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DOUBLE SPEND RACES

CYRIL GRUNSPAN AND RICARDO PÉREZ-MARCO

Abstract. We correct the double spend race analysis given in Nakamoto’s foun-
dational Bitcoin article and give a closed-form formula for the probability of success
of a double spend attack using the Regularized Incomplete Beta Function. We give
the first proof of the exponential decay on the number of confirmations and find
an asymptotic formula. Larger number of confirmations are necessary compared to
those given by Nakamoto.

To the memory of our beloved teacher André Warusfel who taught us how to have fun with the

applications of mathematics.

1. Introduction.

The main breakthrough in [7] is the solution to the double spend problem of an
electronic currency unit without a central authority. Bitcoin is the first form of peer-
to-peer (P2P) electronic currency.

A double spend attack can only be attempted with a substantial fraction of the
hashrate used in the Proof-of-Work of the Bitcoin network. The attackers will start
a double spend race against the rest of the network to replace the last blocks of the
blockchain. The last section of [7] computes the probability that the attackers catch
up. However Nakamoto’s analysis is not accurate. We present a correct analysis and
give a closed-form formula for this probability.

Theorem 1. Let 0 < q < 1/2, resp. p = 1− q, the relative hash power of the group
of the attackers, resp. of honest miners. After z blocks have been validated by the
honest miners, the probability of success of the attackers is

P (z) = I4pq(z, 1/2) ,

where Ix(a, b) is the Regularized Incomplete Beta Function

Ix(a, b) =
Γ(a+ b)

Γ(a)Γ(b)

∫ x

0

ta−1(1− t)b−1 dt .

2010 Mathematics Subject Classification. 68M01, 60G40, 91A60, 33B20.
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2. Mathematics of mining.

We review some basic results in probability ([3] vol.2, p.8 for background). The
process of bitcoin mining consists of computing block header hashes changing a nonce
1 in order to find a hash below a predefined threshold, the difficulty [7]. At each new
hash the work is started from scratch, therefore the random variable T measuring
the time it takes to mine a block is memoryless, which means that for any t1, t2 > 0

P[T > t1 + t2|T > t2] = P[T > t1] .

Therefore we have

P[T > t1 + t2] = P[T > t1 + t2|T > t2].P[T > t2] = P[T > t1].P[T > t2] .

This equation and a continuity argument determines the exponential function and
implies that T is an exponentially distributed random variable:

fT (t) = αe−αt

for some parameter α > 0, the mining speed, with t0 = 1/α = E[T ].

If (T 1, . . . ,T n) is a sequence of independent identically distributed exponential
random variables (for example T k is the mining time of the k-th block), then the sum

Sn = T 1 + . . .+ T n

is a random variable following a gamma density with parameters (n, α) (obtained by
convolution of the exponential density):

fSn(t) =
αn

(n− 1)!
tn−1e−αt ,

and cumulative distribution

FSn(t) =

∫ t

0

fSn(u)du = 1− e−αt
n−1∑
k=0

(αt)k

k!
.

We define the random process N (t) as the number of mined blocks at time t.
Setting S0 = 0, we have

N (t) = #{k ≥ 1;Sk ≤ t} = max{n ≥ 0;Sn < t} .

Since N (t) = n is equivalent to Sn ≤ t and Sn+1 > t we get

P[N (t) = n] = FSn(t)− FSn+1(t) =
(αt)n

n!
e−αt ,

which means that N (t) has a Poisson distribution with expectation αt.

1It is a double hash SHA256(SHA256(header)), a nonce and an extra-nonce are used.
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3. Mining race.

We consider the situation described in section 11 of [7] (p.9) where a group of
attacker miners attempts a double spend attack. The attacker group has a fraction
0 < q < 1/2 of the total hash rate, and the rest, the honest miners, has a fraction
p = 1 − q. Thus the probability that the attackers find the next block is q while
the probability for the honest miners is p. Nakamoto computes the probability for
the attackers to catch up when z blocks have been mined by the honest group. In
general to replace the chain mined by the honest miners and succeed a double spend
the attackers need to mine z+ 1 blocks, i.e. to mine a longer chain. In the analysis it
is assumed that we are not near an update of the difficulty which remains constant 2.

The first discussion in section 11 of [7] is about computing the probability qz of
the attacker catching up when they lag by z blocks behind the honest miners. The
analysis is correct and is similar to the Gamblers Ruin problem. We review it.

Lemma 3.1. Let qn be the probability of the event En, “catching up from n blocks
behind”. We have

qn = (q/p)n .

Proof. We have q0 = 1, q1 = q/p, and by the Markov property

qn+m = P[En+m] = P[En|Em].P[Em] = P[En].P[Em] = qn.qm ,

thus qn = qn1 and the result follows.

�

Note that after one more block has been mined, we have for n ≥ 1,

qn = qqn−1 + pqn+1 ,

and the only solution to this recurrence with q0 = 1 and qn → 0 is qn = (q/p)n.

We consider the random variables T and Sn, resp. T ′ and S′n, associated to the
group of honest, resp. attacker, miners. And also consider the random Poisson process
N (t), resp. N ′(t). The random variables T and T ′ are clearly independent and have
exponential distributions with parameters α and α′. We have

P[T ′ < T ] =
α′

α + α′
,

2The difficulty is adjusted every 2016 blocks.
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so

p =
α

α + α′
,

q =
α′

α + α′
.

Moreover, inf(T ,T ′) is an exponentially distributed random variable with param-
eters α + α′ which represents the mining speed of the entire network, honest and
attacker miners together. The Bitcoin protocol is calibrated such that α + α′ = τ0

with τ0 = 10 min. So we have

E[T ] =
1

α
=
τ0

p
,

E[T ′] =
1

α′
=
τ0

q
.

These results can also be obtained in the following way. The hash function used in
bitcoin block validation is h(x) = SHA256(SHA256(x)). The hashrate is the number
of hashes per second performed by the miners. At a stable hashrate regime, the
average time it takes to validate a block by the network is τ0 = 10 min. If the
difficulty is set to be d ∈ (0, 2256 − 1], we validate a block when h(BH) < d, where
BH is the block header. The pseudo-random output of SHA256 shows that we need
to compute an average number of m = 2256/d hashes to find a solution. Let h, resp.
h′, be the hashrates of the honest miners, resp. the attackers. The total hashrate of
the network is h+ h′, and we have

p =
h

h+ h′
,

q =
h′

h+ h′
.

Let t0, resp. t′0, be the average time it takes to validate a block by the honest
miners, resp. the attackers. We have

(h+ h′) τ0 = m ,

h t0 = m ,

h′ t′0 = m ,

and from this we get that τ0 is half the harmonic mean of t0 and t′0,

τ0 =
t0t
′
0

t0 + t′0
,
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and also

p =
t′0

t0 + t′0
=
τ0

t0
,

q =
t0

t0 + t′0
=
τ0

t′0
.

Going back to the Poisson distribution parameters, we have

α =
1

t0
=

p

τ0

,

α′ =
1

t′0
=

q

τ0

,

and we recover the relations

p =
α

α + α′
,

q =
α′

α + α′
.

4. Nakamoto’s analysis.

Once the honest miners mine the z-th block, the attackers have mined k blocks
with a probability computed in the next section (Proposition 5.1). If k > z, then the
attackers chain is adopted and the attack succeeds. Otherwise the probability they
catch up is (q/p)z as computed above, therefore the probability P of success of the
attack is

P = P[N ′(Sz) ≥ z] +
z−1∑
k=0

P[N ′(Sz) = k].qz−k .

Then Nakamoto makes the simplifying assumption that the blocks have been mined
according to average expected time per block. This is asymptotically true when
z → +∞ but false otherwise. More precisely, he approximates N ′(Sz) by N ′(tz)
where

tz = E[Sz] = zE[T ] =
zτ0

p
.

As we have seen above, the random variable N ′(tz) follows a Poisson distribution
with parameter

λ = α′tz =
zα′τ0

p
=
zq

p
.
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The final calculus in [7] is then

PSN(z) = P[N ′(tz) ≥ z] +
z−1∑
k=0

P[N ′(tz) = k].qz−k

= 1−
z−1∑
k=0

P[N ′(tz) = k] +
z−1∑
k=0

P[N ′(tz) = k].qz−k

= 1−
z−1∑
k=0

e−λ
λk

k!
(1− qz−k) .

However, this analysis is not correct since N ′(Sz) 6= N ′(tz).

5. The correct analysis.

Let Xn = N ′(Sn) be the number of blocks mined by the attackers when the honest
miners have just mined the n-th block. We compute the distribution for Xn.

Proposition 5.1. The random variable Xn has a negative binomial distribution with
parameters (n, p), i.e. for k ≥ 0,

P[Xn = k] = pnqk
(
k + n− 1

k

)
.

Proof. Let k ≥ 0. We have that N ′ and Sn are independent, therefore

P[Xn = k] =

∫ +∞

0

P[N ′(Sn) = k|Sn ∈ [t, t+ dt]] · P[Sn ∈ [t, t+ dt]]

=

∫ +∞

0

P[N ′(t) = k] · fSn(t)dt

=

∫ +∞

0

(α′t)k

k!
e−α

′t · αn

(n− 1)!
tn−1e−αtdt

=
pnqk

(n− 1)!k!
·
∫ +∞

0

tk+n−1e−tdt

=
pnqk

(n− 1)!k!
· (k + n− 1)!

�

Thus we confirm that the distribution of Xn is not a Poisson law with parameter
nq/p as claimed by Nakamoto. Only asymptotically we have a convergence to the
Poisson distribution:
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Proposition 5.2. In the limit n→ +∞, q → 0, and ln = nq/p→ λ we have:

P[Xn = k]→ λk

k!
e−λ .

Proof. We have

P[Xn = k] =
nn

(n+ ln)n
lkn

(n+ ln)k
(k + n− 1)!

(n− 1)!k!

=
lkn
k!

1(
1 + ln

n

)n n(n+ 1) . . . (n+ k − 1)

(n+ ln)k

and the result follows using
(
1 + ln

n

)n → eλ. �

We can now compute the probability of success of the attackers catching up a longer
chain. This computation was previously done in [8].

Proposition 5.3. (Probability of success of the attackers) The probability of
success by the attackers after z blocks have been mined by the honest miners is

P (z) = 1−
z−1∑
k=0

(
pzqk − qzpk

)(k + z − 1

k

)
.

Proof. As explained before, we have

P (z) =
∑
k>z

pzqk
(
k + z − 1

k

)
+

z∑
k=0

(
q

p

)z−k
pzqk

(
k + z − 1

k

)

= 1−
z∑

k=0

(
pzqk − qzpk

)(k + z − 1

k

)

= 1−
z−1∑
k=0

(
pzqk − qzpk

)(k + z − 1

k

)

�
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Fig.1 Satoshi Nakamoto and real probability

Numerical application.

Converting to R code, given 0 < q < 1/2 and z ≥ 0, this simple function computes
our probability P (z):

prob<-function(z,q){
p=1-q;

sum=1;

for (k in 0:(z-1)) {sum=sum-(p^z*q^k-q^z*p^k)*choose(k+z-1,k)} ;

return(sum)

}

We can compare with the probability PSN computed in [7].

For q = 0.1 we have
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z P (z) PSN(z)

0 1.0000000 1.0000000
1 0.2000000 0.2045873
2 0.0560000 0.0509779
3 0.0171200 0.0131722
4 0.0054560 0.0034552
5 0.0017818 0.0009137
6 0.0005914 0.0002428
7 0.0001986 0.0000647
8 0.0000673 0.0000173
9 0.0000229 0.0000046
10 0.0000079 0.0000012

For q = 0.3 we have

z P (z) PSN(z)

0 1.0000000 1.0000000
5 0.1976173 0.1773523
10 0.0651067 0.0416605
15 0.0233077 0.0101008
20 0.0086739 0.0024804
25 0.0033027 0.0006132
30 0.0012769 0.0001522
35 0.0004991 0.0000379
40 0.0001967 0.0000095
45 0.0000780 0.0000024
50 0.0000311 0.0000006

Solving for P less than 0.1% we have

q 0.10 0.15 0.20 0.25 0.30 0.35 0.40
z 6 9 18 20 32 58 133
zSN 5 8 11 15 24 41 81

Therefore the correct results for bitcoin security are worse than those given in
[7]. The explanation is that Nakamoto’s result is correct only if the mining time by
the honest miners is exactly the expected time. Longer than average times help the
attackers.
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6. Closed-form formula.

We give a closed-form formula for P (z) using the regularized incomplete beta func-
tion Ix(a, b) (see [1] (6.6.2)).

Theorem 6.1. We have, with s = 4pq,

P (z) = Is(z, 1/2) .

We recall that the incomplete beta function is defined (see [1] (6.6.1)), for a, b > 0
and 0 ≤ x ≤ 1, by

Bx(a, b) =

∫ x

0

ta−1(1− t)b−1 dt ,

and the classical beta function is defined (see [1] (6.2.1)) by B(a, b) = B1(a, b).

The Regularized Incomplete Beta Function is defined (see [1] (6.6.2) and (26.5.1))
by

Ix(a, b) =
Bx(a.b)

B(a, b)
=

Γ(a+ b)

Γ(a)Γ(b)
Bx(a, b) .

Proof. The cumulative distribution of a random variable X with negative binomial
distribution, with 0 < p < 1 and q = 1− p as usual (see [1] (26.5.26))) is given by

FX(k) = P[X ≤ k] =
k∑
l=0

pzql
(
l + z − 1

l

)
= 1− Ip(k + 1, z) .

This results from the formula (see [1] (6.6.1))

Ip(k + 1, z) = Ip(k, z)− pkqz

kB(k, z)
,

that we prove by integrating by parts the definition of Bx(a, b). Thus we get

P (z) = 1− Ip(z, z) + Iq(z, z) .

Making the change of variables t 7→ 1 − t in the integral definition, we also have a
symmetry relation (see [1] (6.6.3))

Ip(a, b) + Iq(b, a) = 1 .

Therefore we have Ip(z, z) + Iq(z, z) = 1, and P (z) = 2Iq(z, z). The result follows
using (see [1] (26.5.14)), Iq(z, z) = 1

2
Is(z, 1/2), where s = 4pq.

�
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7. Asymptotic and exponential decay.

Nakamoto makes the observation ([7] p.8), without proof, that the probability de-
creases exponentially to 0 when z → +∞. We prove this fact for the true probability
P (z) using the closed-form formula from Proposition 6.1,

Proposition 7.1. When z → +∞ we have, with s = 4pq < 1,

P (z) ∼ sz√
π(1− s)z

.

By integration by parts we get the following elementary version of Watson’s Lemma:

Lemma 7.2. Let f ∈ C1(R+) with f(0) 6= 0 and absolutely convergent integral∫ +∞

0

f(u)e−zu du < +∞ ,

then, when z → +∞, we have∫ +∞

0

f(u)e−zu du ∼ f(0)

z
.

Then we get the following asymptotics (see also [6]):

Lemma 7.3. For s, b ∈ R, we have when z → +∞,

Bs(z, b) ∼
sz

z
(1− s)b−1 .

Proof. Making the change of variable u = log(s/t) in the definition

Bs(z, b) =

∫ s

0

tz−1(1− t)b−1 dt ,

we get

Bs(z, b) = sz
∫ +∞

0

(1− se−u)b−1e−zu du ,

and the result follows applying Lemma 7.2 with f(u) = (1− se−u)b−1. �

Now we end the proof of Proposition 7.1. By Stirling asymptotics,

B(z, 1/2) =
Γ(z)Γ(1/2)

Γ(z + 1/2)
∼
√
π

z
,

so

Is(z, 1/2) =
Bs(z, 1/2)

B(z, 1/2)
∼

(1− s)−1/2 sz

z√
π
z

∼ sz√
π(1− s)z

.
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8. A more accurate risk analysis.

In practice, in order to avoid a double spend attack, the recipient of the bitcoin
transaction waits for z ≥ 1 confirmations. But he also has the information on the time
τ1 it took to confirm the transaction z times. Obviously the probability of success of
the attackers increases with τ1. The relevant parameter is the relative deviation from
the expected time

κ =
τ1

zt0
=
pτ1

zτ0

.

Our purpose is to compute the probability P (z, κ) of success of the attackers. Note
that P (z, 1) is the probability computed by Nakamoto [7],

PSN(z) = P (z, 1) .

Computation of P (z, κ).

The attackers mined k ≥ 0 blocks during the time τ1 with probability that follows
a Poisson distribution with parameter

λ(z, κ) = α′τ1 = κ
zq

p
,

that means

P[N ′(τ1) = k] =

(
zq
p
κ
)k

k!
e−

zq
p
κ ,

For κ = 1 we recover Nakamoto’s approximation.

The cumulative Poisson distribution can be computed with the incomplete regu-
larized gamma function ([1] (26.4))

Q(s, x) =
Γ(s, x)

Γ(x)
,

where

Γ(s, x) =

∫ +∞

x

ts−1e−t dt

is the incomplete gamma function and Γ(s) = Γ(s, 0) is the regular gamma function.
We have

Q(z, λ) =
z−1∑
k=0

λk

k!
e−λ .
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We compute as before

P (z, κ) =
+∞∑
k=z

(λ(z, κ))k

k!
e−λ(z,κ) +

z−1∑
k=0

(
q

p

)z−k
(λ(z, κ))k

k!
e−λ(z,κ)

= 1−
z−1∑
k=0

(
1−

(
q

p

)z−k)
(λ(z, κ))k

k!
e−λ(z,κ)

= 1−Q(z, κzq/p) +

(
q

p

)z
eκz

p−q
p Q(z, κz) .

Fig.2 Probability of success as a function of κ

Thus we get a explicit closed-form formula for P (z, κ),

Theorem 2. We have

P (z, κ) = 1−Q(z, κzq/p) +

(
q

p

)z
eκz

p−q
p Q(z, κz) ,

and

PSN(z) = P (z, 1) = 1−Q(z, zq/p) +

(
q

p

)z
ez

p−q
p Q(z, z) .
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9. Asymptotics of P (z, κ) and PSN(z).

We find the asymptotics of Q(z, λz) when z → +∞ for different values of λ > 0.

Lemma 9.1. We have

(1) For 0 < λ < 1, Q(z, λz)→ 1 and 1−Q(z, λz) ∼ 1
1−λ

1√
2πz
e−z(λ−1−log λ).

(2) For λ = 1, Q(z, z)→ 1/2 and 1/2−Q(z, z) ∼ 1
3
√

2πz
.

(3) For λ > 1, Q(z, λz) ∼ 1
λ−1

1√
2πz
e−z(λ−1−log λ).

Proof. (1) By [2] (8.11.6) and Stirling formula,for λ < 1 we have

1−Q(z, λz) =
γ(z, λz)

Γ(z)

∼ zzλze−zλ

z!(1− λ)

∼ 1

1− λ
1√
2πz

e−z(λ−1−log λ)

(2) Also by [2] (8.11.12) and Stirling formula,

Q(z, z) =
zz−1e−z

√
πz
2

(z − 1)!

∼ 1

2

(z/e)z
√

2πz

z!

→ 1

2
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and

1

2
−Q(z, z) =

1

2
−
zz−1e−z

√
πz
2

(
1− 1

3

√
2
πz

+ o(z−1/2)
)

(z − 1)!

=
1

2
− 1

2

√
2πz(z/e)z

z!

(
1− 1

3

√
2

πz
+ o(z−1/2)

)

=
1

2
− 1

2

√
2πz(z/e)z√

2πz(z/e)z(1 + 1
12z

+ o(z−1))

(
1− 1

3

√
2

πz
+ o(z−1/2)

)

=
1

2
− 1

2

(
1 +

1

12z
+ o(z−1)

)
·

(
1− 1

3

√
2

πz
+ o(z−1/2)

)
=

1

3
√

2πz
+ o(z−1/2)

(3)By [2] (8.11.7) and Stirling formula,for λ > 1 we have

Q(z, λz) =
Γ(z, λz)

Γ(z)

∼ (λz)ze−zλ

z!(λ− 1)

∼ 1

λ− 1

1√
2πz

e−z(λ−1−log λ)

�

For x > 0 we define c(x) = x − 1 − log x, which is positive since the graph of
x 7→ 1 − x is the tangent at x = 1 to the concave graph of the logarithm function.
We denote 0 < λ = q/p < 1.

We have that the Nakamoto probability PSN(z) also decreases exponentially with
z as claimed by Nakamoto in [7] without proof.

Proposition 9.2. We have for z → +∞,

PSN(z) ∼ e−zc(λ)

2

Proof. The result follows from the closed-form formula from Theorem 2,

P (z, κ) = 1−Q(z, κzq/p) + (q/p)zeκz
p−q
q Q(z, κz) ,
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and then from points (1) and (2) of Lemma 9.1,

1−Q
(
z,
q

p
z

)
= o

(
e−zc(q/p)

)
,

and (
q

p

)z
ez(1−

q
p

)Q(z, z) ∼ 1

2
e−zc(q/p) .

�

More generally, we have five different regimes for the asymptotics of P (z, κ) for
0 < κ < 1, κ = 1, 1 < κ < p/q, κ = p/q and κ > p/q.

Proposition 9.3. We have for z → +∞,

(1) For 0 < κ < 1,

P (z, κ) ∼ 1

1− κλ
1√
2πz

e−zc(κλ) .

(2) For κ = 1,

P (z, 1) = PSN(z) ∼ 1

2
e−zc(λ) .

(3) For 1 < κ < p/q,

P (z, κ) ∼ κ(1− λ)

(κ− 1)(1− κλ)

1√
2πz

e−zc(κλ) .

(4) For κ = p/q, P (z, p/q)→ 1/2 and

P (z, p/q)− 1/2 ∼ 1

2πz

(
1

3
+

q

p− q

)
.

(5) For p/q < κ, P (z, κ)→ 1 and

1− P (z, κ) ∼ κ(1− λ)

(κ− 1)(κλ− 1)

1√
2πz

e−zc(κλ) .

Proof. (1) If κ < 1 then also κq/p < 1, and

1−Q(z, κzq/p) ∼ 1

1− κq/p
1√
2πz

e−z(κq/p−1−log(κq/p)) ,

and

(q/p)zeκz
p−q
q = e−z(κq/p−1−log(κq/p))

= e−z(1−κ)(1−q/p) · e−z(q/p−1−log(q/p)) ,
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and then

(q/p)zeκz
p−q
q

1−Q(z, κzq/p)
∼ (1− κq/p) ·

√
2πz · e−z(1−κ)(1−q/p) · e−z(q/p−1−log(q/p)−(κq/p−1−log(κq/p)))

∼ (1− κq/p) ·
√

2πz · e−z(1−κ)(1−q/p) · e−z(1−κ)q/p · e−z log κ

∼ (1− κq/p) ·
√

2πz · e−z(1−κ−log κ) = o(1) .

Since Q(z, κz)→ 1 we have,

P (z, κ) = 1−Q(z, κzq/p) + (q/p)zeκz
p−q
q Q(z, κz)

∼ 1−Q(z, κzq/p)

∼ 1

(1− κq/p)
√

2πz
· e−z(κq/p−1−log(κq/p)) .

(2) This was proved in Proposition 9.2.

(3) When 1 < κ < p/q then by Lemma 9.1,

(q/p)zeκz
p−q
q Q(z, κz) ∼ 1

(κ− 1)
√

2πz
· e−z(κq/p−1−log(κq/p)) ,

and

1−Q(z, κzq/p) ∼ 1

(1− κq/p)
√

2πz
· e−z(κq/p−1−log(κq/p)) .

So we have

P (z, κ) ∼
(

1

1− κq/p
+

1

κ− 1

)
· 1√

2πz
· e−z(κq/p−1−log(κq/p))

∼ κ(1− q/p)
(κ− 1)(1− κq/p)

1√
2πz
· e−z(κq/p−1−log(κq/p)) .

(4) The previous asymptotic at the start of the proof of (3) is also valid for 1 <
κ = p/q and gives

(q/p)zeκz
p−q
q Q(z, κz) ∼ q

p− q
1√
2πz

,

and by Lemma 9.1,

P (z, p/q) = 1−Q(z, z) + (q/p)zeκz
p−q
q Q(z, κz)

=
1

2
+

1√
2πz

(
1

3
+

q

p− q

)
+ o(1/

√
z) .
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(5) For κ > p/q we use again the same asymptotic of (3) to get

Q(z, κzq/p) ∼ 1

κq/p− 1

1√
2πz

e−z(κq/p−1−log(κq/p)) ,

and again

(q/p)zeκz
p−q
q Q(z, κz) ∼ 1

(κ− 1)
√

2πz
e−z(κq/p−1−log(κq/p)) ,

so

1− P (z, κ) ∼
(

1

κq/p− 1
− 1

κ− 1

)√
2πz e−z(κq/p−1−log(κq/p))

∼ κ(1− q/p)
(κq/p− 1)(κ− 1)

√
2πz e−z(κq/p−1−log(κq/p)) .

�

10. Comparing asymptotics of P (z) and PSN(z).

We have an asymptotic comparison,

Proposition 10.1. We have for z → +∞,

PSN(z) ≺ P (z) .

Proof. Note that

q

p
− 1− log

(
q

p

)
− log

(
1

4pq

)
= 2

[
1

2p
− 1− log

(
1

2p

)]
> 0

So with s = 4pq < 1 we have

0 < log
1

s
<
q

p
− 1− log

q

p
= c(q/p) = c(λ) ,

and for z large

PSN(z) < e−zc(λ) ≺ sz√
π(1− s)z

∼ P (z) .

�

As we will see later we can be more explicit about the inequality between PSN(z)
and P (z).
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11. Recovering P (z) from P (z, κ).

We have seen above that PSN(z) can be recover from P (z, κ) by taking the value
at κ = 1. It turns out that we can also recover P (z) as a weighted average on κ of
P (z, κ).

Theorem 3. We have

P (z) =

∫ +∞

0

P (z, κ) dρz(κ)

with the density function

dρz(κ) =
zz

(z − 1)!
κz−1e−zκ dκ .

We check that ∫ +∞

0

dρz(κ) = 1 .

We can write

P (z) = 1−
z−1∑
k=0

fk(κ) ,

where

fk(κ) =

(
1−

(
q

p

)z−k)
(zq/p)k

k!
κke

zq
p
κ .

Then the Theorem follows from a direct computation,

Lemma 11.1. For k ≥ 0, we have∫ +∞

0

fk(κ) dρz(κ) = (pzqk − qzpk)
(
k + z − 1

k

)
.

We give a second more conceptual proof.

Proof. Consider the random variable

κ =
p

zτ0

Sz .

We have seen above that Sz ∼ Γ(z, α) so κ ∼ Γ(z, α zτ0
p

) = Γ(z, z). So the density

dρz is the distribution of κ. It is enough to prove that

P (z) = E [P (z,κ)] .
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We have

P (z) = P[N ′(Sz) ≥ z] +
z−1∑
k=0

P[N ′(Sz) = k] . qz−k

= 1−
z−1∑
k=0

(1− qz−k)P[N ′(Sz) = k] .

And by conditioning by Sz we get

P (z) = 1−
z−1∑
k=0

(1− qz−k)E[P[N ′(Sz) = k|Sz]]

= 1− E

[
z−1∑
k=0

(α′Sz)
k

k!
e−α

′Sz

]
+

(
q

p

)z
E

eα′ p−qq Sz

z−1∑
k=0

(
α′p
q
Sz

)k
k!

e−
α′p
q
Sz


= E

[
1−Q

(
z,
zq

p
κ

)
+

(
q

p

)z
ez(1− q

p)κQ(z, zκ)

]
= E [P (z,κ)] ,

since P[N ′(Sz) = k|Sz] = (α′Sz)k

k!
eα
′Sz , qz−k = (q/p)z−k, and

Q(z, x) =
z−1∑
k=0

xk

k!
e−x .

�

We also note that E[κ] = 1.
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12. Range of κ.

The probability to observe a deviation greater than κ is P[κ > κ] with κ = p
zτ0
Sz.

We have that κ follows a Γ-distribution, κ ∼ Γ(z, z), so

P[κ > κ] =
1

Γ(z)

∫ +∞

κ

zztz−1e−zt dt

=
1

Γ(z)

∫ +∞

κz

tz−1e−t dt

=
Γ(z, κz)

Γ(z)

= Q(z, κz) .

Then, by Lemma 9.1, P[κ > κ] ∼ 1
κ−1

1√
2πz
e−zc(κ) for κ > 1. Note that this probability

does not depend on p. For z = 6, we have P[κ > 4] ≈ 3 · 10−6 and for z = 10,
P[κ > 4] ≈ 4 · 10−9. So, in practice, the probability to have κ > 4 is very unlikely.
Below, we have represented the graph of κ 7−→ P (z, κ) for different values of z
(q = 0.1) and 0 < κ < 4.

Fig.3 Probability P (z, κ) as a function of κ

We see that κ 7−→ P (z, κ) is convex in the range of values of κ considered. We
study the convexity in more detail in the next section.
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13. Comparing PSN(z) and P (z).

Now we study the convexity of κ 7→ P (z, κ). Recall that λ = q/p < 1. From
Theorem 2 we have

P (z, κ) = 1−Q(z, zλκ) + λzez(1−λ)κQ(z, zκ) .

Since

Γ(z)∂2Q(z, x) = −xz−1e−x ,

we get, after some cancellations,

Γ(z) ∂2P (z, κ) = λzz(1− λ)ez(1−λ)κΓ(z, zκ) .

We observe that ∂2P (z, κ) > 0, so P (z, κ) is an increasing function of κ as expected.
For the second derivative we have

Γ(z) ∂2
2P (z, κ) = λzz2(1− λ)ez(1−λ)κ

[
(1− λ)Γ(z, zκ)− (zκ)z−1e−κz

]
= λzz(1− λ)e−λκz(zκ)z

[
(1− λ)Q(z, zκ)z!eκz(zκ)−z − κ−1

]
.

Therefore we study the sign of

gλ,z(κ) = (1− λ)Q(z, zκ)z!eκz(zκ)−z − κ−1

= (1− λ)
z−1∑
k=0

z!

zz−kk!

1

κz−k
− κ−1

=
1− λ
κ

((
1− 1

z

)
1

κ
+

(
1− 1

z

)(
1− 2

z

)
1

κ2
+ . . .

)
− λ

κ

For z = 1 we have

gλ,1(κ) = −λ/κ < 0 ,

therefore κ 7→ P (1, κ) is a concave function and by Jensen’s inequality

P (1) =

∫ +∞

0

P (z, κ) dρ1(τ) ≤ P (1, κ̄) = P (1, 1) = PSN(1) .

Corollary 13.1. We have (for all 0 < q < 1/2)

P (1) ≤ PSN(1) .

In general, for z ≥ 2, we have the reverse inequality. To determine the sign of gλ,z
we study its zeros. The equation to solve is(

1− 1

z

)
1

κ
+

(
1− 1

z

)(
1− 2

z

)
1

κ2
+ . . .+

(
1− 1

z

)
. . .

(
1− z − 1

z

)
1

κz−1
=

λ

1− λ
.
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This is a polynomial equation in 1/κ, the coefficients are increasing on z, and the left
hand side is decreasing on κ ∈ (0,+∞) from +∞ to 0, therefore there is a unique
solution κ(z), and

κ(2) < κ(3) < . . .

We compute

κ(2) =
1− λ

2λ
=

1

2q
− 1 > 0 .

In this case the function κ 7→ P (z, κ) is convex only in the interval (0, κ(z)). For z
large, most of the support of the measure dρz is contained in this interval and we
have by Jensen’s inequality

P (z) ≈
∫ κ(z)

0

P (z, κ) dρz(κ) ≥ P (z, κ̄z) ≈ P (z, 1) = PSN(z) ,

where

κ̄z =

∫ κ(z)

0

κ dρz(κ) ≈
∫ +∞

0

κ dρz(κ) = 1 .

We can get some estimates on κ(z) for z → +∞. The first observation is that for
z large we have κ(z) > 1. The asymptotic limits for Q(z, κz) for κ < 1 and κ = 1
(Lemma 9.1) and Stirling asymptotic formula give that

Q(z, κz)z!eκz(zκ)z → +∞ ,

and gλ,z(κ) 6= 0.

For κ > 1, we can use the asymptotic [2] (8.11.7), z → +∞,

Γ(z, κz) ∼ (κz)ze−κz

(κ− 1)z

and

(1− λ)Γ(z, κz)− (κz)z−1e−κz ∼ (κz)z−1e−κz
(

(1− λ)
κ

κ− 1
− 1

)
,

thus, since

gλ,z(κ) = (1− λ)Γ(z, κz)zeκz(κz)−z − κ−1 ,

we have

gλ,∞(κ) = lim
z→+∞

gλ,z(κ) =
1

κ

(
(1− λ)

κ

κ− 1
− 1

)
=

1− λ
κ− 1

− 1

κ
.

Now, if

κ(∞) = lim
z→+∞

κ(z) ,

we have gλ,∞(κ∞) = 0, so we get:
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Proposition 13.2.

κ(∞) = lim
z→+∞

κ(z) = λ−1 =
p

q
.

Using the second order asymptotic ([2] (8.11.7)), for κ > 1, z → +∞,

Γ(z, κz) ∼ (κz)ze−κz

z(κ− 1)

(
1− κ

(κ− 1)2z

)
,

so

gλ,z(κ) ∼ 1− λ
κ− 1

(
1− κ

(κ− 1)2z

)
− κ−1 .

Writing

κ(z) =
p

q
− a

z
+ o(z−1) ,

and using

1− λ
κ(z)− 1

(
1− κ(z)

(κ(z)− 1)2z

)
− κ(z)−1

we get

Proposition 13.3. For z → +∞

κ(z) =
p

q
− p2

q(p− q)
1

z
+ o(z−1) .

Also we have

p

q
− 1 >

p2

q(p− q)
1

z

for

z >

(
p

p− q

)2

,

so, for z of the order of (1− λ)−2 we have κ(z) > 1.
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14. Bounds for P (z)

Remember that we have set s = 4pq. We have the following inequality that is a
particular case of more general Gautschi’s inequalities [4]:

Lemma 14.1. Let z ∈ R+. We have

√
z

z + 1
2

≤
Γ
(
z + 1

2

)
√
z Γ(z)

≤ 1 .

Proof. By Cauchy-Schwarz inequality, we have:

Γ

(
z +

1

2

)
=

∫ +∞

0

tz−
1
2 e−t dt

≤
∫ +∞

0

(
t
z
2 e−

t
2

)
·
(
t
z
2
− 1

2 e−
t
2

)
dt

≤
(∫ +∞

0

tze−t dt

) 1
2

·
(∫ +∞

0

tz−1e−t dt

) 1
2

≤ Γ(z + 1)
1
2 · Γ(z)

1
2

≤ (zΓ(z))
1
2 · Γ(z)

1
2

≤
√
zΓ(z)

On the other side, the last inequality with z replaced by z + 1
2

gives:

zΓ(z) = Γ

(
z +

1

2
+

1

2

)
≤
√
z +

1

2
Γ

(
z +

1

2

)

�

Lemma 14.2. For z > 1, we have

√
z

z + 1
2

· sz√
πz
≤ P (z) ≤ 1√

1− s
· sz√

πz
.
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Proof. The function x 7−→ (1 − x)−
1
2 is non-decreasing. So, by definition of Is and

the upper bound of the inequality of Lemma 14.1, we have

P (z) = Is

(
z,

1

2

)
=

Γ
(
z + 1

2

)
Γ
(

1
2

)
Γ(z)

∫ s

0

tz−1(1− t)−
1
2 dt

≤ 1√
π

Γ
(
z + 1

2

)
Γ(z)

∫ s

0

tz−1(1− s)−
1
2 dt

≤
Γ
(
z + 1

2

)
√
z Γ(z)

· sz√
π(1− s)z

≤ 1√
1− s

· sz√
πz

.

In the same way, using the lower bound of the inequality of Lemma 14.1, we have

P (z) = Is

(
z,

1

2

)
≥ 1√

π

Γ
(
z + 1

2

)
Γ(z)

∫ s

0

tz−1 dt

≥
Γ
(
z + 1

2

)
√
z Γ(z)

· sz√
πz

≥
√

z

z + 1
2

· sz√
πz

.

�

Note that this gives again the exponential decrease of Nakamoto’s probability.

15. An upper bound for PSN(z)

Proposition 15.1. We have,

PSN(z) <
1

1− q
p

1√
2πz

e−( qp−1−log q
p)z +

1

2
e−( qp−1−log( qp)z)

This upper bound is quite sharp in view of the asymptotics in Proposition 9.3 (2).

Lemma 15.2. Let z ∈ N∗ and λ ∈ R∗+.

(1) If λ ∈]0, 1[, then 1−Q(z, λz) < 1
1−λ

1√
2πz
e−(λ−1−log λ)z

(2) Q(z, z) < 1
2

Proof. For (1) We use [2] (8.7.1)

γ(a, x) = e−xxa
∞∑
n=0

Γ(a)

Γ(a+ n+ 1)
xn ,
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which is valid for a, x ∈ R. Let λ ∈]0, 1[. Using Γ(z + 1) = zΓ(z), we get:

γ(z, λz) = e−λz(λz)z
+∞∑
n=0

Γ(z)

Γ(z + n+ 1)
(λz)n

= e−λz(λz)z
(

1

z
+

1

z(z + 1)
(λz) +

1

z(z + 1)(z + 2)
(λz)2 + . . .

)
≤ e−λz(λz)z

(
1

z
+

1

z2
(λz) +

1

z3
(λz)2 + . . .

)
≤ e−λz(λz)z

1

z

1

1− λ

≤ λzzz−1e−λz

1− λ

On the other hand, by [2] (5.6.1), we have

1

Γ(z)
<

ez√
2πzzz−1

,

and for any 0 < λ < 1,

1−Q(z, λz) =
γ(z, λz)

Γ(z)

<
1

1− λ
1√
2πz

e−(λ−1−log λ)z

For (2) this comes directly from [2] (8.10.13). �

Recalling that PSN(z) = P (z, 1) = 1 − Q
(
z, q

p
z
)

+ (q/p)zez(p−q)/pQ(z, z), we get

Proposition 15.1.
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16. Comparing again PSN(z) and P (z).

The aim of this section is to compute an explicit rank z0 (no sharp) for which
PSN(z) < P (z) for z ≥ z0.

Lemma 16.1. Let α > 0. For all x > logα, ex − αx > α
2
(x− logα)2 + α(1− logα).

Proof. Let g(x) = ex − αx− α
2
(x− logα)2 − α(1− logα). We have g′(x) = ex − α−

α(x− logα), g′′(x) = ex−α and g(3)(x) = ex. So, g(logα) = g′(logα) = g′′(logα) = 0
and g(3) > 0. Therefore, g(x) > 0 for x > logα. �

Lemma 16.2. For α > 0 and x >
(
1 + 1/

√
2
)

logα we have ex > αx.

Proof. The inequality is trivial when x ≤ 0. So, we can assume that x > 0. For 0 <
α < 1, we have ex > x > αx. For 1 < α < e, by Lemma 16.1, we have ex−αx > 0 for
x > logα. For α > e, the largest root of the polynomial α

2
(x− logα)2 +α(1− logα) is

logα+
√

2(logα− 1) which is smaller than (1+1/
√

2) logα since
√

2(u− 1) ≤ u/
√

2
for u ≥ 1. So, the inequality results from Lemma 16.1 again. �

Lemma 16.3. For µ, ψ, x > 0, if

x >
1

2
√

2
− 1 +

√
2

2
√

2

log(2ψµ2)

ψ

then we have

e−ψx <
µ√
x+ 1

2

.

Proof. We have

e−ψ·x <
µ√
x+ 1

2

⇐⇒ (x+ 1/2) e−2ψ·x < µ2

⇐⇒ (x+ 1/2) e−2ψ·(x+1/2) < µ2e−ψ

⇐⇒ e2ψ·(x+1/2) >
x+ 1/2

µ2e−ψ

⇐⇒ e2ψ·(x+1/2) >
1

2ψµ2e−ψ
, 2ψ · (x+ 1/2)

By Lemma 16.2, the last inequality is satisfied as soon as

2ψ · (x+ 1/2) > (1 + 1/
√

2) log

(
1

2ψµ2e−ψ

)
.
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Moreover, we have

2ψ · (x+ 1/2) > (1 + 1/
√

2) log

(
1

2ψµ2e−ψ

)
⇐⇒ 2ψ · x+ ψ > (1 + 1/

√
2) log

(
eψ

2ψµ2

)
⇐⇒ 2ψ · x+ ψ > (1 + 1/

√
2)ψ − (1 + 1/

√
2) log(2ψµ2)

⇐⇒ 2ψ · x > 1√
2
· ψ − (1 + 1/

√
2) log(2ψµ2)

⇐⇒ x >
1

2
√

2
− 1 + 1/

√
2

2

log(2ψµ2)

ψ

�

Theorem 16.4. Let z ∈ N. A sufficient condition for having PSN(z) < P (z) is
z ≥ z0 with z0 = dz∗0e being the smallest integer greater or equal to

z∗0 = max

 2

π
(

1− q
p

)2 ,
1

2
√

2
−

(
1 + 1√

2

)
2

log
(

2ψ(p)
π

)
ψ(p)


where ψ(p) = q

p
− 1− log

(
q
p

)
− log

(
1

4pq

)
> 0.

Proof. First, note that

ψ(p) =
q

p
− 1− log

(
q

p

)
− log

(
1

4p2

p

q

)
= 2

[
1

2p
− 1− log

(
1

2p

)]
So, ψ(p) > 0 and z0 is well defined. Let z > z0. By Lemma 14.2 and Corollary 15.1
it is enough to prove that

1

1− q
p

1√
2πz

e−z(
q
p
−1−log q

p) +
1

2
e−z(

q
p
−1−log( qp)) < S

√
z

z + 1
2

sz√
πz

We have z ≥ z0 ≥ 2

π(1− q
p)

2 , thus 1
1− q

p

1√
2πz
≤ 1

2
. So, the inequality is satisfied as soon

as e−zψ(p) <

(
1√
π

)
√
z+ 1

2

and the result follows from Lemma 16.3. �

The sharp values are numerically computed and given in the table below:

z0 2 3 4 5 6 7 8 9 10 11
q ≥ 0.000 0.232 0.305 0.342 0.365 0.381 0.393 0.401 0.409 0.415
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17. Tables for P (z, κ).

For complete Satoshi Tables see the companion article [5].

Table for P (3, κ) (z = 3) for different values of κ and q in %.

κ\q 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0.1 0 0.01 0.03 0.09 0.18 0.33 0.55 0.88 1.34 1.96 2.78 3.87 5.27
0.2 0 0.01 0.05 0.11 0.23 0.42 0.71 1.12 1.68 2.44 3.44 4.74 6.39
0.3 0 0.02 0.06 0.15 0.3 0.55 0.91 1.42 2.11 3.04 4.24 5.77 7.7
0.4 0 0.02 0.08 0.19 0.39 0.69 1.14 1.77 2.62 3.74 5.17 6.98 9.22
0.5 0 0.03 0.1 0.24 0.49 0.87 1.43 2.2 3.22 4.56 6.25 8.36 10.93
0.6 0 0.04 0.13 0.31 0.61 1.08 1.76 2.69 3.92 5.49 7.47 9.9 12.83
0.7 0.01 0.05 0.16 0.38 0.75 1.33 2.14 3.25 4.7 6.54 8.82 11.59 14.89
0.8 0.01 0.06 0.19 0.46 0.92 1.61 2.58 3.88 5.57 7.7 10.3 13.42 17.11
0.9 0.01 0.07 0.24 0.56 1.11 1.92 3.06 4.58 6.53 8.96 11.9 15.39 19.45
1 0.01 0.08 0.28 0.67 1.32 2.27 3.6 5.36 7.58 10.32 13.61 17.47 21.9

1.1 0.01 0.1 0.34 0.8 1.55 2.66 4.19 6.2 8.71 11.78 15.42 19.64 24.44
1.2 0.02 0.12 0.4 0.94 1.81 3.09 4.84 7.1 9.92 13.32 17.32 21.91 27.05
1.3 0.02 0.14 0.47 1.09 2.1 3.55 5.53 8.07 11.2 14.95 19.3 24.24 29.72
1.4 0.02 0.16 0.54 1.26 2.4 4.06 6.27 9.1 12.55 16.64 21.34 26.62 32.41
1.5 0.02 0.19 0.62 1.44 2.74 4.59 7.06 10.18 13.96 18.39 23.44 29.04 35.12
1.6 0.03 0.22 0.71 1.64 3.1 5.17 7.9 11.32 15.43 20.2 25.58 31.49 37.83
1.7 0.03 0.25 0.81 1.85 3.48 5.78 8.78 12.51 16.95 22.06 27.76 33.96 40.53
1.8 0.04 0.28 0.91 2.08 3.89 6.42 9.7 13.75 18.52 23.95 29.96 36.42 43.2
1.9 0.04 0.32 1.03 2.33 4.32 7.1 10.67 15.03 20.13 25.88 32.18 38.88 45.84
2 0.05 0.36 1.15 2.58 4.78 7.8 11.67 16.35 21.77 27.83 34.4 41.32 48.43

2.1 0.05 0.4 1.28 2.86 5.26 8.54 12.71 17.7 23.44 29.8 36.62 43.74 50.96
2.2 0.06 0.44 1.41 3.15 5.77 9.31 13.78 19.09 25.14 31.78 38.84 46.12 53.43
2.3 0.07 0.49 1.56 3.46 6.3 10.11 14.88 20.51 26.86 33.77 41.04 48.46 55.84
2.4 0.07 0.54 1.71 3.78 6.85 10.94 16.01 21.95 28.59 35.75 43.21 50.76 58.17
2.5 0.08 0.6 1.87 4.11 7.42 11.79 17.17 23.41 30.34 37.73 45.36 53 60.43
2.6 0.09 0.65 2.04 4.46 8.01 12.67 18.35 24.89 32.09 39.7 47.48 55.19 62.6
2.7 0.1 0.71 2.22 4.83 8.62 13.57 19.56 26.39 33.84 41.65 49.56 57.32 64.7
2.8 0.11 0.78 2.41 5.21 9.26 14.49 20.78 27.9 35.59 43.59 51.6 59.38 66.71
2.9 0.12 0.85 2.6 5.6 9.91 15.44 22.02 29.42 37.34 45.5 53.6 61.39 68.64
3 0.13 0.92 2.81 6.01 10.58 16.4 23.28 30.94 39.08 47.38 55.55 63.32 70.49

3.1 0.14 0.99 3.02 6.44 11.27 17.38 24.55 32.47 40.81 49.24 57.45 65.19 72.25
3.2 0.15 1.07 3.24 6.87 11.97 18.38 25.83 34 42.52 51.06 59.31 67 73.93
3.3 0.16 1.15 3.47 7.32 12.69 19.39 27.12 35.52 44.22 52.85 61.11 68.73 75.53
3.4 0.17 1.23 3.7 7.78 13.43 20.42 28.42 37.05 45.9 54.61 62.86 70.39 77.05
3.5 0.19 1.32 3.95 8.26 14.18 21.46 29.73 38.56 47.56 56.32 64.55 71.99 78.5
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Table for P (6, κ) (z = 6) for different values of κ and q in %.

κ\q 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26

0.1 0 0 0 0 0 0 0 0.01 0.02 0.04 0.08 0.15 0.28
0.2 0 0 0 0 0 0 0.01 0.01 0.03 0.06 0.12 0.23 0.41
0.3 0 0 0 0 0 0 0.01 0.02 0.05 0.09 0.18 0.34 0.6
0.4 0 0 0 0 0 0.01 0.01 0.03 0.07 0.15 0.28 0.51 0.88
0.5 0 0 0 0 0 0.01 0.02 0.05 0.11 0.23 0.42 0.75 1.28
0.6 0 0 0 0 0 0.01 0.04 0.08 0.17 0.34 0.63 1.1 1.84
0.7 0 0 0 0 0.01 0.02 0.06 0.13 0.26 0.51 0.91 1.57 2.57
0.8 0 0 0 0 0.01 0.03 0.08 0.19 0.39 0.73 1.3 2.19 3.53
0.9 0 0 0 0 0.02 0.05 0.12 0.28 0.55 1.03 1.81 2.99 4.73
1 0 0 0 0.01 0.02 0.07 0.18 0.39 0.78 1.43 2.45 3.99 6.19

1.1 0 0 0 0.01 0.04 0.1 0.25 0.54 1.06 1.92 3.25 5.2 7.93
1.2 0 0 0 0.01 0.05 0.14 0.35 0.74 1.42 2.53 4.21 6.63 9.94
1.3 0 0 0 0.02 0.07 0.2 0.47 0.98 1.86 3.26 5.35 8.29 12.23
1.4 0 0 0 0.03 0.09 0.26 0.62 1.28 2.39 4.14 6.68 10.19 14.79
1.5 0 0 0.01 0.03 0.12 0.34 0.8 1.64 3.02 5.15 8.19 12.3 17.58
1.6 0 0 0.01 0.05 0.16 0.45 1.02 2.06 3.76 6.31 9.89 14.63 20.59
1.7 0 0 0.01 0.06 0.21 0.57 1.29 2.56 4.6 7.62 11.77 17.16 23.78
1.8 0 0 0.02 0.08 0.27 0.71 1.6 3.14 5.56 9.07 13.82 19.86 27.13
1.9 0 0 0.02 0.1 0.34 0.89 1.96 3.79 6.63 10.67 16.04 22.72 30.59
2 0 0 0.03 0.12 0.42 1.09 2.37 4.53 7.82 12.42 18.4 25.71 34.14

2.1 0 0 0.03 0.15 0.51 1.32 2.83 5.35 9.12 14.29 20.9 28.81 37.73
2.2 0 0 0.04 0.19 0.62 1.58 3.36 6.26 10.54 16.29 23.51 31.98 41.34
2.3 0 0 0.05 0.23 0.75 1.88 3.95 7.26 12.06 18.41 26.23 35.21 44.94
2.4 0 0.01 0.06 0.28 0.89 2.21 4.59 8.35 13.69 20.64 29.02 38.47 48.49
2.5 0 0.01 0.07 0.33 1.05 2.59 5.3 9.52 15.42 22.95 31.87 41.73 51.97
2.6 0 0.01 0.09 0.4 1.24 3 6.08 10.78 17.24 25.35 34.77 44.98 55.35
2.7 0 0.01 0.1 0.47 1.44 3.45 6.92 12.12 19.15 27.81 37.69 48.19 58.63
2.8 0 0.01 0.12 0.55 1.67 3.95 7.82 13.54 21.14 30.33 40.62 51.34 61.78
2.9 0 0.02 0.14 0.64 1.92 4.49 8.79 15.04 23.19 32.89 43.54 54.42 64.8
3 0 0.02 0.17 0.74 2.2 5.08 9.82 16.6 25.31 35.48 46.44 57.41 67.66

3.1 0 0.02 0.19 0.85 2.5 5.71 10.91 18.24 27.47 38.08 49.29 60.3 70.38
3.2 0 0.03 0.22 0.97 2.83 6.39 12.06 19.93 29.68 40.68 52.1 63.09 72.94
3.3 0 0.03 0.26 1.11 3.18 7.11 13.27 21.68 31.93 43.28 54.84 65.75 75.33
3.4 0 0.03 0.3 1.25 3.57 7.88 14.54 23.48 34.2 45.86 57.52 68.3 77.57
3.5 0 0.04 0.34 1.41 3.98 8.69 15.86 25.33 36.48 48.41 60.11 70.72 79.66
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