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Modular composition via factorization

Modular composition is the problem to compute the composition of two univariate polynomials modulo a third one. For polynomials with coefficients in a finite field, Kedlaya and Umans proved in 2008 that the theoretical bit complexity for performing this task could be made arbitrarily close to linear. Unfortunately, beyond its major theoretical impact, this result has not led to practically faster implementations yet. In this article, we explore particular cases of moduli over finite fields for which modular composition turns out to be cheaper than in the general case. In the most favourable cases, our algorithms achieve quasi-linear costs.

INTRODUCTION

Let 𝕂 be an effective field, and let f , g, h be polynomials in 𝕂 [x]. The problem of modular composition is to compute f ∘ g modulo h. Modular composition is an important problem in complexity theory because of its applications to polynomial factorization [START_REF] Kaltofen | Subquadratic-time factoring of polynomials over finite fields[END_REF][START_REF] Kedlaya | Fast modular composition in any characteristic[END_REF][START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF]. It also occurs very naturally whenever one wishes to perform polynomial computations over 𝕂 inside an algebraic extension of 𝕂. Given two different representations 𝕂[x] / (h(x)) ≅ 𝕂[x ˜]/(h ˜(x ˜)) of an algebraic extension of 𝕂, the implementation of an explicit isomorphism also boils down to modular composition.

In this paper, we study the problem of composition modulo a fixed polynomial h mostly in the case when 𝕂 = 𝔽 q is a finite field. We assume that h is separable; the case of moduli of the form h = ℏ t is studied in a separate paper [START_REF] Van Der Hoeven | Composition modulo powers of polynomials[END_REF]. Our results are based on the following simple observation: if a factorization h = h 1 ⋯ h t is known, then composition modulo h reduces to t composition modulo the h i with i = 1, …, t. Curiously, this observation does not seem to be exploited in the standard literature on modular composition. In the case when h is irreducible over 𝕂, but n = deg h admits a non trivial divisor m, then the second crucial observation is that h factors over 𝔽 q m. We may then apply the first observation in order to obtain an efficient algorithm for composition modulo h. Finding the factorizations of h over 𝔽 q m can be quite expensive in general, but such computations can be regarded as pre-computations if the modulus h is fixed.

Besides modular composition, we also study the related problem of computing the characteristic polynomial 𝜒 of g modulo h. More precisely, we understand 𝜒 to be the characteristic polynomial of the multiplication endomorphism by g in 𝕂[x] / (h(x)). In particular, we have 𝜒 ∘ g = 0 modulo h. Theoretically speaking, asymptotically fast algorithms for these tasks are due to Kedlaya and Umans [START_REF] Kedlaya | Fast modular composition in any characteristic[END_REF][START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF]. The advantage of our new algorithms lies in their practical efficiency.

Previous work

Denote by M 𝕂 (n) the number of operations in 𝕂 required to multiply two polynomials of degrees <n in 𝕂 [x]. Let f , g and h be polynomials in 𝕂[x] of degrees <n, <n and n. The naive modular composition algorithm takes O(n M 𝕂 (n)) operations in 𝕂. In 1978, Brent and Kung [START_REF] Brent | Fast algorithms for manipulating formal power series[END_REF] gave an algorithm with cost O ( n p M 𝕂 (n) + n 2 ) . It uses the baby-step giant-step technique due to Paterson and Stockmeyer [START_REF] Paterson | On the number of nonscalar multiplications necessary to evaluate polynomials[END_REF], and even yields a sub-quadratic cost O ( n 𝜛 + n p M 𝕂 (n) ) when using fast linear algebra (see [26, p. 185]). The constant 𝜛 > 1.5 is such that a n p × n p matrix over 𝕂 may be multiplied with another n p × n rectangular matrix in time O(n 𝜛 ). The best current bound 𝜛 < 1.6667 is due to Huang and Pan [START_REF] Huang | Fast rectangular matrix multiplication and applications[END_REF]Theorem 10.1].

When linear algebra benefits from very fast implementations, its contribution is expected to be smaller than the other polynomial operations, on a certain bounded range for n. In fact, for fixed values of 𝜛 and M 𝕂 , the sizes of the "baby" and "giant" steps may be optimized in order to balance cost contributions of matrix and polynomial operations (this was studied for finite fields in an unpublished preprint of Shoup and Smolensky in 1992). Further improvements have been proposed in [START_REF] Johansson | A fast algorithm for reversion of power series[END_REF], based on the Lagrange inversion formula for the reversion of formal power series.

A major breakthrough has been achieved by Kedlaya and Umans [START_REF] Kedlaya | Fast modular composition in any characteristic[END_REF][START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF] in the case when 𝕂 is the finite field 𝔽 q . For any positive 𝜀 > 0, they have shown that the composition f ∘ g modulo h can be computed using O((n log q) 1+𝜀 ) bit operations. Unfortunately, it remains a major open problem to turn this theoretical bit complexity bound into practically useful implementations.

In the special case of power series composition (i.e. when h = x n ), the best known complexity bound is again due to Brent and Kung: in [START_REF] Brent | Fast algorithms for manipulating formal power series[END_REF], they showed that this requires O ( n p M 𝕂 (n) log 1/2 n ) operations in 𝕂, under the condition that gʹ(0) is invertible and that the characteristic is at least n/ l, where l = ⌈ n/log n p ⌉ . The variant proposed by van der Hoeven [18, section 3.4.3] removes the condition on gʹ(0). For fields of small characteristic, Bernstein [START_REF] Bernstein | Composing power series over a finite ring in essentially linear time[END_REF] proposed an algorithm that is softly linear in the precision n but linear in the characteristic. These algorithms are generalized to moduli h of the form ℏ m in [START_REF] Van Der Hoeven | Composition modulo powers of polynomials[END_REF]; we show there that the composition reduces to one power series composition at order n in 𝕂[z]/(ℏ(z)), plus m compositions modulo ℏ, and one characteristic polynomial computation modulo ℏ. Let us finally mention that series with integer, rational or floating point coefficients can often be composed in quasi-linear time as well in suitable bit complexity models, as shown by Ritzmann [START_REF] Ritzmann | A fast numerical algorithm for the composition of power series with complex coefficients[END_REF]; see also [START_REF] Van Der Hoeven | Fast composition of numeric power series[END_REF].

The expression f ∘ g rem h is linear in f . It is well known that the transposition of the application f ↦ f ∘ g rem h corresponds to the power projection task (see section 2.7), which is an important ingredient for computing minimal and characteristic polynomials. In [START_REF] Shoup | Efficient computation of minimal polynomials in algebraic extensions of finite fields[END_REF], Shoup studied the computation of minimal polynomials in algebraic extensions of the form 𝔽 q [𝛼] or 𝔽 q [𝛼][𝛽], explicitly given by defining polynomials. He designed fast practical algorithms with low memory consumption, built from the smart combination of "baby-step giant-step" to transposed algorithms. However his method does not improve upon the one of Brent and Kung from the asymptotic complexity point of view.

The characteristic polynomial of g modulo h may be obtained from suitable power projections of g modulo h thanks to the well-known Newton-Girard identities, which involve solving a first order differential equation to precision n. This is rather elementary when the characteristic is zero or sufficiently large. Otherwise, p-adic arithmetic is needed. A complete solution is described in [START_REF] Grenet | Deterministic root finding over finite fields using Graeffe transforms[END_REF]. More generally, a framework for using p-adic arithmetic to solve ordinary differential equations in positive characteristic may be found in [START_REF] Lairez | On p-adic differential equations with separation of variables[END_REF].

Contributions and outline of the article

The aim of this article is to achieve practical speed-ups for modular composition and the computation of characteristic polynomials. Most of the new results are derived from the following simple observation: if h splits into linear factors in 𝕂, and if its roots are given, then modular composition basically reduces to evaluating g at the roots of h, evaluating f at these values of g, and interpolate f ∘ g. It is well-known that each of these steps can be done in softly linear time using multiple point evaluation and interpolation. More generally, whenever h can be factored into h = h 1 ⋯ h t , the computation of f ∘ g rem h reduces to the computations of f ∘ g rem h i for i = 1, …, t.

Of course, the existence of factorizations of h heavily depends on h itself and on fields over which we allow ourselves to factor h. For instance, if 𝕂 = ℚ, then we might consider computing the roots of h in ℂ using a sufficient precision, or factoring h over the p-adic numbers ℚ p for some well chosen prime number p. If 𝕂 = 𝔽 q is a finite field, and h is an irreducible polynomial of composite degree n = m 1 m 2 , then we may consider factorizations over the intermediate field 𝔽 q m 1. In a separate paper, we study the case when 𝕂 is the field of computable complex numbers [START_REF] Van Der Hoeven | Modular composition via complex roots[END_REF]. In this paper, we mainly focus on the finite field case.

Whether the approach leads to competitive algorithms for modular composition also depends on the question whether we require the factorization of h to be part of the complexity or not. Indeed, if we are doing a large polynomial computation over 𝕂 in the algebraic extension 𝕂[x]/(h(x)), then we typically need to perform many modular compositions f i ∘ g i rem h for different f i and g i , but for a fixed modulus h. In such cases, it is reasonable to regard the factorization of h as a precomputation. Furthermore, if we want to perform computations in a large finite field extension 𝕃 ⊇ 𝕂 and if we are free to select a suitable representation for elements of this finite field, then we may build a modulus h with 𝕃 = 𝕂[x] / (h(x)) using dedicated algorithms; these algorithms are much faster than finding an irreducible modulus at random. In fact, testing the irreducibility of h in 𝔽 q [x] reduces to O(log 2 n) modular compositions in degree n over 𝔽 q , plus O ˜(n log 2 q) bit operations (see [29, section 8.2], based on Rabin's algorithm [START_REF] Rabin | Probabilistic algorithms in finite fields[END_REF]).

In section 2, we begin with revisiting known techniques. We introduce cost functions for modular composition, power projection, and the computation of characteristic polynomials. In section 3, we examine the benefit for modular composition when a factorization of h in 𝕂[x] is given. More precisely, if the irreducible factorization ℏ 1 m 1 ⋯ ℏ t mt of the modulus is available, then our method reduces the composition modulo h to several compositions modulo ℏ 1 m 1 , …, ℏ t mt in softly linear time. A key ingredient, reused several times in the article, is the simultaneous computation of characteristic polynomials and modular compositions.

In section 4, we turn our attention to the specific situation of an irreducible modulus h ∈ 𝕂[x] of composite degree n = m 1 m 2 = deg h over a finite field 𝕂 = 𝔽 q . We show how to exploit the existence of factorizations of h over the intermediate fields 𝔽 q m 1 into factors of degree m 2 .

The natural generalization to degrees n = m 1 ⋯ m t with t ⩾ 3 will be the subject of sections 5, 6 and 7. One important question is how to represent the elements of the intermediate fields 𝕂 i and it is convenient to introduce the special concept of an effective algebraic tower for this purpose. We also introduce the notion of a composition tower for h, which formalizes the requirement that we are given factorizations of h over each of the intermediate fields 𝕂 i . In section 5, we generalize the algorithm from section 4 to arbitrary composition towers. In section 6 we also give a detailed complexity analysis in the case of triangular towers when each intermediate field 𝕂 i admits the form

𝕂 i = 𝕂[𝛼 1 , …, 𝛼 i ] for suitable 𝛼 i ∈ 𝕂 i .
Section 7 is dedicated to primitive towers, in which case each 𝕂 i is generated by a single primitive element 𝛼 i over 𝕂. If the m i are pairwise coprime (see section 7.4), then the field 𝕂 i can be taken to be the composed product of 𝔽 q m 1, …, 𝔽 q m i, and computations in the tower become particularly efficient: in the case when n is "super-smooth" (in the sense that the largest primepower divisor d of n satisfies d = (logn) O (1) ), we will show that composition modulo h can be done in quasi-linear time (modulo precomputations). In this very particular situation, we notice that our method outperforms Kedlaya-Umans' algorithm. If m 1 = ⋯ = m t = p and p is small, then a similar result holds when using so called Artin-Schreier towers (see section 7.5). For general smooth n, one may also consider nested towers (see section 7.3) for which the primitive elements 𝛼 i are compositions of polynomials of degrees m 1 , …, m i over 𝕂. The existence of such towers for given 𝔽 q and n is an interesting open problem, with a generally positive answer in practice.

Our main complexity bounds for modular composition are summarized in Table 1.1. In this table, h is a fixed irreducible polynomial of degree n = m 1 ⋯ m t and m ¯= max (m 1 , …, m t ). The entries correspond to the various types of towers that are considered in sections 6 and 7, while assuming that all necessary precomputations that depend on h have been done. This leaves us with the issue of how to conduct the precomputations. This will be the subject of section 8, where we will analyze the cost of building composition towers of various types. We will see that the construction of composition towers for prescribed composite extension degrees n can usually be done fast. On the other hand, building composition towers for a prescribed modulus h is of the same order of difficulty as factoring h over the intermediate fields 𝕂 i , or finding a root of h in 𝔽 q n for a given representation of the elements of 𝔽 q n. Practical algorithms for this task are then well known but of a cost that is quadratic in n.

Tower type

Expected number of operations in 𝕂 = 𝔽 q = 𝔽 p d 

PRELIMINARIES

Complexity models

Recall that an effective ring is a ring 𝔸 with unity whose elements can be represented on a computer and such that we have algorithms for performing the ring operations. Effective fields 𝕂 and effective algebras over an effective ring are defined similarly. Given an effective ring 𝔸, algebraic complexity models express running times in terms of the number of operations in 𝔸. Unless otherwise stated, we will analyze the costs of the algorithms in this paper in this way. More precisely, our results both apply for the straight-line program and computation tree models [6, chapter 4].

For randomized algorithms over a finite effective ring 𝔸, we assume a special instruction that uniformly generates random elements in 𝔸. For simplicity we assume that this instruction has constant cost. The expected cost of a randomized algorithm and a given input is the average cost taken over all the possible executions.

When working over the finite field 𝕂 = 𝔽 q with q elements, we may also analyze the costs of algorithms in the bit complexity model, which relies on Turing machines with a sufficient number of tapes [START_REF] Papadimitriou | Computational Complexity[END_REF]. We will not explicitly consider this model in our paper, but most of our complexity bounds can easily be converted to this setting.

Polynomial multiplication

Let 𝔸 be an effective ring with unity, let n ∈ ℕ, and denote

𝔸[x] <n = { f ∈ 𝔸[x]: deg f < n}.
Given a polynomial or power series f (x) = ∑ i⩾0 f i x i and l ⩽ h, it is convenient to write

u(x) l;h = ∑ 0⩽i<h-l u i+l x i u(x) ;h = ∑ 0⩽i<h u i x i .
We write M 𝔸 : ℕ → ℝ ⩾ for a cost function such that two polynomials in 𝔸[x] <n can be multiplied using M 𝔸 (n) operations in 𝔸. The schoolbook algorithm allows us to take M 𝔸 (n) = O(n 2 ). The fastest currently known algorithm [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF] yields 1) g(n) (we refer the reader to [12, chapter 25, section 7] for technical details). If 𝔸 is a field of finite characteristic, then it has been shown [START_REF] Harvey | Faster polynomial multiplication over finite fields[END_REF] that M 𝔸 (n) = O(n logn 8 log * n ), where log * denotes the iterated logarithm function. In what follows, we will always assume that M 𝔸 (n) / n is an increasing function in n. This customary assumption implies the super-additivity of M 𝔸 , namely M 𝔸 (n 1 ) + M 𝔸 (n 2 ) ⩽ M 𝔸 (n 1 + n 2 ) for all n 1 ⩾ 0 and n 2 ⩾ 0. More generally, if 𝔹 is an effective 𝔸-algebra, then it is sometimes convient to denote by M 𝔹/𝔸 : ℕ → ℝ ⩾ a cost function such that two polynomials in 𝔹[x] <n can be multiplied using M 𝔹/𝔸 (n) operations in 𝔸.

M 𝔸 (n) = O(n log n log log n) = O ˜(n). Here, the soft-Oh notation f (n) ∈ O ˜(g(n)) means that f (n) = g(n) log O(

Univariate arithmetic

Let 𝕂 be an effective field. The remainder (resp. quotient) of the euclidean division of g by h in 𝕂[x] is denoted by g rem h (resp. by g quo h). For a fixed modulus of degree n, euclidean divisions by h are usually performed by computing a pre-inverse 𝜑 of h. More precisely, 𝜑 is the inverse of x -n h in 𝕂[[x -1 ]], computed at precision O(x -n ). Given f ∈ 𝕂[x] <2n , one obtains the quotient f quo h by multiplying f n;2n with 𝜑 and the remainder as

f rem h = f -( f quo h) h. Given f , g ∈ 𝕂[
x] <n we may thus compute the modular product f g rem h using 3

M 𝕂 (n) + O(n) operations in 𝕂.
We recall that the greatest common divisor of two polynomials of degrees at most n over 𝕂 can be computed using O(M 𝕂 (n) log n) operations in 𝕂 [START_REF] Zur Gathen | Modern computer algebra[END_REF]Algorithm 11.4].

Let f ∈ 𝕂[x] <n and consider n points 𝜎 1 , …, 𝜎 n ∈ 𝕂. Then the evaluations f (𝜎 1 ), …, f (𝜎 n ) can be computed using O(M 𝕂 (n) log n) operations in 𝕂 [12, chapter 10]. This operation is also called multipoint evaluation. The inverse operation is the interpolation, which consists of recovering f from f (𝜎 1 ), …, f (𝜎 n ); it can be performed with a similar cost. If the 𝜎 i are fixed, then it is often possible to gain a factor log log n using FFT trading [START_REF] Van Der Hoeven | Faster Chinese remaindering[END_REF].

More generally, if g 1 ,…,g l ∈ 𝕂[x] are polynomials with degg 1 + ⋯ + degg l = O(n), then all the remainders f rem g i can be computed using O(M 𝕂 (n) log l) operations in 𝕂. The inverse problem, called Chinese remaindering, again admits the same complexity O(M 𝕂 (n) log l).

Bivariate arithmetic

Let 𝔸 be an effective ring. Given a bivariate polynomial f ∈ 𝔸[z, x], we define its bidegree to be the pair (m, n) with m = deg z f and n = deg x f . Using Kronecker substitution [12, chapter 8, section 4], two polynomials of bidegree (m, n) may be multiplied using O(M 𝔸 (n m)) ring operations in 𝔸.

If h is a monic polynomial of degree m in 𝔸[z], and if f and g are two polynomials in (𝔸[z]/ h(z))[x] <n then their preimages may be multiplied in 𝔸

[z, x] with O(M 𝔸 (m n)) operations in 𝔸 before being projected into (𝔸[z]/ h(z))[x] with O(n M 𝔸 (m)) additional operations. Consequently each ring operation in (𝔸[z]/ h(z))[x] in degree ⩽n reduces to O(M 𝔸 (m n)) operations in 𝔸. If g is monic in x then f rem g also takes O(M 𝔸 (m n)) operations in 𝔸.
The computation of bivariate subresultants usually relies on fast evaluation/interpolation, as in the following well known proposition. PROPOSITION Proof. This result corresponds to [START_REF] Lecerf | On the complexity of the Lickteig-Roy subresultant algorithm[END_REF]Corollary 26]. The number of inversions comes from the fact that the underlying algorithm only needs to perform exact divisions by subresultant coefficients in 𝕂 [z]. Each division requires to invert the leading coefficient of the divisor. There exist at most min (deg x A, deg x B) + 1 such leading coefficients. □

Finite field arithmetic

Let 𝔽 q be the finite field with q elements. One way to represent elements of a finite field extension 𝔽 q m is as remainder classes of polynomials in 𝔽 q [z] <m modulo a monic reducible polynomial 𝜇 ∈ 𝔽 q [z] of degree n. We write 𝔽 q n = 𝔽 q [z]/(𝜇(z)) in order to emphasize that we use this representation. Multiplication in 𝔽 q m can be done using 3 M 𝔽 q (n) + O(n) operations in 𝔽 q . Given an element 𝛼 ∈ 𝔽 q m of degree d | m over 𝔽 q , we write 𝔽 q [𝛼] for the subfield of 𝔽 q m generated by 𝛼 over 𝔽 q , where we understand that elements in 𝔽 q [𝛼] are represented as evaluations of polynomials in 𝕂[z] <d at z = 𝛼.

For the bulk of the algorithms in this paper, we will work over the finite field 𝕂 = 𝔽 q . In that case, it can be shown that two polynomials in 𝔽 q [x] <n can be multiplied in time O(n log q log(n log q) 8 log * (nlog q) ) on a Turing machine with a sufficient number of tapes [START_REF] Harvey | Faster polynomial multiplication over finite fields[END_REF]. The algebraic complexity bounds in this paper are easy to adapt to this model: it mainly suffices to replace M 𝔽 q (n) by O(n log q log(n log q) 8 log * (nlog q) ) in all bounds.

Matrix multiplication

The constant 𝜔 > 2 represents a feasible exponent for the multiplication cost of matrices: two square matrices of size n × n can be multiplied using O(n 𝜔 ) operations in their coefficient ring. The constant 𝜛 > 1.5 is defined similarly but for multiplying a n p × n p matrix by a n p × n rectangular one. At present time the best known bound 𝜔 < 2.3729 is due to Le Gall [START_REF] Gall | Powers of tensors and fast matrix multiplication[END_REF]. This naturally yields 𝜛 ⩽ (𝜔 + 1) / 2 < 1.6845. However the latter bound does not improve upon the earlier bound 𝜛 < 1.6667 due to Huang and Pan [24, Theorem 10.1].

The cost of modular composition and related operations

Let 𝔸 be an effective ring. Let 𝔹 an effective 𝔸-algebra of dimension d whose elements are represented by vectors of size d in a given basis. We introduce the following cost functions: For a fixed monic polynomial h in 𝔸[x] of degree n, the modular composition f ∘ g rem h is a linear operation in f . For f and g of degrees <n, the corresponding transposed application is precisely the operation of modular power projections. If a modular composition algorithm with cost C 𝔸 (n) can be transposed in the sense of [START_REF] Bostan | Tellegen's principle into practice[END_REF], then this leads to a power projection algorithm with cost 

P 𝔸 (n) = C 𝔸 (n) + O(n). THEOREM 2.4.

MODULAR COMPOSITION VIA FACTORIZATION

Separable moduli over algebraically closed fields

Let 𝕂 be an effective algebraically closed field. A monic polynomial h

= x n + h n-1 x n-1 + ⋯ + h 0 ∈ 𝕂[x] is said to be separable if gcd(h, hʹ) = 1.
Since 𝕂 is algebraically closed, this implies that h admits n pairwise distinct roots 𝜎 1 , …, 𝜎 n in 𝕂, and we may use the following algorithm for composition modulo h:

Algorithm 3.1 Input. Polynomials f , g ∈ 𝕂[x] <n and pairwise distinct 𝜎 1 , …, 𝜎 n ∈ 𝕂. Output. f ∘ g rem h, where h = (x -𝜎 1 ) ⋯ (x -𝜎 n ). 1. Compute v 1 = g(𝜎 1 ), …, v n = g(𝜎 n ) using fast multi-point evaluation. 2. Compute w 1 = f (v 1 ), …, w n = f (v n ) using fast multi-point evaluation. 3. Retrieve 𝜚 ∈ 𝕂[x] <n with 𝜚(𝜎 1 ) = v 1 , …, 𝜚(𝜎 n ) = v n using fast interpolation. 4. Return 𝜚. THEOREM 3.1. Algorithm 3.1 is correct and requires O(M(n) log n) operations in 𝕂.

Proof. By construction, 𝜚(𝜎

i ) = ( f ∘ g)(𝜎 i ) = ( f ∘ g rem h)(𝜎 i ) for i = 1, …, n. Since deg 𝜚 < n and the 𝜎 i are pairwise distinct, it follows that 𝜚 = f ∘ g rem h.
This proves the correctness of the algorithm. The complexity bound follows from the fact that each of the steps 1, 2 and 3 can be performed in time O(M 𝕂 (n) log n). □

Pairwise coprime moduli

Let 𝕂 again be a general effective field. The algorithm from the previous section may be generalized to composition modulo a polynomial h that can be factored partially as

h = h 1 ⋯ h t in 𝕂[x],
where the polynomials h i are pairwise coprime (although not necessarily irreducible).

Algorithm 3.2 Input. Pairwise coprime polynomials h 1 , …, h t in 𝕂[x] such that h = h 1 ⋯ h t has degree n;

Polynomials f , g in 𝕂[x] <n . Output. f ∘ g rem h, and the characteristic polynomial of g modulo h.

1. Use a multi-remainder algorithm to compute g i = g rem h i , for all 1 ⩽ i ⩽ t.

2. For all 1 ⩽ i ⩽ t, compute the characteristic polynomial 𝜒 i of g i modulo h i .

3. Use a multi-remainder algorithm to compute

f i = f rem 𝜒 i , for all 1 ⩽ i ⩽ t. 4. For all 1 ⩽ i ⩽ t, perform the modular composition 𝜚 i = f i ∘ g i rem h i . 5. Use Chinese remaindering to compute 𝜚 in 𝕂[x] of degree ⩽n -1 such that 𝜚 = 𝜚 i mod h i for all 1 ⩽ i ⩽ t. 6. Return 𝜚 and 𝜒 1 ⋯ 𝜒 t . PROPOSITION 3.2. Algorithm 3.2 is correct and takes O(M 𝕂 (n) log t) + ∑ i=1 t (Q 𝕂 (n i ) + C 𝕂 (n i ))
operations in 𝕂, where n i = deg h i .

Proof. For all 1 ⩽ i ⩽ t, the Cayley-Hamilton theorem gives us

𝜒 i ∘ g = 0 mod h i , which implies f ∘ g mod h i = ( f rem 𝜒 i ) ∘ (g rem h i ) mod h i , whence the correctness of 𝜚 = f ∘ g rem h.
The correctness of the characteristic polynomial of g follows from the usual isomorphism of 𝕂-algebras 𝕂

[x]/(h(x)) ≅ 𝕂[x]/(h 1 (x)) × ⋯ × 𝕂[x]/(h t (x)).
The costs of steps 1, 3, 5, and 6 are O(M 𝕂 (n) log t).

Step 2 costs ∑ i=1 t Q 𝕂 (n i ), and step 4 takes

∑ i=1 t C 𝕂 (n i ) operations in 𝕂. □ Example 3.3.
For some families of polynomials the irreducible factorization is explicitly known. For instance, the following result is due to Serret [41, section III, chapitre III, pp. 158-162] (see also [10, pp. 24-27], [35, Theorem 3.2.18]):

Let 𝔽 q be a finite field of characteristic p such that q + 1 = 2 A u with A ⩾ 2 and u odd. Let a ∈ 𝔽 q be an element of order e. Let t be a multiple of 2 A having all its prime factors dividing e but not (q -1)/ e. Then the polynomial x ta factors into 2 A-1 irreducible polynomials of degrees t / 2 A-1 . The irreducible factors may be described explicitly.

For example, with q = p = 7, A = 3, u = 1, e = 2, a = 6, t = 16, the polynomial x 16 + 1 factors into irreducible polynomials of degree 2. Taking e = 6 instead leads to x 16 + 2 and x 16 + 4.

EXPLOITING FACTORIZATIONS OVER ALGEBRAIC EXTENSIONS

Degree reduction

Let 𝕂 still be an effective field and assume that we wish to compute a modular composition f ∘ g rem h, where f , g, h ∈ 𝕂[x] and h is monic. Let us study what happens if the polynomials f and g to be composed have degrees larger than n. We clearly have

f ∘ g rem h = f ∘ (g rem h) rem h
and we may compute gremh using O (⌊ [START_REF] Zur Gathen | Modern computer algebra[END_REF]Exercise 9.16]. Without loss of generality we may therefore assume that deg g < n.

deg g n ⌋ M 𝕂 (n) ) operations in 𝕂
If deg f exceeds n, then it suffices to perform ⌊deg f / n⌋ modular compositions:

f ∘ g rem h = ( ∑ i=0 ⌊deg f /n⌋ ( f in;(i+1)n ∘ g rem h) (g in rem h) ) rem h. This requires ⌊ deg f n ⌋ additional compositions modulo h in size n, plus O (⌊ deg f n ⌋ M 𝕂 (n) ) opera- tions in 𝕂.
Alternatively, given a polynomial 𝜃 with 𝜃 ∘gremh= 0, the following formula provides us with a more efficient way to reduce the degree of f :

f ∘ g rem h = ( f rem 𝜃) ∘ g rem h.
Taking 𝜃 to be the characteristic polynomial 𝜒 of g modulo h, its computation usually admits a similar cost as modular composition. Therefore it is worth using this method unless deg f ⩽ n + o(n). This is actually one key ingredient for the upcoming algorithms for modular composition: in order to reduce a composition modulo h to compositions modulo a factor ℏ of h, we in particular need to compute the characteristic polynomial of g modulo ℏ. At the end of the recursive calls, one should nevertheless keep in mind that we only need annihilating polynomials, so that we may also use minimal polynomials. Shoup has given a probabilistic O ( n

p M 𝕂 (n) + n 2 )
algorithm for computing minimal polynomials [START_REF] Shoup | Efficient computation of minimal polynomials in algebraic extensions of finite fields[END_REF], which is useful for actual implementations.

Normal factorizations

In the case when we wish to compute a composition modulo an irreducible polynomial h ∈ 𝕂[x], we cannot apply the algorithms from sections 3.1 and 3.2. Nevertheless, it might happen that h admits a non trivial factorization over an algebraic extension of 𝕂. This generically happens when 𝕂 is a finite field and deg h is composite. Indeed, we recall the following well known result.

PROPOSITION 4.1. Let h be a monic irreducible polynomial in 𝔽 q [x] of degree n, and let m be an integer dividing n. Then there exist an irreducible polynomial 𝜇(z) ∈ 𝔽 q [z] of degree m, and

a polynomial H(z, x) ∈ 𝔽 q [z, x] of bidegree (<m, n / m), monic in x, such that the irreducible factorization of h(x) over 𝔽 q [z]/(𝜇(z)) is exactly ∏ 𝜇(𝜁)=0 H(𝜁, x).
Proof. Since h is irreducible, 𝔽 q [y]/(h(y)) is isomorphic to 𝔽 q n, which contains 𝔽 q m. We may thus take a generator 𝛼 ∈ 𝔽 q [y] / (h(y)) of the image of 𝔽 q m in 𝔽 q [y] / (h(y)), and write 𝜇(z) ∈ 𝔽 q [z] its minimal polynomial over 𝔽 q . Let 𝛽 be the class of y in 𝔽 q [y]/(h(y)) and let H(𝛼, x) be its monic minimal polynomial over 𝔽 q [𝛼]. Then H(𝛼, x) divides h and so do its conjugates H ( 𝛼 q i , x ) for i ∈ {0, …, m -1}. On the other hand, since H(𝛼, 𝛽) = 0, we have H ( 𝛼 q i , 𝛽 q i ) = 0, so any root of h is a root of one of the H ( 𝛼 q i , x ) , which proves the equality h(x) = ∏ 𝜇(𝜁)=0 H(𝜁, x). □

We call factorizations as in this proposition "normal factorizations". This concept can actually be defined over arbitrary fields, as follows. Let h be a monic separable polynomial in 𝕂[x], let m be a divisor of n= degh, and let 𝜇∈ 𝕂[z] be a monic separable irreducible polynomial of degree m. We set 𝕃 = 𝕂[z]/(𝜇(z)), and write 𝛼 for the class of z in 𝕃. For all roots 𝜁 of 𝜇 in 𝕂 ¯, we write 𝜎 𝜁 for the map from 𝕃 to 𝕂 ¯that sends 𝛼 to 𝜁. We say that h admits a normal factorization over 𝕃 if there exists a bivariate polynomial H(z, x) that is monic in x, of bidegree (<m, n/ m), and such that h factors into ∏ 𝜇(𝜁)=0 H(𝜁, x) over 𝕂 ¯, with H(𝜁 1 , x) and H(𝜁 2 , x) coprime whenever 𝜁 1 ≠ 𝜁 2 . We call H(𝛼, x) the normal factor of h over 𝕃. Notice that the polynomials h and H(𝜁, x) are not required to be irreducible here. For m = 2 we take 𝜇(z) = z 2 + z + 1 and present 𝕃 = 𝔽 2 2 as 𝔽 2 [z]/(𝜇(z)). Then h factors over 𝕃 as

h(x) = (x 3 + x 2 + 𝜁 1 x + 𝜁 1 + 1) (x 3 + x 2 + 𝜁 2 x + 𝜁 2 + 1),
where 𝜁 1 , 𝜁 2 are the two roots of 𝜇 in 𝔽 2 2. More precisely for 𝜁 1 we may take the class of z in 𝕃, whereas 𝜁 2 = 𝜁 1 + 1. The normal factor of h is thus H(z, x) = x 3 + x 2 + z x + z + 1. 

Single extensions

Assume that h admits a normal factorization as above. Then the Chinese remainder theorem yields a natural isomorphism

𝕂[x]/(h(x)) ≅ 𝕂[z, x]/(𝜇(z), H(z, x))
and we may define a(x) as the unique polynomial in 𝕂[x] <n that satisfies H(a(x), x) = 0 mod h(x) and 𝜇(a(x)) = 0 mod h(x). We may now adapt the algorithm from section 3.2 as follows:

Algorithm 4.1
Input. Polynomials h, 𝜇, H, a as above, and f , g in 𝕂[x] <n .

Output. f ∘ g rem h, and the characteristic polynomial of g modulo h.

1. Compute the remainder G(𝛼, x) = g(x) rem H(𝛼, x) in 𝕃[x]. 2. Compute the characteristic polynomial 𝜒(𝛼, x) of G(𝛼, x) modulo H(𝛼, x) in 𝕃[x]. 3. Compute F(𝛼, x) = f (x) rem 𝜒(𝛼, x) in 𝕃[x]. 4. Perform the modular composition 𝜚(𝛼, x) = F(𝛼, G(𝛼, x)) rem H(𝛼, x) in 𝕃[x]. 5.
Return 𝜚(a(x), x) rem h(x) and Res z (𝜒(z, x), 𝜇(z)).

PROPOSITION 4.4. Algorithm 4.1 is correct, and takes

Q 𝕃/𝕂 (n/ m) + C 𝕃/𝕂 (n/ m) + O(M 𝕂 (m n) log m) operations in 𝕂.
Proof. We first observe that

( f ∘ g)(x) rem H(𝛼, x) = ( f (x) rem 𝜒(𝛼, x)) ∘ (g(x) rem H(𝛼, x)) rem H(𝛼, x) = 𝜚(𝛼, x).
It follows that ( f ∘g)(x) rem h(x) = 𝜚(a(x), x) rem h(x), whence f ∘g rem h is computed correctly. As to the characteristic polynomial of g, the argument is the same as for Algorithm 3. 

COMPOSITION TOWERS

Effective towers

Corollary 4.5 already illustrates the potential of our ability to factor h non trivially over an extension field 𝕃 ⊇ 𝕂. This idea can be pushed even farther whenever the factors H(𝜁, x) with 𝜇(𝜁) = 0 can be factored recursively over a tower of extension fields of 𝕃. In order to carry out this generalization, we first need to decide how to compute with elements in the successive fields of such a tower. Instead of privileging particular representations, we rely on the abstract concept of an effective tower.

DEFINITION 5.1. An effective tower over 𝕂 is a tower of fields

𝕂 = 𝕂 0 ⊊ 𝕂 1 ⊊ ⋯ ⊊ 𝕂 t
with the following properties:

• Each field 𝕂 i comes with a specific way to represent its elements and algorithms for the field operations.

• For i = 1, …, t, the field 𝕂 i is a finite separable algebraic extension of 𝕂 i-1 , and we have precomputed an element 𝛼 i ∈ 𝕂 i along with its minimal polynomial 𝜇 i over

𝕂 i-1 , such that m i = deg 𝜇 i ⩾ 2 and 𝕂 i ≅ 𝕂 i-1 [𝛼 i ]. We set m ¯= max (m 1 , …, m t ). • For i = 1, …, t,

we have algorithms for computing the natural bijection Λ i , given by

𝕂 i-1 [z] <m i → → → → → → → → → → → → → Λ i 𝕂 i z ⟼ 𝛼 i and its inverse Λ i -1
. We call Λ i and Λ i -1 the upward and downward conversions at level i. The coefficientwise extensions of Λ i and

Λ i -1 yield mappings 𝕂 i-1 [z] <m i [x] → 𝕂 i [x] and 𝕂 i [x] → 𝕂 i-1 [z] <m i [x]
that we still denote by Λ i and Λ i -1

.

We denote by M 𝕂 i /𝕂 (n) the cost of multiplying two polynomials in 𝕂 i [x] <n in terms of the number of required operations in 𝕂. Similarly, we write D 𝕂 i /𝕂 for the cost of inverting an element in 𝕂 i in terms of the number of operations in 𝕂. We always assume that additions and subtractions can be done in linear time. We also let L 𝕂 i /𝕂 upper bound the costs of both the upward and downward conversions at level i.

Composition towers

Let us now return to our particular modulus h ∈ 𝕂[x] and assume that its degree n = deg h admits the factorization n = m 1 ⋯ m t with m i ⩾ 2 for i = 1, …, t. If t = 2, then Algorithm 4.1 shows how to reduce modular composition modulo h to composition modulo a polynomial over 𝕂 1 of degree n/ m 1 , provided a normal factor of h over 𝕂 1 exists and is given. In order to generalize this idea to the case when t > 2, it is useful to introduce the concept of a composition tower. DEFINITION 5.2. Let (𝕂 i ) i⩽t be an effective tower. Let h ∈ 𝕂[x] be a monic separable polynomial of degree n = m 1 ⋯ m t . We say that (𝕂 i ) i⩽t is a composition tower for h over 𝕂 if the following properties are satisfied:

• We let H 0 = h ∈ 𝕂 0 [x]
, and for each i = 1, …, t, we have precomputed a monic normal factor

H i ∈ 𝕂 i [x] of H i-1 . We let n i = deg H i = n/(m 1 ⋯ m i ). • For i = 1, …, t, we have the isomorphism 𝕂 i-1 [x]/(H i-1 (x)) ≅ 𝕂 i-1 [z, x]/ ( 𝜇 i (z), H ˘i(z, x) ) ,
where H ˘i is a shorthand for Λ i -1 (H i ) and we assume we have precomputed a polynomial a i ∈ 𝕂

i-1 [x] <n i such that H ˘i(a i (x), x) = 0 mod H i-1 (x) 𝜇 i (a i (x)) = 0 mod H i-1 (x).

Modular composition using composition towers

Given h ∈ 𝕂[x] monic and separable along with a composition tower (𝕂 i ) i⩽t , we may now apply Algorithm 4.1 recursively. Unrolling the recursive calls yields the following algorithm for modular composition.

Algorithm 5.1

Input. f , g, h ∈ 𝕂[x] of degrees <n, <n, n and a composition tower (𝕂 i ) i⩽t for h. Output. f ∘ g rem h, and the characteristic polynomial of g modulo h. 

1. Set F 0 ≔ f and G 0 ≔ g. 2. For i = 1, …, t, compute G i (x) ≔ Λ i (G i-1 ) rem H i in 𝕂 i [x]. 3. Let 𝜒 t = x -G t be the characteristic polynomial of G t modulo H t over 𝕂 t . 4. For i = t -1, …, 0 do Compute 𝜒 i (x) ≔ Res z (Λ i+1 -1 (𝜒 i+1 (x))(z, x), 𝜇 i+1 (z)). -Notice that 𝜒 i is the characteristic polynomial of G i modulo H i over 𝕂 i . 5. For i = 1, …, t, compute F i ≔ Λ i (F i-1 ) rem 𝜒 i in 𝕂 i [x]. 6. Let 𝜚 t ≔ F t 7. For i = t -1, …, 0 do Compute 𝜚 i (x) ≔ Λ i+1 -1 (𝜚 i+1 )(a i+1 (x), x) rem H i (x). -Notice that 𝜌 i = F i ∘ G i rem H i .
M 𝕂 i-1 /𝕂 (m i n i-1 ) log m i + ∑ i=1 t M 𝕂 i /𝕂 (m i n i ) + ∑ i=1 t m i D 𝕂 i-1 /𝕂 + 2 ∑ i=1 t (m i + 1) n i L 𝕂 i /𝕂 ) operations in 𝕂. Proof. Since deg G i < deg H i = n i for i = 0, …, n, the computation of Λ i (G i-1 (x)) in step 2 can be done in time n i-1 L 𝕂 i /𝕂 .
O ( ∑ i=1 t (M 𝕂 i-1 /𝕂 (m i n i-1 ) log m i + m i D 𝕂 i-1 /𝕂 ) ) + ∑ i=1 t n i L 𝕂 i /𝕂
operations in 𝕂. In step 7, the naive evaluation of Λ i+1 -1 (𝜚 i+1 (x)) at (a i+1 (x), x) modulo H i (x) using Horner's method requires O(m i+1 M 𝕂 i /𝕂 (n i )) operations in 𝕂. Consequently, step 7 requires

O ( ∑ i=1 t m i M 𝕂 i-1 /𝕂 (n i-1 ) ) + ∑ i=1 t n i L 𝕂 i /𝕂
operations in 𝕂. The conclusion follows by adding up the above bounds for the costs of the individual steps. □ Remark 5.4. For certain applications, it might be useful to generalize the algorithm to the case when h is not necessarily irreducible. In that case, we assume that the tower (𝕂 i ) i⩽t is only a "partial composition tower", meaning that we no longer require that n t = 1. In Algorithm 5.1, we then need to make two adjustments: 

TRIANGULAR TOWERS

Assume that we are given a tower

𝕂 ⊂ 𝕂[𝛼 1 ] ⊂ ⋯ ⊂ 𝕂[𝛼 1 , …, 𝛼 t ]
of finite fields such that

m i = [𝕂[𝛼 1 , …, 𝛼 i ] : 𝕂[𝛼 1 , …, 𝛼 i-1 ]] ⩾ 2 for each i. One obvious way to represent an element of 𝕂 i = 𝕂[𝛼 1 , …, 𝛼 i ] is to write it as u(𝛼 1 , …, 𝛼 i ), where u ∈ 𝕂[z 1 , …, z i ] is a polynomial with deg z 1 u < m 1 , …, deg z i u < m i .
An effective tower that uses this representation for the elements of the fields 𝕂 i is called a triangular tower. For such towers, the costs of the upward and downward conversions are zero. Throughout this section it will be convenient to make the relatively harmless assumption that n log n = O(M 𝔸 (n)) for all effective rings 𝔸. We always assume available the following precomputed data: PRE-T1. For all i ⩽ t, the pre-inverse of 𝜇 i .

Complexity analysis for triangular towers

LEMMA 6.1. Let (𝕂 i ) i⩽t be a triangular tower. Then

M 𝕂 i /𝕂 (n) ⩽ O(7 i M 𝕂 (m 1 ⋯ m i n)),
for all i ∈ {1, …, t} and n ∈ ℕ.

Proof. Let us first show how to reduce polynomial multiplication over 𝕂 i to polynomial multiplication over 𝕂 i-1 . So consider two polynomials u and v in 𝕂 i [x] <n , represented as polynomials in 𝕂 i-1 [z] <m i [x] <n evaluated at z = 𝛼 i . We may compute their product in 𝕂 i [x] <2n as follows: we first substitute x ≔ z 2mi in u and v, which yields two polynomials u ˜, v

˜∈ 𝕂 i-1 [z] <2m i n . We next compute their product in w ˜∈ 𝕂 i-1 [z] <4m i n . Now (u v) k = (w ˜2m i k + ⋯ + w ˜2m i (k+1)-1 z 2mi-1 ) rem 𝜇 i for each k ∈ {0, …, 2 n -1}.
Since each remainder can be computed using two multiplications of elements in 𝕂 i-1 [z] <m i using the pre-inverse of 𝜇 i , we obtain

M 𝕂 i /𝕂 (n) ⩽ M 𝕂 i-1 /𝕂 (2 m i n) + 4 n M 𝕂 i-1 /𝕂 (m i ) + c 0 m 1 ⋯ m i n,
for a sufficiently large constant c 0 independent of i. On the other hand, applying Karatsuba's trick, there exists a constant c 1 such that M(2 n) ⩽ 3 M(n) + c 1 n holds for all n.

If i = 1 then we have M 𝕂 1 /𝕂 (n) ⩽ M 𝕂 (2 m 1 n) + 4 M 𝕂 (m 1 n) + c 0 m 1 n, which yields M 𝕂 1 /𝕂 (n) ⩽ 7 M 𝕂 (m 1 n) + (c 0 + c 1 ) m 1 n.
We claim that

M 𝕂 i /𝕂 (n) ⩽ 7 i M 𝕂 (m 1 ⋯ m i n) + i 7 i-1 (c 0 + c 1 ) m 1 ⋯ m i n.
The proof is done by induction assuming the inequality holds for i -1:

M 𝕂 i /𝕂 (n) ⩽ 7 i-1 (3 M 𝕂 (m 1 ⋯ m i n) + c 1 m 1 ⋯ m i n) + 2 (i -1) 7 i-2 (c 0 + c 1 ) m 1 ⋯ m i n +4 (7 i-1 M 𝕂 (m 1 ⋯ m i n) + (i -1) 7 i-2 (c 0 + c 1 ) m 1 ⋯ m i n) +c 0 m 1 ⋯ m i n ⩽ 7 i M 𝕂 (m 1 ⋯ m i n) +(7 i-1 c 1 + 2 (i -1) 7 i-2 (c 0 + c 1 ) + 4 (i -1) 7 i-2 (c 0 + c 1 ) + c 0 ) m 1 ⋯ m i n ⩽ 7 i M 𝕂 (m 1 ⋯ m i n) + (7 i-1 + 2 (i -1) 7 i-2 + 4 (i -1) 7 i-2 )(c 0 + c 1 ) m 1 ⋯ m i n ⩽ 7 i M 𝕂 (m 1 ⋯ m i n) + i 7 i-1 (c 0 + c 1 ) m 1 ⋯ m i n.
□ Remark 6.2. We do not claim the constant 7 to be optimal in the latter lemma, but it is sufficient for our purposes.

LEMMA 6.3. Let (𝕂 i ) i⩽t be a triangular tower. Then inverting an element in 𝕂 i may be done with O(

7 i M 𝕂 (m 1 ⋯ m i ) log m ¯) operations in 𝕂.

Proof. By Proposition 2.2 the inverse of an element in 𝕂

i takes m i D 𝕂 i-1 /𝕂 + O(M 𝕂 i-1 /𝕂 (m i ) log m i ) operations in 𝕂.
Combined with the previous lemma, we obtain

D 𝕂 i /𝕂 ⩽ m i D 𝕂 i-1 /𝕂 + c 7 i-1 M 𝕂 (m 1 ⋯ m i ) log m i .
for some sufficiently large constant c. This yields the claimed bound. □ PROPOSITION 6.4. Let (𝕂 i ) i⩽t be a triangular composition tower for h

∈ 𝕂[x] with deg h = n = m 1 ⋯ m t . Given f , g ∈ 𝕂[
x] <n , we may then compute f ∘ g rem h and the characteristic polynomial of g modulo h using O(7 t M 𝕂 (m ¯n) log m ¯)

operations in 𝕂.

Proof. By Lemma 6.1 we have

∑ i=1 t M 𝕂 i-1 /𝕂 (m i n i-1 ) log m i + ∑ i=1 t M 𝕂 i /𝕂 (m i n i ) = O ( ∑ i=1 t 7 i-1 M 𝕂 (m i n) log m i + ∑ i=1 t 7 i M 𝕂 (m i n) ) = O(7 t M 𝕂 (m ¯n) log m ¯).
Then Lemma 6.3 gives

∑ i=1 t m i D 𝕂 i-1 /𝕂 = O ( ∑ i=1 t m i 7 i-1 M 𝕂 (m 1 ⋯ m i-1 ) log m ¯)= O(7 t M 𝕂 (n) log m ¯).
The conclusion follows from Theorem 5.3. □

Smooth degrees over finite fields

Recall that an integer n is said to be b-smooth whenever all its prime factors are at most b. 𝜀log n ) operations in 𝕂.

Proof. We appeal to the previous lemma to construct the integer sequence m 1 , …, m t for which we precompute a triangular decomposition tower for h. The cost of Proposition 6.4 simplifies to

O(7 t M 𝕂 (n 1+𝜀 ) log n 𝜀 ) = O ˜(𝜀 n 1+𝜀+ 2log 7 𝜀log n ) . □ Notice that 𝜀 = 𝜂(n) = 2 log 7 log n
√ minimizes the latter exponent, which leads to the cost

O ˜(n 1+2𝜂(n) ) = n 1+o(1) provided that n is n 𝜂(n) -smooth.
Remark 6.7. It is well known that the number of n 𝜀 -smooth integers below an integer n is asymptotically equal to n 𝜌(1/ 𝜀) + O(n / log n), where 𝜌 is the Dickman-de Bruijn function defined by x 𝜌ʹ(x) + 𝜌(x -1) = 0 with initial condition 𝜌(x) = 1 for all x ∈ [0, 1] (see [START_REF] Ramaswami | On the number of positive integers less than x and free of prime divisors greater than x c[END_REF] for the original proof).

For 𝜀 = 1/2, we have 𝜌(2) ≈ 0.31. Then 𝜌 decreases rapidly with 𝜌(3) ≈ 0.049, 𝜌(4) ≈ 0.0049, etc. Another important consequence of Proposition 6.4 is the following: for more than 30% of large values of n, modular compositions and characteristic polynomials for irreducible h of degree n over 𝔽 q may be computed using n 3/2+o (1) operations in 𝔽 q .

Cyclic modulus of prime degree over a finite field

An interesting application of Proposition 6.4 concerns cyclic moduli h(x) = x n -1 in 𝔽 q [x], where n is a prime number different from the characteristic p.

LEMMA 6.8. If n is a prime number different from p, and if l divides n -1, then the degrees of the irreducible factors of x n -1 in 𝔽 q l[x] divide (n -1)/ l.

Proof. Assume that l divides n -1, and write m = (n -1)/ l. It is well known that the polynomial x (q l ) mx is the product of the monic irreducible polynomials of 𝔽 q l whose degrees divide m. We obtain gcd ( x (q l ) mx, x n -1 ) = gcd ( x q n-1 mod nx, x n -1 ) = x n -1, by using Fermat's little theorem, which asserts that q n-1 = 1 mod n. □ COROLLARY 6.9. Let 𝜀 > 0. If n is a prime number different from p, and if n -1 is n 𝜀 -smooth, then we may precompute suitable triangular decomposition towers for all irreducible factors of h, so one composition or characteristic polynomial modulo h ∈ 𝔽 q [x] may be obtained using

O ˜(𝜀 n 1+𝜀+ 2log 7 𝜀log n ) operations in 𝔽 q .
Proof. The modulus h(x) = x n -1 is separable, and the precomputations first involve the irreducible factorization of h(x) into h 1 , …, h s , whose respective degrees n 1 , …, n s divide n -1.

Since n -1 is n 𝜀 -smooth, each n i is n 𝜀i -smooth, where 𝜀 i = 𝜀 logn/log n i . Consequently, for the modulus h i , the cost of Corollary 6.6 simplifies to

O ˜(𝜀 i n i 1+𝜀i+ 2log 7 𝜀 i log n i ) = O ˜(𝜀 n 𝜀 n i 1+ 2log 7 𝜀log n ) .

The total cost for all h

i is thus O ˜(𝜀 n 1+𝜀+ 2log 7 𝜀log n ) . Applying Proposition 3.2, this leads to the cost O(M(n) log n) + ∑ i=1 s (Q 𝕂 (n i ) + C 𝕂 (n i ))
for one composition or characteristic polynomial modulo h. □

PRIMITIVE TOWERS

Proposition 6.4 shows that the overhead of triangular set arithmetic rapidly grows with the height t of the tower. In this section we consider an alternative representation for elements in the fields 𝕂 i . This representation allows for faster multiplication inside the fields 𝕂 i , but the upward and downward conversions may become more expensive. One major goal of this section is to provide a more precise analysis of the cost of these conversions and to isolate particular situations in which they can be computed fast.

Primitive towers

An effective tower (𝕂 i ) i⩽t with 𝕂 i ≅ 𝕂 i-1 [𝛼 i ] is said to be primitive if 𝕂 i = 𝕂[𝛼 i ] for each i.
In that case, we assume that we precomputed the minimal polynomial 𝜈 i of each 𝛼 i over 𝕂. It follows that

M 𝕂 i /𝕂 (n) = O(M 𝕂 (m 1 ⋯ m i n)) (7.1) D 𝕂 i /𝕂 = O(M 𝕂 (m 1 ⋯ m i ) log(m 1 ⋯ m i )), (7.2) 
for i = 0,…,n. On the other hand, the upward and downward conversions are more expensive than in the case of triangular towers. The following consequence of (7.1), (7.2) and Theorem 5.3 will be of frequent use. Proof. We have

∑ i=1 t M 𝕂 i-1 /𝕂 (m i n i-1 ) log m i = O(M 𝕂 (m ¯n) log n) ∑ i=1 t M 𝕂 i /𝕂 (m i n i ) = O(M 𝕂 (m ¯n) log n) ∑ i=1 t m i D 𝕂 i-1 /𝕂 = ∑ i=1 t m i M 𝕂 (m 1 ⋯ m i-1 ) log(m 1 ⋯ m i-1 ) = O(M 𝕂 (n) log n),
so the conclusion follows from Theorem 5.3. □

Arbitrary primitive elements

For computing with arbitrary primitive towers, we recall that we always assume available the following precomputed data: PRE-P1. For all i ⩾ j, the minimal polynomial of 𝛼 i over 𝕂 j , PRE-P2. For all i ⩾ j ⩾ 1, the minimal polynomial of 𝛼 i over 𝕂 j-1 [𝛼 j ], PRE-P3. For all i ⩾ j ⩾ 1, the polynomial expression of 𝛼 j in terms of 𝛼 i over 𝕂 j-1 . Assume that 𝕂 i = 𝕂[𝛼 i ] for some arbitrary primitive element 𝛼 i . For a natural morphism 𝔸 → 𝔹 for 𝕂-algebras 𝔸 and 𝔹, let C 𝕂 (𝔸 → 𝔹) denote the cost of applying the morphism once in terms of the number of required operations in 𝕂.

LEMMA 7.2. Modulo the above precomputations, we have for all 1 ⩽ j < i ⩽ t,

C 𝕂 (𝕂 j [𝛼 i ] → 𝕂 j-1 [𝛼 i ]) = m j+1 ⋯ m i C 𝕂 (𝕂 j → 𝕂 j-1 [𝛼 j ]) + O(m j M 𝕂 (m 1 ⋯ m i )) (7.3) C 𝕂 (𝕂 j-1 [𝛼 i ] → 𝕂 j [𝛼 i ]) = m j+1 ⋯ m i C 𝕂 (𝕂 j-1 [𝛼 j ] → 𝕂 j ) + O(m j M 𝕂 (m 1 ⋯ m i )). (7.4) Proof. Let u ˜(𝛼 j , 𝛼 i ) ∈ 𝕂 j [𝛼 i ] with u ˜∈ 𝕂[z j ] <m 1 ⋯m j [z i ] <m j+1 ⋯m i . We may convert u ˜(𝛼 j , 𝛼 i ) into u(𝛼 j , 𝛼 i ) ∈ 𝕂 j-1 [𝛼 j , 𝛼 i ] with u ∈ 𝕂 j-1 [z j ] <m j [z i ] <m j+1 ⋯m i using m j+1 ⋯ m i C 𝕂 (𝕂 j → 𝕂 j-1 [𝛼 j ])
operations in 𝕂. Then we use the precomputed polynomial b ∈ 𝕂 j-1 [z i ] <m j ⋯m i with 𝛼 j = b(𝛼 i ), and also the minimal polynomial w ∈ 𝕂 j-1 [z i ] of 𝛼 i over 𝕂 j-1 , which has degree m j ⋯ m i . We now compute 𝜚(x) = u(b(x), x) remw(x) using Horner's method. This requires O(m j

M 𝕂 j-1 /𝕂 (m j ⋯ m i )) = O(m j M 𝕂 (m 1 ⋯ m i )) operations in 𝕂. The evaluation 𝜚(𝛼 i ) is the natural image of u ˜(𝛼 j , 𝛼 i ) in 𝕂 j-1 [𝛼 i ].
This proves (7.3).

For the opposite direction, consider u(𝛼 i ) ∈ 𝕂 j-1 [𝛼 i ] and reinterpret u(𝛼 i ) as an element of 𝕃[𝛼 i ] with 𝕃 = 𝕂 j-1 [𝛼 j ] and u ∈ 𝕃[z i ] <m j ⋯m i . We use the precomputed minimal polynomial 𝜃 ∈ 𝕃[z i ] of 𝛼 i over 𝕃, which has degree m j+1 ⋯ m i . We next compute w

= u rem 𝜃 ∈ 𝕃[z i ]. This requires O(m j M 𝕃/𝕂 (m j+1 ⋯ m i )) = O(m j M 𝕂 (m 1 ⋯ m i )) operations in 𝕂. We finally convert w(𝛼 i ) coeffi- cientwise into an element w ˜(𝛼 i ) of 𝕂 j [𝛼 i ]. This requires m j+1 ⋯ m i C 𝕂 (𝕂 j-1 [𝛼 j ] → 𝕂 j ) operations in 𝕂 and yields the natural image of u ˜(𝛼 i ) in 𝕂 j [𝛼 i ].
This completes the proof of (7.4). □ LEMMA 7.3. Modulo precomputations, we have for all i ⩽ t and j, k ∈ {0, …, i},

C 𝕂 (𝕂 j [𝛼 i ] → 𝕂 k [𝛼 i ]) = O((m i + 2 m i-1 + ⋯ + 2 i-1 m 1 ) M 𝕂 (m 1 ⋯ m i )).
Proof. It will be convenient to use the following abbreviations:

𝜎 j,k = m j + ⋯ + m k 𝜋 j,k = m j ⋯ m k Σ j,k = 2 k-j m j + ⋯ + 2 m k-1 + m k .
Let c be a constant such that

C 𝕂 (𝕂 j [𝛼 i ] → 𝕂 j-1 [𝛼 i ]) ⩽ 𝜋 j+1,i C 𝕂 (𝕂 j → 𝕂 j-1 [𝛼 j ]) + c m j M 𝕂 (𝜋 1,i ) (7.5) C 𝕂 (𝕂 j-1 [𝛼 i ] → 𝕂 j [𝛼 i ]) ⩽ 𝜋 j+1,i C 𝕂 (𝕂 j-1 [𝛼 j ] → 𝕂 j ) + c m j M 𝕂 (𝜋 1,i ) (7.6)
in the previous lemma and let us show by induction over i that

C 𝕂 (𝕂 j [𝛼 i ] → 𝕂 k [𝛼 i ]) ⩽ c Σ 1,i M 𝕂 (𝜋 1,i ). ( 7.7) 
For i = 1, we have 𝕂 1 [𝛼 1 ] = 𝕂 0 [𝛼 1 ], so all possible conversions are trivial and (7.7) holds. Now assume that the result holds until i -1 ⩾ 0. Let us first consider the case when j < k < i. Then (7.6) yields

C 𝕂 (𝕂 j [𝛼 i ] → 𝕂 k [𝛼 i ]) ⩽ ∑ l= j+1 k C 𝕂 (𝕂 l-1 [𝛼 i ] → 𝕂 l [𝛼 i ]) ⩽ ∑ l= j+1 k 𝜋 l+1,i C 𝕂 (𝕂 l-1 [𝛼 l ] → 𝕂 l ) + c 𝜎 j+1,k M 𝕂 (𝜋 1,i ) ⩽ ∑ l= j+1 k c 𝜋 l+1,i Σ 1,l M 𝕂 (𝜋 1,l ) + c 𝜎 j+1,k M 𝕂 (𝜋 1,i ) ⩽ ∑ l= j+1 k c Σ 1,l M 𝕂 (𝜋 1,i ) + c 𝜎 j+1,k M 𝕂 (𝜋 1,i ) = c M 𝕂 (𝜋 1,i ) ( ∑ l= j+1 k Σ 1,l + 𝜎 j+1,k ) ⩽ c M 𝕂 (𝜋 1,i ) Σ 1,i . Since 𝕂 i [𝛼 i ] = 𝕂 i = 𝕂 0 [𝛼 i ],
this also deals with the case when k < j = i. If k < j < i, then (7.5) yields

C 𝕂 (𝕂 j [𝛼 i ] → 𝕂 k [𝛼 i ]) ⩽ c Σ 1,i M 𝕂 (𝜋 1,i )
in a similar way. This also deals with the case when j < k = i. We conclude by induction. □ COROLLARY 7.4. Modulo precomputations, we have for all i ⩽ t, Proof. From Corollary 7.4 we deduce

L 𝕂 i /𝕂 = O((m i + 2 m i-1 + ⋯ + 2 i-1 m 1 ) M 𝕂 (m 1 ⋯ m i )).
∑ i=1 t n i L 𝕂 i /𝕂 = O ( ∑ i=1 t m i + 2 m i-1 + ⋯ + 2 i-1 m 1 ) M 𝕂 (n) = O(m ¯2t M 𝕂 (n)), (7.8) 
so the conclusion follows from Lemma 7.1. □

Comparing to Proposition 6.4, using primitive towers thus turns out to be more efficient than using triangular towers, although it requires more precomputations. Therefore the costs for the two particular cases studied in sections 6.2 and 6.3 may be revisited and slightly improved.

Nested towers

We say that a primitive tower (𝕂 i ) i⩽t with 𝕂 i = 𝕂[𝛼 i ] is a nested tower, if there exist 𝜏 i , 𝜅 i ∈ 𝕂 [z] with deg 𝜏 i = m i , deg 𝜅 i = k i ⩽ m i , 𝜅 i (𝛼 i ) ≠ 0, 𝜏 i and 𝜅 i coprime, and

𝜏 i (𝛼 i ) = 𝛼 i-1 𝜅 i (𝛼 i ) (i = 2, …, t).
Setting 𝜏 1 (z) = 𝜈 1 (z) and 𝜅 1 (z) = z, this also means that

𝜈 i = 𝜅 i m 1 ⋯m i-1 𝜈 i-1 (𝜏 i /𝜅 i ) (i = 2, …, t),
so that 𝜈 i has degree m 1 ⋯ m i . For this specific type of towers we require the following precomputations:

PRE-N1. 𝜅 i 2 j
, 𝜏 i

2 j and 𝜅 i -2 j mod 𝜏 i 2 j
for 1 ⩽ i ⩽ t and 0 ⩽ j < s, where 2 s is the smallest power of two above m 1 ⋯ m i . LEMMA 7.6. Given a nested tower (𝕂 i ) i⩽t , we have

L 𝕂 i /𝕂 = O(M 𝕂 (m 1 ⋯ m i ) log (m 1 ⋯ m i ))
for all i ∈ {1, …, t}.

Proof. Consider an element u(𝛼

i-1 , 𝛼 i ) ∈ 𝕂 i-1 [𝛼 i ] with u ∈ 𝕂[y] <m 1 ⋯m i-1 [z] <m i . Let l be the smallest power of two above m 1 ⋯ m i-1 . Then we may compute w ˜(z) = 𝜅 i (z) l u(𝜏 i (z) /𝜅 i (z), z) so that w ˜(𝛼 i ) = 𝜅 i (𝛼 i ) l Λ i (u(𝛼 i-1 , z)
). This computation follows the natural "divide and conquer" strategy: given 𝜑 ∈ 𝕂[y] <l [z] <m i , we split it into 𝜑(y, z) = 𝜑 0 (y, z) + y l/2 𝜑 1 (y, z) with deg y 𝜑 0 < l /2, we compute recursively A(z) = 𝜅 i (z) l/2 𝜑 0 (𝜏 i (z) / 𝜅 i (z), z) and B(z) = 𝜅 i (z) l/2 𝜑 1 (𝜏 i (z) / 𝜅 i (z), z), and deduce

𝜅 i (z) l 𝜑 ( 𝜏 i (z) 𝜅 i (z) , z ) = 𝜅 i (z) l/2 A(z) + 𝜏 i (z) l/2 B(z).
We may end the recurrence when l = 2, which incurs a cost O(M 𝕂 (m i )) that is repeated O(m 1 ⋯ m i-1 ) times in total. For each depth of the recursive calls the total cost remains O(M 𝕂 (m 1 ⋯ m i )) operations in 𝕂. The overall cost of the method is

O(M 𝕂 (m 1 ⋯ m i ) log(m 1 ⋯ m i-1 )). The computation of the inverse of 𝜅 i (𝛼 i ) l requires O(M 𝕂 (m 1 ⋯ m i ) log(m 1 ⋯ m i )) additional operations in 𝕂.
Conversely, let w(𝛼 i ) ∈ 𝕂 i with w ∈ 𝕂[z] <m 1 ⋯m i , and let l be the smallest power of two above m 1 ⋯ m i . We compute w ˜(z) = 𝜅 i l (z) w(z) rem 𝜈 i (z) and look for an expansion of the form

w ˜= u 0 𝜅 i l + u 1 𝜅 i l-1 𝜏 i + ⋯ + u l-1 𝜏 i l-1
, where the u i ∈ 𝕂[z] <m i . We again use the "divide and conquer" strategy:

• Compute w ˜0 = 𝜅 i -l/2 w ˜mod 𝜏 i l/2
, and recursively compute the expansion

w ˜0 = u 0 𝜅 i l/2 + u 1 𝜅 i l/2-1 𝜏 i + ⋯ + u l/2-1 𝜅 i 𝜏 i l/2-1 . • Compute w ˜1 = (w ˜-w ˜0 𝜅 i l/2 ) quo 𝜏 i l/2
, and recursively compute the expansion

w ˜1 = u l/2 𝜅 i l/2 + u l/2+1 𝜅 i l/2-1 𝜏 i + ⋯ + u l-1 𝜏 i l/2-1
.

At the end we have w ˜= 𝜅 i l/2 w ˜0 + 𝜏 i l/2 w ˜1, as required. Thanks to the precomputations this expan-

sion requires O(M 𝕂 (m 1 ⋯ m i ) log(m 1 ⋯ m i-1 )) operations in 𝕂. Now we observe that w(𝛼 i ) = 𝜅 i -l (𝛼 i ) w ˜(𝛼 i ) = u 0 (𝛼 i ) + u 1 (𝛼 i ) 𝛼 i-1 + ⋯ + u l-1 (𝛼 i ) 𝛼 i-1 l-1 = u(𝛼 i-1 , 𝛼 i ), where u ∈ 𝕂[y] <l [x] <m i and u(𝛼 i-1 , z) = Λ i -1 (w(𝛼 i )). A final reduction by 𝜈 i-1 (y) takes O(m i M(m 1 ⋯ m i-1 )) operations in 𝕂. □ COROLLARY 7.7. Let (𝕂 i ) i⩽t

be a nested composition tower for h ∈ 𝕂[x] with deg h = n. Then we may compute one composition or characteristic polynomial modulo h using O(t M 𝕂 (m ¯n) log n) operations in 𝕂.

Proof. Lemma 7.6 implies

∑ i=1 t n i L 𝕂 i /𝕂 = O ( ∑ i=1 t n i M 𝕂 (m 1 ⋯ m i ) log (m 1 ⋯ m i-1 ) ) = O(t M 𝕂 (n) log n). (7.9)
The result now follows from Lemma 7.1. □

The above corollary makes nested composition towers extremely attractive from a complexity point of view. The existence of such towers only depends on 𝕂 and the degrees m 1 , …, m t , but not on h. A practical way to construct nested towers is to pick random monic 𝜏 1 , …, 𝜏 t of degrees m 1 , …, m t and to check that 𝜏 1 ∘ ⋯ ∘ 𝜏 i is irreducible for each i ∈ {1, …, t}. We repeat this process for random choices of 𝜏 1 , …, 𝜏 t until we find a suitable tower. From a heuristic point of view, we will show below that the probability that we eventually obtain a nested tower is nonzero in most cases of interest. From a theoretical point of view, the existence problem of nested towers remains an interesting problem.

In order to analyze the probability that random choices of 𝜏 1 , …, 𝜏 t provide us with a nested tower, we rely on • the fact that a random polynomial over 𝕂 of degree d is irreducible with probability ≈1/ d;

• the heuristic assumption that 𝜏 1 ∘ ⋯ ∘ 𝜏 i is again random for i ∈ {2, …, t}. In this framework, the probability that 𝜏 1 ∘ ⋯ ∘ 𝜏 i is irreducible for each i ∈ {1, …, t} is given by

P = 1 m 1 t m 2 t-1 ⋯ m t-1 2 m t .
On the other hand, if 𝕂 has cardinality q, then we have

N = q m 1 +⋯+mt
possible choices for the tuple (𝜏 1 , …, 𝜏 i ). For a fixed value of n, we maximize P by taking m 1 ⩽ m 2 ⩽ ⋯ ⩽ m t . Setting m av = (m 1 + ⋯ + m t )/ t, we then have

P ⩾ m av -( t 2) N = q tmav .
The existence of a nested tower over 𝕂 with extension degrees m 1 , …, m t is likely whenever P N ≫ 1. Taking logarithms, this happens as soon as log q > t log mav 2 m av .

The algorithm for finding 𝜏 1 ∘ ⋯ ∘ 𝜏 i needs O(m 1 t m 2 t-1 ⋯ m t ) runs before finding a suitable tower. An obvious optimization is to make a better use of successful guesses of 𝜏 1 , …, 𝜏 i for which 𝜏 1 ∘ ⋯ ∘ 𝜏 j is irreducible for all j ∈ {1, …, i}: instead of starting everything over after one unsuccessful guess of 𝜏 i+1 , we try at least c m 1 ⋯ m i+1 times for some fixed constant c. The expected number of guesses then drops to O(n). Remark 7.8. Taking 𝕂 = 𝔽 2 and m 1 = m 2 = m 3 = 5, it can be checked that there do not exist any polynomials 𝜏 1 , 𝜏 2 , 𝜏 3 ∈ 𝕂[x] of degree 5 such that 𝜏 1 , 𝜏 1 ∘ 𝜏 2 and 𝜏 1 ∘ 𝜏 2 ∘ 𝜏 3 are all irreducible.

It is an interesting question whether there exist finite fields 𝕂 and sequences m 1 , m 2 , … for which it is possible to construct monic 𝜏 1 , 𝜏 2 , … ∈ 𝕂[x] of degrees m 1 , m 2 , … such that 𝜏 1 ∘ ⋯ ∘ 𝜏 i is irreducible for each i. The literature contains specific constructions of nested towers over finite fields based on [8, Lemma 1] which relates the irreducibility of 𝜅 i m 1 ⋯m i-1 𝜈 i-1 (𝜏 i / 𝜅 i ) to 𝜏 i (z) -𝛽 𝜅 i (z) where 𝜈 i-1 (𝛽) = 0. We refer the reader to [35, chapter 3, section 2] for a nice survey. Let us exemplify two useful constructions.

Example 7.9. Following [START_REF] Kyuregyan | Recurrent methods for constructing irreducible polynomials over F q of odd characteristics[END_REF]Theorem 4], if q= 1 mod4 is a prime power, and 𝜈 1 (z) = z 2 + b z + c ∈ 𝔽 q , where b ≠ 0, and c is a nonzero square and b 2 -4 c is a non-square in 𝔽 q . Then we may build a nested tower with 𝜏 i (z) = x 2 + c, 𝜅 i (z) = 2 z, [𝕂 i : 𝕂] = 2 i . For instance we may take q = 5, b = 3, and c = 4.

Example 7.10. This following construction is also due to Kyuregyan [START_REF] Kyuregyan | Recurrent methods for constructing irreducible polynomials over F q of odd characteristics[END_REF]Theorem 7]. Let 𝜈 1 (z) be an irreducible polynomial of degree m 1 ⩾ 1 over 𝔽 q , where m 1 is even if q = 3 mod 4. Let b ∈ 𝔽 q such that 𝜈 1 (-b/ 2) is a non-square in 𝔽 q . Then we may take 𝜏 i (z) = z 2 + b z + b 2 /4b/2 and 𝜅 i (z) = 1 for all i ⩾ 2. In this way we have [𝕂 i : 𝕂] = m 1 2 i-1 . For instance with q = p = 7, we may take 𝜈 1 (z) = z 4 + z + 1, b = 3, 𝜏 i (z) = z 2 + 3 z + 6. Notice that computations with nested towers simplifies a bit in this situation where 𝜅 i = 1 for all i ⩾ 2.

Example 7.11. One may wonder whether the above examples admit generalizations for which the 𝜏 i are of odd degree ⩾3. A non trivial candidate example of this kind is the sequence 𝜈 k ≔ (x 3 + x 2 + 1) ∘k . We verified 𝜈 k to be irreducible over 𝔽 2 for k ⩽ 11, but does this hold for all k?

Composed towers

Over finite fields, the situation when the m i are pairwise coprime may be exploited to construct special towers, relying on the following well-known lemma: LEMMA 7.12. Let 𝕂 be a finite field and consider two monic irreducible polynomials 𝜈 and 𝜆 in 𝕂[x] whose degrees are coprime. Then the composed product 𝜈 ⊙ 𝜆 ∈ 𝕂[z], defined by

(𝜈 ⊙ 𝜆)(z) = ∏ 𝜈(𝜁)=0 ∏ 𝜆(𝜉)=0 (z -𝜁 𝜉) = ∏ 𝜈(𝜁)=0 𝜁 deg 𝜆 𝜆(𝜁 -1 z) = ∏ 𝜆(𝜉)=0 𝜉 deg 𝜈 𝜈(𝜉 -1 z),
is irreducible in 𝕂[x] and of degree deg 𝜈 deg 𝜆.

Proof. See for instance [START_REF] Brawley | Irreducibles and the composed product for polynomials over a finite field[END_REF]. □ Remark 7.13. Given primitive elements 𝛼 and 𝛽 of coprime degrees d and e over 𝕂, an alternative way to state the lemma is that 𝛼 𝛽 is again a primitive element of degree d e over 𝕂.

Remark 7.14. Composed products can be computed in softly linear time [START_REF] Bostan | Fast computation of special resultants[END_REF], by means of the Newton-Girard identities (see also [START_REF] Grenet | Deterministic root finding over finite fields using Graeffe transforms[END_REF] for handling these identities in small characteristic).

Let (𝕂 i ) i⩽t be a primitive tower and let 𝛼 i , m i and 𝜈 i be as usual. We say that (𝕂 i ) i⩽t is a composed tower if the m i are pairwise coprime and if there exist monic irreducible polynomials

𝜆 1 , …, 𝜆 t ∈ 𝕂[z] of degrees m 1 , …, m t such that 𝜈 1 = 𝜆 1 and 𝜈 i = 𝜈 i-1 ⊙ 𝜆 i for i = 2, …, t.
In that case, the minimal polynomial 𝜇 i of 𝛼 i over 𝕂 i-1 is given by 𝜇 1 (z) = 𝜈 1 (z) and 𝜇 i (z) = 𝛼 i-1 mi 𝜆 i (𝛼 i-1 -1 z) for i ⩾ 2: if 𝜇 i were reducible over 𝕂 i-1 then m i would have a proper gcd with

[𝕂 i-1 : 𝕂] = m 1 ⋯ m i-1 which is impossible (see Proposition 4.1).
By construction, we thus have 𝜈 i-1 (𝛼 i-1 ) = 0 and 𝜇 i (𝛼 i ) = 0. For each i ⩾ 2, let 𝜉 i be a root of 𝜆 i and 𝛼 i = 𝜉 i 𝛼 i-1 , so that 𝜆 i (𝛼 i-1

-1 𝛼 i ) = 0. For such composed towers, we assume that the following precomputations have been done for i ∈ {1, …, t}: PRE-C1. z -1 mod 𝜆 i (z), PRE-C2. the trace map of 𝕂[z]/(𝜆 i (z)) over 𝕂 (as a vector of 𝕂 mi ),

PRE-C3. 𝜈i(z)

𝜈 i-1 (y -1 z) and its inverse modulo 𝜈 i-1 (y -1 z) and 𝜆 i (y). LEMMA 7.15. Let (𝕂 i ) i⩽t be a composed tower. Then we have

L 𝕂 i /𝕂 = O(M 𝕂 (m 1 ⋯ m i-1 m i 2 )), for all i ∈ {1, …, t}. Proof. Let u(𝛼 i ) ∈ 𝕂[𝛼 i ] with u ∈ 𝕂[z] <m 1 ⋯m i . We wish to compute w(𝛼 i-1 , z) = Λ i -1 (u(𝛼 i )) with w ∈ 𝕂[y] <m 1 ⋯m i-1 [z] <m i . For this purpose we first calculate w ˜(y, z) = (u(y z) mod 𝜆 i (y)) mod 𝜈 i-1 (z) using O(m 1 ⋯ m i M 𝕂 (m i ) + m i M 𝕂 (m 1 ⋯ m i )) operations in 𝕂. Then w(𝛼 i-1 , z) = w ˜(𝛼 i-1 -1 z, 𝛼 i-1 ) mod 𝜇 i (z) can be computed using O(m i M(m 1 ⋯ m i-1 )) additional operations. Conversely, let w(𝛼 i-1 , z) ∈ 𝕂[𝛼 i-1 ][z] with w ∈ 𝕂[y] <m 1 ⋯m i-1 [z] <m i . The direct image u(𝛼 i ) = Λ i (w(𝛼 i-1 , z)) with u ∈ 𝕂[z] <m 1 ⋯m i is obtained via Chinese remaindering: u(z) = ∑ 𝜆 i (𝜉)=0 w(𝜉 -1 z, z) 𝜈 i (z) 𝜈 i-1 (𝜉 -1 z) (( 𝜈 i (z) 𝜈 i-1 (𝜉 -1 z) ) -1 mod 𝜈 i-1 (𝜉 -1 z) )
.

In fact we just verify that u

(𝛼 i ) = w(𝜉 i -1 𝛼 i , 𝛼 i ) = w(𝛼 i-1 , 𝛼 i ). So if we let 𝕃 i = 𝕂[y]/(𝜆 i (y)), then we may calculate u(z) = Tr 𝕃 i /𝕂 ( w(y -1 z, z) 𝜈 i (z) 𝜈 i-1 (y -1 z) (( 𝜈 i (z) 𝜈 i-1 (y -1 z) ) -1 mod 𝜈 i-1 (y -1 z) )) , which takes O(M 𝕂 (m 1 ⋯ m i-1 m i 2
)) operations in 𝕂, when using our assumption that 𝜈i(z)

𝜈 i-1 (y -1 z) and its inverse modulo 𝜈 i-1 (y -1 z) and 𝜆 i (y) have been precomputed. □ COROLLARY 7.16. Let (𝕂 i ) i⩽t be a composed composition tower for h∈ 𝕂[x] with degh = n. Then, given f , g ∈ 𝕂[x] <n , we may compute f ∘ g rem h using O(m ¯M𝕂 (m ¯n) log n) operations in 𝕂.

Proof. Lemma 7.15 implies

∑ i=1 t n i L 𝕂 i /𝕂 = O ( ∑ i=1 t n i M 𝕂 (m 1 ⋯ m i-1 m i 2 ) ) = O(t M 𝕂 (m ¯n)). (7.10) 
We conclude by Lemma 7.1. □ Given a number c > 0, we say that an integer n > 1 is c-super-smooth if for every prime power m that divides n, we have m⩽ 2 log c n. For instance, the product of the first 𝜏 prime numbers grows as e (1+o(1))𝜏 log 𝜏 (see for instance [16, chapter 22]) and is therefore 1-super-smooth for sufficiently large 𝜏. Similarly, the number lcm(1,…,k) is 1-super-smooth for every k ⩾ 3. For a fixed modulus of super-smooth degree, the following corollary shows that modular composition can be done in softly linear time in this specific situation: COROLLARY 7.17. Let h∈ 𝕂[x] be a fixed irreducible polynomial of c-super-smooth degree n over a finite field 𝕂, and assume a composed composition tower has been precomputed for h. Then, given any f , g ∈ 𝕂[x] <n , we may compute f ∘ g rem h using O(n (log n) 2+2c+o (1) ) operations in 𝕂.

Proof. We apply the previous corollary with m ¯⩽ 2 log c n and M 𝕂 (n) = O(n log n log log n). □

Artin-Schreier towers

Using the composed tower approach, we are left with the question how to deal with algebraic extensions of prime power degree n = r k . In the case when r coincides with the characteristic p of the field 𝕂 = 𝔽 p , one may use Artin-Schreier towers instead, as outlined below.

An Artin-Schreier polynomial over a field 𝕂 of characteristic p > 0, is an irreducible polynomial of 𝕂[x] of the form x pxa. An Artin-Schreier tower of height t over 𝔽 q is a tower of field extensions 𝔽 q ⊂ 𝔽 q p ⊂ ⋯ ⊂ 𝔽 q p t where each extension 𝔽 q p i+1 is explicitly constructed from an Artin-Schreier polynomial over 𝔽

q p i.
In order to simplify the presentation, we restrict ourselves to the case when 𝕂 = 𝔽 p . For the minimal polynomials of the successive extensions, we take

𝜇 1 (z) = z p -z -1 𝜇 2 (z) = z p -z -𝛼 1 (i = 2, p = 2) 𝜇 i (z) = z p -z -𝛼 i-1 2 p-1
(all other cases).

In [START_REF] Feo | Fast arithmetics in Artin-Schreier towers over finite fields[END_REF]Theorem 2], it is shown that this defines a primitive tower. The polynomials 𝜈 i may be computed using O(p n log p n + M 𝔽 p (p n) log p) operations in 𝔽 p , according to [9, Theorems 12]. We assume that the following precomputations have been done for i ∈ {1, …, t} (see [9, end of section 4]):

PRE-A1. the trace map on 𝔽

p [𝛼 i-1 , z]/(𝜇 i (z)) over 𝔽 p in the canonical basis, PRE-A2. (v i ʹ ) -1 mod 𝜈 i .
The costs of these precomputations are O(M 𝔽 p (p i )) and O(M 𝔽 p (p i ) log(p i )), respectively. We now have the following complexity bound for the upward and downward conversions. LEMMA 7.18. [9, Theorem 13] Let (𝕂 i ) i⩽t be an Artin-Schreier tower. Then, modulo precomputations, we have

L 𝕂 i /𝔽 p = O(p i+1 log p 2 (p i ) + p M 𝔽 p (p i ))
for all i ∈ {1, …, t}.

COROLLARY 7.19. Let (𝕂 i ) i⩽t be an Artin-Schreier composition tower for h

∈ 𝕂[x] with deg h = n = p t . Then, given f , g ∈ 𝕂[x] <n , we may compute f ∘ g rem h using O(p 2 n log 3 n) operations in 𝔽 p .
Proof. Lemma 7.18 implies

∑ i=1 t n i L 𝕂 i /𝔽 p = O ( ∑ i=1 t p t-i (p i+1 log p 2 (p i ) + p M 𝔽 p (p i )) ) = O(t (p t+1 log p 2 (p t ) + p M 𝔽 p (p t ))). (7.11) 
From Lemma 7.1, it follows that f ∘ g rem h can be computed using O(p

2 n log 3 n + p 2 M 𝔽 p (n) + M 𝔽 p (p n) log n) operations in 𝔽 p . Using the fact that M 𝔽 p (n) = O(n log n log log n), the result follows. □

BUILDING COMPOSITION TOWERS

Let 𝕂 = 𝔽 q be a given finite field and let h be a given monic irreducible polynomial of degree n = m 1 ⋯ m t over 𝕂. In this section we consider the task of constructing composition towers for h. In fact, we may distinguish three different problems of increasing complexity:

1. Building an algebraic tower (𝕂 i ) i⩽t with the prescribed extension degrees m i = [𝕂 i : 𝕂 i-1 ];

2. Building a composition tower for some monic irreducible h ∈ 𝕂[x] of degree n;

3. Building a composition tower for the prescribed modulus h.

Moreover, one may study these problems for each type of towers that we have encountered so far. From now on, we drop the study of triangular towers, for simplicity and because primitive towers are more efficient anyway. Given an effective tower, we notice that the construction of a primitive tower still requires computing the minimal polynomials 𝜈 i over 𝕂 of the 𝛼 i . In general, it is not known how to do this in quasilinear time without using the modular composition algorithm by Kedlaya and Umans.

The traditional solution to the first problem involves computing irreducible polynomials 𝜇 i of "small" degrees m i over "large" field extensions 𝕂 i-1 . The number of operations in 𝕂 i-1 then grows with m i log q m 1 ⋯m i-1 , even with the fastest known algorithm of Shoup [START_REF] Shoup | Fast construction of irreducible polynomials over finite fields[END_REF]. In total this leads to at least a quadratic cost in n to build an effective tower. In [START_REF] Gathen | Boolean circuits versus arithmetic circuits[END_REF]Proposition 4.6] von zur Gathen and Seroussi proved the lower bound Ω(log q) for factoring polynomials of degree 2 over 𝔽 q in the arithmetic circuit model. Consequently the quadratic cost in n might be difficult to decrease in general. Theorem 8.2 below shows how to achieve a cost that is quasi-linear in m ¯3 2 t n in the case when n = m 1 ⋯ m t .

In this section we mainly focus on the efficient construction of primitive composition towers for prescribed m 1 , …, m t . We first describe the general algorithm and then explain possible speed-ups for nested, composed, and Artin-Schreier towers. Altogether, this yields an efficient answer to the second problem. Notice that composition towers with no prescribed modulus are sufficient if we merely need a representation for the finite field 𝔽 q n such that polynomials in 𝔽 q [x] can be evaluated efficiently at points in 𝔽 q n.

The third problem is more difficult. So far we have not been able to apply the techniques of this paper to obtain more efficient solutions, even when n is very smooth or in the extremely favourable case of Artin-Schreier towers. In practice, a straightforward strategy for the construction of composition towers for h is to factor h over all intermediate fields 𝕂 1 , …, 𝕂 t using standard available algorithms. This is discussed at the end of the section.

Building primitive composition towers

The naive construction of a primitive composition tower with prescribed extension degrees m i proceeds by induction. Assume the tower is built up to height t -1. We first construct an irreducible polynomial 𝜇 t (z) in 𝕂 t-1 [z] and set 𝕂 t = 𝕂 t-1 [z] / (𝜇 t (z)). If 𝜇 t is "sufficiently random", then the class 𝛼 t of z in 𝕂 t is a primitive element over 𝕂. Its minimal polynomial 𝜈 t over 𝕂 may simply be obtained as 𝜈 t (z) = Res x (𝜇 ˘t(x, z), 𝜈 t-1 (x)) where 𝜇 ˘t(x, z) ∈ 𝕂[x, z] is the natural preimage with bidegree (<m 1 ⋯ m t-1 , m t ) that satisfies 𝜇 ˘t(𝛼 t-1 , z) = 𝜇 t (z). The latter resultant requires roughly (m 1 ⋯ m t-1 ) 2 operations in 𝕂 when using the best known algorithms. To complete the decomposition tower of height t, it remains to compute the sequence of normal factors of 𝜈 t (x) over 𝕂 1 , …, 𝕂 t-1 . Factorization algorithms based on modular composition [START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF] can achieve this in time (m 1 ⋯ m t-1 ) 1.5 , roughly speaking.

In fact, we will show how to build primitive composition towers far more efficiently. We still proceed by induction. The composition towers naturally share the same underlying effective subtowers of (𝕂 i ) i⩽t . More precisely, the subtower of height l consists of the fields (𝕂 i ) i⩽l and forms a composition tower for 𝜈 l ; the successive normal factors are written H l,0 = 𝜈 l , H l,1 , …, H l,l = x -𝛼 l , and the auxiliary polynomials a i of Definition 5.2 are written a l,1 , …, a l,l .

We begin with constructing an irreducible polynomial 𝜇 1 (z) ∈ 𝕂[z] of degree m 1 , so the first primitive tower is made of 𝜇 1 , 𝜈 1 = 𝜇 1 , and it is a composition tower for H 1,0 (x) = 𝜈 1 (x) with normal factor H 1,1 (x) = x -𝛼 1 . The auxiliary polynomial a 1,1 (x) = x satisfies 𝜇 1 (a 1,1 (x)) = 0 mod H 1,0 (x).

For the second composition tower we construct an irreducible polynomial 𝜇 2 (z) ∈ 𝕂 1 [z] of degree m 2 , which defines 𝛼 2 as the class of z in 𝕂 2 = 𝕂 1 [z]/(𝜇 2 (z)). If 𝜇 2 is "sufficiently random", then 𝛼 2 is a primitive element of 𝕂 2 over 𝕂. We obtain the minimal polynomial of 𝛼 2 over 𝕂 as 𝜈 2 (z) = Res x (𝜇 ˘2(x, z), 𝜈 1 (x)), where 𝜇 ˘2(𝛼 1 , z) = 𝜇 2 (z) and 𝜇 ˘2 ∈ 𝕂[x] <m 1 [z]. The normal factor of H 2,0 (x) = 𝜈 2 (x) over 𝕂 1 is H 2,1 (x) = 𝜇 2 (x), and the one of H 2,1 over 𝕂 2 is H 2,2 (x) = x -𝛼 2 . We clearly have a 2,2 (x) = x and we obtain a 2,1 (x) from the subresultant of degree 1 in x of 𝜇 ˘2(x, z) and 𝜈 1 (x) (it necessarily exists because 𝛼 2 is a primitive element of 𝕂 2 over 𝕂 implies that 𝜈 2 is separable; this will be detailed below in the general situation). In this way we obtain a decomposition tower of height 2.

The third tower again requires building an irreducible polynomial 𝜇 3 (z) ∈ 𝕂 2 [z]. This defines 𝛼 3 and 𝕂 3 so we have 𝜇 3 (𝛼 3 ) = 0. We assume that 𝛼 3 generates 𝕂 3 over 𝕂 and we wish to obtain the normal factorizations of its minimal polynomial 𝜈 3 (z) = Res x (𝜇 ˘3(x, z), 𝜈 2 (x)). Over 𝕂 3 and 𝕂 2 the normal factors are respectively H 3,3 (x) = x -𝛼 3 and H 3,2 (x) = 𝜇 3 (x). For H 3,1 (x), we use the second composition tower: we compute 𝜇 ˘3(z,

x) = Λ 2 -1 (𝜇 3 (x)) such that 𝜇 ˘3(z, x) ∈ 𝕂 1 [z] <m 2 [x] and 𝜇 ˘3(𝛼 2 , x) = 𝜇 3 (x), then H 3,1 (x) = Res z (𝜇 ˘3(z, x), 𝜇 2 (z)) ∈ 𝕂 1 [x].
Then we obtain H 3,0 (x) = Res z( H ˘3,1 (z, x), 𝜇 1 (z) ) , where H ˘3,1 (z, x) = Λ 1 -1 (H 3,1 (x)). The auxiliary polynomials a 3,1 and a 3,2 are obtained from the corresponding first subresultants.

For general heights, we use the following algorithm for the construction of composition towers. 

n l L 𝕂 l /𝕂 + M 𝕂 (m ¯n) log n + t M 𝕂 (n) log n ) operations in 𝕂.
Proof. By decreasing induction on l we prove that 𝕂 l , …, 𝕂 t is a composition tower for H t,l which has degree m l+1 ⋯ m t . This is clear for l = t and l = t -1. Assume the induction hypothesis holds for l. At the end of step 2.a H t,l-1 (x) has degree m l ⋯ m t+1 and is the minimal polynomial of 𝛼 t over 𝕂 l-1 . Since H t,l is a normal factor of 𝜈 t over 𝕂 l , the degree of the ideal generated by ( H ˘t,l (z, x), 𝜇 l (z) ) is m l ⋯ m t+1 .

Since H t,l-1 is separable it belongs to the Gröbner basis of ( H ˘t,l (z, x), 𝜇 l (z) ) for the lexicographic order induced by z > x. In particular a polynomial with leading monomial z belongs to ( H ˘t,l (z, x), 𝜇 l (z) ) . This proves that the subresultant of degree 1 of H ˘t,l (z, x) and 𝜇 l (z) is nonzero, and that a l is well defined, which implies the requested conditions:

H t,l (a t,l (x), x) = 0 mod H t,l-1 (x) and 𝜇 l (a t,l (x)) = 0 mod H t,l-1 (x).
The induction hypothesis is thus satisfied for l -1.

As to the complexity analysis, we first notice that deg 

H t,l = m l+1 ⋯ m t .
O(m i C 𝕂 i-1 /𝕂 (m i ) log m i + m i M 𝕂 (m 1 ⋯ m i ) (log q + log(m 1 ⋯ m i ) log m i ))
operations in 𝕂. Thanks to Corollary 7.5 each composition with 𝜈 i-1 may be done using O(M(m ¯m1 ⋯ m i-1 ) (m ¯2i-1 + log(m 1 ⋯ m i-1 ))) operations in 𝕂. On the other hand we simply take

C 𝕂 i-1 /𝕂 (m i ) = O(M 𝕂 (m 1 ⋯ m i-1 m i 2 )). The sum over i yields O(m ¯M(m ¯n) (m ¯2t + log n) log m ¯+ m ¯M𝕂 (n) log q)
We claim that, with a small uniformly bounded probability, the roots of 𝜇 i do not have maximal degree m 1 ⋯ m i over 𝕂. If we run into such a bad 𝜇 i then it is easily detected by the algorithm since 𝜈 i is not separable. In such a case we build an other 𝜇 i at random and the average number of failure is bounded.

To prove the claim, we notice that the roots of 𝜇 i do not have maximal degree m 1 ⋯ m i over 𝕂 if, and only if, the m 1 ⋯ m i-1 conjugates of 𝜇 i over 𝕂 are not pairwise distinct. Equivalently this means that the coefficients of 𝜇 i belong to a proper subfield of 𝕂 i-1 . For each prime factor 𝜋 of m 1 ⋯ m i-1 the field 𝔽 q m 1 ⋯m i-1 /𝜋 is a maximal proper subfield of 𝕂 i-1 . All maximal proper subfields of 𝕂 i-1 are obtained is this way, so there exist at most O(log(m 1 ⋯ m i-1 )) many of them. The number of monic irreducible factors of degree m i with coefficients in such a subfield is at most q m 1 ⋯m i-1 /2 / m i . On the other hand the number of monic irreducible polynomials of degree m i over 𝕂 i-1 is at least (q m 1 ⋯m i-1 -2 q m 1 ⋯m i-1 /2 ) / n (see for instance [START_REF] Zur Gathen | Modern computer algebra[END_REF]Lemma 14.38]). Consequently the probability that the roots of 𝜇 i do not have maximal degree m 1 ⋯ m i over 𝕂 is at most

q m 1 ⋯m i-1 /2 log(m 1 ⋯ m i-1 ) q m 1 ⋯m i-1 -2 q m 1 ⋯m i-1 /2 ⩽ log(m 1 ⋯ m i-1 ) q m 1 ⋯m i-1 /2 -2 ,
which is uniformly bounded by 1/2 as soon as m 1 ⋯ m i-1 is sufficiently large. □

Particular cases

Let us now investigate the consequences of Proposition 8.1 in the particular cases of nested, composed and Artin-Schreier towers. In our analysis, we actually construct all intermediate subtowers along with the composition tower itself. If one just needs the highest tower, then there are cases that can be optimized by exploiting the specificities of the types of towers under consideration. Proof. We have H t = x -𝜁. We compute H i and a i by descending induction on i from t down to 1.

Nested

First we have

H i-1 (x) = Res z( H ˘i(z, x), 𝜇 i (z) ) ∈ 𝕂 i-1 [x],
where

H ˘i = Λ i -1 (H i ) ∈ 𝕂 i-1 [z] <m i [x]
. The first subresultant A(x) z + B(x) of H ˘i(z,x) and 𝜇 i (z) is well defined and A(x) is invertible modulo H i-1 (x). Therefore we have a i (x) = -A(x) -1 B(x) mod H i-1 (x).

According to Proposition 2.2, the resultant and the first subresultant can be computed using O(M 𝕂 i-1 /𝕂 (n i-1 m i ) log m i + m i D 𝕂 i-1 /𝕂 ) operations in 𝕂. Then a i is deduced with O(M 𝕂 (n i-1 ) log n i-1 ) operations in 𝕂. Summing over i, the result follows. □ Remark 8.7. Inversely, given a composition tower (𝕂 i ) i⩽t , we notice that the polynomial H t is of the form x -𝜁 with h(𝜁) = 0. In other words, the computation of a composition tower for h is as least as hard as finding a root of h in 𝕂 t .

CONCLUSION

We have shown that modular composition and characteristic polynomials for a fixed irreducible modulus h ∈ 𝔽 q [x] can be computed fast if n = deg h is smooth. From a practical point of view, our algorithms lead to speed-ups with respect to state of the art methods as soon as n is composite and not reasonably large. From a theoretical point of view, the algorithms by Kedlaya and Umans generally outperform the new algorithms. One notable exception occurs when n is very smooth, in which case we were able to prove a quasi-linear complexity bound: see Corollary 7.17.

Our new algorithms are only more efficient for fixed moduli h. Nevertheless, the cost of the required precomputations as a function of h is of a similar order of magnitude as one composition modulo h without our methods. In other words, if we need to compute s compositions modulo the same modulus h, then our new methods are already of interest for small values of s. This problem of multiple modular compositions occurs in various applications: Factorization over finite fields. A standard application of modular composition over finite fields is the irreducible factorization of univariate polynomials [START_REF] Kaltofen | Subquadratic-time factoring of polynomials over finite fields[END_REF][START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF]. In general, the cost of the precomputations is too expensive for our algorithms to be interesting. Nevertheless, our new algorithms are the most efficient ones in the case when we need to factor a polynomial of small degree over a finite field 𝔽 p n such that p is prime and n is sufficiently smooth: see the appendix below.

Roots over large finite fields. One particular instance of factorization over finite fields is the extraction of k-th roots (i.e. finding the roots of polynomials of the form x ka). In that case, one may use [START_REF] Doliskani | Taking roots over high extensions of finite fields[END_REF]Theorem 1.1] in order to reduce the problem of root extraction to modular composition and the computation of minimal polynomials. The advantage of this method with respect to a direct use of [START_REF] Kaltofen | Fast polynomial factorization over high algebraic extensions of finite fields[END_REF] is that it typically remains fast for larger values of k.

Conversions.

It frequently happens that one has to work with different representations of elements of a finite field. For instance, given distinct irreducible polynomials 𝜑 and 𝜓 of degree n over 𝔽 q , elements of 𝔽 q n can both be represented as elements of 𝔽 q [x] / (𝜑) and 𝔽 q [x] / (𝜓). Converting between these two different representations boils down to composition modulo 𝜑 or 𝜓. Given a non trivial divisor d of n, yet another representation of elements of 𝔽 q n was needed in [START_REF] Van Der Hoeven | The Frobenius FFT[END_REF]. Let 𝛼 be a primitive element of 𝔽 q n and 𝛽 ∈ 𝔽 q n be an element whose minimal polynomial has degree d. Then 𝔽 q [𝛼] and 𝔽 q [𝛽][𝛼] are both isomorphic to 𝔽 q n and correspond to two different representations. If 𝛼 and 𝛽 can be chosen "nicely", then conversions between these representations can be computed fast, using similar methods as in sections 7.3, 7.4 and 7.5. Using modular composition, we may reduce the general case to this special case in which we are allowed to chose 𝛼 and 𝛽.

Frobenius maps. Thanks to von zur Gathen and Shoup's algorithm [START_REF] Gathen | Computing Frobenius maps and factoring polynomials[END_REF], the Frobenius maps a ↦ a q i can be computed efficiently when fast modular composition is available. More precisely, assume we wish to compute a q i in 𝔽 q n = 𝔽 q [x]/(h(x)). If i = 1, then we use binary powering to get the preimage b(x) of a q . Then, by induction on i, we may compute the canonical preimage c(x) of a q ⌊i/2⌋

, so d = c ∘ c rem h is the preimage of a q 2⌊i/2⌋ . If i is even, then we are done. Otherwise, we compute d ∘ c rem h to obtain the preimage of a q 2⌊i/2⌋+1 = a q i . Overall this method performs O(log n) compositions modulo h, plus O(M 𝕂 (n) log q) operations in 𝕂.

Many intriguing questions remain to be answered. One major open problem is whether our new techniques can be used to build composition towers for a prescribed irreducible modulus h of smooth degree n in quasi-linear time. This would give us an unconditional algorithm for composition modulo h of quasi-linear time complexity. Another natural question is whether there exists an efficient way to reduce general modular composition to composition modulo irreducible polynomials of smooth degree. This question may be related to generalizations of our algorithms to modular composition for multivariate polynomials. Besides these fundamental issues, we finally think that there remains a lot of room for more minor improvements of the techniques in this paper and for working out various applications in more detail.

Proof. The proof proceeds by induction on l. The algorithm is clearly correct if l = 1. Assume that it is correct for l ⩾ 1. By linearity of the q-th power we have Z 2k ≡ z q 2k mod h(z), X k (Z k , X k ) ≡ x q 2k mod (h(z), f (z, x)), A k (Z k , X k ) ≡ A k( z q k , x q k ) ≡ A(z, x) q k+1 + A(z, x) q k+2 + ⋯ + A(z, x) q 2k mod (h(z), f (z, x)).

This already proves the correctness by induction when l is even. Otherwise l = 2 k + 1 and similar computations yield Z 2k ∘ Z 1 = (z q ) q 2k = Z l mod h(z), X 2k (Z 1 , X 1 ) ≡ x q 2k+1 mod (h(z), f (z, x)), A 2k (Z 1 , X 1 ) ≡ A(z, x) q 2 + A(z, x) q 3 + ⋯ + A(z, x) q 2k+1 mod (h(z), f (z, x)).

This proves the correctness. The cost for obtaining Z l from Z k is essentially one or two compositions modulo h. If we write A k (z, x) = ∑ i=0 n-1 a i (z) x i with a i ∈ 𝕂[z] <m , then we are led to compute a ˜i = a i ∘ Z k rem h for all 0 ⩽ i ⩽ n -1 and then ∑ i=0 n-1 a ˜i(z) X k i mod f (z, x) over 𝕃. Overall A 2k requires O(n) compositions modulo h plus O(C 𝕃/𝕂 (n)) operations in 𝕂. The same bound holds for X 2k . If l is odd, then step 7 takes again O(n) compositions modulo h plus O(C 𝕃/𝕂 (n)) operations in 𝕂. Finally, the depth of the recursion is O(log l). □ COROLLARY A.2. Let 𝕂 = 𝔽 q , let h be a monic irreducible polynomial in 𝕂[z] of degree m, and let 𝕃 = 𝕂[z]/(h(z)). For any monic polynomial f ∈ 𝕃[x] of degree n, and any a ∈ 𝕃[x] <n , the trace ∑ i=0 l a q i rem f may be computed using O(n log l) compositions modulo h plus O(C 𝕃/𝕂 (n) log l + M 𝕂 (m n) log q) operations in 𝕂.

Proof. If suffices to compute Z 1 , X 1 , A 1 for Algorithm A.1 using O((M 𝕃/𝕂 (n) + M 𝕂 (m)) log q) operations in 𝕂, in order to apply the preceding proposition. □ THEOREM A.3. Let 𝕂 = 𝔽 q , let h be a monic irreducible polynomial in 𝕂[z] of degree m, and let 𝕃 = 𝕂[z]/(h(z)). Given n and the set of its prime factors of cardinality 𝜛(n) = O(log n), we may check whether a monic polynomial f ∈ 𝕃[x] of degree n is irreducible using O(n 𝜛(n) log(m n)) compositions modulo h plus O(𝜛(n) C 𝕃/𝕂 (n) log(m n) + M 𝕂 (m n) log q) operations in 𝕂.

Proof. The polynomial f is irreducible if, and only if, x q mn = x mod f (x) and x q mn/𝜋 ≠ x mod f (x) for all prime divisor 𝜋 of n. We may thus apply the above corollary. □ THEOREM A.4. Let 𝕂 = 𝔽 q , let h be a monic irreducible polynomial in 𝕂[z] of degree m, and let 𝕃 = 𝕂[z]/(h(z)). A random irreducible polynomial of degree n over 𝕃 may be computed using an expected number of O(n 2 log n) compositions modulo h plus O(n C 𝕃/𝕂 (n) log n + n M 𝕂 (m n) (log q + log(m n) log n)) operations in 𝕂.

Example 4 . 2 .

 42 With 𝕂 = 𝔽 2 , h(x) = x 6 + x + 1 ∈ 𝔽 2 [x]is irreducible, and we have 𝔽 2 6 ≅ 𝔽 2 [y]/(h(y)).

Example

  

8 .

 8 Return 𝜚 0 and 𝜒 0 . THEOREM 5.3. Algorithm 5.1 is correct and takes O ( ∑ i=1 t

LEMMA 7 . 1 .

 71 For a primitive composition tower for h with 𝕂t = 𝕂[x]/(h(x)), Algorithm 5.1 takes O(M 𝕂 (m ¯n) log n) + 2 ∑ i=1 t (m i + 1) n i L 𝕂 i /𝕂operations in 𝕂.

COROLLARY 7 . 5 .

 75 Let (𝕂 i ) i⩽t be a primitive composition tower for h ∈ 𝕂[x] with deg h = n. Given f , g ∈ 𝕂[x] <n , we may then compute one composition or characteristic polynomial modulo h using O(M 𝕂 (m ¯n) (m ¯2t + log n)) operations in 𝕂.

Table 1 .

 1 

1. Complexity bound for modular composition for various types of towers.

  The subresultant polynomial R i of degree i of A and B in 𝕂[z, x] has degree ⩽2 m (ni) in z. It can be computed by evaluating A and B at O(m n) values for z in 𝕂, computing O(m n) subresultants in 𝕂[x] of degree ⩽n, and interpolating the coefficients of R i . In total this costs O(n 2 M 𝕂 (m) log m + m n M 𝕂 (n) log n + i M 𝕂 (m n) log(m n)).

	However for the sake of generality we will rely on the following result.
	PROPOSITION 2.2. Let 𝕂 be an effective field. Any polynomial subresultant in x of two polynomials
	A and B in 𝕂[z, x] of bidegrees (m, n), with the corresponding Bézout relation, can be computed using O(M 𝕂 (m n 2 ) log n) operations in 𝕂 that comprise at most min (deg x A, deg x B) + 1 inversions
	in 𝕂.
	2.1. [12, Corollary 11.18] Let 𝕂 be an effective field with >2 m n elements. Any
	polynomial subresultant in x of two polynomials A and B in 𝕂[z, x] of bidegrees (m, n) can be computed using O(n M 𝕂 (m n) log(m n)) operations in 𝕂.
	Proof. □

  M 𝔸 (n) log n) operations in 𝔸, if 𝔸 is a field with >n elements, or 4. P 𝔸 (n) + M 𝔸 (n) operations in 𝔸, if there exist given inverses of 2, 3, …, n in 𝔸.

	Let h be a monic polynomial of degree n over a ring 𝔸, and let g ∈ 𝔸[x] <n . The
	characteristic polynomial 𝜒 of g modulo h can be computed using	
	1. O(M 𝔸 (n 2 ) log n + n M 𝔸 (n) log 2 n) operations in 𝔸, including divisions in 𝔸 (the partial division
	in 𝔸 is supposed to be implemented), or	
	2. O(M 𝔸 (n 2 ) log n) operations in 𝔸, if 𝔸 is a field, or	
	3. O(n Proof. See [22, section 2.2].	□

  4.3. When 𝕂 = ℚ the situation is different from the case of finite fields. For instance h(x) = x 6 + x + 1 is irreducible, but it remains irreducible over ℚ[i], ℚ [ 2 p ] , etc. Nevertheless, for a prescribed extension degree n, we may randomly pick an irreducible 𝜇(z) of degree m and an irreducible H(z, x) in ℚ[z]/(𝜇(z))[x] of bidegree (<m, n/ m), and build h(x) as Res z (H(z, x), 𝜇(z)). If h is separable, then it is irreducible in ℚ[x], and H is a normal factor of h over 𝕃 = ℚ[z]/(𝜇(z)).

  Now the multiplication of two polynomials in 𝕃[x] of degree n using Kronecker substitution requires O(M 𝕂 (m n)) operations in 𝕂. This way, steps 1 and 3 take O(M 𝕂 (m n)) operations in 𝕂. Steps 2 and 4 respectively cost Q 𝕃/𝕂 (n / m) and C 𝕃/𝕂 (n/ m) operations in 𝕂. The computation of 𝜚(a(x), x) mod h(x) in the last step may be done naively using O(m M 𝕂 (n)) operations in 𝕂. The computation of Res z (𝜒(z, x), 𝜇(z)) requires O(M 𝕂 (m n) log m) further operations by Proposi-

	tion 2.2.	□
	COROLLARY 4.5. With the above notations, and given a normal factorization of h with 𝜇 irre-ducible, for m = O ( n p ) and n/ m = O ( n p ) , the modular composition f ∘ g rem h can be computed
	using O(M 𝕂 (n 3/2 ) log n) operations in 𝕂.	

2, thanks to the Poisson formula Res z (𝜒(z, x), 𝜇(z)) = (-1) n ∏ 𝜇(𝜁)=0 𝜒(𝜁, x). Proof. We simply apply Algorithm 4.1. For Q 𝕃/𝕂 (n/ m) we use 𝜒(𝛼,y) = Res x (G(𝛼, x)y,H(𝛼, x)), which takes O(M 𝕂 (n 2 / m) log n + (n / m) M(m) log m) operations in 𝕂 by Proposition 2.2. We perform the computations in step 4 naively, which yields C 𝕃/𝕂 (n/ m) = O((n/ m) M 𝕂 (n)). □

  The computation of the remainder of its division by H i (x) can be done in time O(M 𝕂 i /𝕂 (n i-1 )). Step 2 therefore amounts to 𝕂 i /𝕂 (m i+1 2 n i+1 ) log m i+1 + m i+1 D 𝕂 i /𝕂 ) by Proposition 2.2. It follows that the complete step 4 requires

	O ( ∑ i=1 t	M 𝕂 i /𝕂 (n i-1 )	)	+	i=1 t ∑	n i-1 L 𝕂 i /𝕂
	operations in 𝕂, and similarly for step 5. The computation of the resultant Res z (Λ i+1 -1 (𝜒 i+1 (x))(z, x), 𝜇 i+1 (z)) in step 4 can be performed
	in time O(M					

  • In step 3, we compute 𝜒 t to be the characteristic polynomial of G t modulo H t over 𝕂 t . • In step 6, we compute 𝜚 t ≔ F t ∘ G t rem H t in 𝕂 t [x]. These computations lead to an additional term Q 𝕂 t /𝕂 (n t ) + C 𝕂 t /𝕂 (n t ) in the complexity bound of Theorem 5.3.

  LEMMA 6.5. Let 𝜀 > 0. If n is n 𝜀 -smooth, then there exist m 1 , …, m t such that n = m 1 ⋯ m t and n 𝜀/2 < m i ⩽ n 𝜀 for all 1 ⩽ i ⩽ t -1, where t < 2/𝜀 + 1.Proof. It suffices to gather prime factors, counted with multiplicities, into t -1 products in the range (n 𝜀/2 , n 𝜀 ]. Then n 𝜀(t-1)/2 < m 1 ⋯ m t-1 ⩽ n implies 𝜀 (t -1) < 2.

			□
	COROLLARY 6.6. Let 𝜀 > 0. If n is n 𝜀 -smooth and given a suitable triangular decomposition
	tower for h of degree n, then one composition or one characteristic polynomial modulo h may be
	computed using O ˜(𝜀 n	1+𝜀+	2log 7

Algorithm 8.1 Input.

  Primitive composition towers (𝕂 j ) j⩽i for 𝜈 i for i ⩽ t -1; 𝜇 t (z) ∈ 𝕂 t-1 [z] irreducible of degree m t such that any root of 𝜇 t has degree m 1 ⋯ m t over 𝕂. Output. The primitive composition tower (𝕂 i ) i⩽t for 𝜈 t with 𝕂 t-1 [𝛼 t ] = 𝕂 t-1 [z] / (𝜇 t (z)), and where 𝜈 t is the minimal polynomial of 𝛼 t over 𝕂. Notation. The normal factors of (𝕂 i ) i⩽l are written H l,0 , …, H l,l . 1. Set H t,t (x) = x -𝛼 t , H t,t-1 (x) = 𝜇 t (x), a t,t (x) = x. 2. For l from t -1 down to 1 do a. Compute H t,l-1 (x) = Res z( H ˘t,l (z, x), 𝜇 l (z) ) over 𝕂 l-1 , where H ˘t,l (z, x) = Λ l Set 𝛼 t to the class of z in 𝕂 t-1 [z]/(𝜇 t (z)), and let 𝜈 t (z) = H t,0 (z). ) is simply x -𝛼 t ; PRE-P3 correspond to a t,1 , …, a t,t . 4. Return the composition tower (𝕂 i ) i⩽t for H t,0 (x) made from (𝜇 i ) i⩽t , (𝜈 i ) i⩽t , (H t,i ) ⩽t , (a t,i ) i⩽t , and the other precomputed auxiliary data.

	-1 (H t,l (x));
	b. Compute the subresultant of degree 1 in z of H ˘t,l (z, x) and 𝜇 l (z) written A(x) z + B(x), and then set a t,l (x) = -A(x) -1 B(x) mod H t,l-1 (x).
	3. Notice that precomputations PRE-P1 correspond to polynomials H t,1 , …,H t,t ; For PRE-P2 we have already computed Λ 1 -1 (H t,1 ),…,Λ t-1 -1 (H t,t-1 ), and Λ t -1 (H t,t PROPOSITION 8.1. Algorithm 8.1 is correct and takes
	O ( ∑ l=1 t-1

  Let 𝕂 = 𝔽 q . A primitive composition tower of degrees m 1 , …, m t may be built usingO(m ¯M𝕂 (m ¯n) (m ¯2t + log n) log m ¯+ m ¯M𝕂 (n) log q + t M 𝕂 (n) log n) expected operations in 𝕂.It remains to take the construction of the 𝜇 i into account for 1 ⩽ i ⩽ t. By Theorem A.4 a random polynomial 𝜇 i can be computed using an expected number of O(m i 2 log m i ) compositions modulo 𝜈 i-1 plus

	The conversions in operations in 𝕂. The resultant in step 2.a and the subresultant in step 2.b require step 2.a therefore take O ( ∑ l=1 t-1 m l+1 ⋯ m t L 𝕂 l /𝕂 ) O(M 𝕂 l-1 /𝕂 (m l Equation (7.8) the bound from Proposition 8.1 simplifies to 2 m l+1 ⋯ m Proof. The tower is constructed by natural successive applications of the Algorithm 8.1. By O(2 t m ¯M𝕂 (n) + M 𝕂 (m ¯n) log n + t M 𝕂 (n) log n).

t ) log m l + m l D 𝕂 l-1 /𝕂 ) further operations, by Proposition 2.2, where

D 𝕂 l-1 /𝕂 = O(M 𝕂 (m 1 ⋯ m l-1 ) log(m 1 ⋯ m l-1 )). The inversion of A modulo H t,l-1 takes O(M 𝕂 l-1 /𝕂 (m l ⋯ m t ) log(m l ⋯ m t ) + m l ⋯ m t D 𝕂 l-1 /𝕂 ) further operations. □ THEOREM 8.2.

3. Building composition towers from roots Let

  towers.COROLLARY 8.3. Let 𝕂 = 𝔽 q and assume given (𝜏 i ) 1⩽i⩽t and (𝜅 i ) The tower is again constructed by natural successive applications of Algorithm 8.1, except that we replace the precomputations in step 3 by those specified in PRE-N1. These precomputations amount to O(M 𝕂 (m ¯n) log n). By Equation (7.9) the cost of Proposition 8.1 simplifies toO(M 𝕂 (m ¯n) log n + t M 𝕂 (n) log n).□ The tower is again constructed by natural successive applications of Algorithm 8.1, except that we replace the precomputations in step 3 by those specified in PRE-C1-3. These precomputations amount to O(M 𝕂 (m ¯n) log n). By Equation (7.10) the cost of Proposition 8.1 simplifies to O(M 𝕂 (m ¯n) log n + t M 𝕂 (n) log n). (𝕂 i ) i⩽t be an algebraic tower. So far we have shown how to built composition towers for 𝜈 t . Let us now explain how to deduce composition towers for a given h ∈ 𝕂[x] monic and irreducible of degree n. By standard algorithms, we first compute a root 𝜁 of h in 𝕂 t (for example with Rabin's algorithm; see[12, chapter 14]). Unfortunately we do not know how to exploit a composition tower to compute 𝜁 more efficiently. We are interested in finding a monic normal factor H i of h over each field 𝕂 i in the tower. In the extreme case when i = t, we take H t = x -𝜁. PROPOSITION 8.6. Given a primitive composition tower for 𝜈 t , given an irreducible h ∈ 𝕂[x], together with a root 𝜁 ∈ 𝕂 t of h, we may compute the minimal polynomials H i of 𝜁 over 𝕂

	Composed towers.		
	COROLLARY 8.4. Let 𝕂 = 𝔽 q and assume given (𝜆 i ) 1⩽i⩽t defining a nested tower as in section 7.4.
	Then the composed composition tower for 𝜈 t may be built using
	O(M 𝕂 (m ¯n) log n + t M 𝕂 (n) log n)
	operations in 𝕂.		
	Proof. i along
	with the a i from Definition 5.2 for i ∈ {0, …, t}, with cost	
	O ( ∑ t i=1	n i L 𝕂 i /𝕂 + M 𝕂 (m ¯n) log n	) .

1⩽i⩽t defining a nested tower as in section 7.

[START_REF] Bostan | Tellegen's principle into practice[END_REF]

. Then the nested composition tower for 𝜈 t may be built using

O(M 𝕂 (m ¯n) log n + t M 𝕂 (n) log n) operations in 𝕂.

Proof. □

Artin-Schreier towers. COROLLARY 8.5. Let 𝕂 = 𝔽 p and assume given (𝜇 i ) 1⩽i⩽t defining an Artin-Schreier tower as in section 7.5. Then the Artin-Schreier composition tower for 𝜈 t may be built using

O(t n log 2 n + M 𝔽 p (p n) log n + t M 𝕂 (n) log n) operations in 𝔽 p .

Proof. The tower is again constructed by natural successive applications of Algorithm 8.1, except that we replace the precomputations in step 3 by those specified in PRE-A1-2, which amount to O(M 𝔽 p (n d) log(n d)). By Equation

(7.11) 

the cost of Proposition 8.1 becomes O(t n log p 2 n + M 𝔽 p (p n) log n + t M 𝕂 (n) log n). □ 8.

APPENDIX A. FACTORIZATION OVER FINITE FIELDS

This appendix is devoted to a fast algorithm for pseudo-trace computations designed by Kaltofen and Shoup in [START_REF] Kaltofen | Fast polynomial factorization over high algebraic extensions of finite fields[END_REF], together with its application to polynomial factorization over finite fields. We recall the algorithm for completeness and in order to make it work more generally over any finite field 𝔽 q .

Algorithm A.1

Input. h ∈ 𝔽 q [z] irreducible of degree m; f (z, x) ∈ 𝔽 q [z, x] of bidegree (<m, n) monic in x;

A(z, x) ∈ 𝔽 q [z, x] of bidegree (<m, <n); an integer l ⩾ 1; Z 1 ∈ 𝔽 q [z] <m such that Z 1 (z) = z q mod h(z); X 1 ∈ 𝔽 q (z, x) of bidegree (<m, <n) such that X 1 (z, x) = x q mod (h(z), f (z, x));

]/(h(z)), and

PROPOSITION A.1. Let 𝕂 = 𝔽 q and 𝕃 = 𝔽 q [z]/(h(z)). Algorithm A.1 is correct and takes O(n log l) compositions modulo h and

additional operations in 𝕂.

Proof. We appeal to Ben-Or's algorithm [START_REF] Zur Gathen | Modern computer algebra[END_REF]Algorithm 14.40], but use modular composition instead of modular powering. Let f be a monic random polynomial of degree n over 𝕃. For i from 1 to ⌊n / 2⌋ we compute g i = gcd ( x q ix, f ) and stop as soon as g i ≠ 1. In this case f is reducible, since it admits an irreducible factor of degree i (that divides g i ). If all the g i are 1 then f is necessarily irreducible. With the notations from Algorithm A.1, the x q i modulo f are computed as follows. We first compute Z 1 (z) and X 1 (z, x) using O(M 𝕂 (m n) log q) operations in 𝕂. Then we compute B i ∈ 𝕂[z, x] of bi-degree (<m, <n) such that B i (z, x) = x q i mod (h(z), f (z, x)). Notice that B 1 = X 1 . In order to compute B i+1 from B i we write 

In average, O(n) random trials for f are necessary to find an irreducible one, and the average value of the smallest degree l is O(log n). Therefore the total expected cost is

□ BIBLIOGRAPHY