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a b s t r a c t

A novel objective function for rainfall-runoff model calibration, named Discharge Envelop Catching

(DEC), is proposed. DEC meets the objectives of: i) taking into account uncertainty of discharge obser-

vations, ii) enabling the end-user to define an acceptable uncertainty, that best fits his needs, for each

part of the simulated hydrograph. A calibration methodology based on DEC is demonstrated on MARINE,

an existing hydrological model dedicated to flash floods. Calibration results of state-of-the-art objective

functions are benchmarked against the proposed objective function. The demonstration highlights the

usefulness of the DEC objective function in identifying the strengths and weaknesses of a model in

reproducing hydrological processes. These results emphasize the added value of considering uncertainty

of discharge observations during calibration and of refining the measure of model error according to the

objectives of the hydrological model.

1. Introduction

An objective function converts the outputs of a rainfall-runoff

model into a single likelihood measure, according to discharge

measurements. This likelihood measure plays a key role, as it

controls the model assessment and calibration. As such it provides

a comparison basis for models or scenarios. An objective function

must provide a meaningful criterion, representative of the errors

occurring in the prediction time series. Ideally the objective func-

tion must make a distinction between the observed errors coming

from data uncertainties and the modelling errors coming from

model limitations and parameter uncertainties. Defining such a

metric is hard, as model outputs obviously depend on the input

data and the observed discharge quality.

The uncertainty of the forcing data (rainfall/snowfall, soil

moisture, etc.) is in general not measurable (Villarini and Krajewski

(2010); Kirstetter et al. (2010)) whereas discharge uncertainties can

be accurately quantified (McMillan and Westerberg, 2015; Coxon

et al. (2015); Le Coz et al. (2014)). This makes it possible to inte-

grate uncertainty of the discharge observationst into an objective

function. However the classical functions, such as the Nash-

Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970), or the Kling-

Gupta-Efficiency (KGE, Gupta et al., 2009), are based on the dif-

ference between the model outputs and the observed discharge,

without considering the discharge uncertainty. This can result in

the overfitting of a model prediction to uncertain discharge

observations.

Some modifications in different calibration approaches are

found in the literature in order to integrate uncertainty of the

discharge observations. Croke (2007) modified the NSE by

weighting the residual vector according to the accuracy of observed

discharge measurement. The metric thus emphasizes the predic-

tion of a well known observed discharge at the expense of the

observed discharge with high uncertainty. This is especially prob-

lematic in the context of flood modelling, where extreme flood

discharges are generally marred with high uncertainty. Calibration

methods based on Bayesian approach (Kuczera (1983); Engeland

and Gottschalk, 2002, Kavetski et al., 2006), formalize an error

model, considering among others discharge uncertainty. Formal-

izations of different type of errors, such as input uncertainty or

model uncertainty are based on strong assumptions that require

validation, which is not always possible. In the end, the calibration

results depend on the definition of the error model. Liu et al. (2009)

proposed a calibration method using a “limits-of-acceptability”

approach. A parametrization is either accepted or rejected. The

limit of acceptability is fixed according to discharge uncertainty.

The method is convenient to assess the likelihood of a parameter

set for a model, but it does not provide information on the
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relevance of the model.

The aim of the paper is to provide an objective function: i) taking

into account uncertainty of the discharge observations; ii) adapting

the calibration to user expectations and model assumptions; iii)

providing a meaningful score which can be interpreted to assess

the relevance of the model.

Section 2 presents the rationale of the paper. It discusses the

state of the art of objective functions in the field of hydrologic

models, with a focus on the model calibration issue. The proposed

objective function, called Discharge Envelop Catching efficiency, is

defined in Section 3 and evaluated against three other objectives

functions in Section 4. Finally, calibration results are presented and

discussed in Section 5.

2. Background and motivation

We begin the section introducing the mathematical concepts

used throughout the paper.

2.1. Mathematical notation and symbols

We adopt the fomulation of Vrugt and Sadegh (2013) of model

calibration and evaluation issues: “Consider a discrete vector of

measurements Ŷ ¼ { ŷ1,…, ŷn }, observed at times t ¼ { 1,…, n } that
summarizes the response of an environmental system F to forcing

variables Û ¼ {û1, …, ûn}. Let Y ¼ {y1, …, yn} the corresponding

predictions from a dynamic (non linear) model f, with parameter

values q,

YðqÞ ¼ f
!
x0; q;

bU
#

(1)

where x0 is the initial state of the system at t ¼ 0.” The residual

vector defines the difference between actual and model-simulated

system behaviours:

EðqÞ ¼ bY $ YðqÞ ¼ fe1ðqÞ; :::; enðqÞg (2)

The error model F that allows for residual vector transformation

defines the modelling error vector:

εðqÞ ¼ F
h
bY $ YðqÞ

i
¼ fε1ðqÞ; :::; εnðqÞg (3)

A function G is used to map the modelling error vector into a

metric called likelihood measure. The combination of F and G is the

objective function.

Calibration aims to find the values of [ q2Q2<d ] that provide

the best likelihood measure. As the optimal parameter set may not

be unique and several candidates may minimized equally the

objective function, the calibration process faces model equifinality

(Beven and Binley, 1992; Beven, 2006). Choosing a way of selecting

or weighting behavioural parameter sets according to likelihood

measure corresponds to the last step of a calibration methodology.

We now consider the fact that forcing variables Û, initial state x0
and observed discharges Ŷ are uncertainmeasurements and denote

sÛ, sX0, sŶ the vectors quantifying those uncertainties. Forcing

variables and initial state uncertainties affect model predictions

and modify equation (1):

Y
0

ðqÞ ¼ f
!
x0
&&&sx0 ; q;

bU
&&&sbU

#
(4)

where Y0(q) is the model prediction with respect to input un-

certainties. Similarly, the observed discharge uncertainties modify

equation (3):

εðqÞ ¼ F
h
bY
&&&sbY $ YðqÞ

i
¼ fε1ðqÞ; :::; εnðqÞg (5)

This paper focuses on equation (5) and proposes an error model

F that allows for benchmarking a model prediction vector Y(q)

against uncertain observations (Ŷ, sŶ). The choice of the optimal

function G which maps the modelling error vector into a metric is

also discussed.

2.2. Adapting the likelihood measure to the model

As said before, the primary goal of calibration is finding

parameter sets that best mimic the observed discharge. The role of

the objective function is to define the most appropriate likelihood

measure to accurately assess the success of the model to reproduce

the hydrological behavior of a catchment system.

In the literature, performance models are usually assessed using

statistic scores such as linear correlation, mean, variance or indexes

widespread in the hydrology community such as NSE, RMSE or

Kling-Gupta-Efficiency (KGE, Gupta et al. (2009)). The use of those

scores as conventional likelihood measures is supposed to facilitate

model comparison. However, as pointed out by Seibert (2001) or

Schaefli and Gupta (2007), a score may reflect poorly the goodness-

of-fit of a model, even when established by hydrologists. As an

example, a NSE score of 0,6 could equally mean good or poor fit

depending on data quality and on the studied catchment. Moussa

(2010) and Schaefli et al. (2005) also highlighted the limitations

of the NSE for flood event modelling assessment, showing that

considering the high value of standard deviation of discharge time

series, the residuals might be high and still lead to a good score, due

to the NSE definition.

Schaefli and Gupta (2007) suggested to take into account model

assumptions and user expectations into the objective function.

They defined the benchmark efficiency (BE):

BE ¼ 1$

Pn
i¼1

(
yi $ byi

)2

Pn
i¼1

(
byi $ ybi

)2
(6)

where ybi is called the benchmark discharge model at time i. The

model reference is no more the observed discharge mean as in NSE,

but a benchmark model defined as admissible by the hydrologist.

The BE definition implies a meaningful score according to what is

expected from the model.

All the objective functions seen so far choose to minimize the

sum of squared residuals as the calibration objective. As noticed by

Beven and Binley (2014), this is not without implication. The

combination of all residuals within a single value actually hides the

underlying assumption that this score represents at best all the

residuals. Assuming that the sum of squared residual is the best

representation has two important implications:

) the same importance is attached to all residual values, whatever

their position along the hydrograph. Yet, absolute errors during

high flows or low flows may not be interpreted the same by

hydrologist. This issue could be avoided by weighting residual

vector as in mNSE (Croke, 2007) or calculating the sum of

squared relative errors;

) among the residual distribution, the mean represents the best

index to minimize. As residuals are most commonly correlated,

heteroscedastic and have non-Gaussian distributions (Schoups

and Vrugt (2010)), the relevance of this choice is not certain.

Moreover, the mean of the residual distribution is mainly



affected by residuals observed during low flows, which are

highly correlated and over-represented.

The NSE and other likelihood measures that consider the sum of

squared residual provide a basis for model assessment. However

the underlying assumptions are not consistent with residual vector

properties. The interplay of the above implications, balancing each

other, result in a global adaptation of the measure for calibrating

large data time series based onwrong criteria, which can contribute

to misleading results.

2.3. Taking into account the uncertainty of the discharge
observations

Considering the residual vector as an evaluation of model error

assumes that the discharge observations are the exact reflect of the

hydrological behavior of the catchment. However, discharge time

series are successively extracted from stage measurements and

stage-discharge rating curve conversions and, consequently, may

contain highly uncertain values. In other words, model evaluation

based on the residual vector E(q) is limited by the uncertainty on

the discharge data. In parallel, recent contributions (McMillan and

Westerberg, 2015; Coxon et al. (2015); Le Coz et al. (2014)).

improved discharge uncertainty quantification. As an example, Le

Coz et al. (2014) used knowledge of the hydraulic control of the

rating-curves and statistical methods to provide an individual

quantification of gauging uncertainty. Taking into account

discharge uncertainties in an objective function enables to better

define the discharge benchmark, making it possible to extract

modelling error from the residual vector.

Several approaches accounting for the uncertainty of the

discharge observations in the calibration methods are proposed in

the literature. (Kavetski et al., 2003; Kuczera et al. (2006)). use a

Bayesian framework. They represent the observed discharge as a

formal probability density function, the function being determined

either according to the rating curve uncertainty (Thyer et al. (2009))

or by adding another parameter to define the discharge uncertainty

model (Huard and Mailhot, 2008). Defining error models for input

uncertainty as well as model uncertainty, the bayesian approach

aims to calibrate at the same time the parameters of the hydro-

logical model and those of the error models. Although the cali-

bration is comprehensive, as it tends to consider all the

approximations done, it suffers from the lack of benchmark for

error models. It may also result in overparametrization, increasing

the complexity of calibration. It can be noticed also that the

Bayesian approach assumes that the modelling errors are uncor-

related, which is plausible for inputs, for instance, but less so for the

model. Indeed, model uncertainty cannot be smaller than that of

the observation dataset used to calibrate the model.

Discharge uncertainty has also been incorporated into objective

functions as weights of the residual vectors (Croke (2007); Pe~na-

Arancibia et al., 2015). For instance Croke (2007) has modified the

NSE, introducing themNSE which uses weights gi inferred from the

discharge uncertainty:

mNSE ¼ 1$

Pn
i¼1gi

(
yi $ byi

)2

Pn
i¼1gi

(
byi $ by

)2
with gi ¼

1

by95thi $ by5thi

(7)

where ŷi
95th and ŷi

5th are the 95th percentile and the 5th percentile

values of the probability density function of the discharge flow at

time i. The discharge uncertainty is considered as an assessment of

the discharge measurements quality but does not clarify the values

of the discharge observations. This calibration enforces the model

to be accurate when data is accurately known, whereas it allows for

large modelling errors where data is uncertain, which makes it

unsuited for flood forecasting, for instance.

Another take on the issue is proposed by Liu et al. (2009), with

the limits of acceptability approach. The simulation set [ Y(q), q 2 Q

2 <d ] is separated between behavioural and non behavioural

simulations according to observation error (Hornberger and Spear,

1981). The selection is done by setting a minimum percentage of

prediction time steps that must be included in the confidence in-

terval of discharge measurements. Then, a weighted score is

attributed to each simulation time step. The score decreases line-

arly with distance to observed discharge, tending to zero in the

boundaries of the confidence interval. When the value of the

simulated discharge falls beyond those limits, the score is uni-

formly set to zero. A first limitation lies in the subjective choice of

the percentage threshold used to separate behavioural from non

behavioural simulations. If the bounds of the confidence interval of

the discharge measurement are set to the xth percentile and the

(100-x)th percentile values of the distribution function, a (100-2x)

value might logically be used as a percentage threshold. However,

this choice assumes an ideal model devoid of modelling errors.

Thus, the threshold might need to be adjusted according to the

ability of the model to mimic the discharge observations. Also, as

mentioned by Liu et al. (2009), time steps not included in the

confidence interval might be the ones with the highest “hydro-

logical value”. As the weighting method gives equal weights for

those time steps and for the ones lying exactly on the confidence

interval bounds, small or large distances from the confidence in-

terval limits do not affect the return value of the objective function.

In other words, the score does not assess how far the prediction is

from the observed discharge.

Objective functions presented above propose different ap-

proaches including the uncertainty of discharge observations into

model assessment. However, they do not consider additionally

model specifics and expectations from which tolerated modelling

errors might be deduced. It is actually important to distinguish

what we can require from the hydrological prediction according to

the uncertainty of discharge observations and what we can require

from it according tomodel assumptions and data input uncertainty.

The first point refers to the fact that the objective of the exact

reproduction of the observed discharge values is misleading. The

second point refers to the fact that it is not because a discharge is

really accuratelymeasured, that we could expect the same accuracy

in prediction. The objective of this work is to take advantage of the

hydrologist expertise and of the uncertainty of the discharge ob-

servations to adapt themeasure of error of rainfall-runoff models to

the end-user expectations. The subsequent novel objective function

is called Discharge Envelop Catching (DEC) and presented hereafter.

3. The discharge envelop catching (DEC) objective function

3.1. Definition of the error model

We assume that the uncertainty of the discharge observations is

available. For any time i, the discharge is defined by a probability

density function fromwhich the mean value ŷi, standard deviation

sŷi or any percentile ŷi
xth can be extracted. A confidence interval of

the discharge observations can be defined.

Instead of looking for the exact reproduction of discharge

measurement, we aim at minimizing the distance between the

simulated discharge and the confidence interval of observed

discharge. Moreover, the objective function will define for each

evaluation point a range of acceptable distances according to user



expectations. The error model F, used in the DEC, extracts from the

residual vector Ŷ e Y(q), a standard measure εmod,i of the distance

between the prediction and the confidence interval:

εmod;i ¼
di

smod;i
(8)

where di corresponds to the discharge distance [m3. s$1] between

the model prediction at time i (yi) and the confidence interval of

discharge measurements, knowing that yi is located outside the

bounds. smod,i, called modelling distance bounds at time i, corre-
sponds to the distance range [m3. s$1] that is considered acceptable

by the user at time i.
Setting the distance range value for each time i, the user can

specify how the model will be forced throughout calibration to get

closer to the confidence interval. The modelling error is relevant

given that: if εmod,i * 1, the model prediction yi is acceptable,

whereas if εmod,i > 1, user expectations are not respected by yi.
Finally, the Umod ¼ (smod,i) vector defines a region of acceptability

for discharge prediction enclosing the confidence interval of

discharge observations.

The objective function, combining the evaluation of distances

and the explanation of the user expectations, results in a vector of

modelling error Emod ¼ (εmod,i) whose statistical properties are

representative of the overall prediction error of the model.

We consider the 90 percentile of the distribution, Emod
90th, as the

likelihood measure:

DEC ¼ Emod
90th (9)

The calibration metric Emod
90th will tend to standardize modelling

error distribution, to prioritize minimization of the largest model-

ling errors, while limiting the issue due to the correlated nature of

the modelling errors.

3.2. A graphical representation of an objective function: the error
isolines

Error isolines are a graphical representation related to an

objective function. An error isoline is composed of prediction points

exerting an equal impact on the objective function. Two predictions

at different time will have the same impact on the likelihood

measure if they are located on the same error isoline.

Error isolines may uncover the assumptions underlying a given

objective function. As such, they offer a way to compare several

objective functions. Fig. 1 displays the error isolines of the NSE, Liu

et al. (2009), Croke (2007) and DEC objective functions:

) the top left window (a) displays error isolines of the NSE

objective function. They also map BE or any objective function

using the sum of squared residuals to reduce the residual vector

into a likelihood measure. The lines tend to get closer to high

flow parts of the hydrograph, illustrating how NSE - as

mentioned in section 2,1 - allows for smaller relative errors

when it comes to peak discharges. Superimposing NSE error

isolines with the confidence interval of the discharge observa-

tions shows how this objective function can enforce the pre-

diction of peak flows with a misleading accuracy: error isolines

are inside the confidence interval of the discharge in this part of

the hydrograph, illustrating how the objective function may

detect modelling errors where the uncertainty range of the

observed data is inconclusive;

) the top right window (b) displays error isolines of the Croke

(2007) objective function. It shows that the model error allows

for larger errors when the observations are uncertain and

enforces a good mimic of the observations that are reliable. It

results in a calibration that enforces really good mimic specif-

ically when discharge observation are accurate;

) the bottom left window (c) displays the case of the Liu et al.

(2009) which is quite particular, as errors span a limited range

of values. A same error value is assigned to all predictions

outside the confidence interval of discharge observations.

Hence, the calibration is influenced mainly by the selection of

behavioural simulations, depending on the percentage of pre-

dicted points inside the confidence interval of the discharge

observations, rather than by the score of the objective function;

) the bottom window (d) displays error isolines of the DEC

objective function in the specific case where modelling dis-

tances smod,i are set to a constant. It illustrates how the DEC

combines both the discharge uncertainty and the hydrologist's

expertise (encapsulated in the definition of Umod). Error isolines

run alongside the confidence interval of the hydrograph (i.e. the

discharge envelop), showing that the objective function detects

any modelling error inside the confidence interval. Moreover, as

the modelling distance is here set to a constant, error isolines

illustrate the case where the DEC enforces equally the calibra-

tion around the discharge envelop. Finally, the way to catch

those discharge envelop can be adapted to model objectives by

defining other modelling distance bounds.

4. Methodology for the DEC evaluation

4.1. Case study: application of the DEC to flood modelling

For the purpose of evaluation, we consider the calibration of a

rainfall-runoff model dedicated to flash flood modelling. We look

for the calibration and evaluation of a distributed and physically-

based model called MARINE (Mod!elisation de l’Anticipation du

Ruissellement et des Inondations pour des !ev!eNements Extrêmes),

developped specifically for flash flood simulation. The equations

describing the main flash flood processes (infiltration, overland

flow, channel routing) are detailed hereafter. Low rate flow pro-

cesses such as evapotranspiration, or baseflow are neglected. For

more detailed information on the MARINE model, please refer to

Roux et al. (2011) and Garambois et al. (2015). MARINE simulations

require the calibration of six physical parameters: soil depth Cz,
lateral hydraulic conductivity CT0, hydraulic conductivity of the

riverbed Ckr, saturated hydraulic conductivity Ck, and the flood plain

and riverbed Manning roughness coefficients, respectively np and

nr. Cz, CT0, Ckr and Ck are multiplicative constants of the corre-

sponding spatialized parameters z, T0 K, and Kr.

The model is applied on the Gardon catchment at Anduze

(543 km2). According to its physical properties (steep slope, thin

soil depth) and its geographical location in the French Mediterra-

nean area, this headwatershed has a highly contrasted hydrological

regime with frequent occurrences of flash floods. A set of 14

extreme events, recorded over 20 years, is considered. The hydro-

logical model is forced with rainfall data issued by the ARAMIS

radar network (M!et!eo France, Tabary, 2007). It provides inputs with

a time resolution of 5 min and a spatial resolution of 1 km + 1 km.

Rainfall data is provided without uncertainty. Their calculation is a

topic in its own right (Delrieu et al. (2014)), which is beyond the

scope of this study.

The initial state is extracted from the SAFRAN-ISBA-MODCOU

(SIM) hydro-meteorological model outputs (Habets et al., 2008).

The model provides the humidity indexes of a conceptual root zone

horizon. As for the rainfall input, their uncertainty is not

considered.

The observed discharge data were provided by the French



operational flood forecasting services (SCHAPI and SPC). Uncer-

tainty discharge is evaluated from the rating curve. It is assumed

that the uncertainty standard deviation sH increases linearly with

the observed stage H:

sH ¼ a*H þ b (10)

with a and b depending on the gauging station characteristics at

Anduze. The discharge uncertainty standard can be deduced from

the stage discharge conversion Ŷ ¼ g(H):

s~Y ¼ sH*g
0

ðHÞ (11)

Finally it is assumed that the uncertainty is normally distrib-

uted. This approximation is good enough to determine confidence

intervals.

4.2. The calibration methodology using DEC objective function

First we define the modelling distance bounds (smod,i). Consid-

ering the MARINE model assumptions, a coarse prediction of

baseflow is expected. (smod,i) is set at a minimum of the catchment

module (Qcatchment). The studied events present high flow variations

from a module of 15 m3 s$1 to peak flows reaching 1000 m3 s$1.

Modelling distance bounds are adapted to this amplitude by setting

the modelling distance bounds proportional to the observed

discharge:

smod;i ¼ Qcatchment þ 0;02*byi (12)

5000 parameter sets are extracted from an uniform distribution

on bounded intervals in <6. The MARINE model is run with these

sets. Each resulting predictione named s - is weighted according to

the DEC objective function:

Ws
DECfexp

!
$ ðDECÞ2

#
(13)

whereWS
DEC corresponds to the weight given to s, according to the

DEC likelihood measure. Finally for each time step, the calibration

provides a distribution of weighted predictions. The median values

of each distribution are considered as the average discharge pre-

diction, while the 5th and 95th percentiles represent the bounds of

discharge prediction uncertainty.

For the sake of simplicity, we designate hereafter by “DEC cali-

bration”, the calibration methodology based on the DEC objective

function.

4.3. Comparative evaluation of the DEC calibration

Results of the DEC calibration is compared to those obtained

with other methodologies. We applied the Liu et al. (2009) meth-

odology and the Croke (2007) methodology as they both integrate

discharge uncertainty into calibration. The widespread GLUE

methodology is also applied (Beven and Binley, 1992), as a refer-

ence. Table 1 sums up modelling errors and weights used in each

calibration methodology.

5. Results

5.1. Calibration results using the DEC objective function

Fig. 2 shows at the topwindow, the hydrograph simulation of six

flash flood events with MARINE model after calibration using the

DEC objective function. The dark blue envelop corresponds to the

confidence interval of the observed discharge and the orange

envelop to the confidence interval of the simulated discharge. The

light blue envelop defines the region of model acceptability.

The bottom frame displays the modelling errors computed by

the objective function. When the prediction lies within the

discharge confidence interval (dark blue envelop), the modelling

Fig. 1. Error isolines according to different model errors formulations: a) Nash-Sutcliffe efficiency (NSE); b) the Croke (2007); c) the Liu et al. (2009); d) Discharge Envelop

Catching efficiency, with a constant value of the distance bounds around the discharge envelop (smod,i) equal to two times the catchment module (30 m3 s$1).



error is set to zero. When the prediction is enclosed in the interval

of model acceptability, modelling error is lower than 1 and it is

assessed as acceptable. When the modelling error exceeds the light

blue envelop, it is set to a value exceeding 1 and an error of

modelling is detected. In grey are represented the confidence in-

terval of the modelling error without any parameters sets

weighting. From this display, sensitive part of the hydrograph to

calibration could be detected comparing the grey and the orange

envelop. As well, it emphasizes where modelling errors remain

after calibration.

The hydrographs show that the observed discharge is globally

well mimicked by the median prediction of the model. One flow

peak is underestimated, another is overestimated, but the repro-

duction of the others flow peaks is close to the observed discharge.

90,11% of the median prediction points of the 14 simulated events

are inside the interval of model acceptability (see Table 3).

Regarding model failing, the model tends to underestimate flow

peak and the rising limb. In contrast, the really early rising might be

overestimated as in the events 3 and 5.

The event 5 stands as an exception, as the flow prediction

globally overestimates the observed discharge. Parameter calibra-

tion has little impact on modelling error range during this event.

Those differences may suggest more data inconsistency than

modelling error, as prediction errors appear to be specific to this

event.

The base flow is also well predicted as the median prediction

and its confidence interval during low flows respect the interval of

model acceptability. User expectations are satisfied. In fact, the

baseflow prediction is quite coarse as the median prediction shows

for some events a relative error of 50%, but it is enough to user

expectations, as defined by the DEC efficiency (ie the choice of the

distance range). The calibration barely restricts the interval of

prediction during low flows, as the grey and orange intervals are

similar along this part of hydrograph for all events. It shows that the

Table 1

Summary of the calibration methodologies: modelling error and weights.

Likelihood measures are computed on all the events.

Method Modelling error Weight of the simulation s

GLUE
εNSE ¼ yi$byi

stdðbyÞ
Ws

NSEfNSEs If NSEs - 0;6*maxðNSEsÞa; else 0

Liu et al. (2009)

jεLiuj ¼ min

0

@1;

&&&&&&
yi$byi
sbyi

&&&&&&

1

A
Ws

Liuf
P

i
expð$ε

2
Liu;iÞ If fyi2½ byi $ sbyi ;

byi þ sbyi 0g - 85% b; else 0

Croke (2007)
εCroke ¼

yi$byi
sbyi

*std
(
sby
by

)
Ws

Crokef
P

i
expð$ε

2
Croke;iÞ

DEC
εDEC ¼ di

smod;i
Ws

DECCfexpð$ðE90ths Þ2Þ

a NSE threshold is set to 65% of the maximum NSE value obtained running all the parameter sets.
b The minimum percentage required (85%) is set in order to select enough behavioural predictions for statistical use.

Fig. 2. Top window: Hydrograph of 6 out of 14 selected flash flood events supplied by the DEC calibration; bottom window: remaining modelling errors along the hydrograph with

median prediction in red, and range of modelling errors into the confidence interval of prediction (orange). The grey envelop corresponds to the covered range of modelling errors

without any selection of parameter sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2

Percentage of subsurface flow during the flood. (when ŷi > 150 m3.s-1).

(%) GLUE Croke (2007) Liu et al. (2009) DEC

q5 9,3% 16,9% 22,7% 16,6%

q50 30,0% 35,8% 33,6% 35,3%

q95 43,7% 45,3% 41,0% 44,0%

Table 3

NSE on 14 flash flood events. The NSE formula is successively used to compare i) the

median prediction Y50
th with the discharge observation Ŷ; ii) the lower bound pre-

diction Y5
th with the lower bound of the confidence interval of the discharge Ŷ5

th; iii)

the upper bound prediction Y95
th with the upper bound of the confidence interval of

the discharge Ŷ95
th .

GLUE Croke (2007) Liu et al. (2009) DEC

Statistic on all data series

Median prediction 0,77 0,63 0,76 0,76

Lower bound prediction 0,63 0,48 0,57 0,62

Upper bound prediction 0,80 0,83 0,82 0,85



calibration is not sensitive to low flow prediction but rather to

rising limb and peak flow ones. This remark is important for

interpreting the parameter set weighting. Calibration results e

parameter sets weighting e will be informative for the related

hydrological process models as they are controlled by the calibra-

tion. On the opposite, recession modelling appears not to be sen-

sitive to the calibration but rather tomodel structure and input data

quality.

5.2. Comparison results for all calibration methodologies

The comparison aims to determine to what extent the param-

eter selection or hydrograph reproduction depends on the cali-

bration methodology. First the posterior distribution of the

parameters is compared and prediction discrepancies are detected

and explained according to objective function properties. Then the

related consequences to the discrepancies on hydrograph re-

productions are analyzed.

5.2.1. Comparison of parameter posterior distributions
Fig. 3 shows the parameter posterior distribution issued from

each calibration methodology. Those distributions reflect the first-

order sensitivity of parameters to calibration methodology.

All calibration methodologies show that CZ and CT0 are sensitive

parameters. It reflects how important for model performance are

soil properties, both in terms of water storage capacity and sub-

surface flow quantification.

With the three calibration methodologies GLUE, Liu et al. (2009)

and DEC, storage capacity of the model is mainly controlled by the

CZ parameter, the infiltration parameter Ck being not sensitive to

calibration. On the opposite, the Croke (2007) method shows a

sensitivity to Ck parameter: only high values of Ck results in

behavioural simulations. It seems that the calibration does not have

to limit the soil infiltration capacity, as calibration methods either

allow or impose high values of infiltration velocity. Finally, all

calibration methodologies suggest that runoff production in the

MARINE model comes from soil storage capacity exceedence

(Dunne, 1978).

The sensitivity of the transmissivity of the soil (CT0 parameter)

results from the significant contribution to floods of subsurface

flow. The proportion of subsurface flow during high part of

hydrographs (ŷi > 150 m3 s$1, Table 2) ranges between 9% and 45%,

whatever the calibration method. The similar range of values for

the proportion of subsurface flow does not reflect the discrepancies

between posterior distributions of the CT0 parameter. Actually, CT0
posterior distributions are correlated with the CZ posterior ones.

Discrepancies of CT0 posterior distributions seem to compensate

differences between CZ posterior distributions producing at the end

a similar volume of subsurface flows.

Looking at the posterior distributions of roughness coefficients,

which control surface flow dynamics, only the Liu et al. (2009) and

the Croke (2007) methods show sensitivity to the river roughness

(nr, Fig. 3). Considering the case of the Croke (2007) method, Fig. 4

shows that the defined error model induces sensitivity to the early

rising limb of each event. Indeed, themodelling error interval of the

early rising limb obtained without parameter set weighting is huge,

and calibration is mainly concerned with minimizing those

modelling errors. Finally, the fact that calibration is focused on the

early rising limb may explain the sensitivity of the model to river

roughness coefficient. Considering the Liu et al. (2009) method, as

modelling errors are all valued the same falls outside the confi-

dence interval of the observed discharge, their representation does

not provide an explanation. Nevertheless, wemay suppose, that the

small confidence interval around the early rising limb equally

makes the Liu et al. (2009) method to enforce accurate prediction

for having few modelling errors in this hydrograph part.

The calibration of the last parameter e the coefficient of trans-

missivity of the riverbed e results in different posterior distribu-

tions between Liu et al. (2009) and the three other methodologies.

Only the Liu et al. (2009) method shows sensitivity to this param-

eter. This sensitivity is not easy to explain as the Liu et al. (2009)

methodology is not focused in any particular hydrological pro-

cesses. Nevertheless, it seems that the Ckr parameter has a

compensatory effect on the selection of the other parameters, as

correlations between nr and CT0 parameters appear particularly

when calibrating the model with the Liu et al. (2009) methodology.

5.2.2. Hydrograph reproduction comparison
Fig. 5 shows the hydrographs of 6 out of 14 flash flood events

outputed by the different calibration methods. Observed discharge

and corresponding uncertainty are in blue, the median prediction

in red and prediction uncertainty in orange. Significant systematic

under- (or over-) estimation is visible. Particularly, the Croke (2007)

method tends to underestimate flood discharge, for almost the

presented events. On the opposite, Liu et al. (2009) method over-

estimates the peak discharge, giving a confidence interval of pre-

diction exceeding that of the observed discharge.

Hydrographs show periods when the discharge confidence

Fig. 3. Posterior distributions of parameters after calibration: soil depth Cz; lateral hydraulic conductivity CT0; saturated hydraulic conductivity Ck; and the riverbed and flood plain

Manning roughness coefficients respectively nr and np; hydraulic conductivity of the riverbed Ckr.



Fig. 4. Top window: Hydrographs of 3 selected flash flood events supplied by the Croke (2007) calibration; bottomwindow: remaining modelling errors along the hydrograph with

median prediction in red, and range of modelling errors into the confidence interval of prediction. The grey envelop corresponds to the covered range of modelling errors without

any selection of parameter sets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Hydrograph of 6 out of 14 selected flash flood events (for greater clarity) supplied by the different calibration methods: a) GLUE method; b) Croke (2007); c) Liu et al.

(2009) method; d) DEC method. Refer to Fig. 2 for the legend.



interval falls outside the prediction uncertainty whatever the cali-

bration method. Those periods could not be simulated properly by

the MARINE model. Actually, it emphasizes either the weakness in

the model or the input data uncertainty.

5.2.3. Comparison of global performances
Table 3 gives the NSE scores successively calculated between the

median prediction Y50
th and the observed discharge Ŷ (line 1); the

lower bound prediction Y5
th and the lower bound of the observed

discharge confidence interval Ŷ5
th (line 2); the upper bound pre-

diction Y95
th and the upper bound of the observed discharge confi-

dence interval Ŷ95
th (line 3). The aim is to assess both the discharge

prediction and the confidence interval of that prediction.

Representation of the observed discharge is similarly reached by

the GLUE, DEC and Liu et al. (2009)methodologies, with a NSE score

equal to 0,78 and 0,76 respectively. Croke (2007) has the lowest

performance with a NSE score equal to 0,63. As said before, the

latter method tends to underestimate flood peak (Fig. 5). Similarly,

the lower limit of the prediction is underestimated during flow

peak with this method and results in the poorest score for the

prediction of the lower bound (score ¼ 0,48). Finally, according to

the NSE score, the GLUE, the Liu et al. (2009) and the DEC methods

show similar results for the median prediction as well as for the

interval bounds ones.

Considering another global index for prediction assessment,

Table 4 presents the percentage of evaluated points located inside

the acceptability zone defined in the DEC definition (equation (11)).

The acceptability zone is defined according to user expectations,

and consequently appears as the aim of the calibration. The DEC

method gives the best percentagewithmore than 90,26% evaluated

points inside the acceptability zone. GLUE method and the Liu et al.

(2009) perform similarly with a score of 89,32% and 89,73%,

respectively. Regarding the NSE assessment, the Croke (2007)

method gives the lowest result. Considering the prediction for the

high parts of the hydrographs (second column, Table 4), the scores

give the same range of model performance with best predictions

for the DEC method, then in order the Liu et al. (2009) one, the

GLUE one, and finally the Croke (2007) one.

Model prediction can alsol be assessed according to water vol-

ume flowing at catchment outlet. The bias between predicted and

observed discharge reflects the predicted water balance quality. As

we know that the model is not accurate for low flow prediction, we

calculate the bias only for observed discharge higher than

150 m3 s$1 (Table 5).

Contrary to the previous metric assessments, calibration

methodologies present here very contrasted results. Croke (2007)

underestimates the median prediction and the lower bound pre-

diction is far below the interval bound of the observed discharge. It

is related to the fact that the method tends to underestimate peak

flows as it has been already mentioned when studying hydrograph

reproduction (Fig. 5). On the other hand, but not to the same de-

gree, Liu et al. (2009) overestimates the median prediction and the

lower bound prediction. The most important discrepancy is the

overestimation of the upper bound prediction. Actually, hydro-

graph given by the Liu et al. (2009) method shows this over-

estimation. It may not appear in the previous score as it represents

only a few points during flow peaks, therefore the contribution to

the NSE score may not be significant. GLUE presents an over-

estimation of the upper bound and an underestimation of the lower

bound, and consequently gives a larger confidence interval of

prediction than the confidence interval of the observed discharge.

The confidence interval bandwidth depends on the NSE threshold

arbitrarily chosen in order to separate behavioural and non

behavioural simulation. The choice of a higher NSE threshold may

have decreased the confidence interval bandwidth and therefore

resulted in more relevant prediction results.

Overall, only the DEC provides reasonable bias values. Indeed,

the median prediction as well as the bound predictions have a bias

that does not exceed 18.0 m3 s$1, which represents less than 5% of

the average of the observed discharge that are higher than

150 m3 s$1.

In order to explain the discharge bias discrepancies, we must

step back on parameter posterior distribution. Described in x 4,3,1,

all calibration methodologies show a model sensitivity to Cz
parameter values, but the resulted posterior distribution of this

parameter differs. In particular, calibration methodologies can be

ranked according to the median value of Cz parameter posterior

distribution. Liu et al. (2009) gives the lower Cz
50th followed by, DEC,

GLUE and finally Croke (2007). The selected ranking corresponds to

the ranking of bias of the medium prediction, from Liu et al. (2009)

method showing the highest overestimation, to the Croke (2007)

method presenting the highest underestimation of the median

prediction. Actually, it makes sense that the model calibrated with

lower depth of storage capacity gives a higher discharge response

and inversely.

Moreover, we can notice that posterior distributions of the Cz
parameter from DEC and Liu et al. (2009) reflect a more restricted

range of Cz value, than for the other methods. It may explain that

these methods give smaller confidence interval of prediction

around the median discharge prediction.

Finally, most of the discharge bias discrepancies between the

different calibration methods may be explained as resulting from

Cz, the parameter posterior distribution. The overestimation of the

upper bound prediction during high flows by Liu et al., 2009 is not

completely clarified. It may result either from the particular cali-

bration of the riverbed transmissivity, Ckrwith this method, or from

the selection of smaller values for Cz parameter, that limits soil

storage capacity. Further investigation should be done to confirm it.

6. Conclusion

We presented a calibration method that consistently integrates

uncertainty of the discharge observations, model specifics and

user-defined tolerance. This is achieved by introducing a new

objective function called Discharge Envelop Catching efficiency

(DEC). Themain idea of themethod is enable the end-user to define

an acceptability region around the confidence interval of the

Table 4

Percentage of evaluated points of the median prediction inside the acceptability

zone defined by in the DEC definition (x 3,2).

Method Percentage of accepted points of the median prediction

All points Prediction of points where ŷi > 150 m3 s$1

DECC 90,26% 76,9%

GLUE 89,32% 74,1%

Liu et al., 2009 89,73% 75,7%

Croke 2007 87,86% 68,9%

Table 5

Discharge prediction bias on 14 flash flood events when observed discharged is

higher than 150 m3 s$1. As for NSE calculation, median prediction Y50
th is compared to

the observed discharge Ŷ and the predicted bounds (Y5
th and Y95

th) are compared to the

bounds of the confidence interval of the discharge (Ŷ5
th and Ŷ95

th ).

(m3.s$1) GLUE Croke (2007) Liu et al. (2009) DEC

Median prediction $23 $141 69 5,7

Lower bound prediction $59 $155 55 17,1

Upper bound prediction 149 21 122 15,1



discharge, in relevancewith user's expectations. The 90th percentile

of distance distribution from prediction to the acceptability zone is

used as the metric score used to assess the model. This score is

consideredmore appropriate than the average of the distribution as

it gives priority to the minimization of high distances to the

acceptability region.

Using the DEC objective function, a calibration of the MARINE

model is tested. The DEC method provides optimal parameter sets

since high values of the NSE (0.76) are obtained with the resulting

discharge prediction. Also, for 90.11% of the assessment points

along the hydrograph, the discharge prediction is enclosed in the

acceptability zone. This score is especially conclusive considering

that input uncertainty was not taken into account.

We find that the parameter posterior distribution depends on

the related calibration method, affirming the role of the objective

function. Regarding the impact of the calibration on the modelling

error along the hydrograph, it appears that each calibration en-

forces the adequacy between observed and predicted discharge at

different points or parts of the hydrographs. To be relevant, the

assessment of parameter posterior distribution has to be combined

with the study of calibration impacts on the hydrographs.

Regarding the DEC calibration method, it mainly impacts the pre-

diction of flood rising limbs and flow peaks. The resulting param-

eter distribution will be most informative for flow processes

occurring during the corresponding parts of the hydrographs.

Assessment with the NSE provides similar results from a cali-

bration methodology to another, for the median prediction as well

as for its confidence interval, although the DEC performs slightly

better in average. The flood volume is significantly better predicted

when using the DEC method. Likewise, the DEC provides a confi-

dence interval for flood volume prediction that is more relevant

with respect to the uncertainty of the discharge observations and of

the related observed flood volume.
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