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We correct the double spend race analysis given in Nakamoto's foundational Bitcoin article and give a closed-form formula for the probability of success of a double spend attack using the Regularized Incomplete Beta Function. We give the first proof of the exponential decay on the number of confirmations and find an asymptotic formula. Larger number of confirmations are necessary compared to those given by Nakamoto.

To the memory of our beloved teacher André Warusfel who taught us how to have fun with the applications of mathematics.

Introduction.

The main breakthrough in [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] is the solution to the double spend problem of an electronic currency unit without a central authority. Bitcoin is the first form of peerto-peer (P2P) electronic currency.

A double spend attack can only be attempted with a substantial fraction of the hashrate used in the Proof-of-Work of the Bitcoin network. The attackers will start a double spend race against the rest of the network to replace the last blocks of the blockchain. The last section of [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] computes the probability that the attackers catch up. However Nakamoto's analysis is not accurate. We present a correct analysis and give a closed-form formula for this probability.

Theorem 1. Let 0 < q < 1/2, resp. p = 1 -q, the relative hash power of the group of the attackers, resp. of honest miners. After z blocks have been validated by the honest miners, the probability of success of the attackers is

P (z) = I 4pq (z, 1/2) ,
where I x (a, b) is the Regularized Incomplete Beta Function

I x (a, b) = Γ(a + b) Γ(a)Γ(b) x 0 t a-1 (1 -t) b-1 dt .

Mathematics of mining.

We review some basic results in probability ([3] vol.2, p.8 for background). The process of bitcoin mining consists of computing block header hashes changing a nonce1 in order to find a hash below a predefined threshold, the difficulty [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF]. At each new hash the work is started from scratch, therefore the random variable T measuring the time it takes to mine a block is memoryless, which means that for any t 1 , t 2 > 0

P[T > t 1 + t 2 |T > t 2 ] = P[T > t 1 ] .
Therefore we have

P[T > t 1 + t 2 ] = P[T > t 1 + t 2 |T > t 2 ].P[T > t 2 ] = P[T > t 1 ].P[T > t 2 ] .
This equation and a continuity argument determines the exponential function and implies that T is an exponentially distributed random variable:

f T (t) = αe -αt
for some parameter α > 0, the mining speed, with t 0 = 1/α = E[T ].

If (T 1 , . . . , T n ) is a sequence of independent identically distributed exponential random variables (for example T k is the mining time of the k-th block), then the sum S n = T 1 + . . . + T n is a random variable following a gamma density with parameters (n, α) (obtained by convolution of the exponential density):

f Sn (t) = α n (n -1)! t n-1 e -αt ,
and cumulative distribution

F Sn (t) = t 0 f Sn (u)du = 1 -e -αt n-1 k=0 (αt) k k! .
We define the random process N (t) as the number of mined blocks at time t. Setting S 0 = 0, we have

N (t) = #{k ≥ 1; S k ≤ t} = max{n ≥ 0; S n < t} .
Since N (t) = n is equivalent to S n ≤ t and S n+1 > t we get

P[N (t) = n] = F Sn (t) -F S n+1 (t) = (αt) n n! e -αt ,
which means that N (t) has a Poisson distribution with expectation αt.

Mining race.

We consider the situation described in section 11 of [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] (p.9) where a group of attacker miners attempts a double spend attack. The attacker group has a fraction 0 < q < 1/2 of the total hash rate, and the rest, the honest miners, has a fraction p = 1 -q. Thus the probability that the attackers find the next block is q while the probability for the honest miners is p. Nakamoto computes the probability for the attackers to catch up when z blocks have been mined by the honest group. In general to replace the chain mined by the honest miners and succeed a double spend the attackers need to mine z + 1 blocks, i.e. to mine a longer chain. In the analysis it is assumed that we are not near an update of the difficulty which remains constant2 .

The first discussion in section 11 of [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] is about computing the probability q z of the attacker catching up when they lag by z blocks behind the honest miners. The analysis is correct and is similar to the Gamblers Ruin problem. We review it. Lemma 3.1. Let q n be the probability of the event E n , "catching up from n blocks behind". We have q n = (q/p) n .

Proof. We have q 0 = 1, q 1 = q/p, and by the Markov property

q n+m = P[E n+m ] = P[E n |E m ].P[E m ] = P[E n ].P[E m ] = q n .q m ,
thus q n = q n 1 and the result follows.

Note that after one more block has been mined, we have for n ≥ 1,

q n = qq n-1 + pq n+1 ,
and the only solution to this recurrence with q 0 = 1 and q n → 0 is q n = (q/p) n .

We consider the random variables T and S n , resp. T and S n , associated to the group of honest, resp. attacker, miners. And also consider the random Poisson process N (t), resp. N (t). The random variables T and T are clearly independent and have exponential distributions with parameters α and α . We have

P[T < T ] = α α + α , so p = α α + α , q = α α + α .
Moreover, inf(T , T ) is an exponentially distributed random variable with parameters α + α which represents the mining speed of the entire network, honest and attacker miners together. The Bitcoin protocol is calibrated such that α + α = τ 0 with τ 0 = 10 min. So we have

E[T ] = 1 α = τ 0 p , E[T ] = 1 α = τ 0 q .
These results can also be obtained in the following way. The hash function used in bitcoin block validation is h(x) = SHA256(SHA256(x)). The hashrate is the number of hashes per second performed by the miners. At a stable hashrate regime, the average time it takes to validate a block by the network is τ 0 = 10 min. If the difficulty is set to be d ∈ (0, 2 256 -1], we validate a block when h(BH) < d, where BH is the block header. The pseudo-random output of SHA256 shows that we need to compute an average number of m = 2 256 /d hashes to find a solution. Let h, resp. h , be the hashrates of the honest miners, resp. the attackers. The total hashrate of the network is h + h , and we have

p = h h + h , q = h h + h .
Let t 0 , resp. t 0 , be the average time it takes to validate a block by the honest miners, resp. the attackers. We have

(h + h ) τ 0 = m , h t 0 = m , h t 0 = m ,
and from this we get that τ 0 is half the harmonic mean of t 0 and t 0 ,

τ 0 = t 0 t 0 t 0 + t 0 ,
and also

p = t 0 t 0 + t 0 = τ 0 t 0 , q = t 0 t 0 + t 0 = τ 0 t 0 .
Going back to the Poisson distribution parameters, we have

α = 1 t 0 = p τ 0 , α = 1 t 0 = q τ 0 ,
and we recover the relations

p = α α + α , q = α α + α .
4. Nakamoto's analysis.

Once the honest miners mine the z-th block, the attackers have mined k blocks with a probability computed in the next section (Proposition 5.1). If k > z, then the attackers chain is adopted and the attack succeeds. Otherwise the probability they catch up is (q/p) z as computed above, therefore the probability P of success of the attack is

P = P[N (S z ) ≥ z] + z-1 k=0 P[N (S z ) = k].q z-k .
Then Nakamoto makes the simplifying assumption that the blocks have been mined according to average expected time per block. This is asymptotically true when z → +∞ but false otherwise. More precisely, he approximates N (S z ) by N (t z ) where

t z = E[S z ] = zE[T ] = zτ 0 p .
As we have seen above, the random variable N (t z ) follows a Poisson distribution with parameter

λ = α t z = zα τ 0 p = zq p .
The final calculus in [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] is then

P SN (z) = P[N (t z ) ≥ z] + z-1 k=0 P[N (t z ) = k].q z-k = 1 - z-1 k=0 P[N (t z ) = k] + z-1 k=0 P[N (t z ) = k].q z-k = 1 - z-1 k=0 e -λ λ k k! (1 -q z-k ) .
However, this analysis is not correct since N (S z ) = N (t z ).

The correct analysis.

Let X n = N (S n ) be the number of blocks mined by the attackers when the honest miners have just mined the n-th block. We compute the distribution for X n .

Proposition 5.1. The random variable X n has a negative binomial distribution with parameters (n, p), i.e. for k ≥ 0,

P[X n = k] = p n q k k + n -1 k .
Proof. Let k ≥ 0. We have that N and S n are independent, therefore

P[X n = k] = +∞ 0 P[N (S n ) = k|S n ∈ [t, t + dt]] • P[S n ∈ [t, t + dt]] = +∞ 0 P[N (t) = k] • f Sn (t)dt = +∞ 0 (α t) k k! e -α t • α n (n -1)! t n-1 e -αt dt = p n q k (n -1)!k! • +∞ 0 t k+n-1 e -t dt = p n q k (n -1)!k! • (k + n -1)!
Thus we confirm that the distribution of X n is not a Poisson law with parameter nq/p as claimed by Nakamoto. Only asymptotically we have a convergence to the Poisson distribution: Proposition 5.2. In the limit n → +∞, q → 0, and l n = nq/p → λ we have:

P[X n = k] → λ k k! e -λ .
Proof. We have

P[X n = k] = n n (n + l n ) n l k n (n + l n ) k (k + n -1)! (n -1)!k! = l k n k! 1 1 + ln n n n(n + 1) . . . (n + k -1) (n + l n ) k
and the result follows using 1 + ln n n → e λ .

We can now compute the probability of success of the attackers catching up a longer chain. This computation was previously done in [START_REF] Rosenfeld | Analysis of hashrate-based double spending[END_REF].

Proposition 5.3. (Probability of success of the attackers) The probability of success by the attackers after z blocks have been mined by the honest miners is

P (z) = 1 - z-1 k=0 p z q k -q z p k k + z -1 k .
Proof. As explained before, we have Converting to R code, given 0 < q < 1/2 and z ≥ 0, this simple function computes our probability P (z):

P (z) = k>z p z q k k + z -1 k + z k=0 q p z-k p z q k k + z -1 k = 1 - z k=0 p z q k -q z p k k + z -1 k = 1 - z-1 k=0 p z q k -q z p k k + z -1 k
prob<-function(z,q){ p=1-q; sum=1; for (k in 0:(z-1)) {sum=sum-(p^z*q^k-q^z*p^k)*choose(k+z-1,k)} ; return(sum)

}

We can compare with the probability P SN computed in [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF].

For q = 0.1 we have z P (z) P SN (z) 0 1.0000000 1.0000000 1 0.2000000 0.2045873 2 0.0560000 0.0509779 3 0.0171200 0.0131722 4 0.0054560 0.0034552 5 0.0017818 0.0009137 6 0.0005914 0.0002428 7 0.0001986 0.0000647 8 0.0000673 0.0000173 9 0.0000229 0.0000046 10 0.0000079 0.0000012 For q = 0. Therefore the correct results for bitcoin security are worse than those given in [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF]. The explanation is that Nakamoto's result is correct only if the mining time by the honest miners is exactly the expected time. Longer than average times help the attackers.

Closed-form formula.

We give a closed-form formula for P (z) using the regularized incomplete beta function I x (a, b) (see [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] (6.6.2)). Theorem 6.1. We have, with s = 4pq,

P (z) = I s (z, 1/2) .
We recall that the incomplete beta function is defined (see [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] (6.6.1)), for a, b > 0 and 0 ≤ x ≤ 1, by

B x (a, b) = x 0 t a-1 (1 -t) b-1 dt ,
and the classical beta function is defined (see [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] 

(6.2.1)) by B(a, b) = B 1 (a, b).
The Regularized Incomplete Beta Function is defined (see [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] (6.6.2) and (26.5.1)) by

I x (a, b) = B x (a.b) B(a, b) = Γ(a + b) Γ(a)Γ(b) B x (a, b) .
Proof. The cumulative distribution of a random variable X with negative binomial distribution, with 0 < p < 1 and q = 1 -p as usual (see [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] (26.5.26))) is given by

F X (k) = P[X ≤ k] = k l=0 p z q l l + z -1 l = 1 -I p (k + 1, z) .
This results from the formula (see [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] (6.6.1))

I p (k + 1, z) = I p (k, z) - p k q z kB(k, z) ,
that we prove by integrating by parts the definition of B x (a, b). Thus we get

P (z) = 1 -I p (z, z) + I q (z, z) .
Making the change of variables t → 1 -t in the integral definition, we also have a symmetry relation (see [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] (6.6.3))

I p (a, b) + I q (b, a) = 1 .
Therefore we have I p (z, z) + I q (z, z) = 1, and P (z) = 2I q (z, z). The result follows using (see [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] (26.5.14)), I q (z, z) = 1 2 I s (z, 1/2), where s = 4pq.

7. Asymptotic and exponential decay.

Nakamoto makes the observation ( [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] p.8), without proof, that the probability decreases exponentially to 0 when z → +∞. We prove this fact for the true probability P (z) using the closed-form formula from Proposition 6.1, Proposition 7.1. When z → +∞ we have, with s = 4pq < 1,

P (z) ∼ s z π(1 -s)z .
By integration by parts we get the following elementary version of Watson's Lemma:

Lemma 7.2. Let f ∈ C 1 (R + ) with f (0) = 0 and absolutely convergent integral +∞ 0 f (u)e -zu du < +∞ , then, when z → +∞, we have +∞ 0 f (u)e -zu du ∼ f (0) z .
Then we get the following asymptotics (see also [START_REF] Ópez | Asymptotic expansion of the incomplete beta function for large values of the first parameter[END_REF]):

Lemma 7.3. For s, b ∈ R, we have when z → +∞, B s (z, b) ∼ s z z (1 -s) b-1 .
Proof. Making the change of variable u = log(s/t) in the definition

B s (z, b) = s 0 t z-1 (1 -t) b-1 dt , we get B s (z, b) = s z +∞ 0 (1 -se -u ) b-1 e -zu du ,
and the result follows applying Lemma 7.2 with

f (u) = (1 -se -u ) b-1 .
Now we end the proof of Proposition 7.1. By Stirling asymptotics,

B(z, 1/2) = Γ(z)Γ(1/2) Γ(z + 1/2) ∼ π z , so I s (z, 1/2) = B s (z, 1/2) B(z, 1/2) ∼ (1 -s) -1/2 s z z π z ∼ s z π(1 -s)z .
8. A more accurate risk analysis.

In practice, in order to avoid a double spend attack, the recipient of the bitcoin transaction waits for z ≥ 1 confirmations. But he also has the information on the time τ 1 it took to confirm the transaction z times. Obviously the probability of success of the attackers increases with τ 1 . The relevant parameter is the relative deviation from the expected time

κ = τ 1 zt 0 = pτ 1 zτ 0 .
Our purpose is to compute the probability P (z, κ) of success of the attackers. Note that P (z, 1) is the probability computed by Nakamoto [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF],

P SN (z) = P (z, 1) .

Computation of P (z, κ).

The attackers mined k ≥ 0 blocks during the time τ 1 with probability that follows a Poisson distribution with parameter

λ(z, κ) = α τ 1 = κ zq p ,
that means

P[N (τ 1 ) = k] = zq p κ k k! e -zq p κ ,
For κ = 1 we recover Nakamoto's approximation.

The cumulative Poisson distribution can be computed with the incomplete regularized gamma function ( [START_REF] Abramovitch | Hanbook of Mathematical Functions[END_REF] (26.4))

Q(s, x) = Γ(s, x) Γ(x) , where Γ(s, x) = +∞ x t s-1 e -t dt
is the incomplete gamma function and Γ(s) = Γ(s, 0) is the regular gamma function.

We have

Q(z, λ) = z-1 k=0 λ k k! e -λ .
We compute as before Thus we get a explicit closed-form formula for P (z, κ), Theorem 2. We have

P (z, κ) = +∞ k=z (λ(z, κ)) k k! e -λ(z,κ) + z-1 k=0 q p z-k (λ(z, κ)) k k! e -λ(z,κ) = 1 - z-1 k=0 1 - q p z-k (λ(z, κ)) k k! e -λ(z,κ) = 1 -Q(z, κzq/p) + q p z e κz p-q p Q(z, κz) .
P (z, κ) = 1 -Q(z, κzq/p) + q p z e κz p-q p Q(z, κz) ,
and

P SN (z) = P (z, 1) = 1 -Q(z, zq/p) + q p z e z p-q p Q(z, z) .
9. Asymptotics of P (z, κ) and P SN (z).

We find the asymptotics of Q(z, λz) when z → +∞ for different values of λ > 0.

Lemma 9.1. We have

(1) For 0 < λ < 1, Q(z, λz) → 1 and 1 -Q(z, λz) ∼ 1 1-λ 1 √ 2πz e -z(λ-1-log λ) . (2) For λ = 1, Q(z, z) → 1/2 and 1/2 -Q(z, z) ∼ 1 3 √ 2πz . (3) For λ > 1, Q(z, λz) ∼ 1 λ-1 1 √ 2πz e -z(λ-1-log λ) .
Proof. (1) By [START_REF] Dlmf | Digital Library of Mathematical Functions[END_REF] (8.11.6) and Stirling formula,for λ < 1 we have

1 -Q(z, λz) = γ(z, λz) Γ(z) ∼ z z λ z e -zλ z!(1 -λ) ∼ 1 1 -λ 1 √ 2πz e -z(λ-1-log λ)
(2) Also by [START_REF] Dlmf | Digital Library of Mathematical Functions[END_REF] (8.11.12) and Stirling formula,

Q(z, z) = z z-1 e -z πz 2 (z -1)! ∼ 1 2 (z/e) z √ 2πz z! → 1 2 and 1 2 -Q(z, z) = 1 2 - z z-1 e -z πz 2 1 -1 3 2 πz + o(z -1/2 ) (z -1)! = 1 2 - 1 2 √ 2πz(z/e) z z! 1 - 1 3 2 πz + o(z -1/2 ) = 1 2 - 1 2 √ 2πz(z/e) z √ 2πz(z/e) z (1 + 1 12z + o(z -1 )) 1 - 1 3 2 πz + o(z -1/2 ) = 1 2 - 1 2 1 + 1 12z + o(z -1 ) • 1 - 1 3 2 πz + o(z -1/2 ) = 1 3 √ 2πz + o(z -1/2 )
(3)By [START_REF] Dlmf | Digital Library of Mathematical Functions[END_REF] (8.11.7) and Stirling formula,for λ > 1 we have

Q(z, λz) = Γ(z, λz) Γ(z) ∼ (λz) z e -zλ z!(λ -1) ∼ 1 λ -1 1 √ 2πz e -z(λ-1-log λ)
For x > 0 we define c(x) = x -1 -log x, which is positive since the graph of x → 1 -x is the tangent at x = 1 to the concave graph of the logarithm function. We denote 0 < λ = q/p < 1.

We have that the Nakamoto probability P SN (z) also decreases exponentially with z as claimed by Nakamoto in [START_REF] Nakamoto | Bitcoin: A Peer-to-Peer Electronic Cash System[END_REF] without proof. Proposition 9.2. We have for z → +∞,

P SN (z) ∼ e -zc(λ) 2 
Proof. The result follows from the closed-form formula from Theorem 2, P (z, κ) = 1 -Q(z, κzq/p) + (q/p) z e κz p-q q Q(z, κz) , and then from points (1) and (2) of Lemma 9.1, 1 -Q z, q p z = o e -zc(q/p) , and q p z e z(1-q p ) Q(z, z) ∼ 1 2 e -zc(q/p) .

More generally, we have five different regimes for the asymptotics of P (z, κ) for 0 < κ < 1, κ = 1, 1 < κ < p/q, κ = p/q and κ > p/q. Proposition 9.3. We have for z → +∞, (1) For 0 < κ < 1,

P (z, κ) ∼ 1 1 -κλ 1 √ 2πz e -zc(κλ) .
(2) For κ = 1,

P (z, 1) = P SN (z) ∼ 1 2
e -zc(λ) .

(3) For 1 < κ < p/q, κλ) .

P (z, κ) ∼ κ(1 -λ) (κ -1)(1 -κλ) 1 √ 2πz e -zc(
(4) For κ = p/q, P (z, p/q) → 1/2 and P (z, p/q) -1/2 ∼ 1 2πz 1 3 + q p -q .

(5) For p/q < κ, P (z, κ) → 1 and

1 -P (z, κ) ∼ κ(1 -λ) (κ -1)(κλ -1) 1 √ 2πz e -zc(κλ) .
Proof.

(1) If κ < 1 then also κq/p < 1, and

1 -Q(z, κzq/p) ∼ 1 1 -κq/p 1 √ 2πz
e -z(κq/p-1-log(κq/p)) , and (q/p) z e κz p-q q = e -z(κq/p-1-log(κq/p))

= e -z(1-κ)(1-q/p) • e -z(q/p-1-log(q/p)) , and then (q/p) z e κz p-q q 1 -Q(z, κzq/p) ∼ (1 -κq/p) • √ 2πz • e -z(1-κ)(1-q/p) • e -z(q/p-1-log(q/p)-(κq/p-1-log(κq/p)))

∼ (1 -κq/p) • √ 2πz • e -z(1-κ)(1-q/p) • e -z(1-κ)q/p • e -z log κ ∼ (1 -κq/p) • √ 2πz • e -z(1-κ-log κ) = o(1) .
Since Q(z, κz) → 1 we have,

P (z, κ) = 1 -Q(z, κzq/p) + (q/p) z e κz p-q q Q(z, κz) ∼ 1 -Q(z, κzq/p) ∼ 1 (1 -κq/p) √ 2πz
• e -z(κq/p-1-log(κq/p)) .

(2) This was proved in Proposition 9.2.

(3) When 1 < κ < p/q then by Lemma 9.1,

(q/p) z e κz p-q q Q(z, κz) ∼ 1 (κ -1) √ 2πz
• e -z(κq/p-1-log(κq/p)) , and

1 -Q(z, κzq/p) ∼ 1 (1 -κq/p) √ 2πz
• e -z(κq/p-1-log(κq/p)) .

So we have

P (z, κ) ∼ 1 1 -κq/p + 1 κ -1 • 1 √ 2πz • e -z(κq/p-1-log(κq/p)) ∼ κ(1 -q/p) (κ -1)(1 -κq/p) 1 √ 2πz
• e -z(κq/p-1-log(κq/p)) .

(4) The previous asymptotic at the start of the proof of ( 3) is also valid for 1 < κ = p/q and gives (q/p) z e κz p-q q Q(z, κz) ∼ q p -q

1 √ 2πz ,
and by Lemma 9.1,

P (z, p/q) = 1 -Q(z, z) + (q/p) z e κz p-q q Q(z, κz) = 1 2 + 1 √ 2πz 1 3 + q p -q + o(1/ √ z) .
(5) For κ > p/q we use again the same asymptotic of (3) to get

Q(z, κzq/p) ∼ 1 κq/p -1 1 √ 2πz
e -z(κq/p-1-log(κq/p)) , and again

(q/p) z e κz p-q q Q(z, κz) ∼ 1 (κ -1)
√ 2πz e -z(κq/p-1-log(κq/p)) , so

1 -P (z, κ) ∼ 1 κq/p -1 - 1 κ -1 √ 2πz e -z(κq/p-1-log(κq/p)) ∼ κ(1 -q/p) (κq/p -1)(κ -1)
√ 2πz e -z(κq/p-1-log(κq/p)) .

10. Comparing asymptotics of P (z) and P SN (z).

We have an asymptotic comparison, Proposition 10.1. We have for z → +∞, P SN (z) ≺ P (z) .

Proof. Note that

q p -1 -log q p -log 1 4pq = 2 1 2p -1 -log 1 2p > 0 So with s = 4pq < 1 we have 0 < log 1 s < q p -1 -log q p = c(q/p) = c(λ) ,
and for z large

P SN (z) < e -zc(λ) ≺ s z π(1 -s)z ∼ P (z) .
As we will see later we can be more explicit about the inequality between P SN (z) and P (z). 11. Recovering P (z) from P (z, κ).

We have seen above that P SN (z) can be recover from P (z, κ) by taking the value at κ = 1. It turns out that we can also recover P (z) as a weighted average on κ of P (z, κ). Theorem 3. We have

P (z) = +∞ 0 P (z, κ) dρ z (κ)
with the density function

dρ z (κ) = z z (z -1)! κ z-1 e -zκ dκ .
We check that

+∞ 0 dρ z (κ) = 1 .
We can write

P (z) = 1 - z-1 k=0 f k (κ) ,
where

f k (κ) = 1 - q p z-k (zq/p) k k! κ k e zq p κ .
Then the Theorem follows from a direct computation, Lemma 11.1. For k ≥ 0, we have

+∞ 0 f k (κ) dρ z (κ) = (p z q k -q z p k ) k + z -1 k .
We give a second more conceptual proof.

Proof. Consider the random variable

κ = p zτ 0 S z .
We have seen above that S z ∼ Γ(z, α) so κ ∼ Γ(z, α zτ 0 p ) = Γ(z, z). So the density dρ z is the distribution of κ. It is enough to prove that

P (z) = E [P (z, κ)] .
We have

P (z) = P[N (S z ) ≥ z] + z-1 k=0 P[N (S z ) = k] . q z-k = 1 - z-1 k=0 (1 -q z-k )P[N (S z ) = k] .
And by conditioning by S z we get

P (z) = 1 - z-1 k=0 (1 -q z-k )E[P[N (S z ) = k|S z ]] = 1 -E z-1 k=0 (α S z ) k k! e -α Sz + q p z E    e α p-q q Sz z-1 k=0 α p q S z k k! e -α p q Sz    = E 1 -Q z, zq p κ + q p z e z(1-q p )κ Q(z, zκ) = E [P (z, κ)] , since P[N (S z ) = k|S z ] = (α Sz) k k!
e α Sz , q z-k = (q/p) z-k , and

Q(z, x) = z-1 k=0 x k k! e -x .
We also note that E[κ] = 1.

12. Range of κ.

The probability to observe a deviation greater than κ is P[κ > κ] with κ = p zτ 0 S z . We have that κ follows a Γ-distribution, κ ∼ Γ(z, z), so

P[κ > κ] = 1 Γ(z) +∞ κ z z t z-1 e -zt dt = 1 Γ(z) +∞ κz t z-1 e -t dt = Γ(z, κz) Γ(z) = Q(z, κz) .
Then, by Lemma 9.1,

P[κ > κ] ∼ 1 κ-1 1 √
2πz e -zc(κ) for κ > 1. Note that this probability does not depend on p. For z = 6, we have P[κ > 4] ≈ 3 • 10 -6 and for z = 10, P[κ > 4] ≈ 4 • 10 -9 . So, in practice, the probability to have κ > 4 is very unlikely. Below, we have represented the graph of κ -→ P (z, κ) for different values of z (q = 0.1) and 0 < κ < 4. We see that κ -→ P (z, κ) is convex in the range of values of κ considered. We study the convexity in more detail in the next section.

13. Comparing P SN (z) and P (z). Now we study the convexity of κ → P (z, κ). Recall that λ = q/p < 1. From Theorem 2 we have

P (z, κ) = 1 -Q(z, zλκ) + λ z e z(1-λ)κ Q(z, zκ) . Since Γ(z)∂ 2 Q(z, x) = -x z-1 e -x ,
we get, after some cancellations,

Γ(z) ∂ 2 P (z, κ) = λ z z(1 -λ)e z(1-λ)κ Γ(z, zκ) .
We observe that ∂ 2 P (z, κ) > 0, so P (z, κ) is an increasing function of κ as expected.

For the second derivative we have

Γ(z) ∂ 2 2 P (z, κ) = λ z z 2 (1 -λ)e z(1-λ)κ (1 -λ)Γ(z, zκ) -(zκ) z-1 e -κz = λ z z(1 -λ)e -λκz (zκ) z (1 -λ)Q(z, zκ)z!e κz (zκ) -z -κ -1 .
Therefore we study the sign of

g λ,z (κ) = (1 -λ)Q(z, zκ)z!e κz (zκ) -z -κ -1 = (1 -λ) z-1 k=0 z! z z-k k! 1 κ z-k -κ -1 = 1 -λ κ 1 - 1 z 1 κ + 1 - 1 z 1 - 2 z 1 κ 2 + . . . - λ κ
For z = 1 we have g λ,1 (κ) = -λ/κ < 0 , therefore κ → P (1, κ) is a concave function and by Jensen's inequality

P (1) = +∞ 0 P (z, κ) dρ 1 (τ ) ≤ P (1, κ) = P (1, 1) = P SN (1) .
Corollary 13.1. We have (for all 0 < q < 1/2)

P (1) ≤ P SN (1) .
In general, for z ≥ 2, we have the reverse inequality. To determine the sign of g λ,z we study its zeros. The equation to solve is

1 - 1 z 1 κ + 1 - 1 z 1 - 2 z 1 κ 2 + . . . + 1 - 1 z . . . 1 - z -1 z 1 κ z-1 = λ 1 -λ .
This is a polynomial equation in 1/κ, the coefficients are increasing on z, and the left hand side is decreasing on κ ∈ (0, +∞) from +∞ to 0, therefore there is a unique solution κ(z), and κ(2) < κ(3) < . . .

We compute

κ(2) = 1 -λ 2λ = 1 2q -1 > 0 .
In this case the function κ → P (z, κ) is convex only in the interval (0, κ(z)). For z large, most of the support of the measure dρ z is contained in this interval and we have by Jensen's inequality

P (z) ≈ κ(z) 0 P (z, κ) dρ z (κ) ≥ P (z, κz ) ≈ P (z, 1) = P SN (z) , where κz = κ(z) 0 κ dρ z (κ) ≈ +∞ 0 κ dρ z (κ) = 1 .
We can get some estimates on κ(z) for z → +∞. The first observation is that for z large we have κ(z) > 1. The asymptotic limits for Q(z, κz) for κ < 1 and κ = 1 (Lemma 9.1) and Stirling asymptotic formula give that Q(z, κz)z!e κz (zκ) z → +∞ , and g λ,z (κ) = 0.

For κ > 1, we can use the asymptotic [START_REF] Dlmf | Digital Library of Mathematical Functions[END_REF] (8.11.7), z → +∞, Γ(z, κz) ∼ (κz) z e -κz (κ -1)z and

(1 -λ)Γ(z, κz) -(κz) z-1 e -κz ∼ (κz) z-1 e -κz (1 -λ) κ κ -1 -1 , thus, since g λ,z (κ) = (1 -λ)Γ(z, κz)ze κz (κz) -z -κ -1 ,
we have

g λ,∞ (κ) = lim z→+∞ g λ,z (κ) = 1 κ (1 -λ) κ κ -1 -1 = 1 -λ κ -1 - 1 κ . Now, if κ(∞) = lim z→+∞ κ(z) ,
we have g λ,∞ (κ ∞ ) = 0, so we get:

Proposition 13.2.

κ(∞) = lim z→+∞ κ(z) = λ -1 = p q .
Using the second order asymptotic ([2] (8.11.7)), for κ > 1, z → +∞,

Γ(z, κz) ∼ (κz) z e -κz z(κ -1) 1 - κ (κ -1) 2 z , so g λ,z (κ) ∼ 1 -λ κ -1 1 - κ (κ -1) 2 z -κ -1 . Writing κ(z) = p q - a z + o(z -1 ) ,
and using

1 -λ κ(z) -1 1 - κ(z) (κ(z) -1) 2 z -κ(z) -1
we get

Proposition 13.3. For z → +∞ κ(z) = p q - p 2 q(p -q) 1 z + o(z -1
) .

Also we have

p q -1 > p 2 q(p -q) 1 z for z > p p -q 2 ,
so, for z of the order of (1 -λ) -2 we have κ(z) > 1.

14. Bounds for P (z) Remember that we have set s = 4pq. We have the following inequality that is a particular case of more general Gautschi's inequalities [START_REF] Gautschi | Some elementary inequalities relating to the gamma and incomplete gamma function[END_REF]: Lemma 14.1. Let z ∈ R + . We have

z z + 1 2 ≤ Γ z + 1 2 √ z Γ(z) ≤ 1 .
Proof. By Cauchy-Schwarz inequality, we have:

Γ z + 1 2 = +∞ 0 t z-1 2 e -t dt ≤ +∞ 0 t z 2 e -t 2 • t z 2 -1 2 e -t 2 dt ≤ +∞ 0 t z e -t dt 1 2 • +∞ 0 t z-1 e -t dt 1 2 
≤ Γ(z + 1)

1 2 • Γ(z) 1 2 
≤ (zΓ(z))

1 2 • Γ(z) 1 2 ≤ √ zΓ(z)
On the other side, the last inequality with z replaced by z + 1 2 gives:

zΓ(z) = Γ z + 1 2 + 1 2 ≤ z + 1 2 Γ z + 1 2
Lemma 14.2. For z > 1, we have

z z + 1 2 • s z √ πz ≤ P (z) ≤ 1 √ 1 -s • s z √ πz .
Proof. The function x -→ (1 -x) -1 2 is non-decreasing. So, by definition of I s and the upper bound of the inequality of Lemma 14.1, we have

P (z) = I s z, 1 2 = Γ z + 1 2 Γ 1 2 Γ(z) s 0 t z-1 (1 -t) -1 2 dt ≤ 1 √ π Γ z + 1 2 Γ(z) s 0 t z-1 (1 -s) -1 2 dt ≤ Γ z + 1 2 √ z Γ(z) • s z π(1 -s)z ≤ 1 √ 1 -s • s z √ πz .
In the same way, using the lower bound of the inequality of Lemma 14.1, we have

P (z) = I s z, 1 2 ≥ 1 √ π Γ z + 1 2 Γ(z) s 0 t z-1 dt ≥ Γ z + 1 2 √ z Γ(z) • s z √ πz ≥ z z + 1 2 • s z √ πz .
Note that this gives again the exponential decrease of Nakamoto's probability.

15. An upper bound for P SN (z)

Proposition 15.1. We have,

P SN (z) < 1 1 -q p 1 √ 2πz e -( q p -1-log q p )z + 1 2 e -( q p -1-log( q p )z)
This upper bound is quite sharp in view of the asymptotics in Proposition 9.3 (2).

Lemma 15.2. Let z ∈ N * and λ ∈ R * + . (1) If λ ∈]0, 1[, then 1 -Q(z, λz) < 1 1-λ 1 √ 2πz e -(λ-1-log λ)z (2) Q(z, z) < 1 2 Proof. For (1) We use [2] (8.7.1) γ(a, x) = e -x x a ∞ n=0 Γ(a) Γ(a + n + 1)
x n , which is valid for a, x ∈ R. Let λ ∈]0, 1[. Using Γ(z + 1) = zΓ(z), we get:

γ(z, λz) = e -λz (λz) z +∞ n=0 Γ(z) Γ(z + n + 1) (λz) n = e -λz (λz) z 1 z + 1 z(z + 1) (λz) + 1 z(z + 1)(z + 2) (λz) 2 + . . . ≤ e -λz (λz) z 1 z + 1 z 2 (λz) + 1 z 3 (λz) 2 + . . . ≤ e -λz (λz) z 1 z 1 1 -λ ≤ λ z z z-1 e -λz 1 -λ
On the other hand, by [START_REF] Dlmf | Digital Library of Mathematical Functions[END_REF] (5.6.1), we have

1 Γ(z) < e z √ 2πzz z-1 ,
and for any 0 < λ < 1,

1 -Q(z, λz) = γ(z, λz) Γ(z) < 1 1 -λ 1 √ 2πz e -(λ-1-log λ)z
For (2) this comes directly from [START_REF] Dlmf | Digital Library of Mathematical Functions[END_REF] (8.10.13).

Recalling that P SN (z) = P (z, 1) = 1 -Q z, q p z + (q/p) z e z(p-q)/p Q(z, z), we get Proposition 15.1. Moreover, we have 2ψ

• (x + 1/2) > (1 + 1/ √ 2) log 1 2ψµ 2 e -ψ ⇐⇒ 2ψ • x + ψ > (1 + 1/ √ 2) log e ψ 2ψµ 2 ⇐⇒ 2ψ • x + ψ > (1 + 1/ √ 2)ψ -(1 + 1/ √ 2) log(2ψµ 2 ) ⇐⇒ 2ψ • x > 1 √ 2 • ψ -(1 + 1/ √ 2) log(2ψµ 2 ) ⇐⇒ x > 1 2 √ 2 - 1 + 1/ √ 2 2 log(2ψµ 2 ) ψ
Theorem 16.4. Let z ∈ N. A sufficient condition for having P SN (z) < P (z) is z ≥ z 0 with z 0 = z * 0 being the smallest integer greater or equal to

z * 0 = max    2 π 1 -q p 2 , 1 2 √ 2 - 1 + 1 √ 2 2 log 2ψ(p) π ψ(p)   
where ψ(p) = q p -1 -log q p -log 1 4pq > 0.

Proof. First, note that

ψ(p) = q p -1 -log q p -log 1 4p 2 p q = 2 1 2p -1 -log 1 2p
So, ψ(p) > 0 and z 0 is well defined. Let z > z 0 . By Lemma 14.2 and Corollary 15.1 it is enough to prove that 1 

1 -q p 1 √ 2πz e -z( q p -1-log q p ) + 1 2 e -z( q p -1-log( q p )) < S z z + 1 2 s z √ πz We have z ≥ z 0 ≥ 2 π(1-q p ) 2 , thus 1 1-q p 1 √ 2πz ≤ 1 2 . So,
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  the inequality is satisfied as soon as e -zψ(p) < ≥ 0.000 0.232 0.305 0.342 0.365 0.381 0.393 0.401 0.409 0.415 Table for P (6, κ) (z = 6) for different values of κ and q in %.

	1 √ π √ z+ 1 2 The sharp values are numerically computed and given in the table below: and the result follows from Lemma 16.3. z 0 2 3 4 5 6 7 8 9 10 0.2 0.22 0.24 0.26 11 0.1 0 0 0 0 0 0 0 0.01 0.02 0.04 0.08 0.15 0.28 0.2 0 0 0 0 0 0 0.01 0.01 0.03 0.06 0.12 0.23 0.41 0.3 0 0 0 0 0 0 0.01 0.02 0.05 0.09 0.18 0.34 0.6 0.4 0 0 0 0 0 0.01 0.01 0.03 0.07 0.15 0.28 0.51 0.88 0.5 0 0 0 0 0 0.01 0.02 0.05 0.11 0.23 0.42 0.75 1.28 0.6 0 0 0 0 0 0.01 0.04 0.08 0.17 0.34 0.63 1.1 1.84 0.7 0 0 0 0 0.01 0.02 0.06 0.13 0.26 0.51 0.91 1.57 2.57 0.8 0 0 0 0 0.01 0.03 0.08 0.19 0.39 0.73 1.3 2.19 3.53 0.9 0 0 0 0 0.02 0.05 0.12 0.28 0.55 1.03 1.81 2.99 4.73 1 0 0 0 0.01 0.02 0.07 0.18 0.39 0.78 1.43 2.45 3.99 6.19 1.1 0 0 0 0.01 0.04 0.1 0.25 0.54 1.06 1.92 3.25 5.2 7.93 1.2 0 0 0 0.01 0.05 0.14 0.35 0.74 1.42 2.53 4.21 6.63 9.94 1.3 0 0 0 0.02 0.07 0.2 0.47 0.98 1.86 3.26 5.35 8.29 12.23 1.4 0 0 0 0.03 0.09 0.26 0.62 1.28 2.39 4.14 6.68 10.19 14.79 1.5 0 0 0.01 0.03 0.12 0.34 0.8 1.64 3.02 5.15 8.19 12.3 17.58 1.6 0 0 0.01 0.05 0.16 0.45 1.02 2.06 3.76 6.31 9.89 14.63 20.59 1.7 0 0 0.01 0.06 0.21 0.57 1.29 2.56 4.6 7.62 11.77 17.16 23.78 1.8 0 0 0.02 0.08 0.27 0.71 1.6 3.14 5.56 9.07 13.82 19.86 27.13 1.9 0 0 0.02 0.1 0.34 0.89 1.96 3.79 6.63 10.67 16.04 22.72 30.59 2 0 0 0.03 0.12 0.42 1.09 2.37 4.53 7.82 12.42 18.4 25.71 34.14 2.1 0 0 0.03 0.15 0.51 1.32 2.83 5.35 9.12 14.29 20.9 28.81 37.73 2.2 0 0 0.04 0.19 0.62 1.58 3.36 6.26 10.54 16.29 23.51 31.98 41.34 2.3 0 0 0.05 0.23 0.75 1.88 3.95 7.26 12.06 18.41 26.23 35.21 44.94 2.4 0 0.01 0.06 0.28 0.89 2.21 4.59 8.35 13.69 20.64 29.02 38.47 48.49 2.5 0 0.01 0.07 0.33 1.05 2.59 5.3 9.52 15.42 22.95 31.87 41.73 51.97 2.6 0 0.01 0.09 0.4 1.24 3 6.08 10.78 17.24 25.35 34.77 44.98 55.35 2.7 0 0.01 0.1 0.47 1.44 3.45 6.92 12.12 19.15 27.81 37.69 48.19 58.63 2.8 0 0.01 0.12 0.55 1.67 3.95 7.82 13.54 21.14 30.33 40.62 51.34 61.78 2.9 0 0.02 0.14 0.64 1.92 4.49 8.79 15.04 23.19 32.89 43.54 54.42 64.8 3 0 0.02 0.17 0.74 2.2 5.08 9.82 16.6 25.31 35.48 46.44 57.41 67.66 3.1 0 0.02 0.19 0.85 2.5 5.71 10.91 18.24 27.47 38.08 49.29 60.3 70.38 3.2 0 0.03 0.22 0.97 2.83 6.39 12.06 19.93 29.68 40.68 52.1 63.09 72.94 3.3 0 0.03 0.26 1.11 3.18 7.11 13.27 21.68 31.93 43.28 54.84 65.75 75.33 3.4 0 0.03 0.3 1.25 3.57 7.88 14.54 23.48 34.2 45.86 57.52 68.3 77.57 q κ\q 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 3.5 0 0.04 0.34 1.41 3.98 8.69 15.86 25.33 36.48 48.41 60.11 70.72 79.66

It is a double hash SHA256(SHA256(header)), a nonce and an extra-nonce are used.

The difficulty is adjusted every 2016 blocks.

16. Comparing again P SN (z) and P (z).

The aim of this section is to compute an explicit rank z 0 (no sharp) for which P SN (z) < P (z) for z ≥ z 0 .

Lemma 16.1. Let α > 0. For all x > log α, e x -αx > α 2 (x -log α) 2 + α(1 -log α).

Proof. Let g(x) = e x -αx -α 2 (x -log α) 2 -α(1 -log α). We have g (x) = e x -αα(x -log α), g (x) = e x -α and g (3) (x) = e x . So, g(log α) = g (log α) = g (log α) = 0 and g (3) > 0. Therefore, g(x) > 0 for x > log α.

Lemma 16.2. For α > 0 and x > 1 + 1/ √ 2 log α we have e x > αx.

Proof. The inequality is trivial when x ≤ 0. So, we can assume that x > 0. For 0 < α < 1, we have e x > x > αx. For 1 < α < e, by Lemma 16.1, we have e x -αx > 0 for x > log α. For α > e, the largest root of the polynomial α 2 (x -log α)

So, the inequality results from Lemma 16.1 again.

Proof. We have

By Lemma 16.2, the last inequality is satisfied as soon as

17. Tables for P (z, κ).

For complete Satoshi Tables see the companion article [START_REF] Grunspan | Satoshi Security Tables[END_REF].