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We prove the following entropy-rigidity result in finite volume: if X is a negatively curved manifold with curvature -b 2 ≤ K X ≤ -1, then Ent top (X) = n -1 if and only if X is hyperbolic. In particular, if X has the same length spectrum of a hyperbolic manifold X 0 , the it is isometric to X 0 (we also give a direct, entropy-free proof of this fact). We compare with the classical theorems holding in the compact case, pointing out the main difficulties to extend them to finite volume manifolds.

Introduction

The problem of length spectrum rigidity of Riemannian manifolds has a long history. The fact that, in negative curvature (even in constant curvature), the collection of the lengths of all closed geodesics, together with all multiplicites, does not determine the metric is well known since [START_REF] Vigneras | Varie tés Riemanniennes isopectrales et non isométriques[END_REF]. On the other hand, on a compact, negatively curved surface X, the metric is determined up to isometry by the marked length spectrum (that is, the map L : C( X) → R associating to each free homotopy class of loops in X the length of the shortest geodesic in the class); this was proved by Otal [START_REF] Otal | Le spectre marqué des longueurs des surfaces à courbure négative[END_REF] and, independently, by Croke [START_REF] Croke | Rigidity for surfaces of non-positive curvature[END_REF]. The same is true in dimension n ≥ 3 for any compact, locally symmetric manifold X0 of negative curvature: the locally symmetric metric on X0 is determined, among all negatively curved metrics, by its marked length spectrum. This is consequence of Besson-Courtois-Gallot's solution of the minimal entropy conjecture and of the fact, proved by Hamenstadt [START_REF] Hamenstädt | Cocycles, symplectic structures and intersection[END_REF], that if a compact, negatively curved manifold X has the same marked length spectrum as a compact, locally symmetric space X0 , then vol( X) = vol( X0 ) 1 .

1 By [START_REF] Hamenstädt | Time preserving conjugacies of geodesic flows[END_REF], two compact, negatively curved manifolds having the same marked length spectrum have C 0 -conjugated geodesic flow; moreover, if a compact manifold X has geodesic flow which is C 0conjugated to the flow of a manifold X0 whose unitary tangent bundle has a C 1 -Anosov splitting (e.g., a locally symmetric space), then X has the same volume as X0, see [START_REF] Hamenstädt | Cocycles, symplectic structures and intersection[END_REF]. The fact that, for compact manifolds, volume is preserved under C 1 -conjugacies is much easier and relies on Stokes' formula, cp. [START_REF] Croke | Conjugacy and rigidity for manifolds with a parallel vector field[END_REF].

Less seems known about the length rigidity of negatively curved, finite-volume manifolds: most generalizations are not straightforward, and seem to require additional assumptions (such as bounds on the curvature and on its derivatives, or the finiteness of the Bowen-Margulis measure); we will try to point out some of these difficulties throughout the paper. For instance, the fact that having the same marked length spectrum implies the existence of a C 0 -conjugacy of the geodesic flow, would certainly require some new arguments for finite-volume manifolds2 . Theorem 1.1 Let X be a finite volume n-manifold with pinched, negative curvature -b 2 ≤ K X ≤ -1 which is homotopically equivalent to a locally symmetric manifold X0 , with curvature normalized between -4 and -1. If X and X0 have same marked length spectrum, then they are isometric.

The proof of this is probably known to experts and follows a classical scheme: one can construct a Γ-equivariant map f : X → X 0 between the universal coverings, which induces a homeomorphism between the boundaries and preserves the cross-ratio; then, the conclusion stems, for instance, from Bourdon's result [START_REF] Bourdon | Sur le birapport au bord des CAT (-1)-espaces[END_REF] on Möbius embeddings from locally symmetric to CAT (-1)-spaces. However, the main difficulty, in the case of finite volume manifolds, is to show that f is a quasi-isometry, the quotients X and X0 being non-compact; we will give a short proof of this fact in §3, by way of example, to measure the difference from the compact case.

It is tempting to approach the above problem by using a finite-volume version of Besson-Courtois-Gallot's inequality, given by Storm [START_REF] Storm | The minimal entropy conjecture for nonuniform rank one lattices[END_REF]; however, notice that Storm's inequality Ent( X) n V ol( X) ≥ Ent( X0 ) n V ol( X0 ) concerns the volume entropy3 of X, and not the topological entropy Ent top ( X) of the geodesic flow on U X. Recall that for compact, negatively curved manifolds, one always has Ent(X) = Ent top ( X), but for finite-volume manifolds Ent( X) is generally strictly greater than Ent top ( X) (cp. [START_REF] Dal'bo | On the growth of non-uniform lattices in pinched negatively curved manifolds[END_REF], [START_REF] Dal'bo | Convergence and counting in infinite measure[END_REF]); on the other hand, the topological entropy always equals the critical exponent of the group Γ = π 1 (X) acting on the universal covering:

δ Γ := lim R→∞ 1 R ln #{γ ∈ Γ | d(x, γx) ≤ R}
as proved in [START_REF] Otal | Principe variationnel et groupes kleiniens[END_REF]. Then, the volume entropy Ent( X) is not preserved, a priori, by the condition of having same marked length spectrum, or by a conjugacy of the geodesic flows. Moreover, it is not clear whether, for finite volume manifolds, the volume is preserved under a conjugacy of the flows 4 . The upper bound on the curvature K X ≤ -1 in Theorem 1.1 seems unreasonably strong, as it implies, when X0 is hyperbolic, that X has marked length spectrum which is asymptotically critical: that is, its exponential growth rate δ Γ is greater than or equal to the corresponding exponential growth rate for X0 (cp. [START_REF] Dal'bo | On the growth of non-uniform lattices in pinched negatively curved manifolds[END_REF], Lemma 4.1).

We expect that the same result holds without curvature bounds, but, even in this weaker form, we were unable to find a proof of this result in literature.

The knowledge of the full marked length spectrum can be relaxed, as we show in the following result (which implies Theorem 1.1 in the real hyperbolic case): Theorem 1.2 Let X be a finite volume n-manifold with pinched, negative curvature -b 2 ≤ K X ≤ -1. Then Ent top ( X) ≥ n -1, and the equality Ent top ( X) = n -1 holds if and only if X is hyperbolic.

The entropy characterization of constant curvature (and locally symmetric) metrics has been declined in many different ways so far: in the compact case, the above theorem is due to Knieper (see [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF], where this result is not explicitly stated, but can be established following the argument of the proof of Theorem 5.2.); see also [START_REF] Courtois | Critical exponents and rigidity in negative curvature[END_REF], and [START_REF] Bonk | Rigidity for quasi-Möbius group actions[END_REF] for a proof in the convex-cocompact case.

We want to stress here that a basic difference between Theorem 1.2 (or, more precisely, their compact versions in [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF], [START_REF] Courtois | Critical exponents and rigidity in negative curvature[END_REF], [START_REF] Bonk | Rigidity for quasi-Möbius group actions[END_REF]) and the celebrated entropy characterization of Hamenstädt [START_REF] Hamenstädt | Entropy-rigidity of locally symmetric spaces of negative curvature[END_REF] of locally symmetric metrics, with same curvature normalization, is the lack of any locally symmetric manifold X0 of reference homotopically equivalent to X. Actually, the characterization given by Theorem 1.2 is very particular to constant curvature spaces and it does not generalize, as it is, to locally symmetric spaces: indeed, it is easy to construct compact, pinched, negatively curved manifolds with -b 2 ≤ K X ≤ -1 having same entropy as, let's say, the complex hyperbolic space, but which are not complex hyperbolic.

The same difference holds with the existing, finite volume versions of Besson-Courtois-Gallot's characterization of locally symmetric spaces, in particular with Boland-Connell-Souto's papers [START_REF] Boland | Volume rigidity for finite volume manifolds[END_REF] and Storm's [START_REF] Storm | The minimal entropy conjecture for nonuniform rank one lattices[END_REF]: these two works, together, imply that if a finite volume manifold X with curvature K X ≤ -1 has volume entropy Ent( X) = n -1, then it is hyperbolic, provided that one knows beforehand that X is homotopically equivalent to a hyperbolic manifold X0 . Besides the difference between volume and topological entropy stressed above, this strong supplementary topological assumption on X is not made in Theorem 1.2.

Let us also point out that Knieper's approach in [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF] does not allow to deduce the above characterization in the finite volume case. Although G. Knieper's horospherical measure µ H can be perfectly defined in this context (following §3 of [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF]), it can easily be infinite, as well as the Bowen-Margulis measure µ BM : given a finite volume surface X with convergent fundamental group Γ and with a cusp whose metric, in horospherical coordinates, writes as A 2 (t)dx 2 + dt 2 , it is not difficult to show that µ H is infinite as soon as [START_REF] Dal'bo | Convergence and counting in infinite measure[END_REF]). Therefore, all formulas in [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF] relating Ent top ( X) to the trace of the second fundamental form of unstable horospheres need to be justified in some other way 5 .

∞ 0 e δ Γ t A(t)dt = +∞ (cp. examples in §3,
On the other hand, we will give in §4 a proof of Theorem 1.2 using the barycenter method, initiated by Besson-Courtois-Gallot in [START_REF] Besson | Entropies et rigidités des espaces localement symétriques de courbure strictement négative[END_REF]- [START_REF] Besson | Lemme de Schwarz réel et applications géométriques[END_REF], together with some careful estimates of the Patterson-Sullivan measure, which will not need neither the finiteness of µ BM (or µ H ) nor the conservativity of the geodesic flow with respect to µ BM .

Also, notice that if we drop the assumption K X ≥ -b 2 in Theorem 1.2, the manifold X might as well be of infinite type (i.e. with infinitely generated fundamental group, or even without any cusp, see examples in [START_REF] Nguyen Phan | On finite volume, negatively curved manifolds[END_REF]), hence very far from being a hyperbolic manifold of finite-volume.

Notations.

Given functions f, g : R + → R + , we will systematically write f

C ≺ g (or g C ≻ f ) if there exists C > 0 and R 0 > 0 such that f (R) ≤ Cg(R) for R > R 0 . We write f C ≍ g when g C ≺ f C ≺ g for R ≫ 0 (
or simply f ≍ g and f ≺ g when the constants C and R 0 are unessential) 2 Geometry at infinity in negative curvature Throughout all the paper, X will be a n-dimensional, complete, simply connected manifold with strictly negative curvature -b 2 ≤ K X ≤ -1.

Let X(∞) the ideal boundary of X: for x, y ∈ X and ξ ∈ X(∞), we will denote by with center ξ and passing through x. We will denote by d ξ the horospherical distance between two points on a same horosphere centered at ξ, and we define the radial semiflow (ψ ξ,t ) t≥0 in the direction of ξ as follows: for any x ∈ X, the point ψ ξ,t (x) lies on the geodesic ray [x, ξ[ at distance t from x.

Finally, recall that for any fixed x ∈ X, the Gromov product between two points ξ, η ∈ X(∞), ξ = η, is defined as

(ξ|η) x = b ξ (x, y) + b η (x, y) 2 
where y is any point on the geodesic ]ξ, η[ joining ξ to η; as )x defines a distance on X(∞), which we will call the visual distance from x, cp. [START_REF] Bourdon | Structure conforme au bord et flot géodésique d'un CAT(-1)-espace[END_REF]. Accordingly, the cross-ratio on X(∞) 4 is defined as

K X ≤ -1, the expression D x (ξ, η) = e -(ξ|η
[ξ 1 , ξ 2 , ξ 3 , ξ 4 ] = D x (ξ 1 , ξ 3 )D x (ξ 2 , ξ 4 ) D x (ξ 1 , ξ 4 )D x (ξ 2 , ξ 3 ) = lim p 1 ,p 2 ,p 3 ,p 4 ∈X (p 1 ,p 2 ,p 3 ,p 4 )→(ξ 1 ,ξ 2 ,ξ 3 ,ξ 4 ) e d(p 1 ,p 3 )+d(p 2 ,p 4 )-d(p 1 ,p 4 )-d(p 2 ,p 3 )
for all ξ 1 , ξ 2 , ξ 3 , ξ 4 ∈ X(∞), and it is easily seen that it is independent from the choice of the base point x, cp. [START_REF] Otal | Sur la géométrie symlectique de l'èspace des géodésiques d'une variété à courbure négative[END_REF], [START_REF] Bourdon | Structure conforme au bord et flot géodésique d'un CAT(-1)-espace[END_REF].

We will repeatedly make use of the following, classical result in strictly negative curvature: there exists ǫ(ϑ) = log( 21-cos ϑ ) such that any geodesic triangle xyz in X making angle ϑ = ∠ z (x, y) at z satisfies:

d(x, y) ≥ d(x, z) + d(z, x) -ǫ(ϑ).
(1)

On the geometry of finite volume manifolds

Consider a lattice Γ of X. The quotient manifold X = Γ\X has finite volume, it is thus a geometrically finite manifold which admits some particular decomposition which we now recall. The following classical results are due to B. Bowditch [START_REF] Bowditch | Geometrical finiteness with variable negative curvature[END_REF], and we state them in the particular case of finite volume manifolds :

(a) the limit set of L(Γ) of Γ is the full boundary at infinity X(∞) and is the disjoint union of the radial limit set L rad (Γ) with finitely many orbits of bounded parabolic fixed points L bp (Γ) = Γξ 1 ∪ . . . ∪ Γξ l ; this means that each ξ i ∈ L bp (Γ) is the fixed point of some maximal parabolic subgroup P i of Γ, acting co-compactly on X(∞) \ {ξ i };

(b) (Margulis' lemma) there exist closed horoballs H ξ 1 , . . . , H ξ l centered respectively at ξ 1 , . . . , ξ l , such that γH ξ i ∩ H ξ j = ∅ for all 1 ≤ i, j ≤ l and all γ ∈ Γ \ P i ;

(c) The finite volume manifold X can be decomposed into a disjoint union of a compact set K and finitely many "cusps" C1 , ..., Cl : each Ci is isometric to the quotient of H ξ i by a corresponding maximal bounded parabolic group P i . We refer to K and to C = ∪ i Ci as to the thick part and the cuspidal part of X.

For any fixed x ∈ X, let D = D(Γ, x) the Dirichlet domain of Γ centered at x; this is a convex fundamental subset of X, and we may assume that D contains the geodesic rays [x, ξ i [. Each parabolic group P i acts co-compactly on the horosphere ∂H ξ i which bounds the horoball H ξ i ; setting

S i = D ∩ ∂H ξ i and C i = D ∩ H ξ i ≃ S i × R + , the fundamental domain D can be decomposed into a disjoint union D = K ∪ C 1 ∪ • • • ∪ C l ( 2 
)
where K is a convex, relatively compact set containing x in its interior and projecting to the thick part K of X , while C i and S i are, respectively, connected fundamental domains for the action of P i on H ξ i and ∂H ξ i , projecting respectively to Ci and Si .

Growth of parabolic subgroups

The subgroups P 1 , s, P l will play a crucial role in the sequel; the growth of their orbital functions is best expressed by introducing the horospherical area function.

Let us recall the necessary definitions:

Definition 2.

(Horospherical Area)

Let P be a bounded parabolic group of isometries of X fixing ξ ∈ X(∞): that is, P acts cocompactly on X(∞) {ξ} (as well as on every horosphere centered at ξ). Given x ∈ X, let S x be a fundamental, relatively compact domain for the action of P on ∂H ξ (x): the horospherical area function of P is the function

A P (x, R) = vol [P \ψ ξ,R (∂H ξ (x))] = vol [ψ ξ,R (S x )]
where vol denotes the Riemannian measure of horospheres.

Remark 2.2 When -b 2 ≤ K X ≤ -a 2 < 0, well-known estimates of the differential of the radial flow (cp. [START_REF] Heintze | Geometry of horospheres[END_REF]) yield, for any

t ∈ R and v ∈ T 1 X e -bt v ≤ dψ ξ,t (v) ≤ e -at v (3) 
Therefore we deduce that, for any ∆ > 0, e -(n-1)b∆ ≤ A P (x, R + ∆)

A P (x, R) ≤ e -(n-1)a∆ (4) 
The following Proposition shows how the horospherical area A P is related to the orbital function of P , cp. [START_REF] Dal'bo | On the growth of non-uniform lattices in pinched negatively curved manifolds[END_REF]:

Proposition 2.3 Let P be a bounded parabolic group of X fixing ξ, with diam(S x ) ≤ d.
There exist R 0 and ∆ 0 only depending on n, a, b, d and constants C = C(n, a, b, d) and a,b,d,∆) such that, for any R ≥ b ξ (x, y) + R 0 and any ∆ > ∆ 0 , the numbers v P (x, y, R) and v ∆ P (x, y, R) of orbit points of P y falling, respectively, in the balls B(x, R) and in the annuli A ∆ (x, R) satisfy:

C ′ = C ′ (n,
v P (x, y, R) = {p ∈ P | d(x, py) < R} C ≍ A -1 P x, R + b ξ (x, y) 2 v ∆ P (x, y, R) = {p ∈ P | R - ∆ 2 ≤ d(x, py) ≤ R + ∆ 2 } C ′ ≍ A -1 P x, R + b ξ (x, y) 2 .

Length spectrum and rigidity

This section is devoted to the proof of Theorem 1.1.

Let Γ be the fundamental group of the manifolds X and X0 , acting by isometries on their Riemannian universal coverings X and X 0 respectively. We will construct a Γ-equivariant homeomorphism f ∞ : ∂X(∞) → X 0 (∞) and apply the following:

Theorem 3.1 (cp. [START_REF] Bourdon | Sur le birapport au bord des CAT (-1)-espaces[END_REF]) Let X be a CAT(-1)-space and X 0 a symmetric space of rank one, with curvature -4 ≤ K X 0 ≤ 1. Assume that f ∞ : X(∞) → X 0 (∞) is a Γ-equivariant homeomorphism which preserves the cross-ratio: then there exists a Γ-equivariant isometry f : X → X 0 whose extension on X(∞) coincides with f ∞ .

For this, we fix x ∈ X and x 0 ∈ X 0 and consider the natural Γ-equivariant bijection φ : Γx → Γx 0 . The main difficulty here is to show the following:

Proposition 3.2
The map φ is a quasi-isometry between the orbits, with respect to the distances induced by the Riemannian distances of X and X 0 respectively.

We assume Proposition 3.2 for a moment. Since X and X0 have finite volume, the limit set of Γ coincides with the full boundaries X(∞) and X 0 (∞) = S n-1 and the map φ extends to a bi-Hölder and Γ-equivariant homeomorphism f ∞ between these boundaries, endowed with their natural visual metric from x and x 0 . Now, the fact that X and X0 have the same marked length spectrum implies that f ∞ preserves the cross ratio; this follows for instance from [START_REF] Otal | Sur la géométrie symlectique de l'èspace des géodésiques d'une variété à courbure négative[END_REF]. For the sake of completeness, we will give a proof of this fact at the end of this section (Proposition 3.5), based on an argument from [START_REF] Kim | Marked length rigidity of rank one symmetric spaces and their product[END_REF] (where the same is proved for symmetric spaces). We conclude by 3.1 that there exists an isometry between the quotients X and X0 . 2

Proof of Proposition 3.2. Let us first show that there exists λ > 1 such that, for all γ ∈ Γ, we have

d 0 (x 0 , γx 0 ) ≤ λd(x, γx) + λ. (5) 
Consider the decomposition of X described in subsection 2.1: we denote by H the set of pairwise disjoint horoballs which project on the cuspidal part of X, so that K := X \ ∪ H∈H H = ΓK is the subset of X projecting to the thick part K of X. We assume that d(H, H ′ ) ≥ 1 for any H = H ′ in H, and set diam(K) = D.

For any γ ∈ Γ, the geodesic segment [x, γx] intersects at most N ≤ d(x, γx) distinct horoballs H ∈ H and can be decomposed as

[x, γx] = [x + 0 , x - 1 ] ∪ [x - 1 , x + 1 ] ∪ • • • ∪ [x + N -1 , γx - N ] where x + 0 = x, x - N = x, and where [x - i , x + i ] is equal to [x, γx] ∩ H i for some horoball H i ∈ H and each [x + i , x - i+1 ] is included in K.
Then, there exist elements g i ∈ Γ and

p i ∈ P 1 ∪ • • • ∪ P l , for 1 ≤ i ≤ N -1, with g N := γ, such that x - i ∈ g i K, x + i ∈ g i p i K; moreover, set γ i := p -1 i-1 g -1 i-1 g i for 1 ≤ i ≤ N with the convention p 0 = g 0 = 1. Notice that all the geodesics [x, γ i x] are included in a D ′ = D ′ (D)-neighbourhood of K: in fact, the length of the broken geodesic [x + i , g i p i x]∪[g i p i x, g i+1 x]∪[g i+1 x, x - i+1 ] exceeds the length of [x + i , x - i+1
] at most of 2D, so (the curvature being bounded above by -1) it stays D ′ (D) close to [x + i , x - i+1 ]; by construction this last segment does not enter any horoball of H, so [g i p i x, g i+1 x] and [x,

γ i+1 x] = p -1 i g -1 i [g i p i x, g i+1 x] stay in the D ′ -neighbourhood of K. Now we have γ = γ 1 p 1 γ 2 • • • γ N -1 p N -1 γ N , so d 0 (x 0 , γx 0 ) ≤ N i=1 d 0 (x 0 , γ i x 0 ) + N -1 i=1 d 0 (x 0 , p i x 0 ). (6) 
On the other hand

d(x, γx) = N i=1 d(x + i-1 , x - i ) + N -1 i=1 d(x - i , x + i ) ≥ N -1 i=1 d(g i-1 p i-1 x, g i x) + N -1 i=1 d(g i x, g i p i x) -4(N -1)D = N i=1 d(x, γ i x) + N i=1 d(x, p i x) -4(N -1)D which in turn yields, as N ≤ d(x, γx), N i=1 d(x, γ i x) + N i=1 d(x, p i x) ≤ (1 + 4D)d(x, γx). (7) 
To obtain inequality [START_REF] Bourdon | Structure conforme au bord et flot géodésique d'un CAT(-1)-espace[END_REF], it is thus sufficient to check that it holds for each γ i and p i which appears in the sums ( 6) and [START_REF] Bowditch | Geometrical finiteness with variable negative curvature[END_REF]. This is proved in the two following lemmas:

Lemma 3.3 For any D ′ > 0, there exists C > 0 such that

d 0 (x 0 , γx 0 ) ≤ C d(x, γx) + C
for any γ ∈ Γ such that [x, γx] lies in the D ′ -neighbourhood of K.

Lemma 3.4 There exists C ′ > 0 such that, for any parabolic isometry

p ∈ P 1 ∪ • • • ∪ P l d(x, px) C ′ ≍ d 0 (x 0 , px 0 ). ( 8 
)
Switching the roles of (X, d) and (X 0 , d 0 ), we obtain the opposite inequality d 0 (x 0 , γx 0 ) ≤ λd(x, γx) + λ, which concludes the proof of Proposition 3.2.

2

Proof of Lemma 3.3. Let γ ∈ Γ such that [x, γx] lies in the D ′ -neighbourhood of K, and let

x 0 = x, x N = γx and x 1 , • • • , x N -1 be the points on the geodesic segment [x, γx] such that d(x, x i ) = iD for 0 ≤ i ≤ N -1, with N -1 = [d(x, γx)]. There exist isometries h 0 = 1, h 1 , • • • , h N -1 , h N = γ in Γ such that d(x i , h i x) ≤ D + D ′ ; setting k i = h -1 i-1 h i , we then have γ = k 1 k 2 • • • k N . Now, for any 1 ≤ i ≤ N , we have d(x, k i x) ≤ 1 + D + D ′ ; so every k i belongs to the finite set B := {k ∈ Γ | d(x, kx) ≤ 1 + D + D ′ }. Setting C := max{d 0 (x 0 , kx 0 ) | k ∈ B}, we obtain d 0 (x 0 , γx 0 ) ≤ N i=1 d 0 (x 0 , k i x 0 ) ≤ N C ≤ Cd(x, γx) + C. 2 Proof of Lemma 3.4.
Let us first notice that if p ∈ Γ acts on X as a parabolic (resp. a hyperbolic) isometry, then it acts in the same way on X 0 : actually, the infimum of the length of curves in X in the free homotopy class of a parabolic element p is 0 and this condition is preserved since X and X0 have the same length spectrum. Then, let ξ 1 , ..., ξ l ∈ X(∞) be the fixed points of the maximal parabolic subgroups P 1 , .., P l of Γ such that the geodesic rays [x, ξ i [ are included in the Dirichlet domain D, as described in the subsection §2.1, and call ξ ′ i the corresponding parabolic fixed points of X 0 (∞); in order to simplify the notations, we set P = P i , ξ = ξ i and ξ ′ = ξ ′ i . Fix a finite generating set S for P and let | • | S be the corresponding word metric. As P acts cocompactly by isometries on (∂H ξ (x), d ξ ) and on (∂H ξ ′ (x 0 ), d ξ ′ ) we know that these metric spaces are both quasi-isometric to (P, |•| S ). In particular, there exists a constant c > 0 such that, for any p ∈ P

1 c d ξ (x, px) -c ≤ d ξ ′ (x 0 , px 0 ) ≤ cd ξ (x, px) + c. (9) 
Now, by the bounds on curvature -b 2 ≤ K X ≤ -1 we get (cp. [START_REF] Heintze | Geometry of horospheres[END_REF])

2 sinh d(x, px) 2 ≤ d ξ (x, px) ≤ 2 b sinh b 2 d(x, px) hence d(x, px)/d(x 0 , px 0 ) C ′
≍ 1 for a constant C ′ > 0 only depending on b and c.2 Proposition 3.5 Let α and β be two hyperbolic isometries in Γ with, respectively, repelling and attractive fixed points α -, α + , β -, β + ). Then

lim n→+∞ e l(α n )+l(β n )-l(β n α n ) = [α -, β -, α + , β + ]
where l(γ) denotes the length of the closed geodesic corresponding to γ for any γ ∈ Γ.

The set of couples (α -, α + ) of all hyperbolic fixed points of Γ being dense in

X(∞) 2 , this shows that [f ∞ (ξ 1 ), f ∞ (ξ 2 ), f ∞ (ξ 3 ), f ∞ (ξ 4 )] = [ξ 1 , ξ 2 , ξ 3 , ξ 4 ] ∀ξ 1 , ξ 2 , ξ 3 , ξ 4 ∈ X(∞).
Proof of Proposition 3.5. Fix x ∈ X. For n ≥ 0, set γ n = β n α n , and let γ - n , γ + n be its repelling and attractive fixed points. Consider two sequences of points

a k ∈ ]α -, α + [ and b k ∈ ]β -, β + [ such that lim k→+∞ a k = α -and lim k→+∞ b k = β + ; moreover, we can choose a sequence n k → ∞ such that lim k→+∞ α n k a k = α + and lim k→+∞ β -n k b k = β -.
Now, for each k, let B k be a compact ball centered at x containing a k and b k . Notice that γ - n and γ + n tend respectively to α -and β + , so the sequence of geodesics ]γ - n , γ + n [ tend to ]α -, β + [: namely, for k fixed, the distance between ]γ - n , γ + n [ and ]α -, β + [, restricted to the compact set B k , tends to 0 when n → ∞. We can then choose n k large enough so that

d ]γ - n k , γ + n k [ ∩B k , ]α -, β + [ ∩B k < 1/k Call a ′ k , b ′ k the projections of a k , b k on ]γ - n k , γ + n k [; so, the sequences (a ′ k ) k and (b ′ k )
k also converge respectively to α -and β + , and the sequences (α n k a ′ k ) k , (β -n k b ′ k ) k respectively to α + and β -. We then have:

[α -, β -, α + , β + ] = lim k→∞ e d(a ′ k ,α n k a ′ k )+d(β -n k b ′ k ,b ′ k ) e d(a ′ k ,b ′ k )+d(β -n k b ′ k ,α n k a ′ k ) = lim k→∞ e d(a k ,α n k a k )+d(β -n k b k ,b k ) e d(a ′ k ,b ′ k )+d(β -n k b ′ k ,α n k a ′ k ) (10) 
by definition of the cross-ratio. Notice that the numerator gives exacty e l(α n k )+l(β n k ) , as the points a k and b k lie on the axes of α, β respectively. On the other hand, for

k ≫ 0 d(a ′ k , b ′ k ) + d(β -n k b ′ k , α n k a ′ k ) = l(γ n k ). ( 11 
)
Indeed, let V β (b k ) be the hyperplane orthogonal to the axis of β, passing through b k .

When k is large enough, the point α n k a ′ k is close to α + , in particular it belongs to the half space bounded by

β -n k (V β (b k )) which contains β + ; consequently, the point γ n k a ′ k = β n k α n k a ′ k belongs to the half-space V β (b k ) which contains β + , so b ′ k lies on the geodesic (γ - n k , γ + n k ) between a ′ k and γ n k a ′ k . As d(b ′ k , γ n k a ′ k ) = d(β -n k b ′ k , α n k a ′ k )
, the equality (11) readily follows. Letting k → +∞ in [START_REF] Courtois | Critical exponents and rigidity in negative curvature[END_REF] then achieves the proof.2

Entropy rigidity

This section is devoted to the proof of Theorem 1.2. The proof is through the method of barycenter, initiated by Besson-Courtois-Gallot [START_REF] Besson | Entropies et rigidités des espaces localement symétriques de courbure strictement négative[END_REF], [START_REF] Besson | Lemme de Schwarz réel et applications géométriques[END_REF], and follows the lines of [START_REF] Courtois | Critical exponents and rigidity in negative curvature[END_REF] (Theorem 1.6, holding for compact quotients). The main difficulty in the finite volume, non compact case is to show that the map produced by the barycenter method is proper: we will recall in §4.2 the main steps of the construction, referring the reader to [START_REF] Courtois | Critical exponents and rigidity in negative curvature[END_REF] for the estimates which are now well established, while we will focus on the new estimates necessary to prove properness. For this, we will need accurates estimates of the Patterson-Sullivan measure of some subsets of X(∞), which we will describe in the first subsection.

On the Patterson measure of non uniform lattices

The Patterson-Sullivan measures of Γ are a family of finite measures µ = (µ x ), indexed by points of X and with support included in the limit set LΓ ⊂ X(∞), satisfying the following properties (cp. for instance [START_REF] Sullivan | The density at infinity of a discrete group of hyperbolic motions[END_REF], [START_REF] Roblin | Ergodicité et équidistribution en courbure négative[END_REF] for details about their construction):

1. they are absolutely continuous w.r. to each other: for any

x, x ′ ∈ X dµ x ′ dµ x (ξ) = e -δ Γ b ξ (x ′ ,x) (12) 
2. they are Γ-equivariant: for every γ ∈ Γ and every Borel set A ⊂ X(∞)

µ x (γ -1 A) = µ γx (A) ( 13 
)
When Γ is a lattice, we will use the decomposition of X explained in §2.1 to describe the local behavior of Patterson-Sullivan measures of Γ on the limit set Λ Γ = X(∞). The proposition below gives an uniform estimate, which will be crucial in the sequel, for the measure µ x (V ζ (x, R)) of "small" spherical caps, i.e. when R ≫ 0.

So, let D = K ∪ C 1 ∪ • • • ∪ C l
be a decomposition of the Dirichlet domain of Γ centered at some fixed point x, corresponding to the maximal, bounded parabolic subgroups P 1 , ..., P l of Γ with fixed points ξ 1 , ..., ξ l as described in 2.1. If xζ(R) projects to the thick part K of X, then formulas ( 12) and ( 13) easily give the uniform lower estimate:

µ x (V ζ (x, R)) c e -δ Γ R (14) 
(where c is a positive constant, depending on the minimal mass of a spherical cap at distance less than D = diam(K) from x). On the other hand, when xζ(R) projects to the cuspidal part, we have: Proposition 4.1 There exists a constant c > 0 satisfying the following property. Let ζ ∈ X(∞) and assume that the point xζ(R) belongs to γC i , R > 0. Then:

µ x (V ζ (x, R)) c e -δ Γ (R+r) v P i (x, 2r) (15) 
where

r = b ξ i (x, γ -1 xζ(R)).
This estimate stems from a series of technical lemmas, and might be deduced from work developed in [START_REF] Peigné | Autour de l'exposant de Poincaré d'un groupe kleinien[END_REF] and [START_REF] Schapira | Lemme de l'ombre et non divergence des horosphères d'une variété géométriquement finie[END_REF] (notice however that, in [START_REF] Peigné | Autour de l'exposant de Poincaré d'un groupe kleinien[END_REF], µ x has no atomic part, and in [START_REF] Schapira | Lemme de l'ombre et non divergence des horosphères d'une variété géométriquement finie[END_REF] the parabolic subgroups are assumed to satisfy an additional, strong regularity assumption). Since the estimate is of independent interest, we will report for completeness the proof of Proposition 4.1, in full generality, in the Appendix.

Entropy rigidity : proof of Theorem 1.2

Let X = Γ\X, fix a point x 0 ∈ X and call for short b ξ (x) = b ξ (x, x 0 ). The function b ξ is strictly convex if K X ≤ -1 < 0, since for every point y we have:

Hess y b ξ ≥ g y -(db ξ ) y ⊗ (db ξ ) y (16) 
where g denotes the metric tensor of X; moreover, it is known that if the equality holds in ( 16) at every point y and for every direction ξ, then the sectional curvature is constant, and X is isometric to the hyperbolic space H n . The idea of the proof is to show that the condition δ Γ = n -1 forces the equality in [START_REF] Hamenstädt | Entropy-rigidity of locally symmetric spaces of negative curvature[END_REF].

Recall that, for every measure µ on X(∞) whose support is not reduced to one point, we can consider its barycenter, denoted bar[µ], that is the unique point of minimum of the function y → B µ (y) = X(∞) e b ξ (y) dµ(ξ) (notice that this is C 2 and strictly convex function, as b ξ (y) is). If supp(µ) is not a single point, it is easy to see that lim y→ξ B µ (y) = +∞ for all ξ ∈ X(∞) cp. [START_REF] Courtois | Critical exponents and rigidity in negative curvature[END_REF].

Consider now the map F : X → X defined by

F (x) = bar e -b ξ (x) µ x = argmin y → X(∞) e b ξ (y,x) dµ x (ξ)
where (µ x ) x is the family of Patterson-Sullivan measures associated with the lattice Γ.

In [START_REF] Courtois | Critical exponents and rigidity in negative curvature[END_REF] it is proved that the map F satisfies the following properties:

(a) F is equivariant with respect to the action of Γ, i.e. F (γx) = γF (x); (b) F is C 2 , with Jacobian:

|Jac x F | ≤ δ Γ + 1 n n det -1 (k x ) (17) 
where k x (u, v) is the bilinear form on T x X defined as

k x (u, v) = X(∞) e b ξ (F (x),x)) (db ξ ) 2 F (x) + Hess F (x) b ξ (u, v) dµ x (ξ) X(∞) e b ξ (F (x),x)) dµ x (ξ) (18) 
Notice that the eigenvalues of k x are all greater or equal than 1, by [START_REF] Hamenstädt | Entropy-rigidity of locally symmetric spaces of negative curvature[END_REF]. Property (a) stems from the equivariance (i) of the family of Patterson-Sullivan measures with respect to the action of Γ, and from the cocycle formula for the Busemann function: b ξ (x 0 , x) + b ξ (x, y) = b ξ (x 0 , y). Property (b) comes from the fact that the Busemann function is C 2 on Hadamard manifolds, and is proved by direct computation, which does not use cocompactness. By equivariance, the map F defines a quotient map F : X → X, which is homotopic to the identity through the homotopy

Ft (x) = bar e -b ξ (x) (tµ x + (1 -t)λ x ) mod Γ, t ∈ [0, 1]
where λ x is the visual measure from x (with total mass equal to the volume of S n-1 ).

Actually, the map F t = bar e -b ξ (x) (tµ x + (1t)λ x ) defines a map between the quotient manifolds, as it is still Γ-equivariant; moreover, we have bar e -b ξ (x) λ x = x since, for all v ∈ T x X:

dB e -b ξ (x) λx x (v) = X(∞) (db ξ ) x (v)e b ξ (x) e -b ξ (x) dλ x (ξ) = UxX g x (u, v)du = 0.
We will now prove that:

Proposition 4.2
The homotopy map Ft is proper.

Assuming for a moment Proposition 4.2, the proof of Theorem 1.2 follows by the degree formula: since F is properly homotopic to the identity, it has degree one, so vol

( X) = X F * dv g ≤ X |Jac x F |dv g ≤ δ Γ + 1 n n X det -1 (k x )dv g ≤ δ Γ + 1 δ Γ (H n ) + 1 n vol( X)
as det(k x ) ≥ 1 everywhere. So, if δ Γ = δ Γ (H n ) = n -1, we deduce that det(k x ) = 1 everywhere and k = g, hence the equality in the equation ( 16) holds for every y = F (x) and ξ. Since F is surjective, this shows that X has constant curvature -1.2

Proof of Proposition 4.2. Denote by z the projection of a point z ∈ X to X, and set δ = δ Γ ; recall that δ = n -1, but we will use this property only at the end of the proof. Let µ t

x = e -b ξ (x) (tµ x + (1t)λ x ): we need to show that if t k → t 0 and if xk → ∞ in X, then ȳk = Ft k (x k ) = bar[µ t k

x k ] goes to infinity too. Now, assume by contradiction that the points ȳk stay in a compact subset of X: so (up to a subsequence) xk , ȳk lift to points x k , y k such that y k → y 0 ∈ X and (ξ) = e -δb ξ (x,y 0 ) , we have

d(y 0 , x k ) = d(ȳ 0 , xk ) = R k → ∞.
(dB µ t x ) y (v) = t X(∞)
(db ξ ) y (v) e b ξ (y,y 0 ) e (δ+1)b ξ (y 0 ,x) dµ y 0 (ξ)

+(1 -t) X(∞)
(db ξ ) y (v)e b ξ (y,x) dλ x (ξ) [START_REF] Heintze | Geometry of horospheres[END_REF] We will now estimate the two terms in [START_REF] Heintze | Geometry of horospheres[END_REF] and show that (dB

µ t k x k
) y k does not vanish for R k ≫ 0, a contradiction. So, let ζ k be the endpoints of the geodesic rays y 0 x k and let

v k = (∇b ζ k ) y k . Also, consider the spherical caps V ζ k (y 0 , R k /2) and V ζ k (y 0 , R k ).
Let us first consider the contributions of the two integrals of the right hand side in [START_REF] Heintze | Geometry of horospheres[END_REF] over

X V ζ k (y 0 , R k /2). If ξ ∈ X(∞) V ζ k (y 0 , R k /2
), the projection of ξ over y 0 ζ k falls closer to y 0 than to x k , hence b ξ (y 0 , x k ) ≤ 0; moreover, |b ξ (y k , y 0 )| ≤ d(y k , y 0 ) → 0, so the first integral on X V ζ k (y 0 , R k /2) for x = x k , y = y k and v = v k gives:

X V ζ k (y 0 , R k 2 ) (db ξ ) y k (v k )e b ξ (y k ,y 0 ) e (δ+1)b ξ (y 0 ,x k ) dµ y 0 ≤ 2 µ y 0 for k ≫ 0. Analogously, the second integral on X V ζ k (y 0 , R k /2) yields X V ζ k (y 0 , R k 2 ) (db ξ ) y k (v k )e b ξ (y k ,x k ) dλ x k ≤ 2 vol(S n-1 )
for k ≫ 0, since |b ξ (y k , x k )-b ξ (y 0 , x k )| ≤ d(y k , y 0 ). So, these contributions are bounded. We now compute the contributions of the integrals over

V ζ k (y 0 , R k /2) V ζ k (y 0 , R k ). For all ξ ∈ V ζ k (y 0 , R k /2) we have that (∇b ξ ) y 0 (∇b ζ k ) y 0 is close to 1, for R k ≫ 0; moreover, as |(∇b ξ ) y k v k -(∇b ξ ) y 0 (∇b ζ k ) y 0 | k→∞ -→ 0, we deduce that (db ξ ) y k (v k ) > 1 2 on V ζ k (y 0 , R k /2
) for k ≫ 0, hence these contributions are positive.

Finally, let us compute the contributions of these integrals on the caps V ζ k (y 0 , R k ). For ξ ∈ V ζ k (y 0 , R k ), consider the ray y 0 ξ from y 0 to ξ, and the projection P (t) on the geodesic y 0 ζ k of the point ξ(t) := y 0 ξ(t). We have, by [START_REF] Besson | Entropies et rigidités des espaces localement symétriques de courbure strictement négative[END_REF] b

ξ (y 0 , x k ) ≥ lim t→∞ [d(y 0 , P (t)) + d(P (t), ξ(t))] -[d(ξ(t), P (t)) + d(P (t), x k )] -ǫ0 ≥ R k -ǫ with ǫ = ǫ(π/2
). Therefore we deduce that, for k ≫ 0, we have

V ζ k (y 0 ,R k )) (db ξ ) y k (v k )e b ξ (y k ,y 0 ) e (δ+1)b ξ (y 0 ,x k ) dµ y 0 ≥ 1 4 e (δ+1)(R k -ǫ) µ y 0 (V ζ k (y 0 , R k )) (20) V ζ k (y 0 ,R k )) (db ξ ) y k (v k )e b ξ (y k ,x k ) dλ x k ≥ 1 4 e (R k -ǫ) vol(S n-1 ). ( 21 
)
It is clear that the right-hand side of (21) goes to infinity when R k ≫ 0; we will now prove that the right-hand side of (20) also diverges for R k → ∞. This will conclude the proof, as it will show that dB µ t k

x k (v k ) does not vanish for k ≫ 0 (being a convex combination of two positively diverging terms). So, let D = K ∪ C 1 ∪ • • • ∪ C l be a decomposition of the Dirichlet domain of Γ centered at y 0 as in (2), corresponding to maximal, bounded parabolic subgroups P 1 , ..., P l with fixed points ξ 1 , ..., ξ l . We know that xk belongs to some cusp of X, so x k ∈ γC i for some γ; let then 

r k = b ξ i (y 0 , γ -1 x k ) ≤ R k . If γξ i falls in V ζ k (y 0 , R k ) and δ ≫ 0, as K X ≥ -
e (δ+1)R k µ y 0 (V ζ k (y 0 , R k )) e (δ+1)R k e -δ(R k +r k ) n≥0 v P i (2r)e -δn e R k -δr k v P i (2r k ) e R k -δr k A P i (x 0 , y 0 , r k )
.

Since K X ≤ -1, we know that A P i (x 0 , y 0 , r k ) e -(n-1)r k , so we obtain

e (δ+1)R k µ y 0 (V ζ k (y 0 , R k )) e R k +(n-1-δ)r k .
On the other hand, when γξ i ∈ V ζ k (y 0 , R k ), we have, by Propositions 4.1 and 2.3:

e (δ+1)R k µ y 0 (V ζ k (y 0 , R k )) e R k -δr k v P (y 0 , 2r k ) e R k +(n-1-δ)r k .
Both lower bounds tend to +∞ as k → +∞, since R k → +∞ and δ ≤ n -1; thus, the integral in [START_REF] Katok | Entropy and closed geodesics[END_REF] diverges. This concludes the proof that the map Ft is proper.2

Appendix

We report here, for completeness, a proof of the estimate given in Proposition 4.1.

To prove Proposition 4.1, we will need a series of elementary lemmas, where some equalities hold up to some constant: so we will use the symbol f C ≈ g to mean that two quantities f and g differ of at most C. To avoid cumbersome notations, we will give the same name to these constants in all the lemmas, meaning that they all hold for the choice of a suitable constant C large enough. All these constants will depend on the upper bound of the sectional curvature K X ≤ -1 and, possibly, on other parameters of X = Γ\X which we will specify case by case.

Recall that a parabolic group P of isometries fixing ξ ∈ X(∞) is called bounded if it acts cocompactly on X(∞) -{ξ} (as well as on every horosphere ∂H centered at ξ). If D(P, x) is the Dirichlet domain of P centered at x, the sets S x = D(P, x) ∩ ∂H ξ (x) and the trace at infinity S x (∞) = D(P, x)∩X(∞) of D(P, x) are compact, fundamental domains for the action of P on ∂H ξ (x) and on X(∞), respectively.

It is thus sufficient to show that

µ z R V ζ (x, R)
e -δ Γ r v P (x, 2r) [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF] For this, we will analyse two different cases: 

µ x R (V ξ (x, R)) ≥ µ x R ({ξ}) + p∈P pS(∞)⊂V ξ (x,R) µ x R (pS(∞)) ≥ p∈P d(x,px)≥2R+C µ x R (pS(∞)). ( 23 
)
From the equivariance and the density formula ( 12), ( 13) for the family µ x we get

µ x R (pS(∞)) = S(∞)
e -δ Γ bpη(x R ,px R ) µ x R (dη) ≍ µ x R (S(∞))e δ Γ (2R-d(x,px))

because b pη (x R , px R ) ≈ d(x, px) -2R, by Lemma 5.3. Now, µ x R (S(∞)) ≍ e -δ Γ R µ x (S(∞)) ≍ e -δ Γ R , since X(∞) = P S(∞) ∪ {ξ} and the mass of µ x R is not reduced to one atom, so µ x (S(∞)) > 0. Therefore, from [START_REF] Knieper | On the asymptotic geometry of nonpositively curved manifolds[END_REF] we deduce that, for ∆ large enough, we have

µ x R (V ξ (x, R)) e δ Γ R p∈P i 2R+C+∆≥d(x,px)≥2R+C
e -δ Γ d(x,px) e -δ Γ R v P (x, 2R) [START_REF] Nguyen Phan | On finite volume, negatively curved manifolds[END_REF] as v ∆ P (x, 2R) ≍ v P (x, 2R) by Proposition 2.3, if ∆ ≥ ∆ 0 . The estimate [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF] follows in this case, since ζ = ξ and z R = x R , so r = b ξ (x, z R ) = b ξ (x, x R ) = R. b) Assume now that ζ = γξ for some γ = 1. We then set ξ ′ = γξ = ζ, x ′ = γx, H ξ ′ = γH ξ , x ′ t = γx t and R ′ := b ξ ′ (x ′ , z R ). Notice that, without loss of generality, we can assume that x ′ lies at distance less than diam(K) from the geodesic ray xξ ′ (actually, as P acts cocompactly on ∂H ξ , we can replace γ by γp for some suitable p ∈ P ), so d(z R-R ′ , x ′ ) and d(z R , x ′ R ′ ) are both bounded by 2diam(K). By Lemma 5.2(i), there exists C > 0 such that

V ξ ′ (x, R) = V ξ ′ (z R-R ′ , R ′ ) ⊃ V ξ ′ (x ′ , R ′ + C)
and then [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF] follows from a), by applying the inequality (24) to ξ ′ , x ′ and R ′ . Actually, as d(z R , x ′ R ′ ) is bounded, we have dµ x ′ R ′ /dµ z R ≍ 1 and we get from (24)

µ z R (V ξ ′ (x, R)) µ x ′ R ′ (V ξ ′ (x ′ , R ′ + C
)) e -δ Γ R ′ v P (x ′ , 2R ′ ) which gives [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF], since in this case ξ ′ = ζ and r = b ξ (x, γ -1 z R ) = b ξ ′ (x ′ , z R ) = R ′ . proceed as above, according to the cases ξ ′ ∈ V ζ (x, R -2C) or ξ ′ ∈ V ζ (x, R -2C). In the first case, we call S := R -4C, S ′ = b ξ ′ (x ′ , z S ), so V ζ (x, S) ⊃ V ξ ′ (x, S + C) and we have d(z R , x ′ S ′ ) ≤ 6C + 2diam(K); then, using Lemma 5.2, we deduce similarly to [START_REF] Otal | Le spectre marqué des longueurs des surfaces à courbure négative[END_REF], that

µ z R V ζ (x, S) µ x ′ S ′ V ξ ′ (x ′ , S ′ + 2C) e -δ Γ S ′ v P (x ′ , 2S ′ )
which yields [START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF], as here r = b ξ (x, γ -1 z R ) ≈ b ξ ′ (x ′ , z S ) = S ′ . In the second case, we call again ζ the point at infinity opposite to ζ with respect to x, x the point of ]ζ, x] ∩ ∂H ξ ′ closest to ζ, and we set R := d(x, z R ), x R := xξ ′ ( R). So, z R = xζ ( R), d(z R , x R) < 2C and dµ x R /dµ z R ≍ 1. Then, we deduce as before that V ζ (x, R) ⊃ X(∞) V ξ ′ (x, R + C) and we obtain, analogously to [START_REF] Peigné | Autour de l'exposant de Poincaré d'un groupe kleinien[END_REF], that

µ z R (V ζ (x, R)) e -δ Γ R v P (x, 2 R)
which concludes the proof as, in this case, R = b ξ ′ (x, x R) ≈ b ξ ′ (x ′ , z R ) = r .2

  [x, y] (resp. [x, ξ[) the geodesic segment from x to y (resp. the ray from x to ξ), and by xξ(t) the parametrization of geodesic ray [x, ξ[ by arc length. Let b ξ (x, y) = lim z→ξ d(x, z)d(z, y) be the Busemann function centered at ξ; the level set ∂H ξ (x) = {y | b ξ (x, y)| = 0} (resp. the suplevel set H ξ (x) = {y | b ξ (x, y) ≥ 0} is the horosphere (resp. the horoball)

For

  x ∈ X and ζ ∈ X(∞), we consider the point xζ(R) at distance R from x on the geodesic ray [x, ζ[, and define the "spherical cap" V ζ (x, R) ⊂ X(∞) as the set of points of X(∞) whose projection on the geodesic ray [x, ζ[ falls between xζ(R) and ζ.

  By the cocycle relation b ξ (y, x) = b ξ (y, y 0 ) + b ξ (y 0 , x) and by the density formula for the Patterson-Sullivan measures dµx dµy 0

Case 1 :

 1 ζ ∈ Γξ. a) Assume first γ = 1, so ζ = ξ and z R = x R ∈ H ξ .We have, byLemma 5.3: 

  b 2 we can use Propositions 4.1 and 2.3 to deduce that

Cp. Lemma 2.4 in[START_REF] Hamenstädt | Time preserving conjugacies of geodesic flows[END_REF], which is central in the argument: it is based on the fact that the closed geodesics on X equidistribute towards the Bowen-Margulis measure when X is compact. This property does not hold for non uniform lattices as soon as the Bowen-Margulis measure is infinite.

Cp. the definition of the maps Ψ b c in[START_REF] Storm | The minimal entropy conjecture for nonuniform rank one lattices[END_REF], which clearly require that c is greater than the exponential growth rate of the universal covering of the manifold under consideration.

This seems unclear even under the assumption of a C 1 -conjugacy; cp. the proof of Proposition 1.2 in[START_REF] Croke | Conjugacy and rigidity for manifolds with a parallel vector field[END_REF], where Stokes's theorem fails, unless one knows that the conjugacy F has bounded derivatives.

For instance, Corollary 4.2 in[START_REF] Knieper | Spherical means on compact Riemannian manifolds of negative curvature[END_REF] only holds for µH -integrable functions, and cannot be applied as it is to constant functions or to tr U + (v) to deduce Theorem 5.1, when µH = ∞.

The following Lemmas can be found, for instance, in [START_REF] Schapira | Lemme de l'ombre et non divergence des horosphères d'une variété géométriquement finie[END_REF] (Lemmes 2.6, 2.7 and 2.9): Lemma 5.1 There exists a constant C > 0 with the following property. Let x ∈ X and ζ ∈ X(∞) be fixed. Then, for any ξ ∈ V ζ (x, R) we have:

Lemma 5.2 There exists a constant C > 0 with the following property. Let x ∈ X and ζ ∈ X(∞) be fixed. Then: (i) for any x ′ such that d(x, x ′ ) < C we have

Lemma 5.3 Let P a bounded parabolic subgroup of X fixing ξ, and let S x (∞) as above. There exists a constant C > 0 (depending on the diameter of S x ) with the following properties: for any p ∈ P

be a decomposition of the Dirichlet domain of Γ centered at x, corresponding to the maximal, bounded parabolic subgroups P 1 , ..., P l of Γ with parabolic fixed points ξ 1 , ..., ξ l , and with C i = D ∩ H ξ i , as described in 2.1. Moreover, let S i (∞) = D∩X(∞) be the fundamental domains for the action of P i on X(∞)\{ξ i }, and let z t := xζ(t) and x i,t := xξ i (t). We assume that z R belongs to γH ξ i ; so, call for short ξ = ξ i ,

2 ) as in [START_REF] Besson | Entropies et rigidités des espaces localement symétriques de courbure strictement négative[END_REF]. Thus, the density formula (12) yields

for some constant c > 0 only depending on the upper bound of the curvature.

Notice that we have d(z R , x S ) ≤ 5C by Lemma 5.1. Therefore, applying again (24) to ξ, x and S, we get

and the estimate ( 22) follows, since here

On the other hand, if 

Hence,

Similarly to case 1, we can estimate this by applying Lemma 5.3 to x and ξ :

as

so, combining [START_REF] Otal | Sur la géométrie symlectique de l'èspace des géodésiques d'une variété à courbure négative[END_REF] and ( 27) we obtain

)) e -δ Γ R v P (x, 2 R) e -δ Γ r v P (x, 2r)

(since x is at bounded distance from the orbit of x).

b) Assume now that γ = 1. We set ξ ′ = γξ, x ′ = γx, H ξ ′ = γH ξ , x ′ R = γx R , with d(x ′ , [x, ξ[) ≤ diam(K), and we