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Abstract

In the last two decades multiple instances of Zika virus epidemic have been
reported around the world, turning the related disease into a international
concern. In this context, the use of mathematical models for epidemics is of
great importance, since they are useful tools to predict the outbreaks under-
lying numbers, and allow one to test the effectiveness of different strategies
to combat associated diseases. This work deals with the development and
calibration of a epidemic model to describe the 2016 outbreak of Zika virus in
Brazil. A mathematical model with 8 differential equations and 7 parameters
is employed. Nominal values for the model parameters are estimated from
the literature. An inverse problem associated to the model identification is
formulated and solved. The calibrated model obtained presents realistic pa-
rameters and returns reasonable predictions, with the curve shape similar
to the outbreak evolution, and peak value close to the maximum number of
infected people during 2016.
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1. Introduction

The Zika virus is a flavivirus that upon infection in humans causes a ill-
ness, known as Zika fever, identified commonly with macular or papular rash,
mild fever and arthritis [62, 7]. It is mainly a vector-borne disease, carried
by the genus Aedes of mosquitoes [62, 26], although sexual transmission has
been reported [16, 63] and contamination by blood transfusion is under in-
vestigation [4]. The Zika virus was first isolated in primates from the Zika
forest in Uganda in 1947 [19]. Evidences of the virus in humans were found
in Nigeria in 1968 [42]. An epidemic occurred in 2007 on Micronesia [21],
followed by multiple outbreaks on several Pacific Islands between 2013 and
2014 [12, 58]. The first Zika virus autochthonous case in Brazil was reported
around May, 2015 [66, 51], and nearly 30,000 cases of infection were already
notified by January 30, 2016 [24], along with the Pan American Health Orga-
nization being informed in the same month about locally-transmitted cases
on numerous continental and island territories of America [30]. The Brazilian
Ministry of Health registered 211,770 probable cases of Zika fever (126,395 of
which were confirmed) until the 49th epidemiological week (EW; 4–10 Dec,
2016) [51]. See in Figure 1 the empirical data of suspected and confirmed
cases for the epidemiological weeks 1 to 34 of 2016 in Brazil. This epidemic
caused concern in the international medical community, health authorities
and population, specially due to a relation between Zika virus and other dis-
eases — such as newborn microcephaly [59, 60] and Guillain-Barré syndrome
[20], whose correlation to the Zika virus has recently been considered by the
World Health Organization (WHO) a “scientific consensus” [63] — and the
realization of the 2016 Summer Olympics in Rio de Janeiro, Brazil, which on
account of the large flux of people could have spread the Zika virus to various
parts of the world.

In this epidemic scenario, the development of control and prevention
strategies for the disease is a critical issue. A mathematical model able to
predict the number of infected people during the virus outbreak is an useful
tool, which can be employed to identify effective and vulnerable aspects on
disease control programs [11, 31, 37, 38, 48, 56, 67]. Nevertheless, for an
epidemic model to be truly useful, it must undergo a judicious process of
validation [17, 44], where model predictions are confronted with real data,
in order to evaluate if they are realistic. In general, the first predictions of a
model do not agree with the observations, which may occur due to possible
inadequacies in the model hypotheses or a poor choice for the model nom-
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Figure 1: Confirmed and suspected cases of Zika infection in Brazil from 1-st to 34-th
epidemiological week [47, 52].

inal parameters. The first case invalidates the model, but the second can
be remedied through a procedure known as model calibration, where a set of
parameters that promote a good agreement between predictions and observa-
tions is sought. After the calibration process, the model must be confronted
again with new experimental data to ensure its validity.

This work constitutes a first step in a long and rigorous process of iden-
tification and validation of representative model to describe Zika virus 2016
outbreak in Brazil. For this purpose, a mathematical model is adapted to the
Brazilian scenario based on similar SEIR descriptions used successfully for
other Zika outbreaks that happened around the world [28, 33] and on stud-
ies performed over SEIR dynamic systems capable of modeling epidemics
[41, 61, 64]. The nominal values of the model parameters belong to Zika
infection’s and vector’s characteristics, quantitatively estimated in the liter-
ature or published by health organizations. Predictions are obtained from
numerical simulation and further heuristic manipulation of the parameters,
and are compared to real data of the outbreak, in a first step to validate
the model. In sequence, a rigorous process of model calibration is performed
through the formulation and solution of an inverse problem.

The rest of this paper is organized as follows. In section 2, the mathe-
matical model is described and estimation of nominal values for the model
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parameters is discussed. In section 3, the reader is exposed to an attempt
to validate the model, where results are presented with subsequent compar-
ison between model predictions and experimental data. Section 4 presents
the formulation and solution of an inverse problem to calibrate the model.
Finally, in section 5, the main contributions of this work are emphasized and
a path for future works is suggested.

2. Epidemic model for Zika virus dynamics

2.1. Model hypotheses

This work utilizes a variant of the Ross-McDonald model [50, 53] for
epidemic predictions, separating the populations into a SEIR framework
(susceptible, exposed, infectious, recovered) [8, 9, 22, 40]. Each category
represents the health condition of a individual inside such group at time t,
with respect to the considered infection. The susceptible group, denoted by
S(t), represents those who are uncontaminated and are able to become in-
fected. The exposed portion of the population, E(t), comprehends anyone
that is carrying the pathogen but is still incapable of transmitting the dis-
ease. While the infectious individuals, I(t), can spread the pathogen and may
display symptoms associated with the illness. Finally, the recovered group,
R(t), contains those who are no longer infected. The populations of humans
and vectors are segmented into the aforesaid classes (excepting the group of
recovered vectors), as Figure 2 depicts schematically with the accordingly
subscripts. Sh, Eh, Ih and Rh amass the number of people at each stage of
the model description, and Sv, Ev, Iv signifies proportion of vectors. Note
that 0 ≤ Sv, Ev, Iv ≤ 1.

Demographical changes in the number of humans are not considered, and
the total vector population is maintained constant during the analysis, al-
though variations of the proportion of vectors on the particular SEIR com-
partments are introduced via birth and death rates. The vector in question
is regarded as a hypothetical mosquito apt to being infected or infectious
throughout all its lifetime — which means the model accounts only for the
adult stage of their life cycle — and also unable to recover.

The time elapsed by a individual while he/she is on the aforementioned
exposed group is known as the latent period of a organism and, in this work,
is adopted as equivalent to the so-called incubation period (the time elapsed
between being infected and exhibiting symptoms), since data is extremely
sparse on the latter for humans [13] (namely, the intrinsic incubation period).
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Figure 2: Schematic representation of SEIR model for Zika virus outbreak description.

Both terms are used interchangeably hereafter, and the concepts do not differ
on the mosquitoes’ case (the extrinsic incubation period) [34]. In addition,
all the members of the susceptible group are treated as equally capable of
being infected and the recovered ones as completely immunized.

2.2. Model equations

The evolution of individuals through the SEIR groups is governed by the
following (nonlinear) autonomous system of ordinary differential equations
(ODE)

dSh

dt
= −βh Sh Iv , (1)

dEh

dt
= βh Sh Iv − αhEh , (2)

dIh
dt

= αhEh − γ Ih , (3)

dRh

dt
= γ Ih , (4)
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dSv

dt
= δ − βv Sv

Ih
N
− δ Sv , (5)

dEv

dt
= βv Sv

Ih
N
− (δ + αv)Ev , (6)

dIv
dt

= αv Ev − δ Iv , (7)

dC

dt
= αhEh , (8)

where N represents the total human population, 1/α is the disease’s incuba-
tion period (each with the corresponding subscript of h for human’s and v
for vector’s), 1/δ means the vector lifespan, 1/γ is the human infection pe-
riod — which is defined in this work as the interval of time that a human
is infectious — and β identifies the transmission rate, specifically βh is the
mosquito-to-human rate and βv the human-to-mosquito rate. The first delta
on the right hand side of Eq. (5) sustains the hypothesis that the total vector
population is unchanged during the analysis. Additionally, Eq. (8) allows
evaluation of the cumulative number C(t) of infected people until the time
t, that is, the amount of humans so far that contracted the disease and have
passed through or are in the infectious group at the given time.

2.3. Nominal parameters

The preliminary values for the parameters of Eqs. (1)–(8) come from the
related literature concerning the Zika infection, the Aedes aegypti mosquito
(which is the vector for Zika, Dengue and Yellow fever in Brazil), vector-
borne epidemic models and reports provided by health organizations and
government agencies. The Brazilian Institute of Geography and Statistics
(IBGE) reports that Brazil had approximately N = 206×106 people by July,
2016 [27]. The adopted extrinsic incubation period (EIP) is 1/αv = 15 days,
as is proposed in [6], showing it as the average time required for detection of
significant levels of Zika virus in adult Ae. aegypti mosquitoes blood. This
value agrees with other statistical confidence intervals (CI) that are presented
for the parameter in another works (95% CI: 4.4–17 days [28]). A systematic
review and pooled analysis of the literature and case studies available in
[35] suggests that 95% of people infected by the Zika virus who develop
symptoms will do so within 11.2 days of infection (95% CI: 7.6–18.0). This
value is selected in this work for the intrinsic incubation period (IIP) 1/αh

and is in agreement with the range of 3− 12 days that the European Centre
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for Disease Prevention and Control (ECDC) recommends [23], also formerly
used in other works [32, 60]. The aforementioned literature analysis in [35]
also concludes that 95% of the cases will have no detectable virus in the blood
by 18.9 days after infection (95% CI: 13.6–79.4). Considering the assumption
that the infectiousness in Zika infection ends 1.5 − 2 days before the virus
becomes undetectable [25, 28], the chosen value for the human infectious
period is 1/γ = 18.9 − 1.5 = 17.4 days. As for the vector lifespan 1/δ, “the
adult stage of the mosquito is considered to last an average of eleven days in
the urban environment” according to [45]. This is the assumed value for the
parameter in this work, which is also consistent with biological studies about
the species [43] and agrees with the usual life expectancy for the mosquito
in Rio de Janeiro, Brazil [18]. Lastly, the time between a mosquito being
infected and it infecting a human, 1/βh, and the time between a human
infection and a mosquito taking an infectious blood meal, 1/βv, is estimated
in [25] as an average of 11.3 days (95% CI: 8.0–16.3) and 8.6 days (95% CI:
6.2-11.6), respectively. A summary of the nominal values adopted for the
SEIR model parameters is shown in Table 1.

Table 1: Nominal parameters of SEIR model.

parameter value unit

αh 1/11.2 days−1

αv 1/15 days−1

γ 1/17.4 days−1

δ 1/11 days−1

βh 1/11.3 days−1

βv 1/8.6 days−1

N 206× 106 individuals

2.4. Initial conditions

In order to properly define the dynamic system underlying SEIR epimidec
model presented in section 2.2, it is necessary to prescribe the value of its
variables at the initial time t = 0, established as the first epidemiological
week of 2016.

In this date, both populations are assumed completely susceptible at first,
meaning Sh(0) = N and Sv(0) = 1. The initial values for the exposed and
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infectious groups are considered the same, Ih(0) = Eh(0) and Iv(0) = Ev(0).
Likewise, the initial value of the cumulative number must be C(0) = Ih(0),
given its definition. The value of Ih(0) is taken as the number of confirmed
Zika cases in Brazil on the first EW of 2016 (see Figure 1) [47, 52]. The
recovered group is assumed null at the beginning of infection, Rh(0) = 0. As
for the proportion of infectious vectors in the first week, repetitive manual
estimations were tried until the resulted time series of Ih presented reasonable
values compared to the real data. It became clear that the system response
is very sensible to Iv(0), more than the other initial conditions, as slight
variations in its value are required to achieve feasible results. In the process of
choosing its value, the matching of the Ih curve’s peak value to the amplitude
of infection is also taken as a priority, since this is the main interest region for
evaluation of the outbreak. The nominal values of the parameters exhibited
viable Ih curves around Iv(0) = 6.5×10−5. A summary of the nominal values
adopted for the SEIR model parameters is shown in Table 2.

Table 2: Nominal initial conditions of SEIR model.

parameter value unit

Sh(0) 206× 106 individuals
Eh(0) 4 272 individuals
Ih(0) 4 272 individuals
Rh(0) 0 individuals
C(0) 4 272 individuals
Sv(0) 1 —
Ev(0) 13.5× 10−4 —
Iv(0) 1.5× 10−4 —

3. Attempt to validate the epidemic model

The SEIR model response, for the set of parameters defined in sections 2.3
and 2.4, is presented in Figures 3 and 4 on a epidemiological week temporal
domain consisting of one to fifty-two weeks (7 to 365 days). It is possible to
see an outbreak around the fifth epidemic week, once time series of infected
and exposed people show a sudden increase.
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Figure 3: Model response for human-related quantities using the nominal parameters.

Unfortunately, from the quantitative point of view, the model predictions
shown in Figures 3 and 4 are not realistic. The veracity of such an assertion
is be proved by Figure 5, which compares the time series of Ih with the real
data for the number of confirmed Zika cases in each EW [52]. Clearly, the
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Figure 4: Model response for vector-related quantities using the nominal parameters.

given Ih curve overpredicts the infection numbers. This result proves that
SEIR model of section 2, provided with the parameters of sections 2.3 and
2.4, is not validated, i.e., it does not faithfully represent Zika virus dynamics
in Brazil throughout 2016.

Meanwhile, the general shape of Ih do provide qualitative information
about the evolution of the infection, as well as predictions for the peak’s value
in the same order of magnitude than that of the empirical data and its time
of occurrence with a less-than-two-weeks error. This qualitative agreement,
between simulation and epidemic data, induces the hypothesis that model
predictions may differ from the real data due to the use of unsuitable values
for model parameters. In other words, model predictions would be (possibly)
closer to the reference values if more realistic parameters were used.

The search for parameter values that make the simulations fit well to
observed data is known in the literature as model calibration (or system
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Figure 5: Comparison between the number of infected humans predicted by the model
(curve) and the number of confirmed cases in each EW [52] (dots).

identification) [3, 5, 10, 55], being the object of interest of the next section.

4. Calibration of the epidemic model

In general, the calibration of a mathematical model is the first step in the
so called validation process, procedure where simulations and experiments
(data) are compared, aiming to prove (or disprove) the model representative-
ness [17, 44]. Once calibration is done, the model response must be compared
again with new reference data, independently obtained from the data used
in the calibration, to prove (or disprove) the model quality [29, 54].

This work has at its disposal a single set of data for Zika virus outbreak
in Brazil. Thus, only the calibration process can be conducted, as a first step
in the direction of validating the model. This calibrated model can be tested
evaluated in the future, when new observations become available.

4.1. Forward and inverse problem

From the mathematical point of view, the epidemic model of section 2 is
a continuous-time dynamical system of the form

ẋ(t) = f
(
x(t),p

)
, x(0) = x0, (9)

where x0 ∈ R8 is a prescribed initial condition vector, the vector p ∈ R7

lumps the model parameters, f : R8 × R7 → R8 is a nonlinear map which
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defines the laws of evolution of this dynamics, and x(t) ∈ R8 the vector of
states at time t.

Given initial conditions and a set of parameters, represented by the pair
(x0,p), it is possible to compute, by means of numerical integration, the
model response x(t) from which a scalar observable φ(x0,p, t) is obtained.
This is called the forward problem associated to the epidemic model.

The model calibration problem seeks to find a set of parameters that, in
a certain sense, makes the response of the model as close as possible to the
system observations (reference data). In formal terms, given a data set with
M scalar observation y1, y2, · · · , yM , and for a prescribed initial condition x0,
find p∗ such that

p∗ = arg min
p


M∑
n=1

∣∣∣yn − φ (x0,p, tn)
∣∣∣2
 , (10)

where {tn}Mn=1 corresponds to a discrete set of time-instants where the M
scalar observation are obtained.

This is called an inverse problem associated to the epidemic model. In
general this type of problem is extremely nonlinear, with none or low reg-
ularity, multiple solutions (or even none), being much more complicated to
attacked in comparison with the forward problem [2, 57, 65]. A schematic
representation of the forward and the inverse problem associated to the epi-
demic model is shown in Figure 6.

4.2. Method of Levenberg-Marquardt

The method of Levenberg-Marquardt (LM) [36, 39, 49], is employed here
to numerically approximate a solution for inverse problem of Eq.(10). The
choice for this method is substantiated on its ability of rapidly converge, once
a suitable neighborhood has been reached, with the rather bigger convergence
capacity present in the steepest descent methods [14].

The basis of the LM method is the linear approximation to φ in the
neighborhood of p

φ(x0,p + h, t) ≈ φ(x0,p, t) + Jh , (11)

where J = ∂φ/∂p is the Jacobian matrix at p, and h is small perturbation
of p, i.e., ||h|| � 1.
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Figure 6: Schematic representation of the forward and inverse problems associated to the
epidemic model.

Starting at p0 — an initial guess — the method produces a series of
vectors p1, p2, . . . , that converge towards a local minimizer p∗ for φ. The
rth iteration is defined by(

A(r) + λ(r)I
)
h(r) = g(r), (12)

where A = JTJ and g = JT
(
y− φ(x0,p, t)− Jh

)
[49]. The scalar λ is a

Lagrange multiplier and controls both the magnitude and direction of the step
size correction h. When λ is zero, the direction of h is identical to that of the
Gauss-Newton method, and as λ→∞, h tends towards the steepest-descent
direction, with its magnitude tending to zero. Thus, λ can be controlled to
ensure descent even when second-order terms are encountered, which would
otherwise restrict the efficiency of the Gauss-Newton method. The parameter
vector at each step, p(r+1) = p(r) + h(r), will lead to a new sum of squares in
Eq.(10), and it is essential to select λ such that this sum is strictly smaller
than the previous one. A sufficiently large λ always exists such this condition
is met, unless p(r) is already at a minimum [39].
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4.3. Numerical experiments for calibration
Initially a sensitivity analysis process was conducted. The first analysis

performed was a variation of a single parameter while the others remained
with the same nominal values presented in section 2.3. Such process allowed
the observation of which parameters the system was more sensible to. The
parameters αh and αv were proved unreliable, since they required very high
initial guesses and usually would deform the quality of the curve. On the
other hand, the model was very sensible to variations on βh and βv, being
largely more affected by the values of βh. The other parameters did not bring
remarkable conclusions.

Next, a two-varying-parameters attempt was conducted. Most combi-
nations did not bring satisfactory results, to the extent that some pairs of
parameters could not even be computed in the time dedicated to the analysis,
e.g (αh, αv), probably because of inefficient initial guesses or high computa-
tional cost. Besides, some parameters seemed to control the quality changing
of the considered curve, meaning the accompanying parameter would vary
relatively less. Such control parameters were βh and βv and, unsurprisingly,
this pair proved to be the best one for fitting purposes. Three-way-varying
attempts were made, but usually would result not computable or giving in
to the referred control parameters. Thus, βh and βv were chosen to be the
focus of the calibration process.

Figure 7 shows the best result obtained for the Ih curve fitting problem
using the parameters from section 2.3, and is found by singly varying βv via
Levenberg-Marquardt algorithm. The initial guess used for βv in this case
and the values of the parameters held constant are the same as described in
section 2.3, as well as the initial conditions used for the numerical integration
are the ones mentioned in section 3. The resulting 1/βv that graphs the curve
is 15.5 days.

It is clear in Figure 7 that the system response Ih is a reasonable prediction
of the outbreak: the general shape of the infection evolution is attained, the
curve peak and empirical data maximum value differ only by a couple hundred
of individuals, and all parameters and initial conditions are within realistic
possibilities.

Another result to the inverse problem is presented, considering again the
fitting of the Ih curve. The chosen values for this second set of parameters
are the product of comparing the empirical data with multiple iterations of
the numerical strategy, but lacking the caution for the possibility of unreal-
istic measures for the parameters. The initial conditions for the numerical
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Figure 7: Calibrated time series of infectious number of humans using the nominal param-
eters.

Table 3: Second set of parameters used on the calibration process that provided Figure 8.
The βh value is the initial guess for the LM algorithm.

parameter value unit

αh 1/12 days−1

αv 1/17 days−1

γ 1/8.8 days−1

δ 1/25 days−1

βh 1/16.3 days−1

βv 1/11.6 days−1

N 206× 106 individuals

integration in this analysis follow the same assumptions presented in section
3, excepting the Ev(0) = Iv(0) hypothesis, since the values of these are the
result of an additional heuristic process of calibration: successive applications
of the LM algorithm were performed while manually changing the values of
Iv(0) and Ev(0) at each application, searching for the best fit of the curve’s
peak to the field data. Figure 8 presents the most satisfactory result obtained
through this analysis, utilizing a βh variation in the LM method. The pa-
rameters maintained constant and the βh initial guess used in this calibration
process to graph Figure 8 are summarized in Table 3. The resulting βh after
the LM algorithm is 0.0127 days−1.
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The curve in Figure 8 presents a better calibration of the model according
to the empirical data, since the peak’s time of the Ih curve is significant closer
to the epidemiological week that registered the maximum number of infected
people. However, this result comes at the cost of physical meaning in the
parameters, because 1/βh = 78.7 days for the time between a mosquito being
infected and it infecting a human is certainly unrealistic.
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Figure 8: Calibrated time series of infectious number of humans using the second set of
parameters.

5. Concluding remarks

An epidemic model of SEIR type to describe the dynamics of Zika virus
outbreak in Brazil, occurred in 2016, is developed and calibrated in this work.
Nominal quantities for the parameters are selected from the related literature
concerning the Zika infection, the Aedes aegypti genus of mosquitoes, vector-
born epidemic models and information provided by health organizations. The
calibration process is done through the solution of an inverse problem with
the aid of Levenberg-Marquardt method, used to pick the best parameter
values that would fit the curve“number of infectious people per week”into the
disease’s empirical data, thus calibrating the model. Results within realistic
values for the parameters are presented, stating reasonable predictions with
the curve shape similar to the outbreak evolution and proximity between the
estimated peak value and data for maximum number of infected during 2016.
Improved fitting is also achieved via convenient choice of the parameters and
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initial conditions during the numerical and heuristic process regarded in the
analysis, but at the expense of physical meaning of such parameters.

This work is only the first step in a long project of modeling and pre-
diction of epidemics related to the Zika virus in the Brazilian context. In
this way, only the SEIR model was tested here, but in an upcoming study
the authors intend to analyze the efficacy of other of epidemic models (e.g.
SIR, MSIR, etc). Furthermore, in order to make the calibration process more
robust, by taking into account the uncertainties underlying the model and
its parameters, the authors intend to use a Bayesian updating rule to attack
the inverse problem [46]. The use of statistical methods to choose the most
appropriate model, within a set of validated models, is also part of the plans
[1, 15].
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