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Abstract. We investigate the structure of isometric subgraphs of hypercubes (i.e., partial cubes) which do

not contain finite convex subgraphs contractible to the 3-cube minus one vertex Q−3 (here contraction means

contracting the edges corresponding to the same coordinate of the hypercube). Extending similar results for

median and cellular graphs, we show that the convex hull of an isometric cycle of such a graph is gated and

isomorphic to the Cartesian product of edges and even cycles. Furthermore, we show that our graphs are

exactly the class of partial cubes in which any finite convex subgraph can be obtained from the Cartesian

products of edges and even cycles via successive gated amalgams. This decomposition result enables us to

establish a variety of results. In particular, it yields that our class of graphs generalizes median and cellular

graphs, which motivates naming our graphs hypercellular. Furthermore, we show that hypercellular graphs

are tope graphs of zonotopal complexes of oriented matroids. Finally, we characterize hypercellular graphs as

being median-cell – a property naturally generalizing the notion of median graphs.

1. Introduction

Partial cubes are the graphs which admit an isometric embedding into a hypercube. They

comprise many important and complex graph classes occurring in metric graph theory and

initially arising in completely different areas of research. Among them there are the graphs

of regions of hyperplane arrangements in Rd [15], and, more generally, tope graphs of ori-

ented matroids (OMs) [16], median graphs (alias 1-skeleta of CAT(0) cube complexes) [7,30],

netlike graphs [37–40], bipartite cellular graphs [5], bipartite graphs with S4 convexity [23],

graphs of lopsided sets [8,36], 1-skeleta of CAT(0) Coxeter zonotopal complexes [33], and tope

graphs of complexes of oriented matroids (COMs) [9]. COMs represent a general unifying

structure for many of the above classes of partial cubes: from tope graphs of OMs to median

graphs, lopsided sets, cellular graphs, and graphs of CAT(0) Coxeter zonotopal complexes.

Median graphs are obtained by gluing in a specific way cubes of different dimensions. In

particular, they give rise not only to contractible but also to CAT(0) cube complexes. Simi-

larly, lopsided sets yield contractible cube complexes, while cellular graphs give contractible

polygonal complexes whose cells are regular even polygons. Analogously to median graphs,

graphs of CAT(0) Coxeter zonotopal complexes can be viewed as partial cubes obtained by

gluing zonotopes. COMs can be viewed as a common generalization of all these notions: their



tope graphs are the partial cubes obtained by gluing tope graphs of OMs in a lopsided (and

thus contractible) fashion.

In this paper, we investigate the structure of a subclass of zonotopal COMs, in which

all cells are gated subgraphs isomorphic to Cartesian products of edges and even cycles,

see Figure 1(a) for such a cell. More precisely, we study the partial cubes in which all

finite convex subgraphs can be obtained from Cartesian products of edges and even cycles by

successive gated amalgamations. We show that our graphs share and extend many properties

of bipartite cellular graphs of [5]; they can be viewed as high-dimensional analogs of cellular

graphs. This is why we call them hypercellular graphs, see Figure 1(b) for an example. There

is another way of describing hypercellular graphs, requiring a few definitions.

(a) (b)

Figure 1. (a) a four-dimensional cell isomorphic to C6 × C6. (b) a hyper-

cellular graph with eight maximal cells: C6, C4, C4, K2 ×K2 ×K2, C6 ×K2,

and three K2.

Djoković [26] characterized partial cubes in the following simple but pretty way: a graph

G = (V,E) can be isometrically embedded in a hypercube if and only if G is bipartite and for

any edge uv, the sets W (u, v) = {x ∈ V : d(x, u) < d(x, v)} and W (v, u) = {x ∈ V : d(x, v) <

d(x, u)} are convex. In this case, W (u, v) ∪ W (v, u) = V , whence W (u, v) and W (v, u)

are complementary convex subsets of G, called halfspaces. The edges between W (u, v) and

W (v, u) correspond to a coordinate in a hypercube embedding of G.

Moreover, partial cubes have the separation property S3: any convex subgraph G′ of a

partial cube G can be represented as an intersection of halfspaces of G [1,4,20]. We will call

such a representation (or simply the convex subgraph G′) a restriction of G. A contraction

of G is the partial cube G′ obtained from G by contracting all edges corresponding to a given

coordinate in a hypercube embedding. Now, a partial cube H is called a partial cube-minor

(abbreviated, pc-minor) of G if H can be obtained by a sequence of contractions from a

convex subgraph of G. If T1, . . . , Tm are finite partial cubes, then F(T1, . . . , Tm) is the set of

all partial cubes G such that no Ti, i = 1, . . . ,m, can be obtained as a pc-minor of G. We
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will say that a class of partial cubes C is pc-minor-closed if we have that G ∈ C and G′ is

a minor of G imply that G′ ∈ C. As we will see in Section 2.2, for any set of partial cubes

T1, . . . , Tm, the class F(T1, . . . , Tm) is pc-minor-closed.

(a) (b)

Figure 2. (a) Q−3 – the 3-cube minus one vertex.(b) the 3-cube condition.

It turns out that the class of hypercellular graphs coincides with the minor-closed class

F(Q−3 ), where Q−3 denotes the 3-cube minus one vertex, see Figure 2(a). In a sense, this is

the first nontrivial class F(T ). Indeed, the class F(C), where C is a 4-cycle, is just the class

of all trees. Also, the classes F(T ) where T is the union of two 4-cycles sharing one vertex or

one edge are quite special. Median graphs, graphs of lopsided sets, and tope graphs of COMs

are pc-minor closed, whereas tope graphs of OMs are only closed under contractions but not

under restrictions. Another class of pc-minor closed partial cubes is the class S4 also known

as Pasch graphs. It consists of bipartite graphs in which the geodesic convexity satisfies the

separation property S4 [20,23], i.e., any two disjoint convex sets can be separated by disjoint

half-spaces. It is shown in [20, 23] that S4 = F(T1, . . . , Tm), where all Ti are isometric

subgraphs of Q4; see Figure 3 for the complete list, from which T6 was missing in [20,23]. In

particular, Q−3 is a pc-minor of all of the Ti. Thus, F(Q−3 ) ⊆ S4.

Our results mainly concern the cell-structure of graphs from F(Q−3 ). It is well-known [2]

that median graphs are exactly the graphs in which the convex hulls of isometric cycles are

hypercubes; these hypercubes are gated subgraphs. Moreover, any finite median graph can

be obtained by gated amalgams from cubes [32, 42]. Analogously, it was shown in [5] that

any isometric cycle of a bipartite cellular graph is a convex and gated subgraph; moreover,

the bipartite cellular graphs are exactly the bipartite graphs which can be obtained by gated

amalgams from even cycles. We extend these results in the following way:

Theorem A. The convex closure of any isometric cycle of a graph G ∈ F(Q−3 ) is a gated

subgraph isomorphic to a Cartesian product of edges and even cycles. Moreover, the convex

closure of any isometric cycle of a graph G ∈ S4 is a gated subgraph, which is isomorphic to

a Cartesian product of edges and even cycles if it is antipodal.

In view of Theorem A we will call a subgraph X of a partial cube G a cell if X is a

convex subgraph of G which is a Cartesian product of edges and even cycles. Note that
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T1 T2 T3

T4 T5 T6 ∼= Q−
4

Figure 3. The set of minimal forbidden pc-minors of S4.

since a Cartesian product of edges and even cycles is the convex hull of an isometric cycle,

by Theorem A the cells of F(Q−3 ) can be equivalently defined as convex hulls of isometric

cycles. Notice also that if we replace each cell X of G by a convex polyhedron [X] which is

the Cartesian product of segments and regular polygons (a segment for each edge-factor and

a regular polygon for each cyclic factor), then we associate with G a cell complex X(G).

We will say that a partial cube G satisfies the 3-convex cycles condition (abbreviated, 3CC-

condition) if for any three convex cycles C1, C2, C3 that intersect in a vertex and pairwise

intersect in three different edges the convex hull of C1 ∪C2 ∪C3 is a cell; see Figure 4 for an

example. Notice that the absence of cycles satisfying the preconditions of the 3CC-condition

together with the gatedness of isometric cycles characterizes bipartite cellular graphs [5].

Figure 4. The 3-convex cycles condition.

Defining the dimension of a cell X as the number of edge-factors plus two times the number

cyclic factors (which corresponds to the topological dimension of [X]) one can give a natural
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generalization of the 3CC-condition. We say that a partial cube G (or its cell complex X(G))

satisfies the 3-cell condition (abbreviated, 3C-condition) if for any three cells X1, X2, X3 of

dimension k+2 that intersect in a cell of dimension k and pairwise intersect in three different

cells of dimension k+1 the convex hull of X1∪X2∪X3 is a cell. In case of cubical complexes

X, the 3-cell condition coincides with Gromov’s flag condition [29] (which can be also called

cube condition, see Figure 2(b)), which together with simply connectivity of X characterize

CAT(0) cube complexes. By [24, Theorem 6.1], median graphs are exactly the 1-skeleta of

CAT(0) cube complexes (for other generalizations of these two results, see [14,18]).

The following main characterization of graphs from F(Q−3 ) establishes those analogies with

median and cellular graphs, that lead to the name hypercellular graphs.

Theorem B. For a partial cube G = (V,E), the following conditions are equivalent:

(i) G ∈ F(Q−3 ), i.e., G is hypercellular;

(ii) any cell of G is gated and G satisfies the 3CC-condition;

(iii) any cell of G is gated and G satisfies the 3C-condition;

(iv) each finite convex subgraph of G can be obtained by gated amalgams from cells.

u

v w

u′ = v′ = w′

(a)

u

v w

v′

u′

w′

(b)

u

v w

v′

u′

w′

(c)

Figure 5. (a) a median-vertex. (b) a median-cycle. (c) a median-cell.

A further characterization of hypercellular graphs is analogous to median and cellular

graphs, see the corresponding properties in Figure 5(a) and 5(b), respectively. We show that

hypercellular graphs satisfy the so-called median-cell property, which is essentially defined

as follows: for any three vertices u, v, w of G there exists a unique gated cell X of G such

that if u′, v′, w′ are the gates of u, v, w in X, respectively, then u′, v′ lie on a common (u, v)-

geodesic, v′, w′ lie on a common (v, w)-geodesic, and w′, u′ lie on a common (w, u)-geodesic,

see Figure 5(c) for an illustration. Namely, we prove:

Theorem C. A partial cube G satisfies the median-cell property if and only if G is hyper-

cellular.

Theorem B has several immediate consequences, which we formulate next.
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Theorem D. Let G be a locally finite hypercellular graph. Then X(G) is a contractible

zonotopal complex. Additionally, if G is finite, then G is a tope graph of a zonotopal COM.

Theorem B also immediately implies that median graphs and bipartite cellular graphs

are hypercellular. Furthermore, a subclass of netlike partial cubes, namely partial cubes

which are gated amalgams of even cycles and cubes [39], are hypercellular. In particular, we

obtain that these three classes coincide with F(Q−3 , C6), F(Q−3 , Q3), and F(Q−3 , C6 × K2),

respectively. Other direct consequences of Theorem B concern convexity invariants (Helly,

Caratheodory, Radon, and partition numbers) of hypercellular graphs which are shown to be

either a constant or bounded by the topological dimension of X(G).

Let G be a hypercellular graph. For an equivalence class Ef of edges of G (i.e., all edges

corresponding to a given coordinate f in a hypercube embedding of G), we denote by N(Ef )

the carrier of f , i.e., subgraph of G which is the union of all cells of G crossed by Ef . It was

shown in [9, Proposition 5] that carriers of COMs are also COMs. A star St(v) of a vertex

v (or a star St(X) of a cell X) is the union of all cells of G containing v (respectively, X).

The thickening G∆ of G is a graph having the same set of vertices as G and two vertices

u, v are adjacent in G∆ if and only if u and v belong to a common cell of G. Finally, a

graph H is called a Helly graph if any collection of pairwise intersecting balls has a nonempty

intersection. Helly graphs play an important role in metric graph theory as discrete analogs

of injective spaces: any graph embeds isometrically into a smallest Helly graph (for this

and other results, see the survey [7] and the recent paper [18]). It was shown in [12] that

the thickening of median graphs are finitely Helly graphs (for a generalization of this result,

see [18, Theorem 6.13]).

Theorem E. Let G be a hypercellular graph. Then all carriers N(Ef ) and stars St(X) of G

are gated. If additionally G is locally-finite, then the thickening G∆ of G is a Helly graph.

Finally, we generalize fixed box theorems for median graphs to hypercellular graphs and

prove that in this case the fixed box is a cell. More precisely, we conclude the paper with the

following:

Theorem F. Let G be a hypercellular graph.

(i) if G does not contain infinite isometric rays, then G contains a cell X fixed by every

automorphism of G;

(ii) any non-expansive map f from G to itself fixing a finite set of vertices (i.e., f(S) = S

for a finite set S) also fixes a finite cell X of G. In particular, if G is finite, then any

non-expansive map f from G to itself fixes a cell of G;

(iii) if G is finite and regular, then G is a single cell, i.e., G is isomorphic to a Cartesian

product of edges and cycles.

Structure of the paper: In Section 2 we introduce preliminary definitions and results

needed for this paper. In particular, we discuss convex and gated subgraphs in partial cubes,

the notion of partial cube minors and their relation with convexity and gatedness. We also

briefly discuss the properties of Cartesian products central to our work. Section 3 is devoted
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to the structure of cells in hypercellular graphs and graphs from S4; in particular, we prove

Theorem A. Section 4 is devoted to amalgamation and decomposition of hypercellular graphs;

we prove Theorem B. In Section 5 we discuss the median cell property of hypercellular graphs

and prove Theorem C. Section 6 provides a rich set of properties of hypercellular graphs. In

Subsection 6.1 we expose relations to other classes of partial cubes and in particular prove

Theorem D. Subsection 6.2 gives several properties with respect to convexity parameters.

Subsection 6.3 is devoted to the proof of Theorem E. In Subsection 6.4 we prove several fixed

cell results for hypercellular graphs, in particular, we prove Theorem F. We conclude the

paper with several problems and conjectures in Section 7.

2. Preliminaries

2.1. Metric subgraphs and partial cubes. All graphs G = (V,E) occurring in this paper

are simple, connected, without loops or multiple edges, but not necessarily finite. The distance

d(u, v) := dG(u, v) between two vertices u and v is the length of a shortest (u, v)-path, and

the interval I(u, v) between u and v consists of all vertices on shortest (u, v)–paths, that is,

of all vertices (metrically) between u and v:

I(u, v) := {x ∈ V : d(u, x) + d(x, v) = d(u, v)}.

An induced subgraph of G (or the corresponding vertex set A) is called convex if it includes

the interval of G between any two of its vertices. Since the intersection of convex subgraphs

is convex, for every subset S ⊆ V there exists the smallest convex set conv(S) containing S,

referred to as the convex hull of S. An induced subgraph H of G is isometric if the distance

between any pair of vertices in H is the same as that in G. In particular, convex subgraphs

are isometric.

A subset W of V or the subgraph H of G induced by W is called gated (in G) [28] if for

every vertex x outside H there exists a vertex x′ (the gate of x) in H such that each vertex y

of H is connected with x by a shortest path passing through the gate x′. It is easy to see that

if x has a gate in H, then it is unique and that gated sets are convex. Gated sets enjoy the

finite Helly property [43, Proposition 5.12 (2)], that is, every finite family of gated sets that

pairwise intersect has a nonempty intersection. Since the intersection of gated subgraphs is

gated, for every subset S ⊆ V there exists the smallest gated set 〈〈S〉〉 containing S, referred

to as the gated hull of S. A graph G is a gated amalgam of two graphs G1 and G2 if G1 and

G2 constitute two intersecting gated subgraphs of G whose union is all of G.

A graph G = (V,E) is isometrically embeddable into a graph H = (W,F ) if there exists a

mapping ϕ : V →W such that dH(ϕ(u), ϕ(v)) = dG(u, v) for all vertices u, v ∈ V , i.e., ϕ(G)

is an isometric subgraph of H. A graph G is called a partial cube if it admits an isometric

embedding into some hypercube Q(Λ) = {−1,+1}Λ. From now on, we will always suppose

that a partial cube G = (V,E) is an isometric subgraph of the hypercube Q(Λ) = {−1,+1}Λ
(i.e., we will identify G with its image under the isometric embedding). If this causes no

confusion, we will denote the distance function of G by d and not dG.
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For an edge e = uv of G, define the sets W (u, v) = {x ∈ V : d(x, u) < d(x, v)} and

W (v, u) = {x ∈ V : d(x, v) < d(x, u)}. By Djoković’s theorem [26], a graph G is a partial

cube if and only if G is bipartite and for any edge e = uv the sets W (u, v) and W (v, u) are

convex. The sets of the form W (u, v) and W (v, u) are called complementary halfspaces of

G. To establish an isometric embedding of G into a hypercube, Djoković [26] introduces the

following binary relation Θ – called Djoković-Winkler relation – on the edges of G: for two

edges e = uv and e′ = u′v′ we set eΘe′ iff u′ ∈W (u, v) and v′ ∈W (v, u). Under the conditions

of the theorem, it can be shown that eΘe′ iff W (u, v) = W (u′, v′) and W (v, u) = W (v′, u′),

whence Θ is an equivalence relation. Let E = {Ei : i ∈ Λ} be the equivalence classes of Θ

and let b be an arbitrary fixed vertex taken as the basepoint of G. For an equivalence class

Ei ∈ E , let {H−i , H+
i } be the pair of complementary convex halfspaces of G defined by setting

H−i := W (u, v) and H+
i := W (v, u) for an arbitrary edge uv ∈ Ei with b ∈W (u, v).

2.2. Partial cube minors. Let G = (V,E) be an isometric subgraph of the hypercube

Q(Λ) = {−1,+1}Λ. Given f ∈ Λ, an elementary restriction consists in taking one of the

subgraphs G(H−f ) or G(H+
f ) induced by the complementary halfspaces H−f and H+

f , which

we will denote by ρf−(G) and ρf+(G), respectively. These graphs are isometric subgraphs

of the hypercube Q(Λ \ {f}). Now applying twice the elementary restriction to two different

coordinates f, g, independently of the order of f and g, we will obtain one of the four (possibly

empty) subgraphs induced by the H−f ∩H−g , H−f ∩H+
g , H

+
f ∩H−g , and H+

f ∩H+
g . Since the

intersection of convex subsets is convex, each of these four sets is convex inG and consequently

induces an isometric subgraph of the hypercube Q(Λ\{f, g}). More generally, a restriction is

a subgraph of G induced by the intersection of a set of (non-complementary) halfspaces of G.

We denote a restriction by ρA(G), where A ∈ Λ{+,−} is a signed set of halfspaces of G. For

subset S of the vertices of G, we denote ρA(S) := ρA(G) ∩ S. The following is well-known:

Lemma 1 ([1, 4, 20]). The set of restrictions of a partial cube G coincides with its set of

convex subgraphs. In particular, the class of partial cubes is closed under taking restrictions.

For f ∈ Λ, we say that the graph G/Ef obtained from G by contracting the edges of

the equivalence class Ef is an (f -)contraction of G. For a vertex v of G, we will denote

by πf (v) the image of v under the f -contraction in G/Ef , i.e., if uv is an edge of Ef , then

πf (u) = πf (v), otherwise πf (u) 6= πf (v). We will apply πf to subsets S ⊂ V , by setting

πf (S) := {πf (v) : v ∈ S}. In particular we denote the f -contraction of G by πf (G).

It is well-known and easy to prove and in particular follows from the proof of the first part

of [21, Theorem 3] that πf (G) is an isometric subgraph of Q(Λ\{f}). Since edge contractions

in graphs commute, i.e., the resulting graph does not depend on the order in which a set of

edges is contracted, we have:

Lemma 2. Contractions commute in partial cubes, i.e., if f, g ∈ Λ and f 6= g, then

πg(πf (G)) = πf (πg(G)). Moreover, the class of partial cubes is closed under contractions.

Consequently, for a set A ⊂ Λ, we can denote by πA(G) the isometric subgraph of Q(Λ\A)

obtained from G by contracting the classes A ⊂ Λ in G.
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A partial cube G is an expansion of a partial cube G′ if G′ = πf (G) for some equivalence

class f of Θ(G). More generally, let G′ be a graph containing two isometric subgraphs G′1 and

G′2 such that G′ = G′1∪G′2, there are no edges from G′1 \G′2 to G′2 \G′1, and G′0 := G′1∩G′2 is

nonempty. A graphG is an isometric expansion ofG′ with respect toG0 (notationG = ψ(G′))

if G is obtained from G′ by replacing each vertex v of G′1 by a vertex v1 and each vertex v

of G′2 by a vertex v2 such that ui and vi, i = 1, 2 are adjacent in G if and only if u and v

are adjacent vertices of G′i and v1v2 is an edge of G if and only if v is a vertex of G′0. The

following is well-known:

Lemma 3 ([20,21]). A graph G is a partial cube if and only if G can be obtained by a sequence

of isometric expansions from a single vertex.

Lemma 4. Contractions and restrictions commute in partial cubes, i.e., if f, g ∈ Λ and

f 6= g, then ρg+(πf (G)) = πf (ρg+(G)).

Proof. Let f, g ∈ Λ and f 6= g. The crucial property is that Eg is an edge-cut of G and

Eg ∩Ef = ∅. If we see vertices as sign vectors in the hypercube, the vertex set of πf (ρg+(G))

can be described as {x ∈ V (G) : xg = +}/Ef = {x ∈ V (G) \ V (Ef ) : xg = +} ∪ {xy ∈
Ef : xg = yg = +}. The vertex set of ρg+(πf (G)) is {x ∈ V (G) \ V (Ef )} ∪ {xy ∈ Ef} \H−g
which again equals {x ∈ V (G) \ V (Ef ) : xg = +} ∪ {xy ∈ Ef : xg = yg = +}. Furthermore,

identifying a vertex of the form {x, y} ∈ Ef with the vector z arising from x or y by omitting

the f -coordinate, adjacency is defined the same way in both graphs, namely by taking the

induced subgraph of the hypercube. This concludes the proof. �

The previous lemmas show that any set of restrictions and any set of contractions of a

partial cube G provide the same result, independently of the order in which we perform the

restrictions and contractions. The resulting graph G′ is also a partial cube, and G′ is called

a partial cube-minor (or pc-minor) of G. In this paper we will study classes of partial cube

excluding a given set of minors.

2.3. Partial cube minors versus metric subgraphs. In this section we present conditions

under which contractions and restrictions preserve metric properties of subgraphs.

Let G = (V,E) be an isometric subgraph of the hypercube Q(Λ) and let S be a subgraph

of G. Let f be any coordinate of Λ. We will say that Ef crosses S iff S ∩ H−f 6= ∅ and

S ∩H+
f 6= ∅. We will say that Ef osculates S iff Ef does not cross S and there exists an edge

e = uv ∈ Ef such that {u, v} ∩ S 6= ∅. Otherwise, we will say that Ef is disjoint from S.

Lemma 5. If S is a convex subgraph of G and f ∈ Λ, then ρf+(S) is a convex subgraph of

ρf+(G). If Ef crosses S or is disjoint from S, then also πf (S) is a convex subgraph of πf (G).

Proof. Let S be convex. Then by Lemma 1, S can be written as ρA(G), where A is a signed set

of those Θ-classes that osculate with S. Again by Lemma 1, ρf+(S) = ρf+(ρA(G)) is a convex

subgraph of ρf+(G), proving the first assertion. Now, if f ∈ Λ \A, then πf (S) = πf (ρA(G)),

which by Lemma 4 equals ρA(πf (G)), i.e., πf (S) is a convex subgraph of πf (G). �
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Lemma 6. If S′ is a convex subgraph of G′ and G is obtained from G′ by an isometric

expansion ψ, then S := ψ(S′) is a convex subgraph of G.

Proof. Let f ∈ Λ be such thatG′ = πf (G) and S′ a convex subgraph ofG′. By Lemma 1, there

exists a signed set of Θ-classes A ⊂ Λ\{f}, such that S′ = ρA(G′) = ρA(πf (G)). By Lemma 4,

S′ = πf (ρA(G)), thus ρA(G) ⊂ S. For every g+ ∈ A, we have πf (ρg−(G)) = ρg−(G′), thus it

is disjoint with S. Then S = ρA(G), which is convex by Lemma 1. �

Lemma 7. If S is a subset of vertices of G and f ∈ Λ, then πf (conv(S)) ⊆ conv(πf (S)). If

Ef crosses S, then πf (conv(S)) = conv(πf (S)).

Proof. Let y′ ∈ πf (conv(S)), i.e., there is a y ∈ π−1
f (y′) on a shortest path P in G between

vertices x, z ∈ S. Contracting f yields a shortest path Pf in Gf between two vertices on

πf (S) containing y′. This proves πf (conv(S)) ⊆ conv(πf (S)).

For the second claim note that since conv(S) ⊇ S, we have πf (conv(S)) ⊇ πf (S) and

conv(πf (conv(S))) ⊇ conv(πf (S)). Finally, since Ef crosses S it also crosses conv(S) and by

Lemma 5 we have that conv(πf (conv(S))) = πf (conv(S)), yielding the claim. �

We call a subgraph S of a graph G = (V,E) antipodal if for every vertex x of S there is a

vertex x− of S such that S = conv(x, x−) in G. Note that antipodal graphs are sometimes

defined in a different but equivalent way (graphs satisfying our definition are also called

symmetric-even, see [13]). By definition, antipodal subgraphs are convex.

Lemma 8. Let S be an antipodal subgraph of G and f ∈ Λ. If Ef is disjoint from S, then

ρf+(S) is an antipodal subgraph of ρf+(G). If Ef crosses S or is disjoint from S, then πf (S)

is an antipodal subgraph of πf (G).

Proof. If Ef is disjoint from S, then Sρf+(S) = S and by Lemma 5 is convex. This yields

the first assertion. For the second assertion, again by Lemma 5, πf (S) is convex. Moreover,

by Lemma 7 if conv(x, x−) = S, then πf (S) = πf (conv(x, x−)) = conv(πf ({x, x−})). Since

every vertex in πf (S) is an image under the contraction, πf (S) is antipodal. �

Lemma 9. If S is an antipodal subgraph of G, then S contains an isometric cycle C such

that conv(C) = S.

Proof. Let x ∈ S and let P = (x = x0, x1, . . . , xk = x−) be a shortest path in S to the

antipodal vertex x− of x. It is well-known that the mapping x 7→ x− is a graph automorphism

of S, thus C = (x = x0, x1, . . . , xk = x−0 , x
−
1 , . . . , x

−
k = x) is a cycle. Furthermore, by the

properties of the map x 7→ x− every subpath of C of length at most k is a shortest path.

Thus, C is an isometric cycle of S. Since C contains antipodal vertices of S, we have

conv(C) = S. �

Lemma 10. If S is a gated subgraph of G, then ρf+(S) and πf (S) are gated subgraphs of

ρf+(G) and πf (G), respectively.
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Proof. Let x ∈ G with gate y ∈ S, z ∈ S, and let P be a shortest path from x to z passing

via y. To prove that ρf+(S) is gated, suppose that x, z ∈ ρf+(G). This implies y ∈ ρf+(G),

thus y is also the gate of x in ρf+(S) in the graph ρf+(G).

To prove the second assertion, notice that the distance in πf (G) between x and z decreases

by one if and only if P crosses Ef and remains unchanged otherwise, thus πf (P ) is a shortest

path in πf (G). This shows that πf (y) is the gate of πf (x) in πf (S) in the graph πf (G). �

2.4. Cartesian products. The Cartesian product F1 × F2 of two graphs F1 = (V1, E1) and

F2 = (V2, E2) is the graph defined on V1 × V2 with an edge (u, u′)(v, v′) if and only if u = v

and u′v′ ∈ E2 or u′ = v′ and uv ∈ E1. This definition generalizes in a straightforward way

to products of sets of graphs. If G = F1 × . . . × Fk, then each Fi is called a factor of G.

A subproduct of such G is a product F ′1 × . . . × F ′k, where F ′i is a subgraph of Fi for all

1 ≤ i ≤ k. A layer is a subproduct, where all but one of the F ′i consist of a single vertex and

the remaining F ′i coincides with Fi.

It is well-known that products of partial cubes are partial cubes, and thus products of even

cycles and edges are partial cubes, which we will be particularly interested in. It is easy to

see that any contraction of a product of even cycles and edges is a product of even cycles and

edges. Furthermore, any Cartesian product of even cycles and edges is antipodal, since taking

the antipode with respect to all factors gives the antipode with respect to the product. By

Lemma 9 any such product is the convex hull of an isometric cycle. We will use the following

properties of these graphs frequently (and sometime without an explicit reference):

Lemma 11. Let G ∼= F1 × . . .× Fk be a Cartesian product of edges and even cycles and let

H be an induced subgraph of G. Then H is a convex subgraph if and only if H is a Cartesian

product F ′1 × . . . × F ′m, where each F ′i either coincides with Fi or is a convex subpath of Fi.

Furthermore, H is a gated subgraph of G if and only if H is a Cartesian product F ′1×. . .×F ′m,

where each F ′i either coincides with Fi or is a vertex or an edge of Fi.

Proof. It is well known (see for example [43] that convex subsets (respectively, gated sub-

sets) of Cartesian products of metric spaces are exactly the Cartesian products of convex

(respectively, gated) subsets of factors. Now, the proper convex subsets of an even cycle C

are exactly the convex paths, while the proper gated subsets of C are the vertices and the

edges of C. �

Lemma 12. Let G ∼= F1 × . . .× Fk be a Cartesian product of edges and even cycles and let

G′ be a connected induced subgraph of G. If for every 2-path P of G′ its gated hull 〈〈P 〉〉 is

included in G′, then G′ is a gated subgraph of G.

Proof. Let H be a maximal gated subgraph of G′. By Lemma 11 H is a subproduct F ′1× . . .×
F ′k of G, such that for all 1 ≤ i ≤ k we either have F ′i = Fi or F ′i is a vertex or an edge of Fi.

Suppose by way of contradiction that H 6= G′. Since G′ is connected, there exists an edge ab

in G′ such that a ∈ H and b ∈ G′\H. Without loss of generality, assume that ab is an edge

arising from the factor F1. Thus ab can be represented as a1b1 × v2 × . . .× vk, where a1b1 is

an edge of F1, a1 ∈ F ′1 and b1 /∈ F ′1. Consider the subgraph H ′ = (F ′1 ∪ a1b1)×F ′2× . . .×F ′k.
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We assert that H ′ is a subgraph of G′. For any i > 1, consider the layer L′i of H ′ passing via

the vertex a. Let L′′i be the subgraph of G obtained by shifting L′i along the edge ab (thus

both L′i and L′′i are isomorphic to F ′i ). We assert that L′′i is also included in G′. This is trivial

if L′′i is a vertex, because then L′′i = b. Otherwise, using that the gated hull of any 2-path

of G′ is included in G′, L′′i is connected and L′i is in G′, one can easily conclude that L′′i is

also included in G′. Propagating this argument through the graph, we obtain that H ′ is a

subgraph of G′. However, either its factor (F ′1∪a1b1) is an edge and H ′ is gated by Lemma 11

or it is a 2-path and thus the gated subgraph 〈〈F ′1 ∪ a1b1〉〉 ×F ′2× . . .×F ′k is contained in G.

This contradicts the maximality of H and shows that H = G′. The proof is complete. �

3. Cells in hypercellular graphs and graphs from S4

Let F(Q−3 ) be the class of all partial cubes not containing the 3-cube minus one vertex Q−3
as a pc-minor. Our subsequent goal will be to establish a cell-structure of such graphs in the

following sense. We show that for G ∈ F(Q−3 ), the convex hull of any isometric cycle C of G

is gated in G and furthermore isomorphic to a Cartesian product of edges and even cycles.

Using these results we establish that a finite partial cube G belongs to F(Q−3 ) if and only

if G can be obtained by gated amalgams from Cartesian products of edges and even cycles.

Throughout this paper, we will call a subgraph H of a graph G a cell, if H is convex and

isomorphic to a Cartesian product of edges and even cycles.

Some of the results of this section extend to bipartite graphs satisfying the separation

property S4. This is, any two disjoint convex sets A,B can be separated by complementary

convex sets H ′, H ′′, i.e., A ⊆ H ′, B ⊆ H ′′. By [20] and Theorem 7 of [23], the S4 separation

property is equivalent to the Pasch axiom: for any triplet of vertices u, v, w ∈ V and x ∈
I(u, v), y ∈ I(u,w), we have I(v, y) ∩ I(w, x) 6= ∅. The bipartite graphs with S4 convexity

have been characterized in [20] and Theorem 10 of [23]: these are the partial cubes without

any pc-minor among six isometric subgraphs of Q4 five of which where listed in [23] plus Q−4
– the cube Q4 minus one vertex. Note that we correct here the result in [20, 23], where Q−4
was missing from the list. All these six forbidden graphs can be obtained from Q−3 by an

isometric expansion and thus if we denote by S4 the class of bipartite graphs with S4, then

hypercellular graphs are in S4.

The full subdivision H ′ of a graph H is the graph obtained by subdividing every edge of

H once. The vertices of H in H ′ are called the original vertices of the full subdivision.

Proposition 1. Let G = (V,E) be a partial cube and S ⊆ V . If conv(S) is not gated, then

either there exists f ∈ Λ such that conv(πf (S)) is not gated in πf (G) or there is an m ≥ 2

such that:

(i) G contains a full subdivision H of Km+1 as an isometric subgraph,

(ii) H contains a full subdivision H ′ of Km, such that no vertex of G is adjacent to all

original vertices of H ′.

Furthermore, if S is an isometric cycle of G, then m ≥ 3.
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Proof. Suppose that G contains a subset S such that X := conv(S) is not gated. We can

assume that G is selected in a such a way that for any element f ∈ Λ, the convex hull of

πf (S) is gated in πf (G). Since any f -contraction of an isometric cycle C of size at least 6 is

an isometric cycle πf (C) of πf (G) , this assumption is also valid for proving the claim in the

case that S = C, because 4-cycles are always gated.

Let v be a vertex of G that has no gate in X and is as close as possible to X, where

dG(v,X) = min{dG(v, z) : z ∈ X} is the distance from v to X. Let Pv := {x ∈ X : dG(v, x) =

dG(v,X)} be the metric projection of v to X. Let also Qv := {x ∈ X : I(v, x) ∩X = {x}}.
Obviously, P ⊆ Q. Notice that u ∈ V has a gate in X if and only if Qu = Pu and Pu consists

of a single vertex. We will denote the vertices of Pv by x1, . . . , xm. For any vertex xi ∈ Pv,
let γi be a shortest path from v to xi. Let vi be the neighbor of v in γi. From the choice of

v we conclude that each vertex vi has a gate in X. From the definition of Pv it follows that

xi is the gate of vi in X. Notice that this implies that the vertices v1, . . . , vm are pairwise

distinct. Since xi ∈ γi we have xi ∈ W (vi, v). Furthermore, for any y ∈ Qv \ {xi} we have

y ∈ W (v, vi) since otherwise xi, y ∈ Qvi , which contradicts that vi has a gate in X. Denote

the equivalence classes of Θ containing the edges vv1, . . . , vvm by Eg1 , . . . , Egm , respectively.

Then each Eg1 , . . . , Egm crosses X. For any edge zz′ of γi comprised between vi and xi with z

closer to vi than z′, we have X ⊆W (z′, z) and v ∈W (z, z′). Thus any such edge zz′ belongs

to an equivalence class Ef which separates X from v. Therefore such Ef crosses any shortest

path between v and a vertex y ∈ Qv. Denote the set of all such f ∈ Λ by A. Notice that

dG(v,X) = dG(v, xi) = |A|+ 1 for any xi ∈ Pv.
We continue with a claim:

Claim 1. Each equivalence class Ee crossing X coincides with one of the equivalence classes

Egi , i = 1, . . . ,m.

Proof. Assume that vv1 /∈ Ee. Denote X ′ := conv(πe(S)) in πe(G). Let also v′ := πe(v)

and x′1 := πe(x1). By Lemma 7, X ′ coincides with πe(X). Let x′ ∈ X ′ be the gate of v′

in X ′. Since for each f ∈ A, Ef separates v and X, Ef also separates v′ and x′. Thus

dG′(v
′, X ′) ≥ |A|. On the other hand, since vv1 /∈ Ee, dG′(v′, x′1) = |A|+ 1. But x′1 cannot be

the gate in X ′, thus dG′(v
′, x′) = dG′(v

′, X ′) = |A|. Let y be such that x′ = πe(y). Since Ee
crosses X and X ′ = πe(X), we have y ∈ X. Applying the expansion, the distance between

two vertices can only increase by one, thus dG(v, y) ≤ |A| + 1. On the other hand, it holds

that dG(v, y) ≥ |A|+ 1 since dG(v,X) = |A|+ 1. Thus y ∈ P, say y = xi, and every shortest

(v, y)-path traverses an edge in Ee. Since Ee crosses X, we have e /∈ A, whence Ee = Egi . �

First we prove that Pv = Qv. Suppose by way of contradiction that z ∈ Qv \ Pv. Then

dG(v, z) > dG(v,X) = |A| + 1. For any f ∈ A, Ef separates v from z. On the other hand,

since z ∈ W (v, vi), neither of the equivalence classes Egi , i = 1, . . . ,m, separates v from z.

Hence there exists an equivalence class Ee with e /∈ A separating v from z. Since e /∈ A, Ee
does not separate v from any vertex xi of Pv. Hence Ee crosses X, contrary to Claim 1. This

shows that Pv = Qv.
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Now we will prove that dG(xi, xj) = 2 for any two vertices xi, xj ∈ Pv, which will later

yield the existence of H ′ as claimed. Indeed, since xi is the gate of vi in X and xj is the gate

of vj in X,

dG(vi, xj) = dG(vi, xi) + dG(xi, xj) ≤ dG(vi, vj) + dG(vj , xj) = 2 + dG(vj , xj).

Analogously, dG(vj , xi) = dG(vj , xj) + dG(xi, xj) ≤ 2 + dG(vi, xi). Summing up the two

inequalities we deduce that dG(xi, xj) ≤ 2. Since G is bipartite, xi and xj cannot be adjacent,

thus dG(xi, xj) = 2.

Finally, we will show that dG(v,X) = 2, yielding H as claimed. Suppose by way of

contradiction that dG(v,X) ≥ 3. Pick any f ∈ A. Consider the graph G′ := πf (G) and

denote the convex hull of the set S′ := πf (S) in G′ by X ′. By Lemma 7, πf (X) ⊆ X ′. Since

any class Ef ′ with f ′ ∈ A, separates v from X (and therefore from S) in G, any equivalence

class Ef ′ with f ′ ∈ A \ {f} separates v′ := πf (v) from S′ in G′. Therefore, X ′ is contained

in the intersection of the halfspaces defined by f ′ ∈ A \ {f} that contain S′. This implies

that dG′(v
′, X ′) ≥ |A| − 1. On the other hand, since dG′(v

′, πf (xi)) = dG(v, xi) − 1 for any

i = 1, . . . ,m and πf (xi) ∈ X ′, we conclude that dG′(v
′, X ′) ≤ dG(v,X)−1 = |A|+1−1 = |A|.

From the choice of the graph G, in the graph G′ the vertex v′ must have a gate x′ in the set

X ′. Since dG′(v
′, πf (xi)) = dG(v, xi) − 1, i = 1, . . . ,m, the vertex x′ cannot be one of the

vertices of πf (Pv). Thus dG′(v
′, x′) = dG′(v

′, X ′) = |A| − 1 = dG(v,X)− 2.

Let x′i := πf (xi), i = 1, . . . ,m. Since x′ is the gate of v′ in X ′ and x′i ∈ X ′, we have

dG′(v
′, x′i) = dG′(v

′, x′) + dG′(x
′, x′i). On the other hand, since dG′(v

′, x′i) = dG(v,X)− 1 and

dG′(v
′, x′) = dG(v,X) − 2, this implies that dG′(x

′, x′i) = 1 for any i = 1, . . . ,m. Since G′

is obtained by f -contraction of a partial cube G, we conclude that G contains a vertex x

such that πf (x) = x′ and for any i = 1, . . . ,m either dG(x, xi) = 1 or dG(x, xi) = 2. Since

dG(xi, xj) = 2 and G is bipartite, either x is adjacent to all xi, i = 1, . . . ,m or dG(x, xi) = 2

for all i = 1, . . . ,m. First assume m ≥ 2. In the second case, the vertices x1, . . . , xm and x

together with their common neighbors define the required full subdivision H of Km+1. In the

first case, we conclude that x ∈ I(xi, xj) ⊂ X and since dG(v, x) = dG(v, xi) − 1, we obtain

a contradiction with the choice of xi from the metric projection Pv of v on X. So, assume

that m = 1. Since Pv = Qv, this implies that X is gated, contrary to our assumption.

Finally suppose that S is an isometric cycle C of G whose convex hull X is not gated.

Then the length of C is at least 6 (if C is a 4-cycle, then X = C is gated). Hence there exist

at least three different equivalence classes Ee1 , Ee2 , Ee3 crossing C and X. By Claim 1, each

of these classes coincides with a class Egi , i = 1, . . . ,m. Hence m ≥ 3. �

Proposition 2. Let C be an isometric cycle of G ∈ S4. Then the convex hull conv(C) of C

in G is gated.

Proof. The class S4 is closed by taking pc-minors [23, Theorem 10]. Therefore we can suppose

that G is maximally contracted graph from S4 containing an isometric cycle C with X :=

conv(C) not gated. By Proposition 1, X contains 3 vertices x1, x2, x3 at pairwise distance 2

and a vertex v at distance 2 from each of the vertices x1, x2, x3. Let v1, v2, v3 be the common

neighbors of v and x1, x2, x3, respectively. Let also zi be a common neighbor of xj and xk for
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all {i, j, k} = {1, 2, 3}. By Proposition 1, the set T = {v, x1, x2, x3, v1, v2, v3, z1, z2, z3} defines

four 6-cycles which are isometric cycles of G. The convex hull in G of each of these 6-cycles

is a subgraph of a 3-cube. On the other hand, T is contained in each of the three intervals

I(vi, zi). Since dG(vi, zi) = 4, the convex hull of T is a subgraph of a 4-cube. The convex hull

of the 6-cycle C1 = (x1, z3, x2, z1, x3, z2) cannot be a 3-cube. We conclude that one of the

2-paths (x1, z3, x2), (x2, z1, x3), (x3, z2, x1), say (x1, z3, x2), is a convex path of G. Consider

the convex sets I(x1, x2) and I(v, x3). They are disjoint, otherwise z3 must be adjacent to v

and x3, which is impossible. Let H,H ′ be two complementary halfspaces separating I(x1, x2)

and I(v, x3), say I(x1, x2) ⊂ H and I(v, x3) ⊂ H ′. Then necessarily z1, z2 ∈ H ′, otherwise, if

say z1 ∈ H, then x3 ∈ C1 ⊂ I(x1, z1) ⊂ H, a contradiction. But then x1 ∈ I(z2, v) ⊂ H ′ and

x2 ∈ I(z1, v) ⊂ H ′, which is impossible. This final contradiction shows that I(x1, x2) and

I(v, x3) cannot be separated, i.e., G /∈ S4. Thus, the convex hull of any isometric cycle C of

a partial cube G from S4 is gated. �

Analogously to [5], we will compare the Djoković-Winkler relation Θ to the following

relation Ψ∗. First say that two edges xy and x′y′ of a bipartite graph G are in relation Ψ if

they are either equal or are opposite edges of some convex cycle C of G. Then let Ψ∗ be the

transitive closure of Ψ. Let C(G) denote the set of all convex cycles of G and let C(G) be

the 2-dimensional cell complex whose 2-cells are obtained by replacing each convex cycle C

of length 2j of G by a regular Euclidean polygon [C] with 2j sides.

Recall that a cell complex X is simply connected if it is connected and if every continuous

map of the 1-dimensional sphere S1 into X can be extended to a continuous mapping of the

disk D2 with boundary S1 into X. Note that a connected complex X is simply connected iff

every continuous map from S1 to the 1-skeleton of X is null-homotopic.

Lemma 13. If G is a partial cube, then the relations Θ and Ψ∗ coincide. In particular,

C(G) is simply connected.

Proof. The proof of the first assertion is the content of Proposition 5.1 of [35] (it also follows

by adapting the proof of Lemma 1 of [5]). To prove that C(G) is simply connected it suffices

to show that any cycle C of G is contractible in C(G). Let k(C) denote the number of

equivalence classes of Θ crossing C. By induction on k(C), we will prove that any cycle C of

G is contractible to any of its vertices w ∈ C. Let Ef be an equivalence class of Θ crossing C

and let uv and u′v′ be two edges of C from Θ. By the first assertion, there exists a collection

C1, C2, . . . , Cm of convex cycles and a collection of edges e0 = uv, e1, . . . , em−1, em = u′v′ ∈ Ef
such that ei ∈ Ci ∩ Ci+1 for any i = 1, . . . ,m− 1. Suppose that u, u′ ∈ H+

f and v, v′ ∈ H−f .

Let P+
i := Ci ∩H+

f , P
−
i := Ci ∩H−f for i = 1, . . . ,m. Let P ′ be the path between u and u′

which is the union of the paths P+
1 , . . . , P

+
m . Analogously, let P ′′ be the path between v and

v′ which is the union of the paths P−1 , . . . , P
−
m . Finally, let P+ := C∩H+

f and P− := C∩H−f ,

and suppose without loss of generality that the vertex w belongs to the path P+. Let C ′ be

the cycle which is the union of the paths P ′ and P+ and let C ′′ be the cycle which is the

union of the paths P− and P ′′. Since G is a partial cube, any equivalence class of Θ crossing

P ′ or P ′′ also crosses the paths P+ and P−. On the other hand, Ef does not cross the cycles
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C ′ and C ′′. This implies that k(C ′) < k(C) and k(C ′′) < k(C). By induction assumption, C ′′

can be contracted in C(G) to any of its vertices, in particular to the vertex v. On the other

hand, the union
⋃
i=1[Ci] can be contracted to the path P ′ in a such a way that each edge

ei is contracted to its end from P ′′. In particular, v is mapped to u. Finally, by induction

assumption, C ′ can be contracted to the vertex w. Composing the three contractions (C ′′ to

v,
⋃
i=1[Ci] to P ′, and C ′ to w), we obtain a contraction of C to w. �

Let C be an even cycle of length 2n. Let G1 be a subgraph of C isomorphic to a path of

length ` at least 2 and at most n. Let Ex`(C) be an expansion of C with respect to G1 and

G2 = C. We will call the graphs Ex`(C) half-expanded cycles.

Proposition 3. Let G′ be a Cartesian product of edges and even cycles and let G be an

isometric expansion with respect to the subgraphs G′1 and G′2 of G′, such that G contains no

convex subgraph isomorphic to a half-expanded cycle. Then either G is a Cartesian product

of edges and even cycles or one of G′1, G
′
2 coincides with G′ while the other is isomorphic to

a subproduct of edges and cycles.

Proof. Let G′ = F1×F2× . . .×Fm, where each Fi, i = 1, . . . ,m is either a K2 or an even cycle

C. Then G′ is a partial cube from F(Q−3 ). The graph G is obtained from G′ by an isometric

expansion with respect to G′1 and G′2, i.e., G′1 and G′2 are two isometric subgraphs of G′ such

that G′ = G′1 ∪G′2, G′0 := G′1 ∩G′2 6= ∅, there is no edge between G′1 \G′2 and G′2 \G′1, and G

is obtained from G′ by expansion along G′0. If G′1 = G′2 = G′, then the expansion of G′ with

respect to G′1 and G′2 is the product G′ ×K2 and we are done. Thus we can assume that G′0
is a proper subgraph of G′.

Claim 2. Let L be a layer of G′, i.e., L = {v1}× . . .×{vi−1}×Fi×{vi+1}× . . .×{vm} with

vj ∈ Fj for all j 6= i. If Fi is a cycle and G′1 ∩L or G′2 ∩L is different from L and contains a

path of length at least 2, then G is a Cartesian product of edges and cycles. More precisely,

G = F1 × . . .× Fi−1 × F ′i × Fi+1 × . . .× Fm, where F ′i is an isometric expansion of Fi along

two opposite vertices of Fi.

Proof. Since we can reorder the factors, suppose without loss of generality that i = 1 and

denote G′′ = F2 × . . . × Fm. We have L = F1 × {v} = C × {v} with v ∈ V (G′′), such that

G′1∩L includes a path P1 of length at least 2 but differs from L. Since L is a convex 2j-cycle

of G′, P1 is a shortest path of G′. If L is included in G′2, then the expansion of L along P1

is isomorphic to a half-extended cycle and is a convex subgraph of G by Lemma 6, which

is impossible. Thus L is not included in G′2, yielding that L ∩ G′2 is a shortest path P2 of

G′. Since P1 and P2 cover the cycle L, the only possibility is that P1 and P2 intersect in

two antipodal vertices of the cycle L. Thus the image of L in G is a cycle of length 2j + 2.

Consider any layer L′ = C × {v′} of G′ adjacent to L, i.e., v′v ∈ E(G′′). Then L ∪ L′ is a

convex subgraph of G′, thus by Lemma 6 the expansion of L ∪L′ is a convex subgraph H of

G. If L′ is contained in G′1, then the intersection of H with the half-space of G corresponding

to G′1 is a convex subgraph isomorphic to a half-extended cycle. Thus L′ cannot be entirely
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in G′1, and for the same reason it cannot be entirely in G′2. Again the only possibility is that

G′1 ∩ L′ and G′2 ∩ L′ are shortest paths of L′ that intersect in two opposite vertices of L′.

Let v1, v2 ∈ L ∩G′0 and u1, u2 ∈ L′ ∩G′0. We assert that after a possible relabeling, v1 is

adjacent to u1 and v2 is adjacent to u2. Suppose that this is not true. Then the neighbors v′1
and v′2 of v1 and v2, respectively, in L′ are both different from u1 and u2. Analogously, the

neighbors u′1 and u′2 of u1 and u2, respectively, in L are both different from v1 and v2. We can

assume without loss of generality that v′1 and u′1 are not in G′1, otherwise we can exchange

v1 and v2 or u1 and u2. We assert that G′1 is not an isometric subgraph of G′. Indeed, the

distance in G′ between u1 and v1 is at most j and the interval I(v1, u1) is contained in the

union Q∪Q′, where Q is the subpath between v1 and u′1 of the path between v1 and v2 passing

via u′1 and Q′ is the subpath between v′1 and u1 of the path between v′1 and v′2 passing via u1.

Since all vertices of Q except v1 belong only to G′2 and v′1 does not belong to G′1, we conclude

that any shortest path in G′ between v1 and u1 contains at least one vertex from G′2 \ G′1,

showing that G′1 is not an isometric subgraph of G′. Hence v1 is adjacent to u1 and v2 is

adjacent to u2. Notice that then the both layers have the same side of the cycles in G′1 and

G′2 since there is no edge between G′1 \G′2 and G′2 \G′1. Propagating this argument through

the graph, we conclude that all layers L′′ parallel to L have the same vertices in G′1 and G′2.

Hence the traces on Fi = C with respect to G′1 and G′2 of L and L′′ coincide: they are two

paths P1 and P2 of C covering the cycle and intersecting in two opposite vertices x′, x′′ of

C. Therefore, the graph G′0 with respect to which we perform the isometric expansion is the

subgraph of G′ induced by ({x′} × V (G′′)) ∪ ({x′′} × V (G′′)), G′1 is the subgraph induced

by V (P1) × V (G′′), and G′2 is the subgraph induced by V (P2) × V (G′′). Consequently, the

expansion of G′ with respect to G′1 and G′2 produces a graph G isomorphic to C ′×G′′, where

the length of the cycle C ′ is two more than the length of C. This establishes the claim. �

By Claim 2, we can further assume that every layer L of G′ coming from a cyclic factor

satisfies one of the following two conditions: either both G′1 and G′2 include L, or one of

G′1, G
′
2 includes an edge, a vertex, or nothing while the other includes the whole layer L.

Consequently, for each cyclic factor Fi ∼= C of G′ and each layer L := {v1} × . . .× {vi−1} ×
C × {vi+1} × . . . × {vm}, the intersection L ∩G′0 is the whole layer L, an edge, a vertex, or

empty.

We will now analyze the structure of the subgraph G′0 of G′ along which we perform the

isometric expansion. Suppose that G′ is obtained from G by contracting the equivalence class

Ef .

Claim 3. If R′ = (u1, v1, v2, u2) is a 4-cycle in G′ such that the edges u1v1 and v1v2 do not

lie in the same layer and u1, v1, v2 ∈ V (G′0), then u2 also belongs to V (G′0).

Proof. If this is not the case, then assume without loss of generality that u2 ∈ G′1 \G′2. Since

the 4-cycle R′ is a convex subgraph of G′, by Lemma 6 the expansion of R′ along G′0 is a

convex subgraph of G isomorphic to Q−3 , thus is a half-extended cycle, a contradiction. This

contradiction shows that u2 ∈ V (G′0). �

We continue with an auxiliary assertion:
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Claim 4. Any convex cycle Z of G crossed by Ef is a 4-cycle.

Proof. Assume by way of contradiction that Z has length `(Z) ≥ 6. Therefore Z is contracted

to a convex cycle Z ′ of length `(Z) − 2 of G′. The convex sets in a Cartesian product are

products of convex sets of the factors. Thus either Z ′ is a layer of G′ or Z ′ is a 4-cycle

which is a product of two edges from two different factors. In the first case Z ′ is a layer

which has two antipodal vertices in G′0, one path between these vertices in G′1 \G′2, and the

other path in G′2 \ G′1, and this case was covered by Claim 2. Thus assume that Z ′ is a

4-cycle (v1, v2, u2, u1) that has edges v1v2, u1u2 projected to factor F1 and edges v1u1, v2u2

projected to factor F2. Moreover, let v1, u2 ∈ V (G′1) ∩ V (G′2), v2 ∈ V (G′1) \ V (G′2), and

u1 ∈ V (G′2)\V (G′1). If both factors F1, F2 are isomorphic to K2, then they can be treated as

a single cyclic factor because K2 ×K2 is a 4-cycle and Z ′ is a layer. Then the result follows

from Claim 2. Thus assume that F1 is a cycle of length at least 6 – otherwise we are in the

above case. Let L1 = (v1, v2, . . . , v2i, v1) and L2 = (u1, u2, . . . , u2i, u1) be the two layers of F1

that include Z ′. They include vertices u1, v2 which are not in G′0. Since i ≥ 3 by isometry of

G′1 and G′2, we have v3 ∈ G′1 \ G′2 and u3 ∈ G′2 \ G′1. But v3 and u3 are adjacent, which is

impossible. This establishes that any convex cycle Z of G crossed by Ef has length 4. �

Claim 5. G′0 is a subgraph of G′ of the form H1×H2× . . .×Hm, where each factor satisfies

Hi ⊆ Fi and is either a vertex, an edge, or the entire Fi. In particular, G′0 is convex in G′.

Proof. First we prove that G′0 is connected. Let a1a2 and b1b2 be any two edges in the

equivalence class Ef . Edges a1a2 and b1b2 get contracted to vertices a′, b′ of G′. By Lemma 13,

a1a2 and b1b2 can be connected by a sequence C = C1, C2, . . . , Ck of convex cycles of G such

that a1a2 ∈ C1, b1b2 ∈ Ck, and any two consecutive cycles Ci and Ci+1 intersect in an edge of

Ef . Hence the cycles of C are contracted in G′ to a path Q′ between a′ and b′. Since all cycles

Ci of C are crossed by Ef , by Claim 4 each Ci, i = 1, . . . , k, is a 4-cycle. Thus, additionally

to a′, b′ also all other vertices of the path Q′ belong to G′0. Consequently, a′ and b′ belong

to a common connected component of G′0. Since a1a2 and b1b2 are arbitrary edges from Ef ,

the graph G′0 is connected.

To prove the second assertion, let I be a maximal subgraph of G′0 of the form I1×I2× . . .×
Im, where each Ii is a connected nonempty subgraph of Fi. We claim that I coincides with

G′0. If not, since I and G′0 are connected, there exists an edge vw of G′0 such that v ∈ V (I)

and w ∈ V (G′0)\V (I). Let L := {v1}× . . .×{vi−1}×Fi×{vi+1}× . . .×{vm} be the layer of

G′ that includes the edge vw. Suppose that the ith coordinates of v and w are the adjacent

vertices v′i and v′′i of Fi, respectively. Set I ′ := I1 × . . . × Ii−1 × {v′i} × Ii+1 × . . . × Im and

I ′′ := I1 × . . .× Ii−1 × {v′′i } × Ii+1 × . . .× Im. Then v ∈ V (I ′) ⊆ V (I) and w ∈ V (I ′′). Since

w /∈ V (I), by the definition of I, the subgraph I ′′ contains a vertex not belonging to G′0. Let

x be a closest to w vertex of V (I ′′) \ V (G′0). Let y be a neighbor of x in I(x,w). Since I ′′ is

convex, y ∈ I(x,w) ⊂ V (I ′′). By the choice of x, we deduce that y is a vertex of G′0. Let x′

and y′ be the neighbors of respectively x and y in I ′ (such vertices exist by the definitions of

I ′ and I ′′ and the fact that v′i and v′′i are adjacent in Fi). Since V (I ′) ⊂ V (I), the vertices

x′ and y′ belong to G′0. Since the 4-cycle (x, y, y′, x′) does not belong to a single layer and
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y, y′, x′ are vertices of G′0, by Claim 3 also x is a vertex of G′0, a contradiction with its choice.

This establishes that I coincides with G′0.

Finally, we assert that each Ii, i = 1, . . . ,m, is a vertex, an edge, or the whole factor Fi.

The assertion obviously holds if Fi is an edge. Now, let Fi = C be an even cycle. Since Ii 6= ∅
and G′0 = I1× I2× . . .× Im, the assertion follows from the conclusion after Claim 2, that the

intersection of G′0 with any layer is the whole layer, an edge, a vertex, or empty. �

Let H ′ be the subgraph of G′ induced by all vertices of G′ not belonging to G′0.

Claim 6. H ′ is either empty or is a connected subgraph of G′.

Proof. By Claim 5, G′0 is a connected subgraph of G′ of the form H1 × H2 × . . . × Hm,

where each Hi is a vertex, an edge of Fi, or the whole factor Fi. Suppose that G′0 is a proper

subgraph of G′. By renumbering the factors in the product F1×F2× . . .×Fm we can suppose

that there exists an index m′ ≤ m, such that for each i ≤ m′, Hi is a proper subgraph of Fi
and that for each m′ < i ≤ m, we have Hi = Fi. For each i ≤ m′, let F ′i be the (nonempty)

connected subgraph of Fi induced by V (Fi) \ V (Hi). For any i ≤ m, let H ′i be the subgraph

F1 × . . .× Fi−1 × F ′i × Fi+1 × . . .× Fm of G′ = F1 × . . .× Fm. Obviously, each such H ′i is a

connected subgraph of H ′ (and of G′). Moreover, V (H ′) =
⋃m
i=1 V (H ′i) and any two H ′i and

H ′j with i, j ≤ m share a vertex. This shows that H ′ is a connected subgraph of G′. �

Now, we are ready to conclude the proof of the proposition. If both G′1 and G′2 are proper

subgraphs of G′, then G′0 is also a proper subgraph of G′. By Claim 6, the subgraph H ′

of G′ induced by all vertices not in G′0 is connected. This implies that G′ contains edges

running between the vertices of G′1 \G′2 and G′2 \G′1, which is impossible. Consequently, we

can suppose that G′1 coincides with G′ and G′2 coincides with G′0. By Claim 5, G′2 = G′0 has

the form H1×H2× . . .×Hm, where each Hi is a vertex or an edge of Fi, or the whole factor

Fi. �

Since each half-extended cycle can be contracted to a Q−3 , we immediately have the fol-

lowing lemma.

Lemma 14. If G ∈ F(Q−3 ), then G has no convex subgraph isomorphic to a half-extended

cycle.

Now we are ready to prove the first part of Theorem A.

Theorem 1. The convex closure of any isometric cycle of a graph G in F(Q−3 ) is a gated

subgraph isomorphic to a Cartesian product of edges and even cycles.

Proof. Let G be a minimal graph in F(Q−3 ) for which we have to prove that the convex

closure of an isometric cycle C of G is a product of cycles and edges. Since G is minimal

and convex subgraphs of graphs in F(Q−3 ) are also in F(Q−3 ), we conclude that G coincides

with the convex closure of C. If C is a 4-cycle, then C is a convex subgraph of G and we are

done. Analogously, if C is a 6-cycle, then since G ∈ Q−3 , either C is convex or the convex

hull of C is the 3-cube Q3. So, assume that the length of C is at least 8. By minimality of
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G, any equivalence class of G crosses C. Any contraction of G is a graph G′ in F(Q−3 ) and

it maps C to an isometric cycle C ′ of G′. By Lemma 7, G′ is the convex hull of C ′, thus by

minimality choice of G, G′ is a Cartesian product of cycles and edges, say G′ is isomorphic to

F1×F2× . . .×Fm, where each Fi, i = 1, . . . ,m, is either a K2 or an even cycle C. The graph

G is obtained from G′ by an isometric expansion, i.e., there exist isometric subgraphs G′1 and

G′2 of G′ such that G′ = G′1 ∪G′2, G′0 := G′1 ∩G′2 6= ∅, there is no edge between G′1 \G′2 and

G′2 \G′1, and G is obtained from G′ by expansion along G′0.

By Proposition 3 and Lemma 14, either G is a Cartesian product of edges and even

cycles or G′1 coincides with G′ and G′2 = G′0 is a proper convex subgraph of G′ of the form

H1×H2×. . .×Hm, where each Hi is a vertex, an edge of Fi, or the whole factor Fi. In the first

case we are done, so suppose that the second case holds. Let Gj be the image of G′j after the

expansion, for j = 0, 1, 2. Since G′2 = G′0 is convex, G0 is a convex subgraph of G isomorphic

to G′0 ×K2. If G′ is the f -contraction of G, then G1 and G2 are the subgraphs induced by

the halfspaces H+
f and H−f of G. Let a1a2 and b1b2 be two opposite edges of C belonging

to Ef . Since G is the convex hull of C, the cycle C intersects every equivalence class of the

relation Θ in G. In particular, this implies that contracting Ef , the edges a1a2 and b1b2 are

contracted to vertices a′ and b′ of G′0. Since G′0 is a convex subgraph of G′, the image of C

under this contraction is an isometric cycle C ′ of G′. Since a′, b′ ∈ C ′, C ′ is contained in G′0.

Since by Lemma 7 G′ is the convex hull of C ′, we conclude that G′1 = G′0 = G′2, contrary to

the assumption that G′0 is a proper subgraph of G′. �

Together with Proposition 2, the following gives the second part of Theorem A.

Proposition 4. The antipodal subgraphs of graphs from S4 are gated and are products of

edges and cycles.

Proof. Let G be a antipodal graph not in F(Q−3 ). Then G can be contracted to a graph G′

that contains a convex subgraph X isomorphic to Q−3 . By Lemma 8 any contraction of an

antipodal graph is an antipodal graph, thus we can assume that G′ is maximally contracted,

i.e. every contraction of G′ is in F(Q−3 ). Denote the central vertex of X with x, the isometric

cycle around it with (v0, v1, . . . , v5), and assume that x is adjacent to exactly v0, v2 and v4.

Let x′, v′0, . . . , v
′
5 ∈ V (X ′) be the antipodes of vertices in X.

First assume that G′ has exactly three Θ-classes, namely Exv0 , Exv2 , Exv4 . Then either

G′ = X or G′ ∼= Q3. In the first case G′ is not antipodal, while in the second case X is not a

convex subgraph of G′. Thus assume that there exists another Θ-class, say Ewz. Contracting

this class we obtain a graph G′′ that has no Q−3 convex subgraphs, thus the convex closure

X ′ of X in G′′ must be isomorphic to Q3. Let y be a vertex in G′ that gets mapped to the

vertex in X ′ \X in G′′. Vertex y and v1 are adjacent in G′′ with edge in Exv4 , but since X

is convex in G′ any path from v1 to y in G′ must be of length 2 and first cross an edge in

Ewz and then an edge in Exv4 . Thus there is only one such path, say P , and it is a convex

subgraph. On the other hand, the path (v3, v4, v5) is convex in X, thus it is convex in G′.

But then the paths (v3, v4, v5) and P are convex subgraphs that cannot be separated by two

complementary halfspaces. The latter holds since there is a path between them consisting
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of edges in Exv4 , Exv0 , Exv2 , but each of these Θ-classes intersects either one convex set or

another. Thus G′ is not in S4. By [23, Theorem 10], contracting a graph in S4 gives a graph

in S4. Thus also G is not in S4. �

4. Gated amalgamation in hypercellular graphs

This section is devoted to the proof of Theorem B. First, we present the 3CC-condition

for partial cubes G in a seemingly stronger but equivalent form:

3-convex cycles condition (3CC-condition): for three convex cycles C1, C2, C3 of G such that

any two cycles Ci, Cj , 1 ≤ i < j ≤ 3, intersect in an edge eij with e12 6= e23 6= e31 and the

three cycles intersect in a vertex, the convex hull of C1 ∪C2 ∪C3 is a cell of G isomorphic to

Ci ×K2 and Cj , Ck are 4-cycles.

Any cell X ′ which is contained in a cell X of a partial cube G is called a face of X. By

Lemma 11 equivalently, the faces of X are the gated subgraphs of G included in X. We

denote by X(G) the set of all cells of G and call X(G) the combinatorial complex of G. The

dimension dim(X) of a cell X of G is the number of edge-factors plus two times the number

of cyclic factors. Let us now recall the stronger 3C-condition for partial cubes G:

3-cell condition (3C-condition): for all k ≥ 0 and three (k + 2)-dimensional cells X1, X2, X3

of G such that each of the pairwise intersections X12, X23, X13 is a cell of dimension k+1 and

the intersection X123 of all three cells is a cell of dimension k, the convex hull of X1∪X2∪X3

is a (k + 3)-dimensional cell.

The proof of Theorem B is organized in the following way. We start by showing that any

hypercellular graph satisfies the 3CC-condition. Together with Theorem A, this shows that

(i)⇒(ii). We then obtain (ii)⇒(iii), while (iii)⇒(ii) holds trivially. To prove (ii)⇒(i), we

show that the class of partial cubes satisfying (ii) is closed by taking minors. Since Q−3 does

not satisfies the 3CC-condition, we conclude that all such graphs are hypercellular. The last

and longest part of the section is devoted to the proof of the equivalence (i)⇔(iv).

Since by Theorem A, hypercellular graphs have gated cells, the following lemma completes

the proof of (i)⇒(ii).

Lemma 15. Any hypercellular graph G satisfies the 3CC-condition.

Proof. Let C1, C2, C3 be three convex cycles of a partial cube G ∈ F(Q−3 ) such that any

two cycles Ci, Cj , 1 ≤ i < j ≤ 3, intersect in an edge eij and the three cycles intersect in a

vertex v. We proceed by induction on the number of vertices of G. By induction assumption

we can suppose that G is the convex hull of the union C1 ∪ C2 ∪ C3. If each of the cycles

C1, C2, C3 is a 4-cycle, then their union is an isometric subgraph H of G isomorphic to Q−3 .

Since G ∈ F(Q−3 ), H is not convex. Therefore the convex hull of H = C1 ∪ C2 ∪ C3 is the

3-cube Q3, and we are done. Thus suppose that one of the cycles, say C1, has length ≥ 6.

Let the edge e12 be of the form v1v. Let u be the neighbor of v1 in C1 different from v. Let

Ef be the equivalence class of Θ defined by the edge uv1. We claim that Ef does not cross

C2 and C3, or, equivalently, that C2 ∪ C3 ⊂ W (v1, u). Since G ∈ F(Q−3 ), by Proposition 2,
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each of the cycles C1, C2, C3 is a gated subgraph of G. Since u is adjacent to v1 ∈ C2, the

vertex v1 is the gate of u in C2, whence C2 ⊂ W (v1, u). Analogously, since C1 is gated and

v ∈ C1 ∩ C3, the gate of u in C3 must belong to I(u, v) ⊂ C1. Since the length of C1 is

at least 6, this gate cannot be adjacent to u and v, thus v is the gate of u in C3. Since

v1 ∈ I(u, v), again we conclude that C3 ⊂ W (v1, u). Hence Ef does not cross the cycles C2

and C3. Let G′ := πf (G) and C ′i := πf (Ci), for i = 1, 2, 3. Since each Ci, i = 1, 2, 3 is gated,

by Lemma 10 each C ′i, i = 1, 2, 3 is a gated subgraph of G′ and by Lemma 7 G′ is the convex

hull of C ′1 ∪ C ′2 ∪ C ′3. Notice that the three cycles C ′1, C
′
2, C

′
3 pairwise intersect in the same

edges as the cycles C1, C2, C3 and all three in the vertex v.

Since G′ ∈ F(Q−3 ), by induction assumption G′ is isomorphic to the Cartesian product

C × K2, where C is isomorphic to one of C ′1, C
′
2, C

′
3. The graph G is obtained from the

graph G′ by an isometric expansion with respect to the subgraphs G′1 and G′2 of G′. By

Proposition 3 and Lemma 14,

(i) G is a Cartesian product of edges and even cycles or

(ii) G′1 coincides with G′ and G′2 is isomorphic to a subproduct of edges and cycles.

The only convex cycles of length at least 6 in a product of edges and cycles are layers.

Therefore in the case (i) C1 must be a layer L in the product. Each of cycles C2 and C3

shares an edge with C1. The only such cycles are 4-cycles between layer L and any other

layer adjacent to L. Since also C2 and C3 share an edge, they must both be between L and

some layer L′. Then L and L′ form a cell isomorphic to L×K2
∼= C1×K2 that is the convex

hull of C1 ∪ C2 ∪ C3.

Finally, assume (ii) holds. Since G′ ∼= C ×K2, G′2 is either a vertex, an edge, a 4-cycle,

a layer isomorphic to C, or the whole G′. Thus, G′2 intersects no cyclic layer in just two

antipodal vertices, i.e., no convex cycle of G′ gets extended. A contradiction, since C ′1 should

be extended. �

We will now establish the implication (ii)⇒(iii), while (iii)⇒(ii) trivially holds.

Proposition 5. If G is a partial cube in which cells are gated and which satisfies the 3CC-

condition, then G satisfies the 3C-condition.

Proof. Since the properties of G are closed under restriction, without loss of generality we

consider G = conv(X1 ∪ X2 ∪ X3). Since cells are gated in G, by Lemma 11 X123 is a

subproduct of X12, X23, X13 and Xij is a subproduct of Xi and Xj for all i, j ∈ {1, 2, 3}, where

in all cases the factors of the subproducts are vertices, edges, or factors of the superproducts.

Indeed by the conditions on the dimensions, the subproducts all have the same factors than

their superproducts except that either one edge-factor from the superproduct is a vertex in

the subproduct or one cyclic factor from the superproduct is an edge in the subproduct. This

gives that any v ∈ X123 has exactly one neighbor vij ∈ Xij \X123 for all i, j ∈ {1, 2, 3}. Now,

since the cells X1, X2, X3 are products, a path of the form (vij , v, vik) ⊂ Xi is contained in the

unique convex cycle Ci ofXi accounting for the two supplementary dimensions ofXi compared

to X123, for all {i, j, k} = {1, 2, 3}. Since G satisfies the 3CC-condition, conv(C1∪C2∪C3) is
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a cell Xv of G isomorphic to Ci ×K2 and Cj ∼= Ck are 4-cycles, for some {i, j, k} = {1, 2, 3}.
Moreover, by the product structure of Xi the Θ-classes of Ci and their order on Ci do not

depend on the choice of v ∈ X123, for all i ∈ {1, 2, 3}. Therefore, for all v, w ∈ X123 and some

i ∈ {1, 2, 3} we have Xv
∼= Xw

∼= Ci×K2, where corresponding edges are in the same Θ-class

of G. Since they are separated by Θ-classes crossing X123, for different v, w ∈ X123, the cells

Xv and Xw are disjoint and by construction the union of all of them covers X1∪X2∪X3. We

obtain that X1∪X2∪X3 ⊆ X123×Ci×K2, which is a (k+3)-dimensional cell of G, thus gated

and thus convex. Since G = conv(X1∪X2∪X3), we get conv(X1∪X2∪X3) ∼= X123×Ci×K2,

which establishes the claim. �

To show (ii)⇒(i), in Proposition 6 we prove that the class of partial cubes satisfying (ii) is

minor-closed. Since Q−3 does not satisfy the 3CC-condition, the graphs satisfying (ii) cannot

be contracted to Q−3 , thus they are hypercellular.

Proposition 6. The family of partial cubes having gated cells and satisfying the 3CC-

condition is a pc-minor-closed family.

Proof. If a condition of the proposition is violated for a convex subgraph of a partial cube G,

then it is also violated for G. Therefore the family in question is closed under restrictions.

Let now G be a partial cube satisfying the conditions of the proposition and let G′ be

a contraction of G along some equivalence class Ef . Pick a cell X ′ in G′. By Lemma 6,

the expansion X of X ′ is a convex subgraph of G, thus X also satisfies the conditions of the

proposition. By the 3CC-condition, X has no convex subgraph isomorphic to a half-expanded

cycle. Thus Proposition 3 provides us with the structure of X; in particular, X includes a

cell Y such that πf (Y ) = X ′. Since the cells of G are gated, by Lemma 10, X ′ is gated.

Therefore the cells of G′ are gated.

Now, let C ′1, C
′
2, C

′
3 be three convex cycles of G′ such that any two cycles C ′i, C

′
j , 1 ≤ i <

j ≤ 3, intersect in an edge e′ij and the three cycles intersect in a vertex v′. Let G′1 and

G′2 be the subgraphs of G′ with respect to which we perform the expansion of G′ into G.

By Proposition 3 (or directly using the fact that C ′1, C
′
2, C

′
3 are convex cycles), for each C ′i,

i ∈ {1, 2, 3}, we have one of the following three options: (a) either both G′1 ∩C ′i and G′2 ∩C ′i
coincide with C ′i, or (b) one of G′1 ∩ C ′i and G′2 ∩ C ′i is the whole cycle C ′i and other is an

edge, a vertex, or empty, or (c) both G′1 ∩C ′i and G′2 ∩C ′i are paths corresponding to halves

of C ′i with intersection in two antipodal vertices of C ′i. Using this trichotomy, we divide the

analysis in the following cases.

Case 1. For G′1 or G′2, say for G′1, and for at least two of the three cycles C ′1, C
′
2, C

′
3, say for

C ′1, C
′
2, we have G′1 ∩ C ′i = C ′i and G′1 ∩ C ′j = C ′j .

Then the edges e′13 and e′23 are in G′1. Thus either G′1 ∩ C ′3 = C ′3 or G′1 ∩ C ′3 is a half

of C ′3 that includes e′13 and e′23. Then in the expansion we have 3 convex cycles C1, C2, C3

pairwise sharing an edge and a vertex in the intersection of all three, such that πf (Ci) = C ′i
for i ∈ {1, 2, 3}. Since the 3CC-condition holds in G, two of the cycles C1, C2, C3 are 4-cycles

and all three are included in a cell X isomorphic to Ck×K2 where Ck is the third cycle. Since
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a contraction can only shorten the cycles, at least two of the cycles C ′1, C
′
2, C

′
3 are 4-cycles

and the convex hull of all three must be included in a cell πf (X). The only contraction of

Ck ×K2 that has at least three convex cycles is isomorphic to C ′k ×K2.

Case 2. For G′1 or G′2, say for G′1, among C ′1, C
′
2, C

′
3 there exists a unique cycle, say C ′1, such

that G′1 ∩ C ′1 = C ′1.

By symmetry and in view of Case 1, for two other cycles C ′2 and C ′3 we have only one of the

following options: (1) either G′2 ∩ C ′j = C ′j for exactly one j ∈ {2, 3} or (2) for all j ∈ {2, 3}
and k ∈ {1, 2} we have that G′k ∩ C ′j is a half of the cycle C ′j .

First consider the option (2). By properties of C ′1, in the half-space G1 of G corresponding

to G′1 in the expansion there exists a convex cycle C1 of the same length as C ′1 such that

πf (C1) = C ′1. Moreover C ′2 and C ′3 get expanded to convex cycles C2, C3 each sharing exactly

one edge with C1 and having one vertex in the intersection of all three. Since the cells of G

are gated, the cycles C2, C3 are gated. The cycles C2, C3 share at least one edge. If a vertex

of e′23 is in G′1 ∩G′2, then C2 and C3 share 2 edges, which impossible because C2 and C3 are

gated. By the 3CC-condition, two of C1, C2, C3 are 4-cycles, which is impossible because in

G′ one of those 4-cycles Ci will get contracted to an edge and not to the cycle C ′i.

Now consider the option (1) that G′2 ∩ C ′2 = C ′2 and both G′1 ∩ C ′3, G′2 ∩ C ′3 are halves

of C ′3. Since v ∈ G′1 ∩ G′2, the antipode u of v in C ′3 also belongs to G′1 ∩ G′3. Hence C ′3
gets expanded to v, its antipode u, and e′12 ∈ G′1 ∩ G′2. Therefore to ensure that we do not

have G′k ∩ C ′j = C ′j for some k ∈ {1, 2} and j ∈ {1, 2, 3}, we must have G′1 ∩ C ′2 = e′12 and

G′2 ∩ C ′1 = e′12. Now the expansion of C ′1 ∪ C ′2 ∪ C ′3 has 4 convex cycles: the expansion C3

of C ′3, the convex cycles C1 and C2 that get mapped to C ′1 and C ′2 by the contraction and a

4-cycle C4 between C1 and C2. Cycles C1, C3, C4 pairwise intersect in three different edges

and all have a common vertex, thus their convex closure X is isomorphic to C3 ×K2 (since

the cycle C3 must have length at least 6). This proves that C1 is a 4-cycle. Let C5 be the

fourth cycle, sharing edges with C3 and C4 different from C1. Then C5 shares two edges with

C2 which is possible only if C2 = C5. Thus we see that again πf (X) is a gated cell including

C ′1, C
′
2, C

′
3.

Case 3. For every i ∈ {1, 2, 3}, G′1 ∩ C ′i and G′2 ∩ C ′i are halves of C ′i intersecting in two

antipodal vertices of C ′i.

If G′1 ∩ G′2 contains any vertex of e′ij for i, j ∈ {1, 2, 3}, then there exist convex cycles

Ci and Cj in G that share two edges, which is impossible. Thus C ′1, C
′
2, C

′
3 get extended to

cycles C1, C2, C3 pairwise sharing an edge and a vertex in common. Then two of them must

be 4-cycles, which is not the case because then two of them get contracted to edges. We have

proved that the 3CC-condition also holds for G′, thus the class we consider is closed under

contractions. This finishes the proof. �

The remaining part of this section is devoted to the proof of the equivalence (i)⇔(iv). For

an equivalence class Ef of Θ, we denote by N(Ef ) the carrier of f , i.e., the subgraph of G
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which is the union of all cells of G which are crossed by Ef . The carrier N(Ef ) splits into

its positive and negative parts N+(Ef ) := N(Ef ) ∩H+
f and N−(Ef ) := N(Ef ) ∩H−f .

Lemma 16. Let G be a hypercellular graph and e, f ∈ Λ, e 6= f . Then πe(N(Ef )) is the

carrier of Ef in πe(G).

Proof. Let Y ∈ N(Ef ) be a cell of G. Since contractions of products are products, πe(Y )

is a product of edges and even cycles in πe(G) and clearly crosses Ef . Furthermore, since

Y = conv(C) for a cycle C in G, we have by Lemma 7, that πe(Y ) ⊆ conv(πe(C)). Since

πe(G) is hypercellular, conv(πe(C)) is a cell by Theorem A. Thus, πe(Y ) is convex in πe(G)

by Lemma 11. Therefore πe(Y ) is a cell of πe(N(Ef )).

Conversely, let Y be a cell in the carrier of f in πe(G) and Y ′ be its expansion with respect

to e. By Lemma 6, Y ′ is convex and by Proposition 3 Y ′ is either a product of cycles and

thus a cell of N(Ef ), or Y ′ consists of two cells Y ′′, Y ′′′ separated by Ee, where say Y ′′ is

isomorphic to Y . Since f crosses Y ′′, Y ′′ is in N(Ef ) and Y arises as its contraction, so we

are done. �

Lemma 17. Let G be a hypercellular graph. Then any two cells Y ′, Y ′′ of X(G) either are

disjoint or intersect in a cell of X(G).

Proof. Let Y ′, Y ′′ be two arbitrary intersecting cells of G. Let Y0 := Y ′ ∩ Y ′′. Since Y ′

and Y ′′ are gated subgraphs of G, Y0 is also gated. In particular, Y0 is a gated subgraph of

Y ′. Since Y ′ is a product of edges and cycles F1 × . . . × Fm, by Lemma 11, Y0 is a product

F ′1 × . . .× F ′m, where each F ′i is a vertex, an edge, or the whole factor Fi. Hence Y0 is a cell

and we are done. Now suppose that some F ′i
∼= P = (x, . . . , y, . . . , z) is a path of length ≥ 2

within the cyclic factor Fi. Since P is convex, the length of P must be less than half of the

length of Fi. Thus the antipodal vertex of y in the Fi, say y′, is not in P . Now, y′ cannot

have a gate w in P , since if w is between x and y there is no shortest path from y′ through

w to z. Symmetrically, if w is between y and z there is no shortest path from y′ through w

to x. �

Lemma 18. Let G be a hypercellular graph and f ∈ Λ. If two cells Y ′, Y ′′ of N(Ef ) intersect,

then they share an edge of Ef .

Proof. Let y ∈ Y ′∩Y ′′ and suppose without loss of generality that y ∈ H−f . Since Y ′ ∈ N(Ef ),

there exists an edge u′v′ ∈ Ef with u′, v′ ∈ Y ′. Suppose u′ ∈ H−f and v′ ∈ H+
f . If v′ ∈ Y ′′,

then u′ ∈ I(v′, y) ⊂ Y ′′ by convexity of Y ′′, thus the edge u′v′ belongs to Y ′ ∩ Y ′′ and we are

done. So, suppose v′ /∈ Y ′′. Let v be the gate of v′ in Y ′′ and let x be a vertex of Y ′′ ∩H+
f

(such a vertex exists because Y ′′ ∈ N(Ef )). Since v ∈ I(v′, x) and H+
f is convex, we conclude

that v ∈ H+
f . Since y ∈ H−f , on any shortest path P from v to y we will meet an edge v′′u′′ of

Ef . Since v′′, u′′ ∈ I(v, y), v, y ∈ Y ′′, and Y ′′ is convex, the edge v′′u′′ belongs to Y ′′. On the

other hand, since v ∈ I(v′, y) and Y ′ is convex, we conclude that the edge v′′u′′ also belongs

to Y ′. �
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Proposition 7. For any equivalence class Ef of a hypercellular graph G, the carrier N(Ef )

is a gated subgraph of G. Therefore, N+(Ef ) is gated in the halfspace H+
f , N−(Ef ) is gated

in H−f , and the extended halfspaces H+
f ∪N(Ef ) and H−f ∪N(Ef ) are gated in G.

Proof. First, since by Lemma 13 the relations Θ and Ψ∗ coincide, N+(Ef ), N−(Ef ) and

consequently N(Ef ) are connected subgraphs of G.

Through Claims 7, 8, and 9 we will prove that N+(Ef ) is convex. Suppose that N+(Ef )

is not convex. Choose two vertices y, z ∈ N+(Ef ) with minimal distance k(y, z) :=

dN+(Ef )(y, z) that can be connected by a shortest path R of G outside N+(Ef ). Let P

be a shortest y, z-path in N+(Ef ). Let us prove that P is a shortest path of G. If this was

not the case, we could replace y by its neighbor y′ in P . But from the minimality in the

choice of y, z, we conclude that I(y′, z) ⊆ N+(Ef ). Thus, the subpath of P between y′ and

z is a shortest path of G. Now, since y /∈ I(y′, z), we have z ∈ W (y′, y), yielding that P is a

shortest path of G. Again by the choice of y, z, we conclude that P and R intersect only in

their common endvertices y, z.

Claim 7. Any shortest path between a vertex of P and a vertex of R passes via y or z. In

particular, C := P ∪R is an isometric cycle of G.

Proof. We claim that if Q is a shortest path connecting two interior vertices p of P and r of

R, then Q passes via y or z. Suppose that this is not the case. Then we can find a shortest

path Q = (p := q0, q1, . . . , qk−1, qk := r) between two interior vertices p of P and r of R

such that Q ∩ C = {p, r}. Since p, r ∈ I(y, z) and Q ⊂ I(p, r), we conclude that Q ⊂ I(y, z),

because intervals of partial cubes are convex. This yields q1 ∈ I(p, y)∪I(p, z), since otherwise

y, z ∈ W (p, q1) and q1 ∈ I(y, z) contradict the convexity of W (p, q1). Since k(p, y) < k(z, y)

and k(p, z) < k(z, y), we conclude that I(p, y) ∪ I(p, z) ⊂ N+(Ef ), giving q1 ∈ N+(Ef ). We

can iterate this argument by first replacing p by q1 and q1 by q2, etc., and obtain that all

vertices q1, q2, . . . , qk−1, qk = r belong to N+(Ef ) and k(qi, y) < k(y, z), k(qi, z) < k(y, z).

In particular, r ∈ N+(Ef ) and k(r, y) < k(y, z), k(r, z) < k(y, z), thus by our assumption

R ⊂ I(r, y)∪I(r, z) ⊂ N+(Ef ). This contradiction shows that the path Q does not exist, i.e.,

any shortest path between a vertex of P and a vertex of R passes via y or z. In particular,

this implies that C = P ∪R is an isometric cycle of G. �

Claim 8. C = P ∪R is a convex cycle of G.

Proof. We proceed as in the proof of Lemma 13. If C is not convex, then by Claim 7 there

exist two vertices p, p′ ∈ P connected by a shortest path P ′ which intersects P only in p, p′

or there exist two vertices r, r′ ∈ R connected by a shortest path R′ which intersects R

only in r, r′. Let P ′′ be the subpath of P between p and p′ in the first case and let R′′

be the subpath of R between r and r′ in the second case. Let C ′ be the cycle obtained

from C by replacing the path P ′′ by P ′ in the first case and let C ′′ be the cycle obtained

from C by replacing the path R′′ by R′ in the second case. If the first case occurs and

{p, p′} 6= {y, z}, then k(p, p′) < k(y, z), whence P ′ ⊂ N+(Ef ). Therefore applying Claim 7

to the cycle C ′ instead of C, we conclude that C ′ is an isometric cycle of G. Analogously, if

26



{r, r′} 6= {y, z}, then no vertex of R′ belongs to N+(Ef ). Indeed, if say w ∈ R′∩N(Ef ), then

k(w, y) < k(y, z), k(w, z) < k(y, z) and by minimality the vertices r and r′ belong to N(Ef ),

contrary to the assumption that R ∩ N(Ef ) = {y, z}. Again applying Claim 7 to the cycle

C ′′ instead of C, we conclude that C ′′ is an isometric cycle of G. Finally, if {p, p′} = {y, z},
then P ′′ = P and one can see that either P ′ ⊆ N+(Ef ) and C ′ is an isometric cycle of G or

P ′∩N+(Ef ) = {y, z} and we redefine C ′ as the cycle formed by P and P ′, which is isometric

by Claim 7. Similarly, if {r, r′} = {y, z}, then R′′ = R and we can suppose that C ′′ is an

isometric cycle of G sharing with C either the path P or the path R. Consequently, in all

cases we derive a new isometric cycle of G (C ′ or C ′′) obtained by replacing either a subpath

P ′′ of P by P ′ or replacing a subpath R′′ of R by R′. Suppose without loss of generality that

we are in the first case, i.e., the new isometric cycle is C ′.

Let x′′ be a vertex of P ′′ different from p, p′. Let x be the opposite of x′′ in the cycle C and

let x′ be the opposite of x in the cycle C ′. Since C and C ′ are isometric cycles of the same

length of G, x′ is a vertex of P ′ different from p, p′. Then p, p′ ∈ I(x, x′), thus by convexity

of I(x, x′) we obtain that x′′ ∈ I(x, x′). But this is impossible because x′ and x′′ have the

same distance to x because they are opposite to x in C and C ′, respectively, and C and C ′

have the same length. This proves that C is convex. �

Since the cells of N(Ef ) are convex, the path P ⊂ N+(Ef ) of C cannot be contained in a

single cell. Thus there exist two consecutive edges e′ = uv and e′′ = vw of P and two cells

Y ′, Y ′′ of N(Ef ) such that u ∈ Y ′ \Y ′′, w ∈ Y ′′ \Y ′, and v ∈ Y ′ ∩Y ′′. By the following claim

this is impossible.

Claim 9. If there exist two cells Y ′, Y ′′ of N(Ef ) and a convex cycle C with edges e′ =

uv, e′′ = vw on it, such that u ∈ Y ′ \ Y ′′, w ∈ Y ′′ \ Y ′, and v ∈ Y ′ ∩ Y ′′, then there exists a

cell in N(Ef ) that includes C.

Proof. By Lemma 17, the intersection Y ′ ∩ Y ′′ is a product of edges and cycles. Since

Y ′, Y ′′ ∈ N(Ef ), Lemma 18 yields that Y ′∩Y ′′ contains at least one edge from Ef . Let F be

a factor of Y ′ ∩ Y ′′ and L be a corresponding layer that is crossed by Ef . We will establish

the claim by proving that e′, e′′ lie in a cell of N(Ef ), that is isomorphic to L × C. Pick any

edge e = vz in Y ′ ∩ Y ′′ that lies in the layer L.

First assume that e and e′ lie in the same layer of Y ′. The factor F is an edge or an even

cycle, but it must be a strict subset of a factor of Y ′ since e′ /∈ Y ′∩Y ′′. Thus L is isomorphic

to an edge and this edge must be in Ef . In particular, e ∈ Ef . Since Y ′ and Y ′′ are products

of edges and cycles, there exists a convex cycle C ′ of Y ′ passing via the edges e′ and e and

there exists a convex cycle C ′′ of Y ′′ passing via the edges e and e′′. By Lemma 15, C, C ′,

and C ′′ are contained in a cell Y of G. Since e ∈ Ef , this cell is in N(Ef ).

By symmetry, we are left with the case that e and e′ as well as e and e′′ lie in different

layers of Y ′ and Y ′′, respectively. Consequently, there exists a 4-cycle C ′ = (u, v, z, u′) of Y ′

passing via the edges e′ and e and a 4-cycle C ′′ = (w, v, z, w′) of Y ′′ passing via the edges

e and e′′. By Lemma 15, C, C ′, and C ′′ are contained in a cell Y ∼= C × K2 of G, where

e lies in a layer corresponding to the factor K2. If e ∈ Ef , then Y is a cell in N(Ef ) and
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we are done. If e /∈ Ef , then L is isomorphic to an even cycle. Consider z, and let z′ be its

neighbor, different from v, that lies in Y ′∩Y ′′ in L. Since z is in Y , z is incident to a cycle C ′

isomorphic to C and lies on the path (u′, z, w′) of C ′. Considering C ′ and edges u′z, zw′, and

zz′, we can as before with C, e′, e′′, and e, obtain a cell Z isomorphic to C × K2. The union

of Y and Z is isomorphic to C × P3, where P3 is the path on 3 vertices. Inductively picking

neighbors in the layer L we obtain a graph isomorphic to C × F , that contains C. �

We have sown that N+(Ef ) and symmetrically N−(Ef ) are convex. To see that N(Ef ) is

convex, pick two vertices x ∈ N+(Ef ), y ∈ N−(Ef ), a shortest (x, y)-path R and a vertex z

of R. Since R connects a vertex of H+
f with a vertex of H−f , necessarily R contains an edge

x′y′ in Ef , say x′ ∈ H+
f and y′ ∈ H−f . The vertex z belongs to one of the two subpaths of

R between x and x′ or y′ and y, say the first. Then z ∈ I(x, x′). Since x, x′ ∈ N+(Ef ) and

N+(Ef ) is convex, we conclude that z ∈ N+(Ef ) ⊂ N(Ef ), showing that the carrier N(Ef )

is convex.

Now, suppose that G is a minimal graph in F(Q−3 ) containing a non-gated carrier N(Ef ).

Since N(Ef ) is convex and by Lemma 16 any contraction πe(N(Ef )) for e ∈ Λ, e 6= f, is the

carrier of Ef in G′ = πe(G) and thus is gated in G′, by Proposition 1 there exist two vertices

x1, x2 ∈ N(Ef ) with dG(x1, x2) = 2 and a vertex v /∈ N(Ef ) at distance 2 from x1, x2, such

that the vertices v, x1, x2 do not contain a common neighbor. Since G ∈ F(Q−3 ), the last

condition implies that the convex hull of v, x1, x2 is a 6-cycle C1. Let u be the unique common

neighbor of x1 and x2 in C. Since N(Ef ) is convex, u also belongs to N(Ef ). Namely, if say

v ∈ H+
f , then x1, u, x2 ∈ N+(Ef ). Since by Proposition 2 each cell of G is gated, the vertices

x1 and x2 cannot belong to a common cell. Thus there exist two cells Y ′, Y ′′ of N(Ef ) such

that the edge x1u belongs to Y ′ and ux2 belongs to Y ′′. By Claim 9, there exists a cell Y of

the carrier N(Ef ) that includes C, contrary to the assumption that the vertex v of C does not

belong to N(Ef ). This establishes that N(Ef ) is gated. By Lemma 10 also N+(Ef ) is gated

in H+
f and N−(Ef ) is gated in H−f . Consequently, the extended halfspaces H+

f ∪N(Ef ) and

H−f ∪N(Ef ) are gated in G. �

Now, we are ready to prove the following result (the equivalence (i)⇔(iv) of Theorem B):

Theorem 2. A partial cube G is hypercellular if and only each finite convex subgraph of G

can be obtained by gated amalgams from Cartesian products of edges and even cycles.

Proof. First suppose that a finite graph G is obtained by gated amalgam from two graphs

G1, G2 ∈ F(Q−3 ). Suppose by way of contradiction that G /∈ F(Q−3 ) and suppose that G

is a minimal such graph. Then any proper convex subgraph H of G is either contained in

one of the graphs G1, G2 or is the gated amalgam of H ∩G1 and H ∩G2, thus H ∈ F(Q−3 )

by minimality of G. Thus there exists a sequence of contractions of G to the graph Q−3 .

Let Ef be the first such contraction, i.e., the graph G′ := πf (G) does not belong to F(Q−3 ).

On the other hand, by Lemma 10, G′1 := πf (G1) and G′2 := πf (G2) are gated subgraphs

of G′. Moreover, G′1 and G′2 belong to F(Q−3 ) because G1 and G2 belong to F(Q−3 ) and

F(Q−3 ) is closed by contractions. As a result we obtain that the graph G′ /∈ F(Q−3 ) is
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the gated amalgam of the graphs G′1, G
′
2 ∈ F(Q−3 ), contrary to the minimality of G. This

establishes that the subclass of F(Q−3 ) consisting of finite graphs from F(Q−3 ) is closed by

gated amalgams.

Conversely, suppose that G is an arbitrary finite convex subgraph of a graph from F(Q−3 ).

We follow the schema of proof of implication (3)⇒(4) of [5, Theorem 1]. If G is a single cell,

then we are done. Otherwise, we claim that G is a gated amalgamation of two proper gated

subgraphs G1 and G2.

First suppose that there exist two disjoint maximal cells Y ′ and Y ′′. Let y′ ∈ Y ′ and

y′′ ∈ Y ′′ be two vertices realizing the distance d(Y ′, Y ′′) = min{d(x, z) : x ∈ Y ′, z ∈ Y ′′}.
Since Y ′∩Y ′′ = ∅, necessarily y′ 6= y′′. Since Y ′ and Y ′′ are gated, from the choice of y′, y′′ it

follows that y′ is the gate of y′′ in Y ′ and y′′ is the gate of y′ in Y ′′. Let y be a neighbor of y′

on a shortest path between y′ and y′′. Suppose that the edge y′y belongs to the equivalence

class Ef . Notice that y′′ is also the gate of y in Y ′′ and y′ is the gate of y in Y ′. Therefore

Y ′ ⊆ W (y′, y) = H+
f and Y ′′ ⊆ W (y, y′) = H−f . Consequently, Y ′ and Y ′′ are not contained

in the carrier N(Ef ), thus H+
f \ N(Ef ) and H−f \ N(Ef ) are nonempty. By Proposition 7,

N(Ef ), H+
f ∪N(Ef ), and H−f ∪N(Ef ) are gated subgraphs of G, thus G is the gated amalgam

of H+
f ∪N(Ef ) and H−f ∪N(Ef ) along the common gated subgraph N(Ef ).

Thus further we may suppose that all maximal cells of G pairwise intersect. Since they

are gated and G is finite, by the Helly theorem for gated sets [43, Proposition 5.12 (2)], the

maximal cells of G intersect in a non-empty cell X0.

Claim 10. There exists an equivalence class Ef of G such that the carrier N(Ef ) of Ef does

not contain all maximal cells of G and Ef contains an edge uv with v ∈ X0 and u /∈ X0.

Moreover, all maximal cells of the carrier N(Ef ) contain the edge uv.

Proof. By definition, X0 is a proper face of each maximal cell X of G. Therefore, there exists

an edge uv with v ∈ X0 and u ∈ X \X0. Suppose that uv belongs to the equivalence class

Ef of G. Then X0 ⊆ W (v, u). Notice that X belongs to the carrier N(Ef ) of Ef . Since

u /∈ X0, there exists a maximal cell X ′ such that u /∈ X ′. Since v ∈ X ′, we assert that X ′

does not belong to N(Ef ). Indeed, suppose Ef contains an edge u′′v′′ with both ends in X ′.

Assume without loss of generality that W (u, v) = W (u′′, v′′) and W (v, u) = W (v′′, u′′). Since

u ∈ I(v, u′′) and v, u′′ ∈ X ′, by the convexity of X ′ we conclude that u ∈ X ′, a contradiction.

This shows that N(Ef ) consists of all maximal cells containing the edge uv. �

Let Ef be an equivalence class of G as in Claim 10, in particular, uv is an edge of Ef with

v ∈ X0 and u /∈ X0. Let X1, . . . , Xk be the maximal cells of G containing the edge uv. By the

second assertion of Claim 10, N(Ef ) coincides with the union
⋃k
j=1Xj . Let Xk+1, . . . , Xm

be the remaining maximal cells of G, i.e., the maximal cells not containing the vertex u (such

cells exist by the choice of Ef ). Set Y :=
⋃m
i=k+1Xi and notice that by the choice of X0 we

have Y ⊆W (v, u).

Let Z be the subgraph of G induced by the intersection of N(Ef ) with Y , i.e., Z =⋃m
i=k+1 Zi, where Zi := N(Ef ) ∩ Xi, i = k + 1, . . . ,m. By Proposition 7, N(Ef ) is gated.

29



Since by Proposition 2 each cell Xi of Y is also gated, each Zi is gated, and thus is a face of

Xi, i = k + 1, . . . ,m, by Lemma 11.

Now we define a gated subgraph Z∗ of G, which extends Z and separates N(Ef ) from Y ,

i.e., it contains their intersection and there is no edge from N(Ef ) \ Z∗ 6= ∅ to Y \ Z∗ 6=
∅. Each maximal cell Xj in N(Ef ) is a Cartesian product of edges and even cycles, say

Xj = F1 × . . . × Fp. Let Lj be the layer of Xj containing the edge uv. Suppose that

Lj = {v1} × . . . {vl−1} × Fl × {vl+1} × . . .× {vp}, where Fl is the lth factor of Xj and vs is a

vertex of the factor Fs, s 6= l. If Lj = uv, i.e. Lj comes from an edge-factor Fl = u′jv
′
j , then

set Z∗j := F1× . . .×Fl−1×{v′j}×Fl+1× . . .×Fp. Since u /∈ Z∗j , Z∗j is a proper gated subgraph

of Xj . Now, suppose that Lj comes from a cyclic factor Fl of Xj . Let vwj be the edge of Lj
incident to v and different from uv. Suppose that the edges uv and vwj of L come from the

edges u′jv
′
j and v′jw

′
j of Fl, respectively. Set Z∗j := F1× . . .×Fl−1×{v′j , w′j}×Fl+1× . . .×Fp.

Again, since u /∈ Z∗j , Z∗j is a proper gated subgraph of Xj . Equivalently, Z∗j is the subgraph

of Xj induced by all vertices of Xj whose gates in the gated cycle Lj is either v or wj .

Notice also that in both cases Z∗j is a proper face of Xj included in W (v, u). Finally, set

Z∗ :=
⋃k
j=1 Z

∗
j .

Claim 11. For each j = 1, . . . , k, we have Z∗ ∩Xj = Z∗j .

Proof. By definition, Z∗j ⊆ Z∗ ∩Xj . To prove the converse inclusion, it suffices to show that

for any j′ ∈ {1, . . . , k}, j′ 6= j, we have Z∗j′ ∩ Xj ⊆ Z∗j . Consider the layers Lj of Xj and

Lj′ of Xj′ containing the edge uv. Each of them consists either of the edge uv or is a gated

cycle of G. If Lj is uv, then Z∗j coincides with Xj ∩W (v, u). Since Z∗j′ ⊆W (v, u), necessarily

Z∗j′ ⊆ Xj ⊆ Z∗j . Now suppose that Lj is an even cycle. Suppose by way of contradiction that

Z∗j′ ∩Xj contains a vertex x not included in Z∗j . Since x ∈ W (v, u), the gate of x in Lj is a

vertex x′ of Lj ∩W (v, u) different from v. Since Xj′ is convex, x′, v ∈ I(x, u) ⊂ Xj′ . Since

Xj′ is gated and contains three different vertices u, v, x′ of the gated cycle Lj , necessarily Xj′

contains the entire cycle Lj . This implies Lj′ = Lj and wj = wj′ . By definition of Z∗j′ , we

also conclude that x′ = wj′ . Since x ∈ Xj , by definition of Z∗j we must have x ∈ Z∗j , contrary

to the choice of x. �

Claim 12. For each i = k + 1, . . . ,m, we have Z∗ ∩Xi = Zi. In particular, Z∗ ∩ Y = Z.

Proof. For each maximal cell Xj , i = 1, . . . , k, of N(Ef ), consider the intersection Zji of Xj

with each cell Xi, i = k + 1, . . . ,m, of Y . From the definition of Z it follows that each

Zi, i = k+ 1, . . . ,m, can be viewed as the union of all Zji, j = 1, . . . , k, thus Z can be viewed

as the union of all Zji, j = 1, . . . , k, i = k + 1, . . . ,m.

Now, let k + 1 ≤ i ≤ m. First we prove that for any 1 ≤ j ≤ k the set Zji is included in

Xj∩Z∗ (which coincides with Z∗j by Claim 11). This is obviously so if the layer Lj is the edge

uv: in this case, since Xi ⊂ W (v, u), Zji = Xj ∩Xi is a subset of W (v, u) ∩Xj = Z∗j . Now,

suppose that Lj is an even cycle. Suppose by way of contradiction that Zji = Xj∩Xi contains

a vertex x whose gate x′ in Lj is different from v and wj . Since x ∈ W (v, u), necessarily

wj and x′ belong to the interval I(x, v). Since x, v ∈ Zji and Zji is convex, wj , x
′ ∈ Zji.
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Since Zji and Lj are gated and Zji ∩ Lj contains the vertices u, v, x′, necessarily Lj must

be included in Zji. Since u ∈ Lj \ Zji, we obtained a contradiction. This establishes the

inclusion Zji ⊆ Z∗ ∩Xi ⊆ Z∗.
We have Z∗ ∩ Xi = (

⋃k
j=1 Z

∗
j ) ∩ Xi =

⋃k
j=1(Z∗j ∩ Xi). By Claim 11, the latter equals

to
⋃k
j=1(Z∗ ∩Xj ∩Xi) =

⋃k
j=1(Z∗ ∩ Zji) =

⋃k
j=1 Zji, where the last equation holds by the

inclusion established above. Finally, by the definition,
⋃k
j=1 Zji = Zi. �

Claim 13. Let S be a subgraph of G such that the intersection of S with any maximal cell

of G is non-empty and gated (i.e., a face by Lemma 11). Then S is a gated subgraph of G.

Proof. Let X be a maximal cell of G, x ∈ X a vertex, and S∗ := S ∩X. By our assumptions,

S∗ is a nonempty face of X, thus a gated subgraph of G. Let x∗ be the gate of x in S∗. We

assert that x∗ is also the gate of x in the set S, i.e., for any vertex y ∈ S, we have x∗ ∈ I(x, y).

Suppose that y belongs to a maximal by inclusion cell R in S. Let R0 := X ∩ R and let x0

be the gate of x in R0. Since R ⊆ S, necessarily R0 ⊆ S∗, whence x∗ ∈ I(x, x0). Therefore,

to prove that x∗ ∈ I(x, y) it suffices to show that x0 ∈ I(x, y). For this it is enough to prove

that x0 is the gate of x in R. Suppose by way of contradiction that the gate of x in R is a

vertex x′ different from x0. Then x′ ∈ I(x, x0) ⊂ X because X is convex. Since x′ ∈ R, we

conclude that x′ ∈ X ∩R = R0. This contradicts the assumption that x0 is the gate of x in

R0. Hence x∗ is the gate of x in S, establishing that S is gated. �

By Claims 11 and 12, the intersection of Z∗ with each cell Xi, i = 1, . . . ,m, of G is a proper

face of Xi (and thus a gated subgraph of G). Hence Z∗ satisfies the conditions of Claim 13,

thus Z∗ is a gated subgraph of G. Since Z∗ ⊆ N(Ef ) ∩W (v, u) and u ∈ N(Ef ) \ Z∗, Z∗ is

a proper subgraph of N(Ef ). Since by Claim 12 Z∗ ∩ Y = Z and Z is a proper subgraph

of Y , the gated subgraph Z∗ separates any vertex of N(Ef ) \ Z∗ 6= ∅ from any vertex of

Y \Z∗ = Y \Z 6= ∅. Consequently, G is the gated amalgam of N(Ef ) and Y ∪Z∗ along Z∗,

concluding the proof of the theorem. �

5. The median cell property

Three (not necessarily distinct) vertices x, y, z of a graph G are said to form a metric

triangle xyz if the intervals I(x, y), I(y, z), and I(z, x) pairwise intersect only in the common

end vertices. A (degenerate) equilateral metric triangle of size 0 is simply a single vertex.

We say that a metric triangle xyz is a quasi-median of the triplet u, v, w if

d(u, v) = d(u, x) + d(x, y) + d(y, v),

d(v, w) = d(v, y) + d(y, z) + d(z, w),

d(w, u) = d(w, z) + d(z, x) + d(x, u).

Observe that, for every triplet u, v, w, a quasi-median xyz can be constructed in the following

way: first select any vertex x from I(u, v) ∩ I(u,w) at maximal distance to u, then select a

vertex y from I(v, x)∩ I(v, w) at maximal distance to v, and finally select any vertex z from
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I(w, x) ∩ I(w, y) at maximal distance to w. In the case that the quasi-median is degenerate

(x = y = z), it is a median of the triplet u, v, w.

We continue with the following characterization of metric triangles in hypercellular graphs:

Proposition 8. If G is a hypercellular graph and xyz is a metric triangle of G, then x, y, z

belong to a common cell of G. In particular, the gated hull 〈〈x, y, z〉〉 coincides with the convex

hull conv(x, y, z) and is a cell of G.

Proof. First we prove the result for an arbitrary finite hypercellular graph G. By Theorem B

either G is a single cell and we are done, or G is a gated amalgam of two proper gated

subgraphs G1 and G2. Suppose without loss of generality that y, z ∈ V (G1). If x ∈ V (G1),

then we can apply induction hypothesis to G1 and conclude that x, y, z belong to a common

cell of G1, and thus to a common cell of G. Now suppose that x ∈ V (G2) \ V (G1). Let x′ be

the gate of x in G1. Since x′ belongs to G1 and x not, x′ 6= x. Since x′ ∈ I(x, y)∩ I(x, z), we

obtain a contradiction with the assumption that xyz is a metric triangle of G. Thus x, y, z

belong to a common cell of G. Since each cell of G is gated and xyz is a metric triangle, the

gated hull of x, y, z coincides with the convex hull conv(x, y, z) and is a cell.

Now, suppose that G is an arbitrary hypercellular graph. Let G′ be the subgraph induced

by the convex hull of x, y, and z. Then G′ is a finite hypercellular graph. By the above result

for finite graphs, we have that G′ is a convex Cartesian product of edges and even cycles.

Therefore, G′ is the convex hull of an isometric cycle of G. By Theorem A, G′ is a gated cell

of G. �

For a triple of vertices u, v, w of a graph G, a u-apex relative to v and w is a vertex

x := (uvw) ∈ I(u, v)∩I(u,w) such that I(u, x) is maximal with respect to inclusion. A graph

G is apiculate [6] if and only if for any vertex u the vertex set of G is a meet-semilattice with

respect to the base-point order�u defined by v �u v′⇔ v ∈ I(u, v′), that is, I(u, v)∩I(u,w) =

I(u, (uvw)) for any vertices v, w. Note that many partial cubes are not apiculate, see [15]

for this discussion with respect to tope graphs of oriented matroids. For any triplet u, v, w

of vertices of an apiculate graph G, the vertices u, v, w admit unique apices x := (uvw), y :=

(vuw), and z := (wuv) and admit a unique quasi-median defined by the metric triangle xyz.

Lemma 19. [6, Proposition 2] Every Pasch graph G is apiculate. Consequently, every

hypercellular graph is apiculate.

We say that a triplet u, v, w of vertices in an apiculate graph G admits a median cell

(respectively, a median cycle) if the gated hull 〈〈x, y, z〉〉 of the unique quasi-median xyz of

u, v, w is a Cartesian product of vertices, edges, and cycles (respectively, a cycle or a single

vertex). Notice that any median-cell is either a vertex or is a Cartesian product of even cycles

of length ≥ 6. A graph G is called cell-median (respectively, cycle-median) if G is apiculate

and any triplet u, v, w of G admits a unique median cell (respectively, unique median cycle or

vertex). By Proposition 3 of [5], bipartite cellular graphs are cycle-median. This result has

been extended in [39] by showing that all graphs which are gated amalgams of even cycles and
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hypercubes are cycle-median, and those are exactly the netlike cycle-median partial cubes.

Now, we are ready to prove Theorem E.

Theorem 3. A partial cube G = (V,E) is cell-median if and only if G is hypercellular.

Proof. First we prove that hypercellular graphs are cell-median. By Corollary 3 and

Lemma 19 it follows that any graph G from F(Q−3 ) is apiculate. Therefore, to show that G

is cell-median it suffices to show that if xyz is a metric triangle of G, then the gated hull

〈〈x, y, z〉〉 of x, y, z is a cell; this is Proposition 8.

Conversely, to prove that cell-median partial cubes are hypercellular graphs we will use

Theorem B(ii). Namely, we have to prove that a cell-median partial cube G satisfies the

3CC-condition and that any cell X of G is gated. Suppose by way of contradiction, that G

contains a cell X and a vertex not having a gate in X. Let v be such a vertex closest to

X. Since v does not have a gate, we can find two vertices x, y ∈ X such that I(x, v) ∩X =

{x}, I(y, v) ∩ X = {y}, and x is closest to v in X. From the choice of v, we conclude that

I(v, x) ∩ I(v, y) = {v}. Hence, the vertices v, x, and y define a metric triangle of G. By the

median-cell property, the convex hull of v, x, y is a gated cell Y of G. Let Z := X ∩Y . Notice

that x, y ∈ Z and v /∈ Z. Notice also that Z is convex but not gated, otherwise we will get a

contradiction with the choice of v. Since Z is convex, Z is a subproduct of X and Y and is

a Cartesian product of convex paths and cycles. Let Z = Z1 × Z2 × . . .× Zm. Suppose also

that X = X1 ×X2 × . . .×Xm and Y = Y1 × Y2 × . . .× Ym, where each Xi, i = 1, . . . ,m, and

each Yj , j = 1, . . . ,m, is an even cycle, an edge, or a vertex, and each Zi is a convex subgraph

of each Xi and Yi, i = 1, . . . ,m. Since Z is not gated, at least one factor, say Z1, is a convex

path of length at least 2, and X1 and Y1 are even cycles.

Let z be a vertex of Z = Z1 × Z2 × . . . × Zm of the form z = z1 × z2 × . . . × zm. Then

the layers X1 × z2 × . . . × zm of X and Y1 × z2 × . . . × zm of Y are respectively a convex

and a gated cycle of G. These two cycles intersect in a path of length at least two, namely

in Z1 × z2 × . . . × zm. By the following Claim 14, this is impossible. This contradiction

establishes that the cell X is gated.

Claim 14. Let C1, C2 be two distinct convex cycles of a partial cube G. If C2 is gated, then

C1 ∩ C2 is empty, a vertex, or an edge of G.

Proof. Suppose by way of contradiction that C1 ∩ C2 contains a path (v1, v, v2) of length 2.

Let u be the antipodal to v vertex of C1. If u ∈ C2, then u, v ∈ C2 and by convexity of C2

we deduce that C1 = I(u, v) ⊆ C2, thus C1 = C2, a contradiction. Consequently, u /∈ C2.

Let x be the gate of u in C2. Since v1, v2 ∈ C2, x ∈ I(u, v1) ∩ I(u, v2). From these inclusions

we conclude that either x = v or x is the antipodal to v vertex of C2. Since v1, v2 ∈ I(u, v),

necessarily x 6= v. But if x is the antipode of v in C2, then C2 ⊂ I(v1, u) ∪ I(v2, u), which is

only possible if C1 = C2. �

To establish the 3CC-condition, let C1, C2, C3 be three convex cycles of G such that any two

cycles Ci, Cj , 1 ≤ i < j ≤ 3, intersect in an edge eij and the three cycles intersect in a vertex

x. Since the cells of G are gated, C1, C2, C3 are gated cycles of G. Let e12 = xx2, e23 = xx0,
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and e13 = xx3. Let v1, v2, and v3 be the vertices of respectively C1, C2, and C3 antipodal to

x. If v1, v2, and v3 define a metric triangle, then the gated hull of v1, v2, v3 is a Cartesian

product of vertices, edges, and even cycles containing C1, C2, and C3, and we are done. So

suppose without loss of generality that there exists a vertex u1 ∈ I(v1, v2)∩I(v1, v3) adjacent

to v1. Notice that x2 and x3 are the gates of v1 in the cycles C2 and C3, respectively. In fact

this is true since the gate of v1 in C2 must be in I(v1, x2) ∩ C2 = {x2} and the gate of v1 in

C3 must be in I(v1, x3) ∩ C3 = {x3}.
Since u1 is adjacent to v1, one can easily show that the gates y2 and y3 of u1 in C2 and C3 are

two vertices adjacent to x2 and x3, respectively. If y2 or y3 coincides with x, then u1 ∈ I(v1, x),

contrary to the assumption that the cycle C1 is convex. Thus y2 is the second neighbor of x2 in

C2 and y3 is the second neighbor of x3 in C3. Since y2, y3 ∈W (u1, v1), x2, x, x3 ∈W (v1, u1),

and W (u1, v1) is convex, we deduce that d(y2, y3) = 2. Consequently, y2 and y3 have a

common neighbor z0. First suppose that z0 6= x0, i.e., x0 is not adjacent to one of the

vertices y2, y3, say x0 and y2 are not adjacent. Since C2 and C3 are convex, z0 cannot be

adjacent to x. Thus d(z0, x) = 3, whence the 6-cycle C0 := (z0, y2, x2, x, x3, y3) is isometric.

Since C0 intersects C2 and C3 along paths of length 2, by Claim 14, this cycle cannot be

gated and thus cannot be convex. Since G is cell-median, the convex hull of C0 cannot be

a Q−3 , thus its convex hull is a 3-cube Q3. Therefore the intervals I(y2, x) and I(x, y3) are

squares of G which necessarily must coincide with C2 and C3. Consequently, x0 is adjacent

to y2 and y3, contrary to the assumption that x0 and y2 are not adjacent. Now, suppose that

z0 = x0, i.e., C2 = (x, x2, y2, x0) and C3 = (x, x0, y3, x3). In this case, y2 = v2 and y3 = v3.

If C1 is also a 4-cycle, then we get an isometric Q−3 , which must be completed to a 3-cube,

otherwise v1, y2, and y3 define a metric triangle whose gated hull is not a cell.

So, C1 is a cycle of length at least 6. We assert that the gated hull of v1, y2, and y3 is a

cell isomorphic to C1 ×K2. For the sake of contradiction, assume that this is not the case

and assume that C1 has minimal length among all convex cycles with two 4-cycles attached

to them such that they pairwise intersect in three different edges, all three in a vertex, and

their convex hull is not a cell. If the vertices y2, y3 have a second common neighbor p, then

we get an isometric Q−3 which must be completed to a Q3. Consequently, x2 and x3 have

a common neighbor different from x, which is impossible because C1 is convex. Thus x0 is

the unique common neighbor of y2 and y3. Let u∗1 be the apex of u1 with respect to the pair

y2, y3. We assert that u1 = u∗1. Suppose not and let u′1 be a neighbor of u1 in I(u1, u
∗
1).

Consider the gate of u′1 in C1. If this gate is not the vertex v1, then it must be one of

the neighbors of v1 in C1 and u′1 must be adjacent to this vertex. But if this is say the

neighbor v′1 of v1 in the path I(v1, x2), then v′1 cannot belong to a shortest path between

u′1 and x3, whence v′1 cannot serve as a gate of u′1. Thus v1 must be the gate of u′1 in C1.

In this case, d(u′1, x2) = 2 + d(v1, x2) = d(u′2, y2) + 1. Since d(u′1, y2) = d(u1, y2) − 1 and

d(u1, y2) + 1 = d(u1, x2) = 1 + d(v1, x2), we will obtain a contradiction. This shows that

u∗1 = u1, i.e., I(u1, y2) ∩ I(u1, y3) = {u1}. Since y2 and y3 are closer to u1 than x0 and x0

is the unique common neighbor of y2 and y3, we conclude that the triplet u1, y2, y3 defines a

metric triangle. Hence 〈〈u1, y2, y3〉〉 is a gated cell U of G.
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Since (y2, x0, y3) is a convex path of length 2 of the cell U = U1 × . . . × Um, necessarily

(y2, x0, y3) is contained in a layer of U which is a gated cycle C ′1 ofG, say C ′1 = U1×u2×. . .×um
for a cyclic factor U1 of length ≥ 6. First suppose that u1 /∈ C ′1. Then the length of C ′1 is

smaller than the length of C1. From the choice of C1 and since C ′1 pairwise intersects the

cycles C2 and C3, we conclude that the gated hull of C ′1 ∪ C2 ∪ C3 is a cell U ′ isomorphic

to C ′1 ×K2. But then in U ′ we can find a gated cycle C ′′1 isomorphic to C ′1 and containing

the convex path (x2, x, x3). Since C ′′1 is shorter than C1 and x1, x, x3 ∈ C ′′1 ∩C1, we obtain a

contradiction with Claim 14. Now, let u1 ∈ C ′1. Then obviously the cell U coincides with C ′1.

Since C ′1 and C1 are gated cycles of the same length and we have the edges v1u1, x2y2, xx0,

and x3y3, one can easily show that any vertex z′ of C ′1 is adjacent to a unique vertex z of C1

such that the subgraph H of G induced by C1 ∪ C ′1 is isomorphic to C1 ×K2. To conclude

the proof of the 3CC-condition, it remains to show that H is a convex subgraph of G. For

this it suffices to show that for any vertex q /∈ V (H) adjacent to a vertex p of H, q does

not belong to a shortest path between p and some vertex q′ of H. Suppose without loss of

generality that p ∈ C1 and let p′ be the unique neighbor of p in C ′1. Then obviously p is the

gate of q in C1, thus p ∈ I(q, r1) for every r1 ∈ C1. Analogously, p′ must be the gate of q in

C ′1, otherwise since d(q, p′) = 2, the gate of q must be one of the neighbors of p′ in C ′1 and

we obtain a K2,3, which is forbidden in partial cubes. Therefore p′ ∈ I(q, r2) for any vertex

r2 ∈ C ′1. Since p ∈ I(q, p′), we conclude that p ∈ I(q, r2). This implies that p ∈ I(q, q′), thus

q cannot lie in I(p, q′). This establishes the 3CC-condition and concludes the proof of the

theorem. �

6. Properties of hypercellular graphs

We continue with several properties of hypercellular graphs, in particular we prove The-

orems D, E, and F. First, we show how hypercellular graphs are related with other known

classes of partial cubes. We also establish some basic properties of geodesic convexity in

hypercellular graphs and establish a fixed-cell property. Some of these results directly follow

from Theorem B.

6.1. Relations with other classes of partial cubes. By one of their characterizations

provided in [5], bipartite cellular graphs are the bipartite graphs in which all isometric cycles

are gated. It is shown in [5] that bipartite cellular graphs are partial cubes and that any finite

bipartite graph is a bipartite cellular graph if it can be can be obtained by successive gated

amalgamations from its isometric cycles. In [39], Polat investigated a class of netlike partial

cubes in which each finite convex subgraph is a gated amalgam of even cycles - let us call

them Polat graphs for now. They are exactly the netlike partial cubes satisfying the median

cycle property and generalize bipartite cellular graphs as well as median graphs. Theorem B

and Theorem C have the following corollary:

Corollary 1. Bipartite cellular graphs are precisely the graphs in F(Q−3 , Q3), while median

graphs are precisely the graphs in F(Q−3 , C6) and Polat graphs are F(Q−3 , C6 × K2). In
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particular, the latter class contains the first two and all three classes are contained in the

class of hypercellular graphs.

Proof. Since the hypercellular graphs are exactly the graphs from F(Q−3 ), the last assertion

follows from the first ones. Median graphs, bipartite cellular graphs, and Polat graphs are

pc-minor closed families. Since Q−3 and Q3 are not cellular, Q−3 and C6 are not median,

and Q−3 and C6 ×K2 are not Polat graphs, this settles the inclusion of all three families in

F(Q−3 , Q3), F(Q−3 , C6), and F(Q−3 , C6 ×K2), respectively.

Conversely, let G be a graph from F(Q−3 , Q3). Since G is hypercellular, by Theorem B

any finite convex subgraph of G can be obtained by successive gated amalgamations from

cells. Since Q3 is a forbidden pc-minor, all cells of G are edges or even cycles. Thus G is a

bipartite cellular graph.

Analogously, let G be a graph from F(Q−3 , C6). Then G does not contain convex cycles of

length ≥ 6. Hence any cell of G is a cube. Consequently, any finite convex subgraph of G can

be obtained by successive gated amalgamations from cubes, i.e., G is median. Alternatively,

by Theorem C, G satisfies the median cell property. Since, any cell of G is a cube, all median

cells of G are vertices and therefore G is a median graph.

Finally, let G be a graph from F(Q−3 , C6 ×K2). Since G is hypercellular, by Theorem B

any finite convex subgraph of G can be obtained by successive gated amalgamations from

cells. Since C6 ×K2 is a forbidden pc-minor, all cells of G are even cycles or cubes. Thus, G

is a Polat graph. �

With a cell X = F1 × . . . × Fm of G we associate a convex polyhedron [X] obtained as

a Cartesian product of segments and regular polygons, where each face Fi which is a K2 is

replaced by a unit segment and any face Fi which is an even cycle C of length 2n is replaced by

a regular polygon with 2n sides. Hence dim(X) can be viewed as the (topological) dimension

of [X]. Since by Lemma 17, in a hypercellular graph G the intersection of any two cells is

also a cell, the union of all convex polyhedra [X], X ∈ X(G), can be viewed as a polyhedral

cell complex, which we denote by X(G). The dimension dim(G) of a graph G from F(Q−3 ) is

the dimension of this cell complex, i.e., the maximum dimension of a cell of G. Notice that

the 1-skeleton of X(G) coincides with G and the 2-skeleton of X(G) coincides with C(G).

The following was announced as Theorem D in the introduction:

Corollary 2. Any finite hypercellular graph G is the tope graph of a COM, more precisely,

G is a tope graph of a zonotopal COM. Consequently, the zonotopal cell complex X(G) of any

locally-finite hypercellular graph G is contractible.

Proof. By [9, Proposition 3], each COM can be obtained from its maximal faces (which are

all oriented matroids) using COM amalgamations. Since a gated amalgamation is a stronger

version of a COM amalgamation and each Cartesian product of edges and even cycles is the

tope graph of a realizable oriented matroid, Theorem B implies that each finite graph G from

F(Q−3 ) is the tope graph of a zonotopal COM. From the contractibility of the cell complexes

of all COMs established in [9, Proposition 14], it follows that for any finite hypercellular

graph G its zonotopal complex X(G) is contractible.
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Now, we will prove the contractibility of X(G) for any locally-finite hypercellular graph G.

For this, we will represent G as a directed union of finite convex subgraphs Gi of G. Let v0

be an arbitrary fixed vertex and let Bi(v0) be the ball of radius i centered at v0. Since G is

locally-finite, each such ball Bi(v0) is finite. Moreover, since G is a partial cube, the convex

hull conv(A) of any finite set A of G is finite (because conv(A) coincides with the intersection

of V (G) with the smallest hypercube H of H(Λ) hosting A and H is finite-dimensional).

Hence the subgraph Gi of G induced by conv(Bi(v0)) is a finite convex subgraph of G, and

thus hypercellular. Therefore, by the first part, each of the zonotopal complexes X(Gi),

i ≥ 0, is contractible. Consequently, X(G) is the direct union
⋃
i≥0 X(Gi) of contractible

complexes, thus X(G) is contractible by Whitehead’s theorem. �

6.2. Convexity properties. The geodesic convexity of a graph G = (V,E) satisfies the join-

hull commutativity property (JHC) if for any convex set A and any vertex x /∈ A, conv(x∪A) =⋃{I(x, v) : v ∈ A} [43] holds. It is well-know and easy to prove that JHC property is

equivalent to the Peano axiom: if u, v, w is an arbitrary triplet of vertices, x ∈ I(u,w) and

y ∈ I(v, x), then there exists a vertex z ∈ I(v, w) such that y ∈ I(u, z). A graph G is called

a Pasch-Peano graph [10, 43] if the geodesic convexity of G satisfies the Pasch and Peano

axioms. In particular, such a graph is in S4.

Corollary 3. Any hypercellular graph G is a Pasch-Peano graph.

Proof. Both the Pasch and the Peano axioms concern triplets of vertices u, v, w and vertices

included in the convex hull of u, v, w. Since the convex hull of any finite set of vertices in

a partial cube is finite, to prove that a hypercellular graph is Pasch-Peano, it suffices to

prove that each finite hypercellular graph is Pasch-Peano. Since each of the Pasch and Peano

axioms are preserved by gated amalgams and Cartesian products [10, 43], now the result

directly follows Theorem B and the fact that cycles and edges are Pasch-Peano graphs. �

The Helly number h(G) of a graph G is the smallest number h ≥ 2 such that every

finite family of (geodesically) convex sets meeting h by h has a nonempty intersection. The

Caratheodory number c(G) is the smallest number c ≥ 2 such that for any set A ⊂ V the

convex hull of A is equal to the union of the convex hulls of all subsets of A of size c. The

Radon number r(G) of a graph G is the smallest number r ≥ 2 such that any set of vertices

A of G containing at least r + 1 vertices can be partitioned into two sets A1 and A2 such

that conv(A1) ∩ conv(A2) 6= ∅. More generally, the mth partition number (Tverberg number)

is the smallest integer pm ≥ 2 such that any set of vertices A of G containing at least pm + 1

vertices can be partitioned into m sets A1, . . . , Am such that ∩mi=1conv(Ai) 6= ∅. For a detailed

treatment of all these fundamental parameters of abstract and graph convexities, see [43].

The following result is straightforward:

Lemma 20. For G ∼= K2, h(G) = r(G) = 2 and c(G) = 1. If G ∼= C, then h(G) = r(G) ≤ 3

and c(G) = 2 (h(G) = r(G) = 3 if C is of length at least 6).

Corollary 4. Let G be a hypercellular graph. Then h(G) ≤ 3, c(G) ≤ 2dim(G), and r(G) ≤
10dim(G) + 1. More generally, pm ≤ (6m− 2)dim(G) + 1.
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Proof. We will use the results of [43, Chapter II, §2] for Cartesian products and of [10]

or [43, Chapter II, §3] for gated amalgams of convexity structures. Notice also that since

in partial cubes convex hulls of finite sets are finite, it suffices to establish our results for

finite hypercellular graphs G. By these results, h(G1 × G2) = max{h(G1), h(G2)} and if G

is the gated amalgam of G1 and G2, then h(G) = max{h(G1), h(G2)}. By these formulas,

Lemma 20, and Theorem B , we conclude that h(G) ≤ 3 for any hypercellular graph G.

In case of the Caratheodory number, we have c(G1 × G2) ≤ c(G1) + c(G2) and c(G) =

max{c(G1), c(G2)} if G is a gated amalgam of G1 and G2. By the first formula and Lemma 20,

we conclude that if X is a Cartesian product of k′ cyclic factors and k′′ edges, then c(X) ≤
3k′+2k′′ and dim(X) = 2k′+k′′, yielding c(X) ≤ 2dim(X). To deduce the upper bounds for

Radon and partitions numbers, we will use the following inequality of [27] (see also [43, 5.15.1])

for all convexities: pm(G) ≤ c(G)(m · h(G)− 1) + 1. Replacing in this formula h(G) = 3 and

c(G) ≤ 2dim(G), we obtain the required inequalities. �

We conclude this subsection with a local-to-global characterization of convex and gated sets

in hypercellular graphs. A similar characterization of gated sets was obtained for bipartite

cellular graphs [5, Proposition 1] and netlike graphs [37, Theorem 6.2]. Notice also that other

local characterizations of convex and gated sets are known for weakly modular graphs [22].

The following result is similar to the content of Claim 13.

Proposition 9. A connected subgraph H of a hypercellular graph G is convex (respectively,

gated) if and only if the intersection of H with each cell of G is convex (respectively, gated).

Proof. We closely follow the proof of Proposition 1 of [5]. Necessity is evident: any cell X of

G is convex and gated, therefore X intersect each convex (respectively, gated) subgraph in a

convex (respectively, gated) subgraph.

As to the converse, in both cases we will first show that H is convex. For two vertices y, z

we denote by k(y, z) := dH(y, z) the distance between y and z in H. Suppose the contrary and

let v, x be two vertices of H minimizing k(y, z) such that I(v, x) is not included in H. Then

there exists a shortest (v, x)-path Q whose inner vertices do not belong to H. Let P be any

path of minimal length joining v and x inside H. We assert that P is a shortest path of G. By

the choice of v, x, the paths P and Q intersect only in v and x. Let u be a neighbor of v in P .

If P were longer than Q, then u /∈ I(v, x), whence v ∈ I(u, x). Since k(u, x) < k(v, x), by the

minimality in the choice of the pair v, x we conclude that Q ⊂ I(u, x) ⊂ H, a contradiction.

Thus P is a shortest path of G. Let w be the neighbor of v in Q. If the vertices w and u have a

common neighbor y different from v, since u,w ∈ I(v, x) and y ∈ I(w, u), from the convexity

of the interval I(v, x) we conclude that y ∈ I(v, x). This implies that y ∈ I(w, x) ∩ I(u, x).

Since I(u, x) ⊂ H, we conclude that y ∈ H. Since w /∈ H, the intersection of H with

the square (v, u, y, w) (which is a cell of G) is not convex. This contradiction shows that

I(u,w) = {u, v, w}. Hence I(u,w) ∩ I(u, x) = {u} and I(w, u) ∩ I(w, x) = {w}. On the

other hand, the minimality in the choice of the pair v, x implies that I(x, u)∩ I(x,w) = {x}.
Consequently, the triplet x, u, w defines a metric triangle of G. By Proposition 8, this metric

triangle xuw is included in a cell X of G. Since X is convex and v ∈ I(u,w), we obtain
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v ∈ X. But then X ∩ H is not convex because v, x ∈ X ∩ H and w ∈ I(v, x) \ H. This

contradiction shows that H is convex.

Now suppose that the intersection of H with each cell of G is gated. Suppose that H is not

gated. Choose a vertex z at minimum distance to H having no gate in H. Let x be a vertex

of H closest to z, and let y be a vertex of H such that the interval I(z, y) does not contain x,

where d(x, y) is as small as possible. Then the intervals I(x, y), I(y, z), and I(z, x) intersect

each other only in the common end vertices. Hence x, y, and z define a metric triangle xyz.

By Proposition 8, xyz is contained in a cell X. Since z /∈ H and x, y ∈ H, the choice of the

vertices z and x, y implies that X ∩H is not gated. This contradiction establishes that H is

gated and concludes the proof. �

6.3. Stars and thickening. A star St(v) of a vertex v (or a star St(X) of a cell X) is the

union of all cells of G containing v (respectively, X).

Proposition 10. For any cell X of a hypercellular graph G in which all cells are of finite

dimension, the star St(X) is gated.

Proof. Since St(X) is a connected subgraph of G, by Proposition 9 it is enough to prove

that the intersection of St(X) with any cell Y of G is gated. We apply Lemma 12 to the

cell Y to show that St(X) ∩ Y is gated. First, notice that St(X) ∩ Y is connected. Indeed,

let X1, X2 . . . be the maximal cells of St(X) intersecting Y . Since X1, X2 . . . intersect in X

and each of these cells intersects Y , by the Helly property for gated sets, Y ∩X1 ∩X2 . . . is

non-empty and gated. Thus, any two vertices of St(X) ∩ Y can be connected with a path in

St(X) ∩ Y passing via this intersection, whence St(X) ∩ Y is connected.

Let P = (y′, x, y′′) be any 2-path in St(X) ∩ Y and let C = 〈〈P 〉〉 be its gated hull in Y .

We will prove that C is included in St(X). This is obviously so if the path P is included in

a single cell Xi of St(X). Indeed, in this case C is included in the gated subgraph Xi ∩ Y .

So, assume that the edges y′x and xy′′ do not belong to a common cell of St(X). Notice that

each of these edges belong to a cell of St(X): for example, the edge xy′ belongs to all cells

of St(X) that contain a furthest from X vertex of the pair {x, y′}. Let Xi be a cell of St(X)

including the edge xy′. Analogously, let Xj be a cell of St(X) including the edge xy′′. By

what was assumed above, Xi and Xj are not included in each other, in particular Xi 6= Xj .

Let Xij := Xi ∩Xj . Then Xij is a cell of St(X) containing x but not containing y′ and y′′.

Let Z be a maximal cell of the form Z = 〈〈C∪Z ′〉〉 for some subcell Z ′ of Xij containing x.

Note that such a cell exists since Z ′ can be chosen to be x and C is a cell of Y containing x.

Since the intersection of cells is a cell, we can further assume that Z ′ := Xij ∩ Z. We assert

that Z = 〈〈C ∪Xij〉〉. Suppose that this is not the case. Then there exists an edge zw ∈ Xij

with z ∈ Z ′ = Xij ∩ Z and w /∈ Z. Let k be the dimension of Z ′. We will use the following

property of cells of hypercellular graphs, which is a direct consequence of Lemma 11:

Claim 15. If D′ is a subcell of dimension ` of a cell D of G and v′v is an edge with v′ ∈ D′
and v ∈ D \D′, then dim(〈〈D′ ∪ v′v〉〉) = `+ 1.
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Since Z ′ ∪ xy′ ⊂ Xi with x ∈ Z ′, y′ /∈ Z ′ ⊂ Xij , by the previous claim the dimension of

〈〈Z ′∪xy′〉〉 is k+1. Similarly, the dimension of 〈〈Z ′∪xy′′〉〉 is k+1. Moreover, Z ′∪zw ⊂ Xij

with z ∈ Z ′, w /∈ Z ′, thus 〈〈Z ′∪zw〉〉 has also dimension k+1. Now we have xy′, 〈〈Z ′∪zw〉〉 ⊂
Xi with x ∈ 〈〈Z ′ ∪ zw〉〉 since x ∈ Z ′ and y′ /∈ 〈〈Z ′ ∪ zw〉〉 since y′ is not in Xij , thus

〈〈Z ′ ∪ zw ∪ xy′〉〉 has dimension k + 2. Analogously, 〈〈Z ′ ∪ zw ∪ xy′′〉〉 has dimension k + 2.

Finally, since xy′′, 〈〈Z ′ ∪xy′〉〉 ⊂ Z with x ∈ 〈〈Z ′ ∪xy′〉〉 and y′′ /∈ 〈〈Z ′ ∪xy′〉〉, the dimension

of 〈〈Z ′ ∪ xy′ ∪ xy′′〉〉 is also k + 2.

Consequently, we have proved that 〈〈Z ′∪zw∪xy′〉〉, 〈〈Z ′∪zw∪xy′′〉〉, and 〈〈Z ′∪xy′∪xy′′〉〉
are three cells of dimension k+ 2 that pairwise intersect in the cells 〈〈Z ′ ∪ zw〉〉, 〈〈Z ′ ∪ xy′〉〉,
and 〈〈Z ′ ∪ xy′′〉〉 of dimension k + 1 and the intersection of all three cells is the cell Z ′ of

dimension k. By Theorem B(iii), there is a (k + 3)-dimensional cell W that includes all of

them. In particular, W = 〈〈C ∪ Z ′ ∪ zw〉〉. Since the gated hull of Z ′ ∪ wz is a subcell Z ′′

of Xij properly containing Z ′ and since W = 〈〈C ∪ Z ′′〉〉, we obtain a contradiction to the

maximality of Z.

Thus, Z = 〈〈C ∪Xij〉〉 is a cell of St(X)∩Y including C and X ⊂ Xij , whence C ⊂ St(X).

Lemma 12 implies that St(X) ∩ Y is gated. �

The thickening G∆ of a hypercellular graph G is a graph having the same set of vertices

as G and two vertices u, v are adjacent in G∆ if and only if u and v belong to a common

cell of G. A graph H is called a Helly graph if any collection of pairwise intersecting balls

of G has a nonempty intersection [7]. Analogously, H is called a 1-Helly graph (respectively,

clique-Helly graph) if any collection of pairwise intersecting 1-balls (balls of radius 1) of G

(respectively, of maximal cliques) has a nonempty intersection.

Proposition 11. The thickening G∆ of a locally-finite hypercellular graph G is a Helly graph.

Proof. Pick any vertex v of G and let B1(v) denote the ball of radius 1 of G∆ centered at v.

From the definition of G∆ it immediately follows that B1(v) is isomorphic to the star St(v) of

v in G. Since G is locally-finite, St(v) is finite. By Proposition 10, St(v) is a gated subgraph

of G. By the Helly property of finite gated sets, we conclude that G∆ is a 1-Helly graph.

Any maximal clique K of G∆ is the intersection of all 1-balls centered at the vertices of K,

therefore the family of maximal cliques of G∆ can be obtained as the intersections of 1-balls

of G∆. By [18, Remark 3.6], G∆ is a clique-Helly graph. By Theorem D the zonotopal cell

complex X(G) of G is contractible and therefore simply connected. This easily implies that

the clique complex of G∆ is simply connected. Consequently, G∆ is a clique-Helly graph with

a simply connected clique complex. By [18, Theorem 3.7], G∆ is a Helly graph. �

Propositions 10 and 11 together with Proposition 7 conclude the proof of Theorem E.

6.4. Fixed cells. In this subsection we prove Theorem F. First, we follow ideas of Tardif [41]

to generalize fixed box theorems for median graphs to hypercellular graphs. We will prove

that the fixed box in the case of hypercellular graphs is a cell. We obtain this cell verbatim

as in the case of median graphs. Set

F (G) := {W : W is an inclusion maximal proper halfspace of G and V (G) \W is not}.
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Let Z(G) =
⋂
W∈F (G)W (if F (G) = ∅, then set Z(G) := G). Now we recursively define

Z∞(G). Set Z0(G) := G and for every ordinal α, let Zα+1(G) := Z(Zα(G)) if Zα(G) has

been defined and let Zα(G) := ∩β<αZβ(G) if α is a limit ordinal. For every graph G there

exists a minimal ordinal γ such that Zγ(G) = Zγ+1(G). Finally, define Z∞(G) := ∩γZγ(G).

Lemma 21. Let G be a hypercellular graph not containing infinite isometric rays. Then

Z∞(G) is a finite cell of G.

Proof. First notice that since G does not contain infinite isometric rays and all cells of G are

Cartesian products of cycles and edges, all cells of G are finite. Since Z∞(G) is an intersection

of convex subgraphs, Z∞(G) is convex. Since every cell X of G is a Cartesian product of

edges and even cycles, any proper halfspace of X is maximal by inclusion, hence F (X) = ∅.
Therefore, Z(X) = X. Suppose by way of contradiction that there exists a convex subgraph

H of G which is not a cell and such that Z(H) = H. Since H is convex, H is hypercellular.

Since there are no infinite isometric rays, Z(H) = H if and only if for every edge ab of H

the halfspaces W (a, b) and W (b, a) are maximal, which is equivalent to the condition that

for every edge ab the carrier N(Eab) is the whole graph H. Let X be the intersection of all

maximal cells of H; consequently, X is a cell of H. As in the proof of Theorem 2, if there exist

two disjoint maximal cells of H, then for every edge f on a shortest path between them, the

carrier N(Ef ) is not the whole graph H. Hence the maximal cells of H pairwise intersect.

Since they are finite and gated, by the Helly property for gated sets, X is nonempty. If

X 6= H, by Claim 10, there exists an edge of H whose carrier does not include all maximal

cells, a contradiction. Hence H = X, i.e., H is a finite cell. Consequently, Z∞(G) is a finite

cell of G. �

We continue with the proof of assertion (i) of Theorem F.

Proposition 12. If G is a hypercellular graph not containing infinite isometric rays, then

there exists a finite cell X in G fixed by every automorphism of G.

Proof. Every automorphism ϕ of G maps maximal halfspaces to maximal halfspaces, thus

ϕ(Z∞(G)) = Z∞(G). By Lemma 21, Z∞(G) is a finite cell, thus every automorphism of G

fixes the cell Z∞(G). �

A non-expansive map from a graph G to a graph H is a map f : V (G)→ V (H) such that

for any x, y ∈ V (G) it holds dH(f(x), f(y)) ≤ dG(x, y).

Lemma 22. Let G be a hypercellular graph and f be a non-expansive map from G to itself.

Let u, v, w be any three vertices of G and let X = 〈〈u′, v′, w′〉〉 be their median-cell. If f(u) =

u, f(v) = v, f(w) = w, then f fixes each of the apices u′ = (uvw), v′ = (vwu), w′ = (wuv)

and f(X) = X.

Proof. Denote by u′v′w′ the unique quasi-median of the triplet u, v, w. The map f fixes each

of the vertices u, v, w and maps shortest paths between them to shortest paths. This implies

that f fixes the vertices of the metric triangle u′v′w′. Let X = 〈〈u′, v′, w′〉〉 be the gated cell
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induced by this triplet. Since u′v′w′ is a metric triangle, we conclude that X ∼= C1× . . .×Ck,
where each Ci is an even cycle of length ni at least 6. Moreover, we can suppose without loss of

generality that u′, v′, w′ are embedded in this product as u′ = (0, 0, . . . , 0), v′ = (i1, i2, . . . , ik),

and w′ = (j1, j2, . . . , jk), where im, jm − im, nm − jm < nm/2 for all 1 ≤ m ≤ k. Since

f(u′) = u′, f(v′) = v′, f(w′) = w′ and any vertex of X lies on a shortest path between one of

the pairs of u′, v′, w′, we conclude that f(X) ⊂ X. It remains to prove that f(X) = X.

Without loss of generality assume that among all jm − im with 1 ≤ m ≤ k, the difference

j1 − i1 is minimal. The vertex y = (i1, 0, 0, . . . , 0) belongs to I(u′, v′) and is located at

distance j1 − i1 from z = (j1, 0, 0, . . . , 0) ∈ I(w′, u′). The vertices of I(u′, v′) at distance i1
from u′ have the form (i1 − y1, y2, . . . , yk), for 0 ≤ yi ≤ im, 1 ≤ m ≤ k, with y2 + . . . + yk =

y1. On the other hand, the vertices of I(w′, u′) at distance n1 − j1 from u′ have the form

(j1 + z1, n2 − z2, . . . , nk − zk) for 0 ≤ zm ≤ nm − jm, 1 ≤ m ≤ k with z2 + . . . + zk = z1,

where the m-th coordinate is computed in Znm . We will now find all pairs (y′, z′) where

y′ ∈ I(u′, v′), z′ ∈ I(w′, v′) and y′ and z′ are at distance j1 − i1.

We distinguish two cases. On one hand assume that for a chosen pair y′, z′ there exists

a coordinate m, 1 ≤ m ≤ k such that the projections of (y′, z′)-shortest paths to the m-th

coordinate belong to the interval between im and jm. Then the distance between y′ and z′

is at least jm − im, and since jm − im ≥ j1 − i1, we have y′ = (0, . . . , 0, im, 0, . . . , 0) and

z′ = (0, . . . , 0, jm, 0, . . . , 0) with jm − im = j1 − i1 and im = i1, nm − jm = n1 − j1. This

implies jm = j1 and nm = n1. Assume now that f maps y, z to y′, z′. There exists an

automorphism ϕ of X that swaps coordinates 1 and m of X and fixes u′, v′, w′. Since proving

that f(X) = X is the same as proving that ϕ(f(X)) = X, we can, in this case, assume that

f fixes y, z.

On the other hand, if for a pair y′, z′ and every coordinate m, 1 ≤ m ≤ k, the projection of

(y′, z′)-shortest paths to the m-th coordinate does not belong to the interval between im and

jm, then the distance between y′ = (i1− y1, y2, . . . , yk) and z′ = (j1 + z1, n2− z2, . . . , nk− zk)
is ((i1−y1)+(n1− j1−z1))+(y2 +z2)+ . . .+(yk +zk) = n1− (j1− i1) > n/2 > j1− i1. Since

this is impossible, we can by the previous paragraph assume that f fixes y and z. Then f

fixes (0, 0, . . . , 0), (i1, 0, . . . , 0), (j1, 0, . . . , 0), thus it must fix every (x, 0, . . . , 0), 0 ≤ x < n1.

Now we will prove that every cyclic layer of the form (C1, x2, . . . , xk) is mapped by f to a

cyclic layer of the form (C1, x
′
2, x
′
3, . . . , x

′
k). We proceed by induction on x2 +x3 + . . .+xk. It

holds for (C1, 0, 0, . . . , 0). Without loss of generality consider only f(C1, x2 + 1, x3, . . . , xk),

assuming that f(C1, x2, . . . , xk) = (f1(C1), y2, y3, . . . , yk) for some automorphism f1 of C1.

For every x1 ∈ C1, the vertex y = f(x1, x2 + 1, x3, . . . , xk) must be equal or adja-

cent to (f1(x1), y2, y3, . . . , yk), thus it must be of the form (f1(x) + s, y2, y3, . . . , yk) or

(f1(x), y2, . . . , ym + s, . . . , yk) for some 2 ≤ m ≤ k and s ∈ {−1, 0, 1}. Now we analyze the

options for a = f(x+ n1/2− 1, x2 + 1, x3, . . . , xk) and b = f(x+ n1/2 + 1, x2 + 1, x3, . . . , xk).

Both must be at distance at most two from each other, at distance at most n1/2− 1 from y,

and a must be adjacent or equal to (f1(x + n1 − 1), y2, y3, . . . , yk) while b must be adjacent

or equal to (f1(x+ n1 + 1), y2, y3, . . . , yk). If y = (f1(x) + s, y2, y3, . . . , yk), this implies that

a = (f1(x + n1/2 − 1) + s, y2, y3, . . . , yk) and b = (f1(x + n1/2 + 1) + s, y2, y3, . . . , yk). If
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y = (f1(x), y2, . . . , ym + s, . . . , yk), then a = (f1(x + n1/2 − 1), y2, . . . , ym + s, . . . , yk) and

b = (f1(x+n1/2+1), y2, . . . , ym+s, . . . , yk). In each case y, a, b spans a cycle, since the length

of C1 is at least six and f is a non-expansive map. Thus f(C1, x2 + 1, x3, . . . , xk) is a cycle

of the form (f1(C) + s, y2, y3, . . . , yk) or (f1(C), y2, . . . , ym + s, . . . , yk) for some 2 ≤ m ≤ k

and s ∈ {−1, 0, 1}, proving the assertion.

We have proved that f acting on X has blocks of imprimitivity of the form (C1, x2, . . . , xk)

and it holds f(C1, 0, . . . , 0) = (C1, 0, . . . , 0), f(C1, i2, . . . , ik) = (C1, i2, . . . , ik) and

f(C1, j2, . . . , jk) = (C1, j2, . . . , jk). By the induction on the number of factors of X, f acts

as an automorphism on the quotient graph, thus f acts as an automorphism on X. �

An endomorphism r of G with r(G) = H and r(v) = v for all vertices v in H is called a

retraction of G and H is called a retract of G.

Corollary 5. A retract H of a hypercellular graph G is a hypercellular graph.

Proof. Let r be a retraction of G to H. For arbitrary vertices u, v, w of H it holds r(u) =

u, r(v) = v, r(w) = w, thus by Lemma 22 X = r(X) ⊆ r(G) = H, where X is the median

cell of u, v, w. This proves that H satisfies the median-cell property and by Theorem C, H

is hypercellular. �

We continue with the proof of assertion (ii) of Theorem F.

Proposition 13. Let G be a hypercellular graph and let f be a non-expansive map from G

to itself such that f(S) = S for some finite set S of vertices of G. Then there exists a finite

cell X of G that is fixed by f . In particular, if G is a finite hypercellular graph, then it has

a fixed cell.

Proof. Let H be the subgraph of G induced by the set of all vertices v in conv(S) for which

there exists an integer nv > 0 such that fnv(v) = v. Since S is finite, also conv(S) is finite,

therefore H is finite and nonempty. Notice that f(conv(S)) ⊆ conv(S), thus H ⊇ f(H) ⊇
f(f(H)) ⊇ . . ., but since for every v ∈ V (H) there exists nv such that fnv(v) = v, the

inclusions cannot be strict. Thus f(H) = H and f acts as an automorphism on H.

Let u, v, w ∈ V (H) be arbitrary vertices of H. Let n be the least common multiple of

nu, nv, nw. Then fn fixes each of the vertices u, v, w. By Lemma 22, fn(X) = X where X is

the median cell of u, v, w. Since X is finite, this proves that also X ⊂ H. Therefore H satisfies

the median-cell property and, by Theorem C, H is hypercellular. Applying Proposition 12

to H, we deduce that there exists a finite fixed cell. �

The above proposition follows the ideas from [41], but the main difficulty is to prove

Lemma 22. In the case of median graphs this lemma is not needed since X is a single vertex.

The next proposition uses ideas from [31] to generalize yet another classical result on median

graphs and to prove assertion (iii) of Theorem F.

Proposition 14. If G is a finite regular hypercellular graph, then G is a single cell, i.e., G

is isomorphic to a Cartesian product of edges and even cycles.
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Proof. Pick an arbitrary edge ab in G such that W (a, b) is an inclusion minimal halfspace. We

will prove that also W (b, a) is minimal. The carrier N(Eab) is the union of maximal cells of G

crossed by Eab. For each such maximal cell X of N(Eab) there exists a unique automorphism

of X that fixes edges of Eab ∩X and maps X ∩W (a, b) to X ∩W (b, a) and vice versa. This

automorphisms extends to an automorphism ϕ of N(Eab) that maps N(Eab) ∩W (a, b) to

N(Eab) ∩W (b, a) and vice versa. For the sake of contradiction assume now that W (b, a) is

not minimal and that there exists an edge cd with c ∈ N(Eab) ∩W (b, a) and d /∈ N(Eab).

The vertex c′ = ϕ(c) ∈W (a, b) has the same degree in N(Eab) as c. Since G is regular, there

must exist an edge c′d′ with d′ /∈ N(Eab). Since N(Eab) is gated, Ec′d′ does not cross the

carrier N(Eab), thus W (d′, c′) (W (a, b). This contradicts the choice of ab.

Since G is finite, we have proved that for every edge ab, W (a, b) and W (b, a) are minimal

halfspaces. Thus for every edge ab, we have N(Eab) = G. This implies that Z(G) = G, thus

Z∞(G) = G. By Lemma 21, G is a single cell. �

7. Conclusions and open questions

In the present paper we have established a rich cell-structure for hypercellular graphs. In

particular, we have obtained that they generalize bipartite cellular and median graphs in a

natural way. On the other hand, we expect that other properties and characterizations of

median graphs or cellular graphs extend naturally to hypercellular graphs. Some of those

questions concern the metric structure of hypercellular graphs, while other questions ask for

replacing metric conditions by topological or algebraic conditions. Namely, in all our results

we characterized hypercellular graphs among partial cubes. On can ask to what extent we can

characterize hypercellular graphs and their cell complexes among all graphs and complexes.

For example, as we noticed already, by a result of Gromov [29], CAT(0) cube complexes are

exactly the simply connected cube complexes satisfying the cube condition, i.e., the cubical

version of the 3C-condition. As proved in [24], median graphs are exactly the graphs whose

associated cube complexes are CAT(0). In fact, it is shown in [24] (see also [14] for other

similar results) that median graphs are exactly the graphs of square complexes which are

simply connected and satisfy the square version of the 3CC-condition: any three squares

pairwise intersecting in three edges and all three intersecting in a vertex belong to a 3-

cube. We believe that a similar result holds for hypercellular graphs. Namely, let X be a

hyperprism complex, i.e., a polyhedral cell complex whose cells are Cartesian products of

segments and regular polygons with an even number of sides and glued in a such a way that

the intersection of any two cells is a cell. The 1-skeleton of X is the graph G(X) having the

0-cells of X as vertices and 1-cells as edges. Finally, we call a cell complex of a hypercellular

graph a hypercellular complex. We conjecture that hypercellular graphs can be characterized

in the following way:

Conjecture 1. For a graph G, the following conditions are equivalent:

(i) G is hypercellular;
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(ii) G is the 1-skeleton of a simply connected hyperprism complex X satisfying the 3C-

condition;

(iii) G is the 1-skeleton of a simply connected polygonal complex X (whose 2-cells are

regular polygons with an even number of sides) satisfying the 3CC-condition.

Moreover, all hypercellular cell complexes are CAT(0) spaces.

Since CAT(0) spaces obey the fixed point property [17], the fact that hypercellular cell

complexes are CAT(0) spaces would immediately imply Proposition 13.

Median graphs are exactly the discrete median algebras (for this and other related results

see the paper [11] and the survey [7]). In [6], the apex algebras of weakly median graphs

have been characterized. The apex algebra of an apiculate graph G associates to each triplet

of vertices u, v, w, the apex (uvw) of u with respect to v and w.

Problem 1. Characterize the apex ternary algebras of hypercellular graphs.

In view of the fact that median graphs are precisely retracts of hypercubes [3], we believe

that the following is true:

Conjecture 2. A partial cube G is hypercellular if and only if G is a retract of a Cartesian

product of bipartite cellular graphs.

A group F acts by automorphisms on a cell complex X if there is an injective homomor-

phism F → Aut(X) called an action of F . The action is geometric (or F acts geometrically)

if it is proper (i.e., cells stabilizers are finite) and cocompact (i.e., the quotient X/F is com-

pact). A group F is called a Helly group [19] if F acts geometrically on the clique complex of

a Helly graph. Analogously, we will say that a group F is hypercellular if F acts geometrically

on a cell complex X(G) of a hypercellular graph G (in this case, G is locally-finite). Analo-

gously to [18, Proposition 6.32] one can show that F acts geometrically on the clique complex

of the thickening G∆ of G. By Proposition 11, G∆ is a Helly graph, thus any hypercellular

group is a Helly group. Since all Helly groups are biautomatic [19], we obtain the following

corollary:

Corollary 6. Any hypercellular group is a Helly group and thus is biautomatic.

In Theorem D we have shown that finite hypercellular graphs are tope graphs of zonotopal

COMs. In [9] the question is raised whether zonotopal COMs are fibers of realizable COMs.

In our case this specializes to solving the following:

Problem 2. Is every finite hypercellular graph a convex subgraph of the tope graph of a

realizable oriented matroid?

In the first part of the paper we have obtained a few results for S4 similar to those for hy-

percellular graphs. However, we do not know if the properties of S4 established in Theorem A

characterize the class.

Question 1. Does Theorem A characterize S4?
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Furthermore we believe, that it is possible to use analogous amalgamation techniques as

we did for Theorem B and Theorem D in order to prove:

Conjecture 3. Every finite graph in S4 is the tope graph of a COM.
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[26] D.Ž. Djoković, Distance–preserving subgraphs of hypercubes, J. Combin. Th. Ser. B 14 (1973), 263–267.

[27] J.-P. Doignon, J.R. Reay, and G. Sierksma, A Tverberg-type generalization of the Helly number of a

convexity space, J. Geometry 16 (1981), 117–125.

[28] A. W. M. Dress and R. Scharlau, Gated sets in metric spaces, Aequationes Math. 34 (1987), 112–120.

46



[29] M. Gromov, Hyperbolic groups, in Essays in Group theory, S.M. Gersten (ed.), MSRI Publ., vol. 8,

Springer, Berlin, 1987, pp. 75–263.
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