixture momentum and total energy
along with gas volume fraction transport equation, with thermodynamic effects. Various
mass transfers between phases are utilized to study the process under consideration.
A numerical procedure is presented for the simulation of cavitation due to rarefaction
and shock waves. Attention is focused on cavitation in which the simulated fluid is
liquid hydrogen in cryogenic conditions. Numerical results are in close agreement with
theoretical solutions for several test cases. The current numerical results show that liquid
hydrogen flow can be accurately modeled using an accurate inviscid approach to describe
the features of thermodynamic effects on cavitation.
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1 Introduction

Thermodynamics of thermosensitive fluids is an essential
phenomenon of cavitation dynamics arising in cryogenic
fluids. These fluids are typically characterized by
variations in fluid properties such as the temperature,
with special intense to vapour pressure. In cryogenic
fluids, however, the density ratio of liquid-vapour is lower
than the density of typical fluids such as cold water which
leads to vaporization of liquid mass to sustain a cavity.
The evaporative cooling effects are more evident where
the temperature of the liquid phase near the liquid-
vapour interface is depressed below the free-stream

temperature. Although the temperature depression is
negligible in cold water, it remains a continuing interest
in cavitation. Indeed, for cavitation, the local cooling
effects delay such phenomenon and decrease the fluid
local vapour pressure that leads to a lower cavity
pressure. Consequently, this implies that it is useful
for cryogenic pumps to establish a relatively improved
performance.
Earlier research on thermal effects was generally focused
on achieving correlations for temperature depression as
a function of flow conditions and liquid properties. This
has included the B-factor theory that characterize the
sensitivity of fluids to thermodynamic effects (Stahl
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et al. 1956, Moore & Ruggeri 1968). In Hsiao &
Chahine (2002), Hsiao et al. (2006), the authors
used the Rayleigh-Plesset equation to investigate such
thermodynamics. In this model, the governing equations
are composed by three balance equations for the
mixture quantities coupled with a macroscopic model
for the bubble dynamics based on the Rayleigh-Plesset
equation. This model is capable of handling either single
bubbles or clouds of bubbles that grow and decrease
through a pressure field (Fujikawa et al. 1980, Rodio et
al. 2012). In the case where heat transfer is negligible,
the phase change is driven by inertia effects. Yet, when
thermal effects are involved, the liquid inertia become
rapidly negligible and the evolution is controlled by the
heat flux provided by the liquid at the bubble surface
(Florschuetz & Chao 1965, Prosperetti & Plesset 1978).
The widely used modeling approach in cavitation is
based on averaged two-phase flow models of the one-fluid
formulation. However, there are different approaches
within these models according to the assumptions
made on the local thermodynamic equilibrium along
with the slip conditions between phases. In general,
the seven-equation models are regarded as the most
complete models due to their non-equilibrium process
between phases (Ambroso et al. 2012, Baer & Nunziato
1986, Chalons et al. 2011). Further, these models have
been investigated and applied to metastable states
and evaporation front dynamics (Saurel & Metayer
2001, Ishimoto & Kamijo 2004). Another set of similar
models, the five-equation model, is also derived on the
basis velocity and pressure equilibrium (Allaire et al.
2002, Kapila et al. 2001, Kreeft & Koren 2010). This
also can be expressed as a four-equation model by
assuming thermal equilibrium between phases. With
such formulation, the authors in (Utturkar et al. 2005,
Tseng & Shyy 2010, Huang et al. 2014) adapted a
set of models to simulate turbulent cavitating flows in
cold water within cryogenic applications. These models,
however, utilizes three conservation laws for mixture
quantities (mass, momentum, energy) along with a mass
equation for the vapour or liquid density including a
cavitation source (Utturkar et al. 2005). Yet, this family
of models is not thermodynamically well-posed and does
not account for the main thermodynamic constraints
features (Goncalves & Patella 2011, Zeidan et al. 2007).
The authors in (Downar-Zapolski et al. 1996, Schmidt
et al. 2010) have applied the Homogeneous Relaxation
Model to boiling flow processes taking into account the
mass fraction equation with a relaxation term which is
estimated from experimental data.
The objective of this paper is to investigate cavitating
flows in liquid hydrogen within cryogenic conditions.
This is based on a transport-equation for the
void fraction in which the mass transfer between
phases appear explicitly and closed by assuming
its proportionality with the velocity divergence. The
vapour pressure is assumed to vary linearly with
the temperature though the parameter dPvap/dT .
Validations have shown the ability of such models to

correctly simulate cavitation pockets in both water and
freon R-114 (Goncalves 2013, Goncalves & Charriere
2014, Goncalves 2014, Charriere et al. 2015, Goncalves
& Zeidan 2015). In order to investigate thermal effects
in LH2 cryogenic cavitating flows, one-dimensional
cavitation tube problems are proposed. Such rarefaction
tube problems involving cavitation are one of the most
used case to study the behaviour of phase transition
models and to test and develop numerical schemes
(Saurel & Metayer 2001, Barberon & Helluy 2005, Saurel
et al. 2008, Zein et al. 2010, Causon & Mingham 2013,
Spina et al. 2014, Pelanti & Shyue 2014).
This paper is organized as follows. In Section 2, we
present the governing equations, the mass transfer
closure relations and the mixture equation of states.
Section 3 describes the finite volume scheme adopted and
the integration of the source term. The numerical results
and the influence of parameters are presented in Section
4.

2 Equations and models

The homogeneous mixture approach is used to model the
two phase flows of interest in the current paper. Further,
the two phases are assumed to be sufficiently well mixed
with very small particles of the dispersed phase and the
two phase move at equal velocities and share the same
pressure P . Although the temperature-equalizing time is
larger than the pressure and velocity relaxation times,
as noted in (Kapila et al. 2001), it is possible to consider
a single-temperature model as an approximate model of
flow if the difference of phase temperatures is not too
big.

2.1 A four-equation single-temperature model

The model consists in three conservation laws for
mixture quantities and an additional equation for the
void ratio (Goncalves 2013). We present below the
inviscid one-dimensional equations, expressed with the
vector of variables w = (ρ, ρu, ρE, α):

∂ρ

∂t
+

∂ρu

∂x
= 0, (1)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0, (2)

∂(ρE)

∂t
+

∂(ρuH)

∂x
= 0, (3)

∂α

∂t
+ u

∂α

∂x
= K

∂u

∂x
+

ṁ

ρI
, (4)

K =
ρlc

2
l − ρvc

2
v

ρlc2l
1−α +

ρvc2v
α

and
1

ρI
=

c2v
α +

c2l
1−α

ρlc2l
1−α +

ρvc2v
α

. (5)

In the above, E = e+ u2/2 and H = h+ u2/2 denote
the mixture total energy and the mixture total enthalpy,
respectively. ρI is the interfacial density, ṁ is the mass
transfer between phases and ck the speed of sound of the
phase k.
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2.1.1 Pure phase EOS

The liquid density ρl is assumed to be in its equilibrium
state at the reference temperature: ρl = ρsatl (Tref ). In
addition to that, the vapour density ρv follows the
stiffened gas EOS and varies with the temperature. The
convex stiffened gas EOS relations are (see (Metayer et
al. 2004)):

P (ρ, e) = (γ − 1)ρ(e− q)− γP∞, (6)

P (ρ, T ) = ρ(γ − 1)CvT − P∞, (7)

T (ρ, h) =
h− q

Cp
, (8)

where γ = Cp/Cv is the heat capacity ratio, Cp and Cv

are thermal capacities, q the energy of formation and P∞
is the constant reference pressure. The speed of sound c
is given by:

c2 = γ
P + P∞

ρ
= (γ − 1)CpT (9)

2.1.2 Closure relation for the mass transfer

Assuming the mass transfer is proportional to the
divergence of the velocity, it is possible to develop
a family of models (Goncalves 2013, Goncalves &
Charriere 2014) in which the mass transfer is expressed
as:

ṁ =
ρlρv

ρl − ρv

(
1− c2

c2wallis

)
∂u

∂x
. (10)

Here cwallis is the propagation velocity of acoustic waves
without mass transfer (Wallis 1967). This speed of sound
is expressed as a weighted harmonic mean of speeds of
sound of each phase:

1

ρc2wallis

=
α

ρvc2v
+

1− α

ρlc2l
. (11)

2.1.3 Mixture EOS

To close the system and to compute the mixture pressure
and the mixture temperature, an equation of state for
the mixture is necessary. In the present study, two
formulations are compared: a mixture of stiffened gas
and a sinus law.

A mixture of stiffened gas EOS

Assuming pressure equilibrium between phases, an
expression for the pressure can be obtained as a function
of the void ratio α and the vapour mass fraction Y :

P (ρ, e, α, Y ) = (γ(α)− 1)ρ(e− q(Y ))

− γ(α)P∞(α), (12)

1

γ(α)− 1
=

α

γv − 1
+

1− α

γl − 1
, (13)

q(Y ) = Y qv + (1− Y )ql, (14)

P∞(α) =
γ(α)− 1

γ(α)

[
α

γv
γv − 1

P v
∞

+ (1− α)
γl

γl − 1
P l
∞

]
, (15)

Y =
αρv
ρ

. (16)

Further, assuming thermal equilibrium between phases,
the mixture temperature is expressed as:

T (ρ, h, Y ) =
hl − ql
Cpl

=
hv − qv
Cpv

=
h− q(Y )

Cp(Y )
, (17)

where

Cp(Y ) = Y Cpv + (1− Y )Cpl
. (18)

The speed of sound within the mixture can be
represented as a function of the enthalpy of each phase
(Goncalves & Patella 2009):

ρc2 = (γ − 1)

[
ρvρl

(ρl − ρv)
(hv − hl)

]
, (19)

where the enthalpies of pure phase hl and hv are
computed with the mixture temperature T .

A modified sinusoidal EOS

A sinusoidal relation can be considered for the current
mixture flows (Goncalves & Patella 2010). When the
pressure is smaller than Pvap(T ) + ∆P , the following
relationship applies:

P (α, T ) = Pvap(T )

+

(
ρsatl − ρsatv

2

)
c2sinus sin

−1 (1− 2α). (20)

This EOS introduces a small non-equilibrium effect on
the pressure quantified by the quantity ∆P . For a
void ratio value of 0.5, the pressure is equal to the
saturation pressure Pvap(T ) at the local temperature T .
This temperature is evaluated using the relation (17).
The saturation values ρsatl and ρsatv are evaluated at the
reference temperature Tref . The quantity csinus, which
has the dimension of a velocity, is a parameter of the
model. The pressure continuity between the liquid and
the mixture is given by:

π

2

ρsatl − ρsatv

2
c2sinus = ρsatl (γl − 1)CvlTref

− P l
∞ − Pvap(Tref ), (21)

which determines csinus for given values of saturation
conditions. It is worth note that the vaporization
pressure varies linearly with the temperature by

Pvap(T ) = Pvap(Tref ) +
dPvap

dT
(T − Tref ), (22)

where the constant quantity dPvap/dT is evaluated using
a thermodynamic table. When dPvap/dT = 0, one find
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the isothermal model. Furthermore, the speed of sound
in the mixture can be written as (Goncalves & Patella
2010):

c2 =

ρvρl

ρ(ρl−ρv)
(hv − hl)

dPvap

dT + ρCp(Y )c2T

ρCp(Y )− dPvap

dT

, (23)

c2T =

(
∂P

∂ρ

)
s

=

(
∂P

∂ρ

)
T

=
c2sinus

2
√
α(1− α)

, (24)

where cT is the isothermal speed of sound.

2.1.4 Hyperbolicity

Without mass transfer, the four equations form a system
of conservation laws having a hyperbolic nature. The
eigenvalues of the system are:

λ1 = u− cwallis, λ2,3 = u and λ4 = u+ cwallis.

However, when heat and mass transfer occur, the system
is still hyperbolic with the following eigenvalues:

λ1 = u− c, λ2,3 = u and λ4 = u+ c,

where c is the mixture speed of sound which depends on
the EOS formulation.

3 Numerics

The conservation laws governing both models is written
as

∂w

∂t
+

∂F (w)

∂x
= S(w), (25)

where w is the vector of variables, F the convective flux
and S the source term. We focus herein on finite volume
schemes. Regular meshes are considered, whose size ∆x
is such that: ∆x = xi+1/2 − xi−1/2 with the usual time
step ∆t, where ∆t = tn+1 − tn. Also, we let wn

i be the
approximate value of w(x, tn) in the cell centered on xi.
A discrete form of the system can be written as:

∆x
wn+1

i − wn
i

∆t
+ Fn

i+1/2 − Fn
i−1/2 = Sn

i ∆x, (26)

where Fi+1/2 is the numerical flux through the cell
interface xi+1/2 × [tn, tn+1]. The time step should
comply with CFL (Courant-Freidrichs-Lewy) condition
in order to guarantee some stability requirement. Finally,
the numerical flux through the cell interface is computed
with both the first-order Rusanov scheme (Rusanov
1961) and the second-order Jameson-Schmidt-Turkel
scheme (Jameson et al. 1981).

3.1 Treatment of the source term

The numerical simulations of the initial-boundary value
problems are accomplished using splitting approach. One

starts in solving the source-free homogeneous part of the
whole system:

∂w

∂t
+

∂F (w)

∂x
= 0. (27)

This is followed by solving the system of ordinary
differential equations describing the mass transfer
between phases to obtain the complete solution:

dw

dt
= S(w,∇w). (28)

3.2 Inlet and outlet boundary conditions

The numerical treatment of the boundary conditions
is based on the use of the characteristic relations of
Euler equations. The number of variables to impose
at boundaries is given by the number of positive
characteristics. The characteristic relations obtained for
the 4-equation system are (Goncalves 2013):

−c2(ρc − ρs) + (P c − P s) = 0, (29)

(P c − P s) + ρc(V c − V s) = 0, (30)

(P c − P s)− ρc(V c − V s) = 0, (31)

ρ(αc − αs)−K(ρc − ρs) = 0. (32)

The variables with superscript c denote the variables to
be computed at the boundary. Variables with superscript
s denote the variables obtained by the current numerical
scheme.
At inflow, we impose the initial values of the void ratio,
densities of pure phases and the velocity. The pressure
is evaluated with the relation (31) and all variables can
be evaluated at the boundary.
At outflow, the static pressure is imposed. The variables
are computed with three characteristic relations (29),
(30) and (32).

4 Simulation of double rarefaction cases

These cases are similar to those proposed in (Saurel et al.
2008) with hot water. It consists in a one meter long tube
filled with a liquid and a weak volume fraction of vapour
α =0.01 is added. An initial discontinuity of velocity u0 is
set at 0.5 m, the left velocity is -u0 and the right velocity
is u0. The stretch of the liquid leads to the creation of a
cavitation area in the middle of the tube (see Figure 1).
Without mass transfer, the solution involves two
expansion waves. As gas is present, the pressure cannot
become negative. To maintain positive pressure, the gas
volume fraction increases due to the gas mechanical
expansion and creates a pocket. Liquid water is expanded
until the saturation pressure is reached then evaporation
appears and quite small amount of vapour is created.
The solution with phase transition is composed of
four expansion waves. The extra two expansion waves
correspond to the evaporation fronts (see Figure 2). The
evaporation creates a cooling effect and a temperature
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Table 1 Parameters of the stiffened gas EOS for LH2 at T = 22.1K

γ P∞ (Pa) q (J/kg) Cp (J/K.kg) ρsat (kg/m
3)

liquid 2.8 2. 105 -2.21 105 10875 68.78
vapour 1.38 0 1.66 105 13090 2.50

depression is observed inside the cavity. According to the
initial velocity u0, the cooling effect can be strong.
A simple heat balance between the two phases can
estimate the scale of temperature difference ∆T ∗ caused
by thermal effects.

∆T ∗ =
ρvLvap

ρlCpl

, (33)

where Lvap is the latent heat.
The B-factor is estimated as the ratio between the actual
temperature drop and ∆T ∗. By assuming that the whole
liquid contributes to the heat necessary for the vapor,
we obtain (Franc & Michel 2004):

B =
∆T

∆T ∗ ≃ α

1− α
. (34)

However, the hypothesis that the whole liquid is
contributing to the vaporization process is a very strong
one.

4.1 Initial velocity u0=10 m/s

A double rarefaction case is proposed for which the
running fluid is liquid hydrogen in cryogenic conditions.
Liquid hydrogen is initially at the pressure 2 bar and
at the reference temperature Tref = 22.1 K. A weak
volume fraction of vapour α = 0.01 is initially added to
the liquid. The initial discontinuity velocity is u0 = 10
m/s.
The vapour pressure at the reference temperature is
Pvap(Tref ) = 1.63 bar. Parameters of the stiffened gas
are given in Table 1. The quantity csinus is set to 3.15
m/s following equation (21). The quantity dPvap/dT is
determined using the NIST thermodynamic table (NIST
n.d.). Figure 3 presents the linear approximation of the
vapour pressure on the temperature interval [19, 24] K.
The value of dPvap/dT is set to 38980 Pa/K. For all
simulations, the mesh contains 5000 cells and the time
step is set to 10−7 s. Computations are performed using
the first-order Rusanov scheme.
The pressure, the void fraction, the temperature and the
velocity are plotted in Figure 4, at time t=0.8 ms, for
both 4-equation models. The four expansion waves are
clearly illustrated (two fast expansion waves and two
slow evaporation fronts). The pressure drop under the
initial value of the vapour pressure is around 0.2 bar. It
is more pronounced using the 4-equation SG model and
due to a larger cooling effect. The creation of void ratio
is weak (around 20 %) and a little more void ratio is
produced by the 4-equation sinus model. For the velocity
profile, results obtained with both models are similar.
The vapour density ρv, the mass fraction of vapour
Y , the B-factor and the speed of sound are plotted

in Figure 5, at time t=0.8 ms, for both 4-equation
models. The mixture speed of sound of the sinus EOS is
largely smaller than the SG relation, that can explain the
greater quantity of vapour created by the sinus model,
as observed for the mass fraction profile. Indeed, the
mass transfer is linked to the quantity 1− c2/c2wallis

following equation (10). The B-factor is computed as
the ratio between the actual temperature drop and the
characteristic temperature drop ∆T ∗, following equation
(34). Saturation values at the reference temperature Tref

are used. For the 4-equation sinus, the maximal value is
0.375 to be compared with the ideal value given by the
ratio α/(1− α) = 0.31 evaluated with the maximal value
of the void ratio (21 % of error). For the 4-equation SG
model, the maximal value is 0.49 to be compared with
0.22 (120 % of error). Comparatively, the 4-equation
sinus solution is in better agreement with the ideal value.
The vapour density evolution is linked to the pressure
and temperature profiles (it follows the stiffened gas
EOS). As observed for T and P , the 4-equation SG model
provides a lower value in comparison with the 4-equation
sinus model.
Finally, the effect of the numerical scheme is shown in
Figure 6 where are plotted the pressure, the void ratio,
the temperature and the velocity at time t=0.8 ms.
For all variables, numerical solutions obtained with both
schemes are similar. A small difference can be observed
on the expansion fronts, which are stiffer using the 2nd-
order Jameson scheme. In the following, only simulations
performed with the Rusanov scheme will be presented.

4.2 Initial velocity u0=100 m/s

The same conditions are used except regarding the
discontinuity velocity which is set to u0=100 m/s. Such
high velocities are representative of flows occurring
in turbopumps of rocket propulsion systems (see
for example (Goncalves et al. 2010)). In this case,
evaporation is much more intense resulting in a large
cavitation pocket.
The estimation of the slope dPvap/dT leads to
difficulties due to the large temperature drop. A linear
approximation on the temperature interval [14, 22] K is
presented in Figure 7. The value of dPvap/dT is around
24500 Pa/K. A parabolic approximation will be clearly
better, but the model properties, especially the mixture
speed of sound formulation, are more difficult to study.
Secondly, using the linear approximation, we observe
than the vapour pressure becomes negative if the
temperature is smaller than 15 K. This situation occurs
with the initial discontinuity velocity u0=100 m/s. The
pressure and the temperature are plotted in Figure 8,
at time t=0.8 ms, using the 4-equation sinus model
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with dPvap/dT = 24500 Pa/K. The cooling effect is
important and the mixture temperature decreases to
14.9 K. Negative values of the pressure appear in the
middle of the tube. A similar result is obtained using the
4-equation SG model.
As a remedy, a smaller value is considered: Pvap/dT =
20000 Pa/K. The pressure, the void fraction, the
temperature and the vapour density are plotted in
Figure 9, at time t=0.8 ms, for both 4-equation models.
Using the 4-equation SG model, negative values for
the pressure and the vapour density are obtained. The
temperature decreases up to 13.5 K that is lower than
the triple point (13.8 K). On the other hand, using the
4-equation sinus model, the pressure and the vapour
density remain positive. The temperature decreases to
14.3 K. The pressure drop under the initial value of the
vapour pressure is very strong, it reaches 1.5 bar. A large
cavitation area is created for which the maximal value
of the void ratio is 84 %.
Figure 12 presents the B-factor and the mixture speed
of sound evolutions in the tube, at time t=0.8 ms,
computed with the 4-equation sinus model and with
dPvap/dT = 20000 Pa/K. The maximal value of the
B-factor is 5.5 to be compared with the ideal value
estimated with the maximal void ratio (84 %) that
is 5.25 (5% of error). The numerical simulation is in
close agreement with the theoretical value. The large
variations of the speed of sound are well illustrated:
around 460 m/s in the initial condition, 12 m/s behind
the expansion waves and 146 m/s in the cavitation area.
This non monotonous behaviour makes the numerical
integration stiff.
Another strategy for the estimation of dPvap/dT consists
in splitting the linear approximation on two intervals, as
plotted in Figure 10. The temperature at the intersection
between the two lines is 18.15 K. Values of dPvap/dT
are 9930 Pa/K and 27260 Pa/K, respectively. The
pressure, the void fraction, the temperature and the
vapour density are plotted in Figure 11, at time t=0.8
ms, for both 4-equation models. Using the 4-equation
SG model, as previously negative values are obtained for
the pressure and vapour density. For both models, an
irregularity is observed on profiles due to the change of
slope dPvap/dT around 18 K. For the 4-equation sinus
model, the temperature drop reaches 13.7 K, which is
under the triple point value.

4.3 Shock-cavitation interaction, u0=100 m/s

This case is similar to the previous one, except that
the two ends of the tube are simultaneously closed once
the flow starts. Therefore, a shock created at each end
moves towards the center, resulting in shock-cavitation
interaction and cavitation collapse. A uniform mesh of
5000 cells is used and the time step is set to 10−8 s.
Simulations are performed using the 4-equation sinus
model with dPvap/dT = 20000 Pa/K.
The pressure, the void ratio, the temperature and the
vapour density are plotted at different times in Figure 13

(with a logarithmic scale for the pressure and the vapour
density). The cavitation pocket grows up to time t =
0.6 ms. After this time, the shocks created at the ends
meet the rarefaction waves generated at the center, and
then interacts with the expanding cavitation interface.
The cavitation collapse begins. The reduction of the
cavitation area is clearly observed on the void ratio
profile after time t=0.6 ms. From time 0.6 ms to 1.1 ms,
the cavitation pocket narrows but the maximal void ratio
remains around 80 %. At time t = 1.2 ms, the decrease
of the void ratio is abrupt and the value in the middle
of the tube is around 5 %.
The shock propagation through the rarefaction region
is well illustrated on the pressure, the temperature and
the vapour density profiles, up to time t = 0.6 ms. Then
shocks interacts with the expanding cavitation interface,
resulting in a discontinuity forms at the interface. The
cavitation collapse generates two shocks which propagate
outwards. For the initial shocks, the maximum pressure
is around 54 bar, whereas the maximal pressure for
the two shocks created during the cavitation collapse is
around 28 bar. At time t = 1.2 ms when the void ratio
decreases abruptly, we observe a large increase of the
vapour density up to 28 kg/m3 and a warming effect
about 6 K in comparison with the reference temperature.
At time t =1.3 ms (not presented), the temperature
reaches 30 K. The magnitude of both phenomena, the
cooling effect due to the evaporation and the warming
effect due to the collapse, is quite similar.
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5 Conclusion

The thermal effects in 1D cryogenic cavitating flows
were studied. Two EOS were tested associated with a
mass transfer closure based on the ratio between the
mixture speed of sound and the Wallis speed of sound.
Simulations were performed on inviscid rarefaction
problems leading to a phase transition, for which the
working fluid is liquid hydrogen at the temperature
22.1 K. Different initial velocities were considered
and especially a high-speed case was investigated,
corresponding to a realistic velocity in turbopump
applications. Moreover, a shock-cavitation case was
simulated leading to the collapse of the cavitation area.
These cases lead to different concluding remark:

• As regard to the EOS comparison, the sinus model
generated more vapour and a lower temperature
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depression than the SG model. For the high-speed
case, the pressure and vapour density obtained
with the SG model were negative, that constitutes
a clear drawback.

• Problems appeared with the calibration of the
parameter dPvap/dT for the high-speed case
because of the prediction of negative pressure. A
piecewise approximation was tested and led to a
temperature decrease lower than the triple point
value. For this situation, a specific thermodynamic
model have to be developped. Using a constant
value dPvap/dT = 20000 Pa/K, the simulated
temperature drop was around 8K and the result
was in good agreement with the B-factor theory.

• For the shock-cavitation case, a warming effect
was highlighted during the collapse for which the
magnitude was quite similar to the cooling effect
during the evaporation process.

Ongoing works are to pursue comparative analysis
and to develop two-temperature models. A detailed
thermal analysis under a range of physical conditions is
planned in later phases of work to be reported in future
publications.
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Figure 1 The double rarefaction tube

Figure 2 Wave propagation diagram of the expansion tube

Figure 3 Variation of the vapour pressure with the temperature on the interval [19,24] K
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Figure 4 Double rarefaction with cavitation in LH2, u0=10 m/s, t = 0.8 ms. Models comparison. Pressure, void ratio,
temperature and velocity
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Figure 5 Double rarefaction with cavitation in LH2, u0=10 m/s, t = 0.8 ms. Models comparison. Vapor density, mass
fraction of vapour, B-factor and speed of sound
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Figure 6 Double rarefaction with cavitation in LH2, u0=10 m/s, t = 0.8 ms. Numerical schemes comparison. Pressure, void
ratio, temperature and velocity
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Figure 7 Variation of the vapour pressure with the temperature on the interval [14,22] K

y = 0,24540x - 3,73423
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Figure 8 Double rarefaction with cavitation in LH2, u0=100 m/s, t = 0.8 ms. 4-equation sinus model, dPvap/dT = 24500
Pa/K. Pressure and temperature
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Figure 9 Double rarefaction with cavitation in LH2, u0=100 m/s, t = 0.8 ms. Models comparison, dPvap/dT = 20000
Pa/K. Pressure, void ratio, temperature and vapour density
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Figure 10 Double rarefaction with cavitation in LH2, u0=100 m/s, t = 0.8 ms. 4-equation sinus model. B-factor and speed
of sound
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Figure 11 Double linear approximations of Pvap(T ) on the interval [14,22] K

y = 0,09727x - 1,31635
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Figure 12 Double rarefaction with cavitation in LH2, u0=100 m/s, t = 0.8 ms. Models comparison, splitting of linear
approximation of dPvap/dT . Pressure, void ratio, temperature and vapour density
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Figure 13 Shock-cavitation interaction, u0=100 m/s, t = 1.2 ms. 4-equation sinus model, dPvap/dT = 20000 Pa/K.
Pressure, void ratio, temperature and vapour density
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