Nicolas Hili
email: nicolas.hili@cea.fr

Christian Fabre
email: christian.fabre1@cea.fr

Sophie Dupuy-Chessa
email: sophie.dupuy@imag.fr

Dominique Rieu
email: dominique.rieu@imag.fr

A Model-Driven Approach for Embedded System Prototyping and Design

Keywords: Embedded System, Process, Iteration, Prototyping

Embedded System (ES) development complexity is increasing. This increase has several cumulative sources: some are directly related to constraints on the ES themselves (dependability, compute intensive, resource constraints) while other sources are related to the industrial context of their development (fast prototyping, early validation, parallelization of developments). Although several Model-Driven Engineering (MDE) processes have been proposed for ES development, most of them are not completely formalized. This has several drawbacks that prevent their use in prototyping where iterations need to be short and focused. Incomplete formalized processes tend to be sidestepped in these situations where quick results are expected to be obtained with limited effort.

In this paper we propose a MDE-based process for ES development. This process precisely defines the development tasks and their impact on the models throughout development. In particular we define iterations width and depth for the process that allow for a fined-grained and consistent planning of developments. The short and well defined iterations characterized by the process reduce the gap between rapid prototyping, ad-hoc methods and regular development processes.

I. INTRODUCTION

Over the increasing complexity of Embedded System (ES) development, more and more developers turn to Model-Driven Engineering (MDE) to foster ES design [START_REF] Broy | The 'Grand Challenge' in Informatics: Engineering Software-Intensive Systems[END_REF], [START_REF]Seamless model driven systems engineering based on formal models[END_REF]. MDE promotes the use of models to abstract all or part of the system being considered. It permits to visualize ES through different viewpoints and extract essential properties to its modeling. Additionally, MDE provides techniques to perform from executable models a number of static analyses, performance analyses, simulations and so on. It also offers a way to separate design from implementation which is particularly well appreciated when designing ES composed of an application hosted by a platform.

Complexity of ES design is emphasized by the needs of early error detection and regular feedbacks to guaranty that the system is conform to its specifications. One of existing techniques to ensure specification validation is system prototyping [START_REF] Kordon | An introduction to rapid system prototyping[END_REF]. Prototypes permits to assess the fulfillment of the specifications while giving a concrete view of the system under development and the design process as well [START_REF] Tessier | A component-based methodology for embedded system prototyping[END_REF], [START_REF] Hugues | Using mde for the rapid prototyping of space critical systems[END_REF]. However, prototyping could be incompatible with modelbased methodology where time spent to create the models at several abstraction levels might be considerable. Several aspects of MDE contribute to reduce the gap between modelbased and prototyping-based methodologies. The use of model transformation permits to transform abstract models to more concrete ones which ensures the following of the process in a continuous way and the use of code generation techniques ensures to generate high quality and robustness application code and reduce time spent to debug and validate the produced software and hardware code.

Despite the acceptance of MDE for ES design, few of ES designers exploit it to formalize and automate ES processes. They are often defined ad-hoc and barely formalized in terms of models. Formalizing them could plan and foster their executions, with high confidence and help to reduce the gap between MDE and prototyping. This paper presents a modelbased process for embedded systems called HOE 2 [START_REF] Hili | Efficient Embedded System Development: A Workbench for an Integrated Methodology[END_REF]. This process is formalized at very fine-grain thanks to activity and behavior diagrams so it exhibits development tasks and their impact on the models produced during the development. The fine-grained definition of the process allows a project manager to organize quick iterations to enhance the prototyping. This paper is structured as follow. Section II is aimed to give a comprehensive view of the state of the art; section III introduces HOE 2 , a model-based process for ES development while section IV shows how it is possible to reduce the gap between MDE and prototyping; section V presents the benefits in terms of project monitoring and development planning; we present the development of an embedded system case study in section VI to show the impact on a prototypingbased development compared to a regular one; finally, we summarize our results and give future directions in section VII.

II. STATE OF THE ART

This section is structured through two axes. The first one addresses the process modeling languages an their specificities. The second axe addresses model-based approaches for embedded system design.

A. Process Modeling Languages

In software engineering, a number of languages were proposed to model processes [START_REF] List | An evaluation of conceptual business process modelling languages[END_REF], [START_REF] Ellner | eSPEM -a SPEM Extension for Enactable Behavior Modeling[END_REF]. The undoubtedly wellknown is the Unified Modeling Language (UML) [START_REF]Object Management Group, Unified Modeling Language Superstructure 2[END_REF]. UML provides a few concepts that can be used to model processes. Those are assembled inside the Activities package. It proposes several concepts like Activity, ActivityNode, flows (ControlFlow and ObjectFlow) to model product-oriented and activity-oriented flows. Among another well known processes, we can cite Business Process Model and Notation (BPMN) Metamodel [START_REF] Omg | Business Process Model and Notation[END_REF] and Software & Systems Process Engineering Meta-model (SPEM) [START_REF]Software & Systems Process Engineering Meta-Model Specification[END_REF]. BPMN is a process modeling language focusing on a clear graphical notation understandable by all the participants of a process, from the analyst, to the designer, including end users. SPEM is a process modeling language based on a MOF 2.0-based metamodel that essentially focuses on software systems processes.

A number of model processes was proposed to address industrial concerns related to rapid development and prototyping. The Spiral model [START_REF] Boehm | A Spiral Model of Software Development and Enhancement[END_REF] and the Rapid Application Development (RAD) [START_REF] Martin | Rapid Application Development[END_REF] are such process models. They focus on short iterations and prototyping development. Prototyping helps to reduce risk and improve quality of the desired system. Another approaches for rapid development are Rational Unified Process (Rational Unified Process) [START_REF] Jacobson | The Unified Software Development Process[END_REF] and Unified Software Development Process (USDP) [START_REF] Ibm | Rational Unified Process: Best Practices for Software Development Teams[END_REF]. They are usecase-driven processes where usecases are prioritized and define iterations in order to cover the highest risks first. Each iteration ends with the production of prototypes.

B. Model-Based Embedded System Design & Prototyping

A number of system and embedded system design methods address prototyping issue though the use of models and incremental processes. ACCORD/UML [START_REF] Tessier | A component-based methodology for embedded system prototyping[END_REF], [START_REF] Phan | Languages for system specification[END_REF] is an embedded system design method applied to the automotive area. It relies on an extended version of the UML language based on the definition of an UML profile to enable real-time embedded system development. The ACCORD/UML process focuses on three phases: analysis, design and implementation, it is defined as iterative and continuous with possible backwards. The approach promotes an iterative development to build a system by increments. In [START_REF] Gérard | Using the model paradigm for real-time systems development: Accord/uml[END_REF], the authors give an overview of the ACCORD/UML using the modeling artifacts defined in the SPEM profile. They define three participants, among them the prototyper. A prototyping phase allows the prototyper to build a prototype model. While the process is rather textually described, their is no real use of executable process modeling language to enact the process, establish a project monitoring and reduce the gap between MDE and prototyping. MOPCOM [START_REF] Koudri | Using MARTE in a Co-Design Methodology[END_REF], [START_REF] Aulagnier | SoC/SoPC development using MDD and MARTE profile[END_REF] is a co-development method for system on chip design. It is based on the Model-Driven Architecture (MDA) techniques, especially on the separation between platform independent and specific models. The MOP-COM language is based on both MARTE [START_REF] Sabetta | UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded Systems[END_REF] and SysML [START_REF]Systems Modeling Language Specification[END_REF] languages. On process side, MOPCOM proposes a top-down flow through three abstraction levels. At the end, software and hardware synthetizable code are generated. We can compare the MOPCOM process to the Y life cycle from Capretz [START_REF] Fernando | Y: A New Component-Based Software Life Cycle Model[END_REF]. More precisely, the process is built upon three successive Y life cycles enabling parallelism. However, the process is pretty unclear and imprecise, no participant is identified, neither the possibility of iterations, requirement-guided development, etc.

Behavior, Interaction, Priority (BIP) [START_REF] Basu | Rigorous component-based system design using the bip framework[END_REF] addresses the design of system based on model and component oriented approach. It permits to build hierarchical and composite models in which each atomic component is considered in terms of behavior and interactions with other components. The formal language ensures that the design and assembly of atomic components is correct-by-construction. BIP embeds a product and activity-oriented process. In [START_REF] Basu | Rigorous component-based system design using the bip framework[END_REF], the process is illustrated by a flow diagram with input and output models, iterations and activities, but is not formalized in an executable process modeling language.

Embedded system model-based approaches usually propose flows that cover all or part of the life-cycle of the system under consideration. Those flows are composed of many steps involving modeling at different abstraction levels and occasionally propose consistent rules to go down throughout the development process. Some of them explicitly propose prototyping activities, and process automation through consistent transformation rules to go down throughout the development process and thus foster the prototyping. However, none of them proposes a clear formalization, preventing a method user to know when the model under development at one abstraction level is ripened enough to initialize downstream activities on the flow. Such formalization would leverage the vagueness and imprecision around processes and would allow a project manager to have a big picture of project planing and task organization adopt a prototyping strategy.

III. THE HOE 2 APPROACH

In this section, we present the HOE 2 approach. HOE 2 is a model-based approach previously proposed in [START_REF] Hili | Efficient Embedded System Development: A Workbench for an Integrated Methodology[END_REF] and stands for Highly Heterogeneous Object-Oriented Efficient Engineering. HOE 2 embeds both a collaborative process and a common language for application and platform based on useful concepts of objects, association, state machines and message passing. Fig. 1 gives a partial view of the HOE 2 process. Not discussed here, but the HOE 2 process is platform-based design [START_REF] Sangiovanni-Vincentelli | Quo Vadis, SLD? Reasoning About the Trends and Challenges of System Level Design[END_REF] as the platform design flow is composed of the same four phases as the application design one. This aspect allows designers to iterate over several stacked platforms, giving to the process its fractal nature [START_REF] Hili | Model-Based platform composition for embedded system design[END_REF].

A. Requirement Phase

The requirement phase permits to formalize informal specifications of the system. These specifications describe functional as well as technical requirements and serve as inputs to the two development flows: functional requirements for the application development flow and technical requirements for the platform one. During this phase, the requirement is formalized in terms of actor and usecases organized according to their causality (i.e. their importance regarding the system under development -possible values are primary or secondary) and of scenarios which are prioritized through their nature (nominal or error) and their importance. Each scenario represents the smallestgrain of the requirement definition. All the further activities will endeavor to fulfill the requirements by keeping consistency and compliancy with the scenarios of the requirement model.

B. Analysis Phase

During the first phase, a black box system (an application for the first flow and a platform for the second one) is defined in terms of requirements. During the analysis phase, this system is opened and detailed in terms of communicating objects and object behaviors. Behaviors are captured with state

(2)

Application Development Platform Development (1) Introduction of platform's topology (2) Introduction of Platform's implementation rules

C. Design Phase

During the design phase, a first topology of the platform is introduced in the application development flow. This topology is limited to the definition of the world -or execution domainof the platform. The distribution activity involves distributing the application objects over the worlds of the platform. Again, compliancy from the requirements must be ensured during the distribution activity.

D. Implementation Phase

The implementation phase is the last step before code generation. During this phase, a complete description of the platform feeds the application development flow. It embeds implementation rules to define how objects are concretely implemented on the platform. The implementation activity involves defining which implementation rules should be used for each object.

The HOE 2 process is distinguishable from other processes and development life cycles by its many aspects. Two concurrent flows allow developers to design the application and the platform that hosts it. Both flows are independent and concurrent but the HOE 2 process defines two synchronization points to gradually introduce the platform model inside the application. The platform analysis model defines the platform in two steps and offers a smooth implementation of the application on the platform by defining 1) where the object should be located and (design phase) and 2) in which way they are concretely implemented (implementation phase). This smooth implementation permits a rapid feedback from the application development to the platform one.

In HOE 2 , organization of activities is guided by the formalized requirements during the first phase. That means that all the tasks producing new elements on a model must be performed in accordance of one or more scenarios. This aspect addresses prototyping in the sens of a project manager can organize quick iterations to cover only partial widths of the requirements and go down through the four phases in order to design prototypes with minimal effort.

Tool Support

The HOE 2 process is partially supported by a dedicated tool named CanHOE2, a standalone product based on Eclipse. It addresses several collaborative aspects like model exchange and synchronization, and uses Git as a backend.

IV. MODEL-DRIVEN ENGINEERING AND PROTOTYPING

To reduce the gap between MDE and prototyping, an informal definition of the process as illustrated in fig. 1 is Fig. 2. HOE 2 Process Activity Diagram not sufficient and tends to be sidestepped. Our proposition is based on the adaptation of the UML2 metamodel to give a stronger definition of the modeled requirement-driven process. Other works also deal with requirements [START_REF]Systems Modeling Language Specification[END_REF], [START_REF] Blouin | Defining an annex language to the architecture analysis and design language for requirements engineering activities support[END_REF].

We propose in this section an activity package to model activities, tasks and their associated input and output models. Those models need to be defined at the M2 layer (metamodel) of the OMG pyramid so they can be tightly coupled with the HOE 2 product models. To do so, we propose an Activity package as an extension of the UML2 activity metamodel. Fig. 2 models the HOE 2 process in terms of activities and input / output objects. The first input of the process is the informal specifications of the system.

The Activity package we propose in this section is part of the HOE 2 project management three-layers metamodel illustrated in fig. 8. The two bottom layers are not addressed in this section and will be the subjects of section V. In the activity package, we model the four HOE 2 process main activities and detail them into a number of dedicated tasks. For each phase, we list used and produced models, give a state representation of them, detail the requirement to initialize each phase and decompose the activity into small-grained tasks. We further formalize each task in terms of input and output model elements and of pre and postconditions. This section is structured in three parts. First part gives a dynamic vision of the HOE 2 models throughout the execution of the process while second and third parts focus on the description of the HOE 2 activity package that enables to bridge the gap between prototyping and regular development processes. We propose in this part both a structural and a behavioral modeling of the HOE 2 models. Fig. 3 depicts the taxonomy of HOE 2 models produced throughout development. Each of them specializes the Model UML meta-class. In the INITIALIZED state, the model is built from upstream models. After initialization, a first modeling activity has to be performed. After the activity is performed, the model under development evolves into the MATURED state. This intermediate state means that the model is not fully complete, but it reaches a sufficient degree of ripeness to initialize the next phase. In the case of the implementation model, code generation can be performed from it. Finally, a model is marked as COMPLETE during the closing activity. This activity is performed by the project manager when he or she considers the model under development is complete. Except for the first one, each model may be considered as complete when each modeling activity performed on it contributes to satisfy all the requirements formalized in the upon requirement model.

Behavior modeling of HOE 2 models brings some benefits. We clearly define when a phase can be initialized from upstream models. The intermediate MATURITY state enables a project manager to initiate the next phase before the model is completed. This facilitates the development of prototypes without covering the whole specified requirements. The second benefit results from the fact that state preconditions can be applied to automate the successive flow of activities with a high confidence in the consistency of it. While modeling activities need to be handworked, initialization and completion ones can be automated or at least assisted. To enable it, we define constraints as precondition for each initialization and completion activity. Additionally, we define for each initialization activity a set of transformation rules that can be executed to fill up the initialized model with data collected from upstream models. Code generation rules are also defined to produce code from the last model of the HOE 2 flow.

B. Activities

To model the HOE 2 activities, we chose to extend several concepts defined in the UML Activities package from the UML metamodel. Fig. 5 illustrates the fundamental concepts of the activity package at metamodel level (M2) we propose. An activity is a set of tasks: initialization, closing and modeling tasks. We extend the Activity and ActivityNode UML metaclass. A task may also have two constraints: a precondition and postcondition. The precondition is based on input model states. The postcondition defines into which states must evolve the output models. We chose to model an activity diagram at model level (M1) for each phase of the HOE 2 process.

C. Tasks

In HOE 2 , we define a task as an atomic modeling activity. Task can be manual, automated or assisted. In Fig. 5 a task may define two constraints, one precondition and one postcondition. Additionally, it references a set of input and output models as well as model elements.

Once we have modeled the four models and the four activities, we can further define a taxonomy of tasks for each activity. First, we model the activity with UML activity diagram. In Fig. 2, we detail the requirement activity by decomposing it in a number of tasks. Each task can accept inputs and produce outputs. For each input and output, we may define one or more states between square brackets. We decompose the requirement activity into three tasks (see Fig. 7). task 1 (Initialization): First task initializes the phase. The output is an INITIALIZED requirement model. It only contains the system without any usecase or actor using the system. task 2 (Formalization): Second task formalizes the requirement. it can be decomposed into two subtasks. The first subtask expands the current requirement formalization. It allows a developer to add new usecases, actors, and at least one nominal scenario per newly created usecase. When this subtask is realized for the first time, i.e. the model is INITIALIZED, the developer needs to define at least one primary actor executing one primary usecase, and the usecase must own at least one Fig. 6 depicts the five modeled requirements tasks from the activity package. Fig. 7 focuses on the definition of the expanding task. It precisely references which models and model elements serve as input of the task and which ones should be created during the task. For this purpose, we subset the four references depicted in 5 between the Task and both UML Model and Classifier meta-classes. In the case of the expanding task, as the system is created during the initialization task, it cannot be recreated during the expanding one. Additionally, the expanding tasks must verify preconditions and postconditions. Listing 1 and 2 are example of pre and post conditions. The precondition checks if the model is in initialized state, by verifying whether the model is composed of a system. No other verification is performed since the model can either be in INITIALIZED as well as MATURED to perform this task. The post condition checks if the system is matured.

By refining this work for each task, we get a complete description of the process. This contributes in rising confidence in the consistency of the flow and accelerating the development by preventing a developer to deviate from the process.

V. PROJECT CHARACTERISTICS & MONITORING

This section focuses on project monitoring concerns. Fig. 8 depicts the HOE 2 the project management metamodel built Fig. 7. Expanding task in the HOE 2 Activity Package on three package. The bottom package represents the participant to the process. In HOE 2 , we identified two participants, the project manager and the developer. The project manager is in charge of creating new tasks and assigning them to a developer. The developer's activity consists of realizing tasks assigned by the project manager. In HOE 2 , the developer can be either the application or the platform developer. The Project package contains concepts for project monitoring concerns. We present two concepts. Project to precisely characterize the project aimed at designing the system under study and Iteration to allow the project manager in charge of the project to organize tasks into a set of ordered iterations.

The ability of organizing tasks into iterations confers benefits for project monitoring. It is easy to create a consistent planning of developments. The left side of Fig. 9 shows such an organization. Horizontal axe illustrates the requirement width. It symbolizes the ordered set of scenarios that need to be satisfied during the four phases of the HOE 2 process. Vertical axe illustrates the process depth, i.e. the four phases of the HOE 2 process. Each square can be colored with proper color related to the iteration. The right side of Fig. 9 shows another task organization that enhances prototyping. Both sides of Fig. 9 illustrate the tradeoff project manager can make to either favor prototyping with quick vertical iterations or large An abstract view of the Face Tracker system behavior is provided Fig. 10. Initially, the bracket and hence the camera, are in an initial position and the camera is inactive. When the PIR sensor detects a presence -See transition  -the camera becomes active. The video stream is sent to an algorithm that performs face detection. When a face is detected, the system computes the Cartesian coordinates of the face on the picture. Those coordinates are then translated into spatial coordinates and the system orientates the bracket to center the face on the pictures. If the face moves out from the picture, the system stays in the same position. When the PIR sensor does no longer detect a presence -See transition  -the camera becomes inactive and the system returns to its initial position.

Tab. I and II show fragment of lists of usecase and scenario formalizing the requirements. A strategy favoring prototyping can be chosen by selecting appropriate scenarios and develop through the depth of the process once, and planning another scenario fulfillment during a second iterations. For instance, a project manager can ignore scenarios about switching between two modes and prioritize usecases related to face detection and recognition in two first iterations. During the third iteration, it can choose usecase related to camera orientation and finally, the last iteration for manual / automatic mode switching.

VII. CONCLUSION AND FUTURE WORKS

In this paper we present the HOE 2 process and its formalization language. We show how, by adapting the UML activity metamodel, we are able to define a very small-grained set of activities and tasks with clear inputs and outputs. This allows us to provide concepts for project characterization and monitoring -possibly automatic. Our contribution shows benefits in terms of organization of tasks and produces consistent planning by means of explicit dependencies across tasks. We think that this is not only applicable to regular development but also to prototyping, where shorter cycles and efforts are expected to produce very targeted results. The dedicated tool CanHOE2 currently supports only the first phase of the process. Future work will address the formalization of remaining activities and tasks of HOE 2 , the modeling transformations rules for those that can be automated and the extension of CanHOE2 for their support.

Fig. 1 .

 1 Fig. 1. HOE 2 : a Collaborative Top-Down Process for Embedded System Design

Fig. 3 .

 3 Fig.3. The HOE 2 Four Models

Fig. 4 .

 4 Fig. 4. Common HOE 2 model lifecyle Fig. 4 is a state machine that models the common lifecyle of all HOE 2 models. First, the model is INITIALIZED.In the INITIALIZED state, the model is built from upstream models. After initialization, a first modeling activity has to be performed. After the activity is performed, the model under development evolves into the MATURED state. This intermediate state means that the model is not fully complete, but it reaches a sufficient degree of ripeness to initialize the next phase. In the case of the implementation model, code generation can be performed from it. Finally, a model is marked as COMPLETE during the closing activity. This activity is performed by the project manager when he or she considers the model under development is complete. Except for the first one, each model may be considered as complete when each modeling activity performed on it contributes to satisfy all the requirements formalized in the upon requirement model.

Fig. 5 .

 5 Fig. 5. HOE 2 Activity Package & Modeling of the HOE 2 Requirement Activity Diagram

Fig. 6 .

 6 Fig. 6. Requirement tasks in the HOE 2 Activity Package

task 3 (

 3 Closing): Last task closes the phase by considering the model as complete. The output is a COMPLETE requirement model. It covers the formalization of the whole requirements.

1Listing 2 .

 2 self.system > 0 Listing 1. Precondition: the model is in INITIALIZED or MATURED State 1 self.actor->filter (a : Actor | a.causality = 'primary')-> size () > 0 self.system.usecase->filter (u : Usecase | u.causality = ' primary')->size () > 0 Postcondition: the model is in MATURED State

Fig. 8 .

 8 Fig. 8. HOE 2 Project Management Metamodel

Fig. 9 .

 9 Fig. 9. Consistent Planning of Developments: (a) regular organization and (b) organization enhancing prototyping

TABLE I

 I Face Tracker embedded system. It is embedded on a Pan & Tilt Camera platform which includes a number of processors, a Passive InfraRed (PIR) sensor and a bracket on which the camera is attached. Two servomotors are used to orientate the bracket in two axes.

		.	FACE TRACKER EMBEDDED SYSTEM USECASES
	Id	Name		Causality	Description
	1	Subscribe to in-	Primary	The actor subscribes to the system infor-
		formation flux		mation flux. The system is able to notify
					him of any presence or face detection.
	2	Switch to auto-	Secondary	The actor switches the system to automatic
		matic mode			mode.
	3	Switch to man-	Secondary	The actor switches the system to manual
		ual mode			mode.
	4	Orientate	the	Secondary	The actor manually orientates the camera
		camera			
	development system with spread ones.
			presence detected / activate camera
			PRESENCE DETECTING		orientate bracket(α, β) face detected (x, y) / FACE TRACKING
		presence no longer detected /
		desactivate camera; orientate (αinit, βinit)

VI. A FACE TRACKER EMBEDDED SYSTEM CASE STUDY

In this section, we present a  Fig.

10

. Case Study: The Face Tracker Behavior

TABLE II .

 II FACE TRACKER EMBEDDED SYSTEM SCENARIOS

	Id	Name		CU	Nature	Description
	1-1	Presence	1	nominal	The actor subscribes to the system in-
		&	face			formation flux. Both presence and face
		detected			are detected. The system notifies the
		notification			presence and the position of the face.
	1-2	Presence	1	nominal	The actor subscribes to the system in-
		detected			formation flux. Only the presence is de-
		notification			tected. The system notifies the presence
						and the position of the face.
					. . .
	2-1	Automatic	2	nominal	The actor switches the system from man-
		mode				ual mode to automatic one.
		switching		
	2-2	Automatic	2	error	The actor tries to switch to automatic
		mode				mode but the system is already in this
		switching			mode.
					. . .
	4-1	Camera	4	nominal	The system is in manual mode, so the
		orientation			author can orientate the camera.
	4-2	Camera	4	error	The system is in automatic mode, so the
		orientation			author cannot orientate the camera.

Acknowledgements: This work was partially funded by the EU Artemis JU and the French Ministère de l' Économie, du Redressement productif et du Numérique for COPCAMS under GA 332 913. Christian Fabre would like to thanks Bernard Rygaert for introducing him to requirements-driven iteration scheduling for MDE.