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Abstract

Multiple instances of Zika virus epidemic have been reported around the world
in the last two decades, turning the related illness into an international concern.
In this context the use of mathematical models for epidemics is of great im-
portance, since they are useful tools to study the underlying outbreak numbers
and allow one to test the effectiveness of different strategies used to combat the
associated diseases. This work deals with the development and calibration of an
epidemic model to describe the 2016 outbreak of Zika virus in Brazil. A system
of 8 differential equations with 8 parameters is employed to model the evolu-
tion of the infection through two populations. Nominal values for the model
parameters are estimated from the literature. An inverse problem is formulated
and solved by comparing the system response to real data from the outbreak.
The calibrated results presents realistic parameters and returns reasonable de-
scriptions, with the curve shape similar to the outbreak evolution and peak
value close to the highest number of infected people during 2016. Considera-
tions about the lack of data for some initial conditions are also made through
an analysis over the response behavior according to their change in value.
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1. Introduction

The Zika virus is a flavivirus that upon infection in humans causes an illness,
known as Zika fever, identified commonly with macular or papular rash, mild
fever and arthritis [1, 2]. It is mainly a vector-borne disease carried by the
genus Aedes of mosquitoes [2, 3], while in a lesser amount it is also transmitted
via sexual interaction [4, 5], and contamination by blood transfusion is under
investigation [6]. The Zika virus was first isolated in primates from the Zika
forest in Uganda in 1947 [7]. Evidences of the virus in humans were found in
Nigeria in 1968 [8]. An epidemic occurred in 2007 on Micronesia [9], followed
by multiple outbreaks on several Pacific Islands between 2013 and 2014 [10, 11].
The first Zika virus autochthonous case in Brazil was reported around April,
2015 [12], and nearly 30,000 cases of infection were already notified by January
30, 2016 [13], along with the Pan American Health Organization being informed
in the same month about locally-transmitted cases on numerous continental and
island territories of America [14]. The Brazilian Ministry of Health registered
215,319 probable cases of Zika fever (130,701 of which were confirmed) until
the 52th epidemiological week (EW) of 2016 [12]. The Zika epidemic has been
causing concern in the international medical community, health authorities and
population, specially due to an association between the Zika virus and other
diseases, such as newborn microcephaly [4, 15] and Guillain-Barré syndrome
[16], whose correlation to the Zika virus was considered by the World Health
Organization a “scientific consensus” [17].

In this epidemic scenario, the development of control and prevention strate-
gies for the mass infection is a critical issue. A mathematical model capable
of providing a description of the infected people throughout an outbreak is an
useful tool that can be employed to identify effective and vulnerable aspects on
disease control programs [18, 19, 20]. Furthermore, for an epidemic model to be
truly useful it must undergo a judicious process of validation [21, 22], which con-
sists in comparing model predictions with real data in order to evaluate if they
are realistic. In general, the first predictions of a model do not agree with the
observations, possibly due to inadequacies in the model hypotheses or because
of a poor choice for the model nominal parameters. The first case invalidates
the model, but the second can be amended through a procedure known as model
calibration, where a set of parameters that promote a good agreement between
predictions and observations is sought.

This work is one of the results in a rigorous ongoing process of identification
and validation of representative models to describe Zika virus outbreaks in Brazil
[23, 24]. For this purpose, a SEIR-SEI mathematical model is adapted to the
Brazilian scenario. This specific SEIR-SEI description has been successfully
used before for the outbreaks in Micronesia [25] and French Polynesia [26]. Some
assumptions were also based on similar studies performed over SEIR dynamical
systems [27, 28, 29, 30]. The nominal values of the model parameters belong
to characteristics of the Zika infection and its vector, quantitatively estimated
in the literature or published by health organizations. Predictions are obtained
from numerical simulation and further heuristic manipulation, followed by a
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comparison to real data of the outbreak as an initial effort to validate the model.
In sequence, a rigorous process of model calibration is performed through the
formulation and solution of an inverse problem.

The rest of this paper is organized as follows. In section 2, the mathematical
model is described and estimation of nominal values for the model parameters
is discussed. In section 3, the forward and inverse problems are formulated and
solved, where results are detailed and a subsequent comparison between model
predictions and experimental data is made to calibrate the model. Finally, in
section 4, the main contributions of this work are emphasized and a path for
future works is suggested.

2. Epidemic model for Zika virus dynamics

2.1. Model hypotheses

This work utilizes a variant of the Ross-Macdonald model [31] for epidemic
predictions, separating the populations into a SEIR-SEI framework (susceptible,
exposed, infectious, recovered) [32, 33, 34]. Each category represents the health
condition of an individual inside such group at time t, with respect to the con-
sidered infection. The susceptible group, denoted by S(t), represents those who
are uncontaminated and are able to become infected. The exposed portion of
the population, E(t), comprehends anyone that is carrying the pathogen but is
still incapable of transmitting the disease. While the infectious individuals, I(t),
can spread the pathogen and may display symptoms associated with the illness.
Finally, the recovered group, R(t), contains those who are no longer infected.
The populations of humans and vectors are segmented into the aforesaid classes
(excepting the group of recovered vectors), as Figure 1 depicts schematically
with the accordingly subscripts. Sh, Eh, Ih and Rh amass the number of people
at each stage of the model description, and Sv, Ev, Iv signifies proportion of
vectors (0 ≤ Sv, Ev, Iv ≤ 1 and Sv + Ev + Iv = 1).

Demographic changes in the number of humans are not considered because
the timescale of infection is much faster than the timescale of birth and deaths
for the latter to significantly alter the development of the disease in the Brazilian
context (supplementary material B provides tools to test this assertion). The
total vector population is maintained constant during the analysis, although
variations of the proportion of vectors on the particular compartments are in-
troduced via birth and death rates. The vector in question is regarded as a
hypothetical mosquito apt to being infected or infectious throughout all its life-
time — which means the model accounts only for the adult stage of their life
cycle — and also unable to recover.

The time elapsed while an individual is on the aforementioned exposed group
is known as the latent period of an organism and, in this work, is adopted as
equivalent to the commonly called incubation period (the time elapsed between
being infected and exhibiting symptoms), since data is extremely sparse on the
latter for humans [35] (namely, the intrinsic incubation period). Both terms are
used interchangeably hereafter, and the concepts do not differ on the mosquitoes
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Figure 1: Schematic representation of the SEIR–SEI model for the Zika virus outbreak de-
scription.

case (the extrinsic incubation period) [36]. In addition, all the members of
the susceptible group are treated as equally capable of being infected and the
recovered ones as completely immunized.

2.2. Model equations

The evolution of individuals through the SEIR-SEI groups is governed by
the following (nonlinear) autonomous system of ordinary differential equations

dSh

dt
= −βh Sh

Iv
Nv

,
dSv

dt
= δ Nv − βv Sv

Ih
Nh
− δ Sv ,

dEh

dt
= βh Sh

Iv
Nv
− αhEh ,

dEv

dt
= βv Sv

Ih
Nh
− (αv + δ)Ev ,

dIh
dt

= αhEh − γ Ih ,
dIv
dt

= αv Ev − δ Iv ,

dRh

dt
= γ Ih ,

dC

dt
= αhEh ,

(1)

where N represents the total population and 1/α the disease’s incubation period
(each with the corresponding subscript of h for human’s and v for vector’s), 1/δ
means the vector lifespan, 1/γ is the human infection period — which is defined
in this work as the interval of time that a human is infectious — and β identifies
the transmission rate, specifically βh is the mosquito-to-human rate and βv the
human-to-mosquito rate.

The transmission terms βh Sh Iv/Nv and βv Sv Ih/Nh are composed by a
number of susceptible individuals (Sh, Sv, respectively), a transmission rate
(βh, βv) and the probability of the contact being made with an infectious mem-
ber of the other population (Iv/Nv, Ih/Nh). Both transmissions terms come

4



from the assumption that the rate of contacts is constant, which characterizes
a frequency-dependent transmission [37].

The compartmentalization hypothesis requires setting the variables at the
initial time of the analysis, t0, such that their sum equals the total population
in each case, e.g, Sv(t0) +Ev(t0) + Iv(t0) = Nv = 1. By so doing, for all t > t0,
Sh(t), Eh(t), Ih(t) and Rh(t) will always add up to Nh; and Nv(t) will be the
equilibrium solution of the initial value problem

dNv

dt
= δ (1−Nv(t)) , Nv(t0) = 1 , (2)

namely, Nv(t) = 1. This consideration allows the simplification of treating the
total vector population as a parameter Nv, instead of a variable, since it stays
constant throughout the analysis. If one wishes to treat the vector population
as a variable, a recruitment parameter would need to be added in place of δ Nv

as well as another differential equation to account for the changes in Nv(t).
The dC/dt equation allows evaluation of the cumulative number C(t) of

infectious people until the time t, that is, the amount of humans so far that
contracted the disease and have passed through or are in the infectious group
at the given time.

Additionally, a set of M = 52 points to represent the number of new infec-
tious cases of Zika fever at each week is defined as follows:

Nw = Cw − Cw−1 , N1 = C1, w = 2, · · · , 52 , (3)

where Cw is the cumulative number of infectious humans in the w -th EW.
Figure 2 organizes the data of cumulative number of infectious and new

cases per week provided by the Brazilian Ministry of Health [38] (supplemen-
tary material A) for 2016, where the evolution of the infection can be seen.
The expected behavior for the model is that it generates a seemingly year long
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Figure 2: Outbreak data.

outbreak for 2016 that matches C(t) and Nw to the data of Figure 2. The end
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of this outbreak is marked by the exposed and infectious portions of vectors
reaching very low values, effectively killing off the contamination process to the
point that Sh(t) stabilizes.

2.3. Nominal parameters

The preliminary values for the parameters of the set of Eqs. (1) come from
the related literature concerning the Zika infection, vector-borne epidemic mod-
els, the Aedes aegypti mosquito (which is the main vector for Zika, Dengue and
Yellow fever in Brazil) and publications provided by health organizations and
government agencies. The Brazilian Institute of Geography and Statistics re-
ports that Brazil had approximately Nh = 206× 106 people by July, 2016 [39],
and Nv is set 1 to entail an entire vector population. The adopted extrinsic in-
cubation period is 1/αv = 9.1 days [25]. This value agrees with other statistical
confidence intervals (CI) that are presented for the parameter in another works
(95% CI: 7.3–9.3 days [40]) and is close to the numbers suggested by experimen-
tal studies for the time necessary for the virus to reach the mosquito’s saliva
after an infectious blood meal (5 [41, 42] and 7 days [43]). A systematic review
and pooled analysis of the literature and case studies available in [44] estimates
that the median intrinsic incubation period is 5.9 days (95% CI: 4.4—7.6). This
values is selected for 1/αh in this work and is compatible with the range of 3–12
days recommended by multiple sources [15, 45, 46], also formerly used in pre-
vious studies [47]. The aforementioned literature analysis in [44] also concludes
that 9.9 (95% CI: 6.9-–21.4) days is the mean time until an infected has no
detectable virus in blood. Considering the assumption that the infectiousness
in Zika infection ends 1.5–2 days before the virus becomes undetectable [25, 40],
the chosen value for the human infectious period is 1/γ = 9.9−2 = 7.9 days. As
for the vector lifespan 1/δ, “the adult stage of the mosquito is considered to last
an average of eleven days in the urban environment” according to [48]. This is
the assumed value for the parameter in this work, which is also consistent with
the usual life expectancy for the mosquito in Rio de Janeiro, Brazil [49], and
comes close to the average of 2–3 weeks considered in biological studies about
the species [50] and by the Centers for Disease Control and Prevention [51].
Lastly, the time between a mosquito being infected and it infecting a human,
1/βh, and the time between a human infection and a mosquito taking an infec-
tious blood meal, 1/βv, is estimated in [40] as an average of 11.3 days (95% CI:
8.0–16.3) and 8.6 days (95% CI: 6.2-11.6), respectively.

3. Calibration of the epidemic model

3.1. Forward Problem

The epidemic model of section 2, supplemented by an appropriate set of
initial conditions, is a continuous-time dynamical system

ẋ(t) = f
(
x(t),p

)
, x(t0) = x0 (4)
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where x(t) =
(
Sh(t), Eh(t), Ih(t), Rh(t), Sv(t), Ev(t), Iv(t), C(t)

)
∈ R8 is the vec-

tor of states at time t, x0 =
(
Si
h, E

i
h, I

i
h, R

i
h, S

i
v, E

i
v, I

i
v, C

i
)
∈ R8 is a prescribed

initial condition vector referring to the initial time t0 of the analysis, the vec-
tor p = (Nh, βh, αh, γ,Nv, βv, αv, δ) ∈ R8 lumps the model parameters and
f : U ⊂ R8 × R8 → R8 is a nonlinear map which gives the evolution law of this
dynamics, defined (for fixed t) on the open set

U =
{

(x(t),p) ∈ R8 × R8
∣∣ xn(t) > 0 and pn > 0, for n = 1, · · · , 8

}
. (5)

The forward problem consists in providing initial conditions (IC) and a set
of parameters, represented by the pair α = (x0,p), and compute by means of
numerical integration the model response x(t) from which a scalar observable
φ(α, t) is obtained. In the forward problem, α represents all IC and system
parameters from Eq.(1), while φ(α, t) is the new cases Nw system response
from Eq.(3).

Since the map f has a polynomial nature in x, it is a continuously differen-
tiable function in x. Thus, the existence and uniqueness theorem for ordinary
differential equations guarantees that the initial value problem of (4) has an
unique solution. Besides that, one can also show that this solution is continu-
ously dependent on α, as well as the forward map φ [52, 53].

The evaluation of the system response in the forward problem is performed
numerically in this work via a Runge-Kutta (4,5) method and the scalar observ-
able of interest Nw is used to assess the simulation when compared with real
data of the 2016 outbreak made available by the Brazilian Ministry of Health
[38] (supplementary material A). The referred data consists of probable cases of
infected people per EW, registered by sanitary outposts and health institutions
throughout the country when the common symptoms of Zika fever were exhib-
ited by an individual. In accordance with the hypothesis that one only displays
symptoms when inside Ih(t), the C(t) variable models this discrete accumulat-
ing data on a continuous sense and Nw provides the corresponding influx per
EW. The C(t) time series is also observed as a criteria for good fitting, since
it signifies the general impact of the epidemic and because a reasonable Nw re-
sult does not necessarily implies an acceptable cumulative number of infectious
individuals for all t in comparison to the data.

The initial time of the analysis was established as the first EW of 2016.
The remaining individuals in both populations are assumed susceptible at first,
meaning Si

h = Nh − Ei
h − Iih − Ri

h and Si
v = Nv − Ei

v − Iiv. The initial values
for the exposed and infectious groups are set equal, Ei

h = Iih and Ei
v = Iiv.

Likewise, the number of infected humans at the initial time must be Iih = Ci,
given its definition. The value of Ci is taken as the number of confirmed Zika
cases in Brazil on the first EW of 2016 [38], 8,201 individuals, and the recovered
group is assumed equal to the suspected number of infected in 2015, according
to the data available [13], Ri

h = 29,639 individuals. As for the proportion of
infectious vectors in the first week, to work around the lack of data for this initial
condition, repetitive manual estimations were tried until the resulted time series
of Nw presented reasonable values compared to the real data. It became clear
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that the system response is very sensible to Iiv, as slight variations in its value
are required to achieve feasible results. In the process of choosing its value, the
matching of the Nw curve’s peak to the amplitude of infection is also a priority,
since this is the main interest region for evaluation of the outbreak. The nominal
values of the parameters exhibited viable Nw curves around Iiv = 2.2× 10−4.

Figure 3 presents the SEIR-SEI model response for the nominal set of param-
eters from section 2.3, supplied with the above IC, on an epidemiological week
temporal domain consisting of one to fifty-two weeks (7 to 365 days), compared
with the data of the outbreak (red dots).
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Figure 3: Outbreak data (red) and model response using the nominal parameters (blue).

The general shape of the curves in Figure 3 do provide qualitative infor-
mation regarding the evolution of the infection, even though the portrayed de-
scriptions are not quantitatively realistic. This inherent pattern agreement and
numerical mismatch suggests that the model response may differ from the real
data due to the use of unsuitable values for the parameters or incorrect IC as-
sumptions. The search for parameter and initial condition values that make the
simulations fit well to the observed data defines model calibration (or system
identification), being the object of interest of the next section.

3.2. Inverse Problem

The model calibration problem seeks to find a set of parameters that, to a
certain degree, makes the model response as close as possible to the empirical
observations (reference data), once, due to the erros on model conception and
reference data acquisition, it is (practically) impossible for the forward map to
reproduce the outbreak observations.

The mathematical setting for this case considers the parameters vector α
defined in the parameter space E = R12, since here α comprises all IC and
system parameters from Eq.(1) , excepting Nh, Nv, Ri

h and Ci, which are
kept fixed in their nominal values. For the purpose of comparison between
observations and predictions, a discrete set with M time-instants is consid-
ered, so that scalar observations and predictions are respectively lumped into
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y = (y1, y2, · · · , yM ) and φ (α) = (φ1, φ2, · · · , φM ), both defined in the data
space F = RM . Note that the forward map φ : E → F associates to each pa-
rameters vector α an observable vector φ (α) where the component represents
the number of new cases in each week of the year, i.e., φw = Nw. In practice,
the parameters vector is restricted to be on the convex set of admissible values

C =
{
α ∈ E

∣∣ lb ≤ α ≤ ub
}

, in which lb and ub are lower and upper vector

bounds for α, respectively.
In formal terms, given an observation vector y ∈ F and a prediction vector

φ (α) ∈ F , the calibration aims at finding a vector of parameters α∗ such that

α∗ = arg min
α∈C

J(α) , (6)

for a misfit function

J(α) = ||y − φ (α) ||2 =


M∑

m=1

∣∣∣ym − φm (α)
∣∣∣2
 . (7)

This is the inverse problem associated to the epidemic model. In general this
type of problem is extremely nonlinear, with none or low regularity, multiple
solutions (or even none), being much more complicated to attack in comparison
with the forward problem [54, 55]. A schematic representation of the forward
and the inverse problem associated to the epidemic model is shown in Figure 4.

This inverse problem attempts to estimate a finite number of parameters on
a finite dimension space, being defined in terms of a typical nonlinear misfit
function. Therefore, Theorem 4.5.1 of Chavent [56] can be invoked to guarantee
a proper sense of well-posedness (existence, uniqueness, unimodality and local
stability) for the inverse problem.

The Trust-Region-Reflective method (TRR) is employed here to numeri-
cally approximate a solution for the inverse problem (6). The main idea of the
method is to minimize a simpler function that reflects the behavior of J(α) in
a neighborhood (trust-region) around α. The simpler function is defined as de-
pendent on the trial step s, characterizing the Trust-Region subproblem, and its
computation is optimized by restricting the subproblem to a two-dimensional
subspace. The subspace is linear spanned by a multiple of the gradient g and
(in the bounded case) a vector obtained in a scaled modified Newton step, used

for the convergence condition D(α)
−2

g(α) = 0, where D is a diagonal matrix
that depends on α, g, lb, and ub [57]. Finally, the trial step is found through
the subproblem as

s∗ = arg min
s

{
1

2
sTQs + gTs | ||D s||2 ≤ ∆

}
, (8)

where ∆ is a scalar associated with the trust region size; Q is a matrix involving
D, a Jacobian matrix (also dependent on α, g, lb, and ub) and an approxi-
mation of the Hessian matrix [57]. The quadratic approximation in Eq.(8) has
well-behaved solutions [58] and if J(α+ s) < J(α) then α is updated to α+ s
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Field Observations

Figure 4: Schematic representation of the forward and inverse problems associated to the
epidemic model.

and the process iterates, otherwise ∆ is decreased. In addition, a reflection step
also occurs if a given step intersects a bound: the reflected step is equivalent
to the original step except in the intersecting dimension, where it assumes the
opposite value after reflection.

The TRR algorithm also requires an initial guess for each parameter, iden-
tified in the next section as “TRR input”. The stopping criteria are the norm of
the step and the change in the value of the objective function, with a tolerance
of 10−7. Supplementary material B provides details on the software used for
implementation.

3.3. Numerical experiments for calibration

Figure 5 presents the best result for the Nw system response fitting problem
using the nominal parameters and IC from sections 2.3 and 3.1 as initial guesses
for the TRR algorithm. The upper and lower bounds used for the parameters
were set compatible with the literature suggested intervals and are presented in
Table 1, along with the parameters and IC values resulted from the calibration
(“TRR output”). The ub for δ was assumed lower than the lb for αv to maintain
consistency with the model interpretation. The minima for Si

h and Si
v were

set to 0.9Nh and 0.99, respectively, to establish a high number of susceptible
individuals as is expected for the beginning of an outbreak. Also, the lower and
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upper bound (0.999) for Si
v were motivated by noticing how variations in Ei

v

and Iiv of order 10−3 already bring significant changes in the system response.
The lack of available data for the exposed and infectious groups at the onset
of the epidemic was circumvented by appointing its minimum and maximum
possible values as lb and ub, i.e., Ei

v and Iiv were restricted between zero and
one, while Ei

h and Iih were bounded by zero and Nh.
Additionally, to ensure the model hypotheses of compartmentalization and

constant population, two additional fitting points were defined, Σh = Si
h +Ei

h +
Iih and Σv = Si

v + Ei
v + Iiv, which were set to match Nh − Ri

h and Nv = 1 on
Eq.(6), respectively. However, the algorithm is only capable of approximating
Σh and Σv to their intended values. So to account for these minor differences,
the resulting values of (Nh−Ri

h)−Σh and 1−Σv were added to the TRR output
of Si

h and Si
v. These corrections did not impact the calibration, since the scale

of the differences would always be, correspondingly, 10−4 and 10−2 (at most),
which are below the sensibility of Si

h and Si
v; thus, they were only exacted to keep

the hypotheses rigorously sustained, otherwise the sum of the compartments in
each population would quickly tend to Nh and Nv in an asymptotic fashion.
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Figure 5: Outbreak data (red) and calibrated model response (blue) from Table 1.

Clearly, Figure 5 is a reasonable description of the outbreak: the general
shape of the infection evolution is attained, all parameters are within realistic
possibilities, the C(t) curve overshoots the data by merely 6.00%, the peak
value of Nw differs from the empirical data maximum by 7.87% and is only
one week off. However, taking into consideration the order of magnitude of the
first data point (Ci = 8,201) and the scale of the infection (215,319 probable
cases until the 52th EW [12]), the TRR output for Iih (253,360) is probably too
high, even though there is no reference value to compare with the number of
infectious individuals at the beginning of 2016, making it difficult to ascertain
on a deterministic manner what is a feasible value for Iih.

Figure 6 allows examination of the system behavior when the Iih value is
around Ci, by depiction of another result to the inverse problem when the
upper bound of the initial number of infectious individuals is set to 10,000. The
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α TRR input lb ub TRR output Reference

αh 1/5.9 1/12 1/3 1/12 [44, 45, 46, 15, 47, 40]
αv 1/9.1 1/10 1/5 1/10 [41, 43, 40]
γ 1/7.9 1/8.8 1/3 1/8.8 [47, 25, 40]
δ 1/11 1/21 1/11 1/16.86 [51, 50, 47, 49]
βh 1/11.3 1/16.3 1/8 1/16.3 [40]
βv 1/8.6 1/11.6 1/6.2 1/11.6 [40]
Si
h 205,953,959 0.9×Nh Nh 205,700,000 ———–

Ei
h 8,201 0 Nh 15,089 ———–
Iih 8,201 0 Nh 253,360 ———–
Si
v 0.99956 0.99 0.999 1 ———–

Ei
v 2.2× 10−4 0 1 0 ———–
Iiv 2.2× 10−4 0 1 0 ———–

Table 1: TRR setup for the Figure 5 calibrated response. The values referring to parameters
are in days−1, human IC are expressed in individuals, and vector quantities in proportion.

same restriction was made over Ei
h merely to simplify the analysis. Table 2

displays the resulting parameters and IC.
The model response for a 10,000 Iih restriction also presents acceptable pre-

dictions of the general shape and numbers of the outbreak, even though it is
less accurate than Figure 5 on a fitting criteria for Nw. For comparison, the Nw

peak and data maximum difference increased to 10.57% and two weeks, while
the overshoot on the C(t) time series actually reduced to 5.74%.
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Figure 6: Outbreak data (red) and calibrated model response (blue) from Table 2.

To compare the two systems defined by the parameters and IC from each
table, Figure 7 portrays their Ih response. The system from Table 1 has an
almost monotonically decreasing Ih curve, except for a slight local maximum
around the 6th EW, while the system from Table 2 presents a significant increase
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α TRR input lb ub TRR output Reference

αh 1/5.9 1/12 1/3 1/12 [44, 45, 46, 15, 47, 40]
αv 1/9.1 1/10 1/5 1/10 [41, 43, 40]
γ 1/7.9 1/8.8 1/3 1/3 [47, 25, 40]
δ 1/11 1/21 1/11 1/21 [51, 50, 47, 49]
βh 1/11.3 1/16.3 1/8 1/10.40 [40]
βv 1/8.6 1/11.6 1/6.2 1/7.77 [40]
Si
h 205,953,959 0.9×Nh Nh 205,953,534 ———–

Ei
h 8,201 0 10,000 6,827 ———–
Iih 8,201 0 10,000 10,000 ———–
Si
v 0.99956 0.99 0.999 0.999586 ———–

Ei
v 2.2× 10−4 0 1 4.14× 10−4 ———–
Iiv 2.2× 10−4 0 1 0 ———–

Table 2: TRR setup for the Figure 6 calibrated response. The values referring to parameters
are in days−1, human IC are expressed in individuals, and vector quantities in proportion.

in the number of infectious individuals by the same time, which correspond to
the weeks right before the peak infection. As stated, the lack of empirical data
for the current number of infectious at each EW makes it impossible to determine
what is a quantitatively reasonable prediction for Ih values. But this work
assumes that a more possible scenario involves a Ih time series that also follows
the general shape of an epidemic curve around the weeks of maximum infection,
especially considering that Figure 7(a) implicates the notion that most people
were infected strictly before 2016, which does not seems the case suggested
by the Brazilian outbreak data of probable cases of infected per EW [12] when
compared to numbers available for 2015 [13]. Thus, with this qualitative criteria
in mind, the system from Table 2 is selected for a further analysis over its
behavior dependency to the Iih initial condition.

10 20 30 40 50
time (weeks)

 0

 100

 200

 300

nu
m

be
r 

of
 p

eo
pl

e

103

(a) Ih(t) response from Table 1

10 20 30 40 50
time (weeks)

 0

 3

 7

 10

nu
m

be
r 

of
 p

eo
pl

e

103

(b) Ih(t) response from Table 2

Figure 7: Comparison between Ih(t) responses from Table 1 (left) and Table 2 (rigth).
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Figure 8 displays the C(t), Nw and Ih(t) responses per EW for various Iih
on the system with parameters from Table 2. To simplify the analysis, Ei

h is
considered equal to Iih in each case. The remaining IC are the same from the
Table. The pattern suggests that a Iih increase on the system with this given
set of parameters continuously escalates the C(t) and Nw curves, eventually
overshooting the data by far, and reduces the variations of Ih(t) curve around
its local maximum. Figure 8 allows one to make better predictions about the
outbreak by analyzing the multiple possible scenarios of epidemic evolution over
different values for the IC missing empirical information. Clearly, the system
response in all cases is qualitative reliable in simulating the outbreak (C(t) and
Nw shape) and can quantitatively approximate the real data values for some
values of Iih.
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Figure 8: Multiple C(t), Nw and Ih(t) responses per EW using the parameters from Table 2.
The values on the legend correspond to the used Iih and Ei

h to generate the curves. The other
IC are also from Table 2. The bottom right graph is the Ih comparison magnified around the
local maximum region. The red circles are the previously used real data.
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4. Concluding remarks

A SEIR-SEI epidemic model to describe the dynamics of the 2016 Zika virus
outbreak in Brazl is developed and calibrated in this work. Nominal quantities
for the parameters are selected from the related literature concerning the Zika
infection, the Aedes aegypti genus of mosquitoes, vector-born epidemic mod-
els and information provided by health organizations. The calibration process
is done through the solution of an inverse problem with the aid of a Trust-
Region-Reflective method, used to pick the best parameter values that would
fit the model response for the number of new infectious cases per week into the
disease’s empirical data. Results within realistic values for the parameters are
presented, stating reasonable descriptions with the curve shape similar to the
outbreak evolution and proximity between the estimated peak value and data
for maximum number of infected during 2016. Further analysis of the results
about the lack of data for an initial condition is performed, exhibiting a range
of values over which the system response keeps its quantitative reliability to a
certain degree.

This work is part of a long project of modeling and prediction of epidemics
related to the Zika virus in the Brazilian context [23, 24]. In upcoming studies
the authors intend to take into account the uncertainties underlying the model
parameters via Bayesian updating and employ an Active Subspace approach
[59, 60, 61] to explore relevant scenarios in parametric studies.
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Supplementary Material

This supplementary material provides working MATLAB scripts for the main
document “Calibration of a SEIR-SEI epidemic model to describe the Zika virus
outbreak in Brazil.” The first section uses “ode45” function to evaluate the
forward problem as explained in section 3.1 of the main document. Section 2
solves the inverse problem via a TRR algorithm (main document section 3.2)
implemented in the “lsqcurvefit” function of the software. Finally, section 3
exemplifies a variation of the model by introducing vital dynamics for the human
population, useful for comparison.

All the codes in this document use the following data set. See supplementary
material A.

Code 1: Data set

1 % New Cases o f i n f e c t i o n per e p i d e m i o l o g i c a l week [ 5 1 ]
2 NewCasesData = [8201 ,8344 ,9516 ,10443 ,12940 ,15158 ,21280 , ...
3 20854 ,20139 ,17520 ,15644 ,12865 ,12715 ,11298 ,10034 ,8410 , ...
4 7397 ,6154 ,5008 ,4089 ,2997 ,2936 ,2516 ,1888 ,1521 ,1282 ,1126 , ...
5 1010 ,917 ,741 ,703 ,665 ,564 ,455 ,422 ,380 ,380 ,296 ,305 ,315 , ...
6 329 ,390 ,338 ,346 ,370 ,331 ,361 ,381 ,353 ,244 ,159 ,69 ] ;
7
8 % Cumulative ca s e s
9 CData = cumsum( NewCasesData ) ;

10
11 % Total number o f ca s e s in 2015 [ 1 3 ]
12 C2015 = 29639;

Forward Problem

The default values for the parameters and initial conditions (IC) are the
TRR output from Table 2, section 3.3 of the main document.

Code 2: Forward problem - main file

1 % Parameters
2 Nh = 206 e6 ; % Human populat ion
3 bH = 1/10 . 40 ; % Vector−to−Human t ransmi s s i on ra t e
4 aH = 1/12 ; % I n t r i n s i c incubat ion ra t e
5 yH = 1/3 ; % I n f e c t i o u s ra t e
6
7 Nv = 1 ; % Vector populat ion
8 bV = 1 / 7 . 7 7 ; % Human−to−Vector t ransmi s s i on ra t e
9 aV = 1/10 ; % E x t r i n s i c incubat ion ra t e

10 dV = 1/21 ; % Inve r s e o f vec to r l i f e s p a n
11
12 param = [Nh bH aH yH Nv bV aV dV ] ;
13
14 % I n i t i a l Condit ions
15 SH0 = 205953534; % S u s c e p t i b l e humans
16 EH0 = 6827 ; % Exposed humans
17 IH0 = 10000; % I n f e c t i o u s humans
18 RH0 = C2015 ; % Recovered humans
19 SV0 = 0 .999586 ; % S u s c e p t i b l e v e c t o r s
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20 EV0 = 4.14 e−4; % Exposed ve c to r s
21 IV0 = 0 ; % I n f e c t i o u s ve c t o r s
22 C0 = NewCasesData (1 ) ; % Cumulative number
23
24 IC = [ SH0 EH0 IH0 RH0 SV0 EV0 IV0 C0 ] ;
25
26 % I n t e g r a t e the IVP
27 dt = 0 . 1 ; % Time step ( days )
28 tspan = 7 : dt : 3 6 5 ; % Domain d i s c r e t i z a t i o n
29
30 opt = odeset ( ' RelTol ' , 1 . 0 e−6, 'AbsTol ' , 1 . 0 e−9) ;
31 [ time y ] = ode45 (@(t , y ) rhs SEIR SEI ( t , y , param ) , tspan , IC , opt ) ;
32
33 % Model re sponse
34 SH = y ( : , 1 ) ; EH = y ( : , 2 ) ; IH = y ( : , 3 ) ; RH = y ( : , 4 ) ;
35 SV = y ( : , 5 ) ; EV = y ( : , 6 ) ; IV = y ( : , 7 ) ;
36
37 C = y ( : , 8 ) ;
38
39 NewCases = C(1) ;
40 f o r i = 2 :52
41 NewCases ( i ) = C( (7* i −7)/dt +1 ) − C( (7* ( i −1)−7)/dt +1 ) ;
42 end
43
44 % Plo t t i ng
45 %Week t i me s c a l e : time /7
46
47 f i g u r e (1 )
48 p l o t ( time /7 ,C)
49 hold on
50 s c a t t e r ( [ 1 : 5 2 ] , CData)
51
52 f i g u r e (2 )
53 stem ( NewCasesData )
54 hold on
55 stem ( NewCases )

Code 3: Forward problem - right hand side

1 func t i on ydot = rhs SEIR SEI ( t , y , param )
2
3 % phys param = [Nh bH aH yH Nv bV aV dV ] ;
4 Nh = param (1) ; bH = param (2) ; aH = param (3) ; yH = param (4) ;
5 Nv = param (5) ; bV = param (6) ; aV = param (7) ; dV = param (8) ;
6
7 % System of ODEs
8
9 % y = [SH EH IH RH SV EV IV C] i s the s o l u t i o n vec to r

10 ydot = ze ro s ( s i z e ( y ) ) ;
11 ydot (1 ) = − bH*y (1) .* y (7) /Nv ; % dSh/dt
12 ydot (2 ) = bH*y (1) .* y (7) /Nv − aH*y (2) ; % dEh/dt
13 ydot (3 ) = aH*y (2) − yH*y (3) ; % dIh/dt
14 ydot (4 ) = yH*y (3) ; % dRh/dt
15 ydot (5 ) = dV − bV.* y (5) .* y (3) /Nh − dV*y (5) ; % dSv/dt
16 ydot (6 ) = bV*y (5) .* y (3) /Nh − aV*y (6) − dV*y (6) ; % dEv/dt
17 ydot (7 ) = aV*y (6) − dV*y (7) ; % dIv/dt
18 ydot (8 ) = aH*y (2) ; % dC/dt
19
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20 end

Inverse Problem

See section 2.3 and 2.4 of the main document for the nominal parameters
and initial conditions used as initial guesses here. The default results are those
from Table 2, section 3.3 of the main document.

Code 4: Inverse problem main file

1 % Nominal Parameters
2 Nh = 206 e6 ; % Human populat ion
3 bH = 1 / 1 1 . 3 ; % Vector−to−Human t ransmi s s i on ra t e
4 aH = 1 / 5 . 9 ; % I n t r i n s i c incubat ion ra t e
5 yH = 1 / 7 . 9 ; % I n f e c t i o u s ra t e
6
7 Nv = 1 ; % Vector populat ion
8 bV = 1 / 8 . 6 ; % Human−to−Vector t ransmi s s i on ra t e
9 aV = 1 / 9 . 1 ; % E x t r i n s i c incubat ion ra t e

10 dV = 1/11 ; % Inve r s e o f vec to r l i f e s p a n
11
12 % Nominal I n i t i a l Condit ions
13 IH0 = NewCasesData (1 ) ; % I n f e c t i o u s humans
14 EH0 = IH0 ; % Exposed humans
15 RH0 = C2015 ; % Recovered humans
16 SH0 = Nh − ( IH0 + EH0 + RH0) ; % S u s c e p t i b l e humans
17
18 IV0 = 0 .00022 ; % I n f e c t i o u s ve c t o r s
19 EV0 = IV0 ; % Exposed ve c to r s
20 SV0 = Nv − (EV0 + IV0 ) ; % S u s c e p t i b l e v e c t o r s
21
22 C0 = NewCasesData (1 ) ; % Cumulative number
23
24 % TRR i n i t i a l guess ( variable TRRparam )
25 % RH0 i s omitted to opt imize the procedure
26 i n i t a l g u e s s = [bH aH yH bV aV dV SH0 EH0 IH0 SV0 EV0 IV0 ] ;
27 fixed TRRparam = [Nh Nv C0 ] ;
28
29 % Data f o r TRR
30 data = [ NewCasesData Nh−RH0 Nv ] ; % Last two va lue s are f o r the
31 % sum comparisons
32 data pos = [ 7 : 7 : 3 6 5 400 4 5 0 ] ; % Pos i t i on f o r comparison between
33 % data and NewCases . Last 2 va lue s
34 % are a r b i t r a r y .
35
36 % Lower bound o f v a r i a b l e parameters
37 lb = [ 1 / 1 6 . 3 , 1/12 , 1/8 .8 , 1/11 .6 , 1/10 , 1/21 , 0 .9*Nh, ...
38 0 , 0 , 0 . 99 , 0 , 0 ] ;
39 % upper bound o f v a r i a b l e parameters
40 up = [ 1/8 , 1/3 , 1/3 , 1/6 .2 , 1/5 , 1/11 , Nh, ...
41 10000 , 10000 , 0 . 999 , Nv, Nv ] ;
42
43 % Time d i s c r e t i z a t i o n
44 dt = 1 ; % Time step ( days )
45 tspan = 7 : dt : 3 6 5 ;
46
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47 % Output Function
48 F = @(variable TRRparam , data pos ) TRR FunctionOutput (...
49 variable TRRparam , data pos , fixed TRRparam , tspan , dt ) ;
50
51 % Algorithm opt ions
52 opt ions = opt imopt ions ( ' l s q c u r v e f i t ' , ' Display ' , ' i t e r ' , ...
53 ' Algorithm ' , ' t rus t−reg ion−r e f l e c t i v e ' , ...
54 ' MaxIterat ions ' ,100000 , ' MaxFunctionEvaluations ' , ...
55 500000 , ' Funct ionTolerance ' ,1 e−007 , ' StepTolerance ' , ...
56 1e−007 , ' Fin i t eD i f f e r enceType ' , ' c e n t r a l ' ) ;
57
58 % TRR procedure
59 result TRRparam = l s q c u r v e f i t (F , i n i t a l g u e s s , data pos , data , lb , ...
60 up , opt ions ) ;
61
62 % New s e t o f parameters and IC
63 new param = [Nh result TRRparam ( 1 : 3 ) Nv result TRRparam ( 4 : 6 ) ] ;
64 new IC = [ result TRRparam ( 7 : 9 ) RH0 result TRRparam (10) ...
65 result TRRparam ( 1 1 : 1 2 ) C0 ] ;
66
67 % Compartmental ization hypotheses c o r r e c t i o n
68 Xh = Nh − RH0 − sum( result TRRparam ( 7 : 9 ) ) ;
69 Xv = Nv − sum( result TRRparam ( 1 0 : 1 2 ) ) ;
70 new IC (1) = result TRRparam (7) + Xh;
71 new IC (5) = result TRRparam (10) + Xv ;
72
73 % I n t e g r a t e the new IVP
74 [ time y ] = ode45 (@(t , y ) rhs SEIR SEI ( t , y , new param ) , tspan , new IC ) ;
75 opt = odeset ( ' RelTol ' , 1 . 0 e−6, 'AbsTol ' , 1 . 0 e−9) ; % ode45 opt ions
76
77 % Model re sponse
78 SH = y ( : , 1 ) ; EH = y ( : , 2 ) ; IH = y ( : , 3 ) ; RH = y ( : , 4 ) ;
79 SV = y ( : , 5 ) ; EV = y ( : , 6 ) ; IV = y ( : , 7 ) ;
80
81 C = y ( : , 8 ) ;
82
83 NewCases = C(1) ;
84 f o r i = 2 :52
85 NewCases ( i ) = C( (7* i −7)/dt +1 ) − C( (7* ( i −1)−7)/dt +1 ) ;
86 end
87
88 %Plo t t i ng
89 %week t i m e s c a l e : time /7
90 f i g u r e (1 )
91 p l o t ( time /7 ,C)
92 hold on
93 s c a t t e r ( [ 1 : 5 2 ] , CData)
94
95 f i g u r e (2 )
96 stem ( NewCasesData )
97 hold on
98 stem ( NewCases )

Code 5: Inverse problem output function

1 func t i on F = TRR FunctionOutput ( variable TRRparam , data pos ,
fixed TRRparam , tspan , dt )

2
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3 % Adjust ing IC vec to r
4 % fixed TRRparam = [Nh Nv C0 ] ;
5 % variable TRRparam = [bH aH yH bV aV dV SH0 EH0 IH0 SV0 EV0 IV0 ]
6 % IC = [ SH0 EH0 IH0 SV0 EV0 IV0 C0 ]
7 IC = [ variable TRRparam ( 7 : 1 2 ) fixed TRRparam (3) ] ;
8
9 % I n t e g r a t e the IVP f o r func t i on eva lua t i on

10 % y = [SH EH IH SV EV IV C] i s the s o l u t i o n vec to r
11 % RH i s omitted to opt imize the procedure
12 opt = odeset ( ' RelTol ' , 1 . 0 e−6, 'AbsTol ' , 1 . 0 e−9) ;
13 [ time y ] = ode45 (@(t , y ) TRR rhs SEIR SEI ( t , y , variable TRRparam , ...
14 fixed TRRparam ) , tspan , IC , opt ) ;
15
16 % SumH = SH0+EH0+IH0 ( i s compared to Nh−R0)
17 SumH = y (1 , 1 ) + y (1 , 2 ) + y (1 , 3 ) ;
18
19 % SumV = SV0+EV0+IV0 ( i s compared to Nv)
20 SumV = y (1 , 4 ) + y (1 , 5 ) + y (1 , 6 ) ;
21
22 C = y ( : , 7 ) ;
23
24 NewCases = C(1) ;
25 f o r i = 2 :52
26 NewCases ( i ) = C( (7* i −7)/dt +1 ) − C( (7* ( i −1)−7)/dt +1 ) ;
27 end
28
29 % Output value
30 F = [ NewCases SumH SumV ] ;
31
32 end

Code 6: Inverse problem right hand side

1 func t i on ydot = TRR rhs SEIR SEI ( t , y , variable TRRparam , ...
2 fixed TRRparam )
3 % fixed TRRparam = [N C0 ] ;
4 % variable TRRparam = [bH aH yH bV aV dV SH0 EH0 IH0 SV0 EV0 IV0 ] ;
5
6 Nh = fixed TRRparam (1) ; % human populat ion s i z e
7 bH = variable TRRparam (1) ; % vector−to−human t ransmi s s i on ra t e
8 aH = variable TRRparam (2) ; % incubat ion human frequency
9 yH = variable TRRparam (3) ; % i n f e c t i o u s human frequency

10
11 Nv = fixed TRRparam (2) ;
12 bV = variable TRRparam (4) ; % human−to−vec to r t ransmi s s i on ra t e
13 aV = variable TRRparam (5) ; % incubat ion vec to r f requency
14 dV = variable TRRparam (6) ; % vecto r l i f e s p a n frequency
15
16 % System of ODEs
17 % y = [SH EH IH SV EV IV C] i s the s o l u t i o n vec to r
18 % RH i s omitted to opt imize the procedure
19
20 ydot = ze ro s ( s i z e ( y ) ) ;
21
22
23 ydot (1 ) = −bH*y (1) .* y (6) /Nv ; % dSh/dt
24 ydot (2 ) = bH*y (1) .* y (6) /Nv − aH*y (2) ; % dEh/dt
25 ydot (3 ) = aH*y (2) − yH*y (3) ; % dIh/dt
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26 ydot (4 ) = dV − bV.* y (4) . * ( y (3 ) /Nh) − dV*y (4) ; % dSv/dt
27 ydot (5 ) = bV*y (4) . * ( y (3 ) /Nh) − aV*y (5) − dV*y (5) ; % dEv/dt
28 ydot (6 ) = aV*y (5) − dV*y (6) ; % dIv/dt
29 ydot (7 ) = aH*y (2) ; % dC/dt
30
31 end

Changing human population

A recruitment term (η Nh) and a mortality rate (µ) are needed to implement
a changing human population. The human variables in Eqs. (1) in section 2.2
of the main document become

dSh

dt
= η Nh − βh Sh

Iv
Nv
− µSh ,

dEh

dt
= βh Sh

Iv
Nv
− αhEh − µEh ,

dIh
dt

= αhEh − γ Ih − µ Ih ,
dRh

dt
= γ Ih − µRh .

(9)

Also, a new differential equation must be added to the model to track the varying
population

dNh

dt
= η Nh − µ (Sh + Eh + Ih +Rh) , (10)

and, consequently, its respective initial condition, Nh(0), is required for the
forward problem. Code 7 provides the right hand side of this variation of the
model.

Code 7: Vital Dynamics - rigth hand side

1 func t i on ydot = rhs SEIR SEI ( t , y , phys param )
2
3 % param = [nH bH aH yH bV aV dV mH] ;
4
5 nH = phys param (1) ; % human b i r th ra t e ( per person ) per day
6 bH = phys param (2) ; % vector−to−human t ransmi s s i on ra t e
7 aH = phys param (3) ; % incubat ion human frequency
8 yH = phys param (4) ; % i n f e c t i o u s human frequency
9 bV = phys param (5) ; % human−to−vec to r t ransmi s s i on ra t e

10 aV = phys param (6) ; % incubat ion vec to r f requency
11 dV = phys param (7) ; % vecto r l i f e s p a n frequency
12 mH = phys param (8) ; % human death ra t e ( per person ) per day
13
14
15 % System of ODEs
16 % y = [SH EH IH RH SV EV IV C NH] i s the s o l u t i o n vec to r
17
18 ydot = ze ro s ( s i z e ( y ) ) ;
19
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20
21 ydot (1 ) = nH*y (9) − bH*y (1) .* y (7) − mH*y (1) ; % dSh/dt
22 ydot (2 ) = bH*y (1) .* y (7) − aH*y (2) − mH*y (2) ; % dEh/dt
23 ydot (3 ) = aH*y (2) − yH*y (3) − mH*y (3) ; % dIh/dt
24 ydot (4 ) = yH*y (3) − mH*y (4) ; % dRh/dt
25 ydot (5 ) = dV − bV.* y (5) . * ( y (3 ) /y (9 ) ) − dV*y (5) ; % dSv/dt
26 ydot (6 ) = bV*y (5) . * ( y (3 ) /y (9 ) ) − aV*y (6) − dV*y (6) ; % dEv/dt
27 ydot (7 ) = aV*y (6) − dV*y (7) ; % dIv /dt
28 ydot (8 ) = aH*y (2) ; % dC/dt
29 ydot (9 ) = nH*y (9) − mH*( y (1 )+y (2)+y (3)+y (4) ) ; % dNh/dt
30
31 end

An estimation for the values of η and µ (per thousand individuals in a year)
can be found in [? ] for 2015 (the most recent officially published mortality and
birth rates for Brazil). The solution of the forward problem with this code can be
used to observe how the human vital dynamics do not affect Nw (neither C(t))
in a one year outbreak for this model. Of course, Sh(t) will behave different, as
expected.
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