
HAL Id: hal-01457187
https://hal.science/hal-01457187

Submitted on 10 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A model-driven approach for embedded system
prototyping and design

Nicolas Hili, Christian Fabre, Sophie Dupuy-Chessa, Dominique Rieu

To cite this version:
Nicolas Hili, Christian Fabre, Sophie Dupuy-Chessa, Dominique Rieu. A model-driven approach
for embedded system prototyping and design. IEEE International Symposium on Rapid Sys-
tem Prototyping (RSP’14) (part of ESWEEK’14), Oct 2014, New Delhi, India. pp.23 - 29,
�10.1109/RSP.2014.6966688�. �hal-01457187�

https://hal.science/hal-01457187
https://hal.archives-ouvertes.fr


A Model-Driven Approach for Embedded System
Prototyping and Design

Nicolas Hili, Christian Fabre
Univ. Grenoble Alpes, F-38000 Grenoble, France

CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
Email: {nicolas.hili, christian.fabre1}@cea.fr

Sophie Dupuy-Chessa, Dominique Rieu
Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France

CNRS, LIG, F-38000 Grenoble, France
Email: {sophie.dupuy, dominique.rieu}@imag.fr

Abstract—Embedded System (ES) development complexity is
increasing. This increase has several cumulative sources: some are
directly related to constraints on the ES themselves (dependabil-
ity, compute intensive, resource constraints) while other sources
are related to the industrial context of their development (fast
prototyping, early validation, parallelization of developments).
Although several Model-Driven Engineering (MDE) processes
have been proposed for ES development, most of them are not
completely formalized. This has several drawbacks that prevent
their use in prototyping where iterations need to be short and
focused. Incomplete formalized processes tend to be sidestepped
in these situations where quick results are expected to be obtained
with limited effort.

In this paper we propose a MDE-based process for ES
development. This process precisely defines the development tasks
and their impact on the models throughout development. In
particular we define iterations width and depth for the process that
allow for a fined-grained and consistent planning of developments.
The short and well defined iterations characterized by the process
reduce the gap between rapid prototyping, ad-hoc methods and
regular development processes.

Keywords—Embedded System, Process, Iteration, Prototyping

I. INTRODUCTION

Over the increasing complexity of Embedded System (ES)
development, more and more developers turn to Model-Driven
Engineering (MDE) to foster ES design [1], [2]. MDE pro-
motes the use of models to abstract all or part of the system
being considered. It permits to visualize ES through different
viewpoints and extract essential properties to its modeling.
Additionally, MDE provides techniques to perform from ex-
ecutable models a number of static analyses, performance
analyses, simulations and so on. It also offers a way to
separate design from implementation which is particularly well
appreciated when designing ES composed of an application
hosted by a platform.

Complexity of ES design is emphasized by the needs of
early error detection and regular feedbacks to guaranty that
the system is conform to its specifications. One of exist-
ing techniques to ensure specification validation is system
prototyping [3]. Prototypes permits to assess the fulfillment
of the specifications while giving a concrete view of the
system under development and the design process as well [4],
[5]. However, prototyping could be incompatible with model-
based methodology where time spent to create the models
at several abstraction levels might be considerable. Several

aspects of MDE contribute to reduce the gap between model-
based and prototyping-based methodologies. The use of model
transformation permits to transform abstract models to more
concrete ones which ensures the following of the process in
a continuous way and the use of code generation techniques
ensures to generate high quality and robustness application
code and reduce time spent to debug and validate the produced
software and hardware code.

Despite the acceptance of MDE for ES design, few of ES
designers exploit it to formalize and automate ES processes.
They are often defined ad-hoc and barely formalized in terms
of models. Formalizing them could plan and foster their
executions, with high confidence and help to reduce the gap
between MDE and prototyping. This paper presents a model-
based process for embedded systems called 〈HOE〉2 [6]. This
process is formalized at very fine-grain thanks to activity and
behavior diagrams so it exhibits development tasks and their
impact on the models produced during the development. The
fine-grained definition of the process allows a project manager
to organize quick iterations to enhance the prototyping.

This paper is structured as follow. Section II is aimed to
give a comprehensive view of the state of the art; section III
introduces 〈HOE〉2, a model-based process for ES develop-
ment while section IV shows how it is possible to reduce
the gap between MDE and prototyping; section V presents
the benefits in terms of project monitoring and development
planning; we present the development of an embedded system
case study in section VI to show the impact on a prototyping-
based development compared to a regular one; finally, we
summarize our results and give future directions in section VII.

II. STATE OF THE ART

This section is structured through two axes. The first one
addresses the process modeling languages an their specifici-
ties. The second axe addresses model-based approaches for
embedded system design.

A. Process Modeling Languages

In software engineering, a number of languages were
proposed to model processes [7], [8]. The undoubtedly well-
known is the Unified Modeling Language (UML) [9]. UML
provides a few concepts that can be used to model pro-
cesses. Those are assembled inside the Activities package. It
proposes several concepts like Activity, ActivityNode, flows
(ControlFlow and ObjectFlow) to model product-oriented and



activity-oriented flows. Among another well known processes,
we can cite Business Process Model and Notation (BPMN)
Metamodel [10] and Software & Systems Process Engineer-
ing Meta-model (SPEM) [11]. BPMN is a process modeling
language focusing on a clear graphical notation understandable
by all the participants of a process, from the analyst, to the
designer, including end users. SPEM is a process modeling
language based on a MOF 2.0-based metamodel that essen-
tially focuses on software systems processes.

A number of model processes was proposed to address in-
dustrial concerns related to rapid development and prototyping.
The Spiral model [12] and the Rapid Application Development
(RAD) [13] are such process models. They focus on short
iterations and prototyping development. Prototyping helps to
reduce risk and improve quality of the desired system. An-
other approaches for rapid development are Rational Unified
Process (Rational Unified Process) [14] and Unified Software
Development Process (USDP) [15]. They are usecase-driven
processes where usecases are prioritized and define iterations
in order to cover the highest risks first. Each iteration ends
with the production of prototypes.

B. Model-Based Embedded System Design & Prototyping

A number of system and embedded system design methods
address prototyping issue though the use of models and incre-
mental processes. ACCORD/UML [4], [16] is an embedded
system design method applied to the automotive area. It relies
on an extended version of the UML language based on the
definition of an UML profile to enable real-time embedded
system development. The ACCORD/UML process focuses
on three phases: analysis, design and implementation, it is
defined as iterative and continuous with possible backwards.
The approach promotes an iterative development to build a
system by increments. In [17], the authors give an overview
of the ACCORD/UML using the modeling artifacts defined in
the SPEM profile. They define three participants, among them
the prototyper. A prototyping phase allows the prototyper to
build a prototype model. While the process is rather textually
described, their is no real use of executable process modeling
language to enact the process, establish a project monitoring
and reduce the gap between MDE and prototyping.

MOPCOM [18], [19] is a co-development method for
system on chip design. It is based on the Model-Driven
Architecture (MDA) techniques, especially on the separation
between platform independent and specific models. The MOP-
COM language is based on both MARTE [20] and SysML [21]
languages. On process side, MOPCOM proposes a top-down
flow through three abstraction levels. At the end, software and
hardware synthetizable code are generated. We can compare
the MOPCOM process to the Y life cycle from Capretz [22].
More precisely, the process is built upon three successive Y
life cycles enabling parallelism. However, the process is pretty
unclear and imprecise, no participant is identified, neither the
possibility of iterations, requirement-guided development, etc.

Behavior, Interaction, Priority (BIP) [23] addresses the
design of system based on model and component oriented ap-
proach. It permits to build hierarchical and composite models
in which each atomic component is considered in terms of
behavior and interactions with other components. The formal

language ensures that the design and assembly of atomic
components is correct-by-construction. BIP embeds a product
and activity-oriented process. In [23], the process is illustrated
by a flow diagram with input and output models, iterations
and activities, but is not formalized in an executable process
modeling language.

Embedded system model-based approaches usually pro-
pose flows that cover all or part of the life-cycle of the system
under consideration. Those flows are composed of many steps
involving modeling at different abstraction levels and occa-
sionally propose consistent rules to go down throughout the
development process. Some of them explicitly propose pro-
totyping activities, and process automation through consistent
transformation rules to go down throughout the development
process and thus foster the prototyping. However, none of them
proposes a clear formalization, preventing a method user to
know when the model under development at one abstraction
level is ripened enough to initialize downstream activities on
the flow. Such formalization would leverage the vagueness
and imprecision around processes and would allow a project
manager to have a big picture of project planing and task
organization adopt a prototyping strategy.

III. THE 〈HOE〉2 APPROACH

In this section, we present the 〈HOE〉2 approach. 〈HOE〉2
is a model-based approach previously proposed in [6] and
stands for Highly Heterogeneous Object-Oriented Efficient
Engineering. 〈HOE〉2 embeds both a collaborative process
and a common language for application and platform based
on useful concepts of objects, association, state machines
and message passing. Fig. 1 gives a partial view of the
〈HOE〉2 process. Not discussed here, but the 〈HOE〉2 process
is platform-based design [24] as the platform design flow is
composed of the same four phases as the application design
one. This aspect allows designers to iterate over several stacked
platforms, giving to the process its fractal nature [25].

A. Requirement Phase

The requirement phase permits to formalize informal speci-
fications of the system. These specifications describe functional
as well as technical requirements and serve as inputs to the two
development flows: functional requirements for the application
development flow and technical requirements for the platform
one. During this phase, the requirement is formalized in terms
of actor and usecases organized according to their causality
(i.e. their importance regarding the system under development
– possible values are primary or secondary) and of scenarios
which are prioritized through their nature (nominal or error)
and their importance. Each scenario represents the smallest-
grain of the requirement definition. All the further activities
will endeavor to fulfill the requirements by keeping consistency
and compliancy with the scenarios of the requirement model.

B. Analysis Phase

During the first phase, a black box system (an application
for the first flow and a platform for the second one) is defined
in terms of requirements. During the analysis phase, this
system is opened and detailed in terms of communicating
objects and object behaviors. Behaviors are captured with state



Early separation of
concerns between
application and
platform development
teams.

Early separation of
concerns between
application and
platform development
teams.

Two synchronisation
points between both
processes.

Two synchronisation
points between both
processes.

Traceability to
requirements.

Main activity :
Requirement
Formalization

Main activity :
Hierarchical
Opening

Main activity :
Distribution

Main activity :
Implementation

Requirement Phase Application
Requirement

Model

Platform
Requirement

Model

Analysis Phase Application
Analysis
Model

Platform
Analysis
Model

Design Phase Application
Design
Model

Implementation Phase Application
Implementation

Model

(1)

(2)

Application
Development

Platform
Development

(1) Introduction of platform’s topology
(2) Introduction of Platform’s implementation rules

Fig. 1. 〈HOE〉2: a Collaborative Top-Down Process for Embedded System Design

machines. Both development teams can perform the hierar-
chical opening activity in a concurrent way. Each opening
activity aims at fulfilling the requirement formalized in the
above requirement phase.

C. Design Phase

During the design phase, a first topology of the platform is
introduced in the application development flow. This topology
is limited to the definition of the world – or execution domain –
of the platform. The distribution activity involves distributing
the application objects over the worlds of the platform. Again,
compliancy from the requirements must be ensured during the
distribution activity.

D. Implementation Phase

The implementation phase is the last step before code
generation. During this phase, a complete description of the
platform feeds the application development flow. It embeds
implementation rules to define how objects are concretely
implemented on the platform. The implementation activity
involves defining which implementation rules should be used
for each object.

The 〈HOE〉2 process is distinguishable from other pro-
cesses and development life cycles by its many aspects. Two
concurrent flows allow developers to design the application
and the platform that hosts it. Both flows are independent

and concurrent but the 〈HOE〉2 process defines two syn-
chronization points to gradually introduce the platform model
inside the application. The platform analysis model defines
the platform in two steps and offers a smooth implementation
of the application on the platform by defining 1) where the
object should be located and (design phase) and 2) in which
way they are concretely implemented (implementation phase).
This smooth implementation permits a rapid feedback from
the application development to the platform one.

In 〈HOE〉2, organization of activities is guided by the
formalized requirements during the first phase. That means
that all the tasks producing new elements on a model must
be performed in accordance of one or more scenarios. This
aspect addresses prototyping in the sens of a project manager
can organize quick iterations to cover only partial widths of
the requirements and go down through the four phases in order
to design prototypes with minimal effort.

Tool Support

The 〈HOE〉2 process is partially supported by a dedicated
tool named CanHOE2, a standalone product based on Eclipse.
It addresses several collaborative aspects like model exchange
and synchronization, and uses Git as a backend.

IV. MODEL-DRIVEN ENGINEERING AND PROTOTYPING

To reduce the gap between MDE and prototyping, an
informal definition of the process as illustrated in fig. 1 is



Fig. 2. 〈HOE〉2 Process Activity Diagram

not sufficient and tends to be sidestepped. Our proposition is
based on the adaptation of the UML2 metamodel to give a
stronger definition of the modeled requirement-driven process.
Other works also deal with requirements [21], [26].

We propose in this section an activity package to model
activities, tasks and their associated input and output models.
Those models need to be defined at the M2 layer (metamodel)
of the OMG pyramid so they can be tightly coupled with the
〈HOE〉2 product models. To do so, we propose an Activity
package as an extension of the UML2 activity metamodel.

Fig. 2 models the 〈HOE〉2 process in terms of activities
and input / output objects. The first input of the process is the
informal specifications of the system.

The Activity package we propose in this section is part
of the 〈HOE〉2 project management three-layers metamodel
illustrated in fig. 8. The two bottom layers are not addressed
in this section and will be the subjects of section V. In the
activity package, we model the four 〈HOE〉2 process main
activities and detail them into a number of dedicated tasks.
For each phase, we list used and produced models, give a
state representation of them, detail the requirement to initialize
each phase and decompose the activity into small-grained
tasks. We further formalize each task in terms of input and
output model elements and of pre and postconditions. This
section is structured in three parts. First part gives a dynamic
vision of the 〈HOE〉2 models throughout the execution of the
process while second and third parts focus on the description
of the 〈HOE〉2 activity package that enables to bridge the gap
between prototyping and regular development processes.

Fig. 3. The 〈HOE〉2 Four Models

A. The four 〈HOE〉2 models

We propose in this part both a structural and a behavioral
modeling of the 〈HOE〉2 models. Fig. 3 depicts the taxonomy
of 〈HOE〉2 models produced throughout development. Each
of them specializes the Model UML meta-class.

Fig. 4. Common 〈HOE〉2 model lifecyle

Fig. 4 is a state machine that models the common life-
cyle of all 〈HOE〉2 models. First, the model is INITIALIZED.
In the INITIALIZED state, the model is built from upstream
models. After initialization, a first modeling activity has to
be performed. After the activity is performed, the model
under development evolves into the MATURED state. This
intermediate state means that the model is not fully complete,
but it reaches a sufficient degree of ripeness to initialize the
next phase. In the case of the implementation model, code
generation can be performed from it. Finally, a model is
marked as COMPLETE during the closing activity. This activity
is performed by the project manager when he or she considers
the model under development is complete. Except for the first
one, each model may be considered as complete when each
modeling activity performed on it contributes to satisfy all the
requirements formalized in the upon requirement model.

Behavior modeling of 〈HOE〉2 models brings some bene-
fits. We clearly define when a phase can be initialized from
upstream models. The intermediate MATURITY state enables a
project manager to initiate the next phase before the model
is completed. This facilitates the development of prototypes
without covering the whole specified requirements. The second
benefit results from the fact that state preconditions can be
applied to automate the successive flow of activities with a high
confidence in the consistency of it. While modeling activities
need to be handworked, initialization and completion ones can
be automated or at least assisted. To enable it, we define con-
straints as precondition for each initialization and completion
activity. Additionally, we define for each initialization activity
a set of transformation rules that can be executed to fill up the
initialized model with data collected from upstream models.
Code generation rules are also defined to produce code from
the last model of the 〈HOE〉2 flow.

B. Activities

To model the 〈HOE〉2 activities, we chose to extend several
concepts defined in the UML Activities package from the UML
metamodel. Fig. 5 illustrates the fundamental concepts of the
activity package at metamodel level (M2) we propose. An
activity is a set of tasks: initialization, closing and modeling
tasks. We extend the Activity and ActivityNode UML meta-
class. A task may also have two constraints: a precondition
and postcondition. The precondition is based on input model
states. The postcondition defines into which states must evolve
the output models. We chose to model an activity diagram at
model level (M1) for each phase of the 〈HOE〉2 process.



Fig. 5. 〈HOE〉2 Activity Package & Modeling of the 〈HOE〉2 Requirement
Activity Diagram

C. Tasks

In 〈HOE〉2, we define a task as an atomic modeling
activity. Task can be manual, automated or assisted. In Fig. 5
a task may define two constraints, one precondition and one
postcondition. Additionally, it references a set of input and
output models as well as model elements.

Once we have modeled the four models and the four
activities, we can further define a taxonomy of tasks for
each activity. First, we model the activity with UML activity
diagram. In Fig. 2, we detail the requirement activity by de-
composing it in a number of tasks. Each task can accept inputs
and produce outputs. For each input and output, we may define
one or more states between square brackets. We decompose the
requirement activity into three tasks (see Fig. 7).

task 1 (Initialization): First task initializes the phase. The
output is an INITIALIZED requirement model. It only contains
the system without any usecase or actor using the system.

task 2 (Formalization): Second task formalizes the re-
quirement. it can be decomposed into two subtasks. The
first subtask expands the current requirement formalization. It
allows a developer to add new usecases, actors, and at least one
nominal scenario per newly created usecase. When this subtask
is realized for the first time, i.e. the model is INITIALIZED, the
developer needs to define at least one primary actor executing
one primary usecase, and the usecase must own at least one

Fig. 6. Requirement tasks in the 〈HOE〉2 Activity Package

nominal scenario. This is mandatory for the requirement model
to evolve into the MATURED state. The second subtask refines
a usecase by adding new nominal and error scenarios.

task 3 (Closing): Last task closes the phase by consid-
ering the model as complete. The output is a COMPLETE
requirement model. It covers the formalization of the whole
requirements.

Fig. 6 depicts the five modeled requirements tasks from
the activity package. Fig. 7 focuses on the definition of the ex-
panding task. It precisely references which models and model
elements serve as input of the task and which ones should
be created during the task. For this purpose, we subset the
four references depicted in 5 between the Task and both UML
Model and Classifier meta-classes. In the case of the expanding
task, as the system is created during the initialization task, it
cannot be recreated during the expanding one.

1 self.system > 0

Listing 1. Precondition: the model is in INITIALIZED or MATURED State

1 self.actor->filter (a : Actor | a.causality = ’primary’)->
size () > 0

self.system.usecase->filter (u : Usecase | u.causality = ’
primary’)->size () > 0

Listing 2. Postcondition: the model is in MATURED State

Additionally, the expanding tasks must verify preconditions
and postconditions. Listing 1 and 2 are example of pre and
post conditions. The precondition checks if the model is in
initialized state, by verifying whether the model is composed
of a system. No other verification is performed since the model
can either be in INITIALIZED as well as MATURED to perform
this task. The post condition checks if the system is matured.

By refining this work for each task, we get a complete
description of the process. This contributes in rising confidence
in the consistency of the flow and accelerating the development
by preventing a developer to deviate from the process.

V. PROJECT CHARACTERISTICS & MONITORING

This section focuses on project monitoring concerns. Fig. 8
depicts the 〈HOE〉2 the project management metamodel built



Fig. 7. Expanding task in the 〈HOE〉2 Activity Package

on three package. The bottom package represents the partici-
pant to the process. In 〈HOE〉2, we identified two participants,
the project manager and the developer. The project manager
is in charge of creating new tasks and assigning them to a
developer. The developer’s activity consists of realizing tasks
assigned by the project manager. In 〈HOE〉2, the developer can
be either the application or the platform developer. The Project
package contains concepts for project monitoring concerns.
We present two concepts. Project to precisely characterize
the project aimed at designing the system under study and
Iteration to allow the project manager in charge of the project
to organize tasks into a set of ordered iterations.

The ability of organizing tasks into iterations confers
benefits for project monitoring. It is easy to create a consistent
planning of developments. The left side of Fig. 9 shows such
an organization. Horizontal axe illustrates the requirement
width. It symbolizes the ordered set of scenarios that need
to be satisfied during the four phases of the 〈HOE〉2 process.
Vertical axe illustrates the process depth, i.e. the four phases of
the 〈HOE〉2 process. Each square can be colored with proper
color related to the iteration. The right side of Fig. 9 shows
another task organization that enhances prototyping. Both sides
of Fig. 9 illustrate the tradeoff project manager can make to
either favor prototyping with quick vertical iterations or large

Fig. 8. 〈HOE〉2 Project Management Metamodel

(a) regular organization

Sc. 1 . . . Sc. n

requirement

analysis

design

imple-
mentation

process depth

1 1 2
2
2

2

3 3
3

3
3
4

(b) prototyping organization

Sc. 1 . . . Sc. n requi-
rement
width

process depth

1
1
1
1

2
2
2
2

3
3
3
3

1
first
iteration 2

second
iteration 3

third
iteration 4

fourth
iteration

Fig. 9. Consistent Planning of Developments: (a) regular organization and
(b) organization enhancing prototyping

TABLE I. FACE TRACKER EMBEDDED SYSTEM USECASES

Id Name Causality Description
1 Subscribe to in-

formation flux
Primary The actor subscribes to the system infor-

mation flux. The system is able to notify
him of any presence or face detection.

2 Switch to auto-
matic mode

Secondary The actor switches the system to automatic
mode.

3 Switch to man-
ual mode

Secondary The actor switches the system to manual
mode.

4 Orientate the
camera

Secondary The actor manually orientates the camera

development system with spread ones.

VI. A FACE TRACKER EMBEDDED SYSTEM CASE STUDY

In this section, we present a Face Tracker embedded
system. It is embedded on a Pan & Tilt Camera platform
which includes a number of processors, a Passive InfraRed
(PIR) sensor and a bracket on which the camera is attached.
Two servomotors are used to orientate the bracket in two axes.

DETECTING
PRESENCE

FACE TRACKING
face detected (x, y) /

orientate bracket(α, β)

presence detected / activate camera

©

presence no longer detected /
desactivate camera; orientate bracket (αinit, βinit)

©

Fig. 10. Case Study: The Face Tracker Behavior

An abstract view of the Face Tracker system behavior is
provided Fig. 10. Initially, the bracket and hence the camera,
are in an initial position and the camera is inactive. When the
PIR sensor detects a presence – See transition © – the camera
becomes active. The video stream is sent to an algorithm that
performs face detection. When a face is detected, the system
computes the Cartesian coordinates of the face on the picture.
Those coordinates are then translated into spatial coordinates
and the system orientates the bracket to center the face on the
pictures. If the face moves out from the picture, the system
stays in the same position. When the PIR sensor does no longer
detect a presence – See transition © – the camera becomes
inactive and the system returns to its initial position.

Tab. I and II show fragment of lists of usecase and scenario
formalizing the requirements. A strategy favoring prototyping
can be chosen by selecting appropriate scenarios and develop
through the depth of the process once, and planning another
scenario fulfillment during a second iterations. For instance, a
project manager can ignore scenarios about switching between



TABLE II. FACE TRACKER EMBEDDED SYSTEM SCENARIOS

Id Name CU Nature Description
1-1 Presence

& face
detected
notification

1 nominal The actor subscribes to the system in-
formation flux. Both presence and face
are detected. The system notifies the
presence and the position of the face.

1-2 Presence
detected
notification

1 nominal The actor subscribes to the system in-
formation flux. Only the presence is de-
tected. The system notifies the presence
and the position of the face.

. . .
2-1 Automatic

mode
switching

2 nominal The actor switches the system from man-
ual mode to automatic one.

2-2 Automatic
mode
switching

2 error The actor tries to switch to automatic
mode but the system is already in this
mode.

. . .
4-1 Camera

orientation
4 nominal The system is in manual mode, so the

author can orientate the camera.
4-2 Camera

orientation
4 error The system is in automatic mode, so the

author cannot orientate the camera.

two modes and prioritize usecases related to face detection and
recognition in two first iterations. During the third iteration, it
can choose usecase related to camera orientation and finally,
the last iteration for manual / automatic mode switching.

VII. CONCLUSION AND FUTURE WORKS

In this paper we present the 〈HOE〉2 process and its formal-
ization language. We show how, by adapting the UML activity
metamodel, we are able to define a very small-grained set of
activities and tasks with clear inputs and outputs. This allows
us to provide concepts for project characterization and moni-
toring – possibly automatic. Our contribution shows benefits in
terms of organization of tasks and produces consistent planning
by means of explicit dependencies across tasks. We think that
this is not only applicable to regular development but also to
prototyping, where shorter cycles and efforts are expected to
produce very targeted results. The dedicated tool CanHOE2
currently supports only the first phase of the process.

Future work will address the formalization of remaining
activities and tasks of 〈HOE〉2, the modeling transformations
rules for those that can be automated and the extension of
CanHOE2 for their support.

Acknowledgements: This work was partially funded by the EU Arte-
mis JU and the French Ministère de l’Économie, du Redressement
productif et du Numérique for COPCAMS under GA 332 913.
Christian Fabre would like to thanks Bernard Rygaert for introducing
him to requirements-driven iteration scheduling for MDE.

REFERENCES

[1] M. Broy, “The ’Grand Challenge’ in Informatics: Engineering Software-
Intensive Systems,” Computer, vol. 39, no. 10, pp. 72–80, Oct. 2006.

[2] ——, “Seamless model driven systems engineering based on formal
models,” in Formal Methods and Software Engineering, ser. Lecture
Notes in Computer Science, K. Breitman and A. Cavalcanti, Eds.
Springer Berlin Heidelberg, Dec. 2009, vol. 5885, pp. 1–19.

[3] F. Kordon and Luqi, “An introduction to rapid system prototyping,”
Software Engineering, IEEE Transactions on, vol. 28, no. 9, pp. 817–
821, Sep. 2002.

[4] P. Tessier, S. Gerard, C. Mraidha, F. Terrier, and J. M. Geib, “A
component-based methodology for embedded system prototyping,” in
Rapid Systems Prototyping, 2003. Proceedings. 14th IEEE International
Workshop on, Jun. 2003, pp. 9–15.

[5] J. Hugues, M. Perrotin, and T. Tsiodras, “Using mde for the rapid
prototyping of space critical systems,” in 19th IEEE/IFIP International
Symposium on Rapid System Prototyping, Jun. 2008, pp. 10–16.

[6] N. Hili, C. Fabre, S. Dupuy-Chessa, and S. Malfoy, “Efficient Embedded
System Development: A Workbench for an Integrated Methodology,”
in ERTS2 2012, Toulouse, France, Feb. 2012.

[7] B. List and B. Korherr, “An evaluation of conceptual business process
modelling languages,” in Proceedings of the 2006 ACM Symposium on
Applied Computing, ser. SAC ’06. New York, NY, USA: ACM, 2006.

[8] R. Ellner, S. Al-Hilank, J. Drexler, M. Jung, D. Kips, and M. Philippsen,
“eSPEM – a SPEM Extension for Enactable Behavior Modeling,” in
Proceedings of the 6th European Conference on Modelling Foundations
and Applications, ser. ECMFA’10, 2010.

[9] Object Management Group, Unified Modeling Language Superstructure
2.4.1, May 2010.

[10] OMG, Business Process Model and Notation, OMG Std., Rev. 2.0, Jan.
2011.

[11] ——, Software & Systems Process Engineering Meta-Model Specifica-
tion, OMG Std., Rev. 2.0, Apr. 2008.

[12] B. W. Boehm, “A Spiral Model of Software Development and Enhance-
ment,” Computer, vol. 21, no. 5, pp. 61 –72, May 1988.

[13] J. Martin, Rapid Application Development. Indianapolis, IN, USA:
Macmillan Publishing Co., Inc., 1991.

[14] Ivar Jacobson, Grady Booch, and James Rumbaugh, The Unified Soft-
ware Development Process. Addison Wesley, Feb. 1999.

[15] IBM, “Rational Unified Process: Best Practices for Software Develop-
ment Teams,” Dec. 2003.

[16] T. H. Phan, S. Gérard, and F. Terrier, “Languages for system spec-
ification,” C. Grimm, Ed. Norwell, MA, USA: Kluwer Academic
Publishers, 2004, ch. Real-time System Modeling with ACCORD/UML
Methodology: Illustration Through an Automotive Case Study.

[17] S. Gérard, F. Terrier, and Y. Tanguy, “Using the model paradigm for
real-time systems development: Accord/uml,” in in OOIS’02-MDSD.
2002. Springer, 2002, pp. 260–269.

[18] A. Koudri, D. Aulagnier, D. Vojtisek, P. Soulard, C. Moy, J. Cham-
peau, J. Vidal, and J.-C. Le Lann, “Using MARTE in a Co-Design
Methodology,” in Proceedings of MARTE Workshop at DATE, Munich,
Allemagne, Mar. 2008.

[19] D. Aulagnier, A. Koudri, S. Lecomte, P. Soulard, J. Champeau, J. Vidal,
G. Perrouin, and P. Leray, “SoC/SoPC development using MDD and
MARTE profile,” in Model Driven Engineering for Distributed Real-
time Embedded Systems, J.-P. Babau, M. Blay-Fornarino, J. Champeau,
S. Gèrard, S. Robert, and A. Sabetta, Eds. ISTE, Mar. 2009.

[20] Object Management Group, UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems v1.1, Jun. 2011.

[21] ——, Systems Modeling Language Specification v1.3, Jun. 2012.
[22] Luiz Fernando Capretz, “Y: A New Component-Based Software Life

Cycle Model,” Journal Of Computer Science, vol. 1, p. 1, 2005.
[23] A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T.-H. Nguyen,

and J. Sifakis, “Rigorous component-based system design using the bip
framework,” Software, IEEE, vol. 28, no. 3, pp. 41–48, Apr. 2011.

[24] A. Sangiovanni-Vincentelli, “Quo Vadis, SLD? Reasoning About the
Trends and Challenges of System Level Design,” Proceedings of the
IEEE, vol. 95, pp. 467–506, Mar. 2007.

[25] N. Hili, C. Fabre, S. Dupuy-Chessa, D. Rieu, and I. Llopard, “Model-
Based platform composition for embedded system design,” in IEEE 8th
International Symposium on Embedded Multicore/Many-core Systems-
on-Chip (IEEE MCSoC-14), Aizu-Wakamatsu, Japan, Sep. 2014.

[26] D. Blouin, E. Senn, and S. Turki, “Defining an annex language to the
architecture analysis and design language for requirements engineering
activities support,” in Model-Driven Requirements Engineering Work-
shop (MoDRE), 2011, Aug 2011, pp. 11–20.


