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Abstract 

We present in this paper a multicultural approach to social media marketing analytics, applied in two 

Facebook brand pages: French (individualistic culture, the country home of the brand) versus Saudi 

Arabian (collectivistic culture, one of its country hosts), which are published by an international 

beauty & cosmetics firm. Using social network analysis and content analysis, we identify the most 

popular posts and the most influential users within these two brand pages and highlight the different 

communities emerging from brand and users interactions. These communities seem to be culture-

oriented when they are constructed around socialization branded posts and product-line oriented 

when advertising branded posts are concerned.  

Keywords: Social media marketing, Multicultural differences, Social Network analysis, Facebook. 

 



1 INTRODUCTION 

Recently, social media platforms have become an important channel for companies to deploy 

international marketing efforts in order to gain or maintain a global presence, especially by the means 

of brand (fan) pages. Previous research has provided limited insight into the best way for marketers to 

use social media (Burg, 2013; Stelzner, 2014), and even less is known to our knowledge about the 

cross-national effectiveness of social media marketing (Muk et al., 2014; Goodrich & Mooij, 2014). 

This research helps address this gap and uses a cross-cultural social network analysis to investigate a 

brand page belonging to an international French beauty & cosmetics company published globally on 

Facebook within more than 50 countries. In this paper, we present our approach and focus on the 

similarities and differences between this Facebook brand page deployed in France (an individualistic 

culture) and the one deployed in Saudi Arabia (a collectivistic one) (Hofstede, 2001; de Mooij and 

Hofstede, 2010). We argue here that it is important to examine and make sense of the data generated 

by marketers, users and the interactions between them, within an analytic canvas which can hardly be 

culture free when we are at an international setting. We use real data generated form all the activity 

accomplished by the brand proprietary and the users on the two fan pages during six months. We have 

chosen France because it is the home’s brand and compare it to Saudi Arabia, which is not only very 

different in terms of cultural specificities but also a critical local market (in terms of turnover and 

competitive and strategic positioning in the Middle-East region). Moreover, two of the co-authors live 

in France, speak French and Arabic fluently and are familiar with the two cultures, which is very 

helpful for content analysis and cultural specificities decryption.  

In the following sections, we first present a literature review on social media marketing and social 

network analysis, and their specificities in multicultural settings. Then, we present our framework for 

analysing social owned and social earned data (Stephen & Galak, 2012) related to the activities of 

respectively marketers and users on the brand pages under study. We finally discuss the implications, 

limitations and future steps of this research.  

2 LITERATURE REVIEW 

The interest devoted to value-based and cultural differences in marketing research is not new (Vinson 

et al., 1976; Segal et al., 1993). Globalization issues are often advocated to justify this interest. The 

divergences in social identity and value-expressive attitudes within our increasingly cosmopolitan 

societies are also at stake. Social media marketing, a new branch in marketing practices, seems to 

follow the same orientation toward a culture bounded approach to social media environments (De 

Mooij and Hofstede, 2010). These are considered as inherently linked to digitally-enabled social 

networks, i.e. “a complex assemblage of engagement, reflection, action, technology, organization and 

community” (Germonprez & Hovorka, 2013). They support and enable social media marketing actions, 

and are challenging for researchers from different fields, such as computer science, management, 

sociology, etc. In this section, we define social media marketing as a domain of research and practice. 

Then, we explain how social network analysis could help make sense of these complex environments 

and therefore how they could be applied in multicultural social media marketing.  

2.1 Social Media Marketing and Cross-Cultural Research 

The rapid growth in popularity of social media has exhorted marketers toward deploying their strategic 

campaigns within these platforms, especially on Facebook the most popular online social network in 

terms of number of users (1Facebook billion and 600 million, STATISTICA 2015)  and also the most 

plebiscite by marketing practitioners (Stelzner, 2014).  Social Media Marketing (SMM) can simply be 

defined as marketing in social media but the question about how specific it is within the marketing-

mix arsenal and more precisely within digital marketing (marketing using the Internet channel) is still 



debated (Tiago & Verissimo, 2014). For Xie & Lee (2015), SMM has to be addressed within a multi-

channel perspective of marketing actions because it is rarely deployed exclusively and/or separately 

from traditional marketing. Trusov et al. (2009) compare the effects of traditional marketing and 

online Word–Of-Mouth (e-WOM); Stephen & Galak (2012) consider jointly the effects of traditional 

and social media on sales; Rishika et al. (2013) investigated the consumers’ participation activities in a 

firm’s Facebook brand fan page, and argued that these activities are positively related to consumers' 

offline visit frequency. Furthermore, this multi-perspective view has helped identifying the 

specificities of SMM, which seem to be the following: (1) it is reputed to be less expensive than 

traditional marketing, (2) more likely to generate consumer’s confidence, and (3) interactive (versus 

unidirectional for traditional marketing).  A dominant tendency within this body of research seems to 

be dedicated to content production and sharing, and the interest has been first put on User-Generated-

Content (Cui et al., 2012; Lipizzi et al., 2015), before pointing out the importance to jointly study 

consumer generated and marketer generated contents, and their interactions (Goh et al. 2013; Schulze 

et al. 2014; Chang et al., 2015; Homburg et al. 2015).  

By asking: “how ‘social’ are social media” in their study of the cross-cultural differences between 

social media-based and offline purchase decisions, Goodrich & Mooij (2014) have demonstrated that 

culture cannot be ignored in social media marketing practices, for at least two reasons: (1) the way 

people use social media varies worldwide (Vasalou et al., 2010); and (2) cultural differences impact 

how people interact with products and brands whether online or via traditional shopping channels 

(Choi & Miracle, 2004; Goodrich & De Mooij, 2011). An evolving interest on cross-cultural SMM 

research has therefore emerged recently.  

As reminded by De Mooij and Hofstede (2010), Hofstede’s model (2001) has been very useful to 

address questions concerning global brand image, brand equity and advertising in cross-cultural 

contexts. Especially the bi-dimensional individualist/collectivist model, has been extensively used as a 

surrogate to address cultural differences in cross-cultural digital and social media marketing (De 

Mooij, 2010; Choi and Totten, 2012). For instance, Minton al. (2012) conducted a comparative 

analysis of motives for sustainable behaviors in individualistic (United States, Germany) versus 

Collectivistic (South Korea) cultures and have concluded that motives are complex, demanding careful 

analysis from advertisers who plan to deliver green advertisements over social media. For Goodrich 

and De Mooij (2014), relationship-oriented collectivists rely to a greater extent than individualists on 

social media, considered as an alternative for interpersonal WOM communication. And closer to our 

research issue: Muk et al. (2013) have applied a cross-national study of the influence of individualism 

versus collectivism on liking brand pages using an online study based on the theory of reasoned action 

(Ajzen & Fishbein, 1980).  

Individualism/collectivism can be defined as “people looking after themselves and their immediate 

family only, versus people belonging to in-groups that look after them in exchange for loyalty” (De 

Mooij and Hofstede, 2010, p. 88-89). Following Okazaki and Taylor (2013),  we argue that 

individualism/collectivism is perhaps the most central dimension of cultural variability identified in 

cross-cultural research and has to be considered in promoting a brand globally, e.g. do we need to 

emphasize persuasion for individualistic audiences versus creating trust for collectivistic ones, as 

advocated by de Mooij and Hofstede (2010)? In this paper, we investigate the hypotheses according to 

which content displayed in these pages and the degree of users’ engagement toward this content may 

differ within the individualistic/collectivistic cultural dimension, namely in the French (deemed 

individualistic) vs Saudi Arabian (deemed collectivistic) brand fan pages.  

Social Network Analysis and Culture 

Social Network analysis (SNA) can be defined as a ‘mode of inquiry’ of social phenomena rooted in 

several theoretical perspectives, amidst them psychiatry (Moreno, 1934), anthropology (Barnes, 1954; 

Bott, 1957) and structural sociology (Blau, 1982; Wellman, 1981). The primary postulate of SNA is 

that “the structure of social relations determine the content of those relations” (Mizruchi, 1994, p. 

330). Accordingly, SNA relies on the relationships between entities (individuals, organizations) rather 



than the attributes of those entities (socio-psycho & demographic for individuals, 

structural/institutional for organizations).  In the last 20 years, SNA applications have rapidly grown in 

the economic and financial fields to study among others trade and financial networks (Boss, et al. 2004; 

Garlaschelli & Loffredo, 2005), to investigate inter-organizational networks (Nagurney et al. 2002; 

Nagurney & Qiang, 2009; Ying et al., 2011), and finally what is in concern in this article Internet and 

computer mediated social media and their implications in marketing and business intelligence.  

According to Mizruchi (1994), the major theoretical achievements of SNA are twofold: the 

recognition of the effects of actor centrality in behaviour and the identification of network subgroups.  

Both have been enhanced by theoretical theses from sociology (Burt, 1992; Granovetter, 1985, etc.), 

confirmed by experimental and non-experimental studies and mathematically formalized into graphs.  

From a SMM and business analytics perspective, SNA is extensively used for the following purposes: 

(1) topological analysis (to find the structural properties of a network or a graph, which is generally 

represented by a set of nodes connected by links); (2) information flow analysis (to determine the 

direction and strength of information flows through the network), (3) centrality analysis (to determine 

salient  roles within a network), (4) community analysis (to find out clusters whose members are 

specifically connected), (5) block modeling (to discover key links between different clusters in a 

network), (6) structural equivalence (to identify network actors with similar specificities).  

In the literature, the focus is mainly put on (1), (3) and (4), for example to build a blog mining and 

consumer interactions analysis approach (Chau & Xu, 2012), or to run a socio-semantic analysis of 

customers’ reactions to the launch of new products (Lipizzi et al., 2015). More generally, because 

SMM is inherently network-based (Kaiser et al., 2013), SNA is a very helpful tool to be used. One of 

the challenging issues to be addressed could be to identify the most influential customers (with regard 

to their centrality in the network), and also to find out the cluster of network members which must be 

targeted in order to trigger an optimized wave of influence (Kalyanam et al., 2007). 

An important stream of research is also devoted to viral marketing, social influence and contagion 

within diverse social media communities using experimentations and sophisticated data analytics 

designs including SNA (Aral & Walker, 2011; 2012). This has undoubtedly contributed to enrich the 

methodological toolkit that could be used in this research area.  

Concerning the relationship between SNA and culture, from a sociologist point of view this 

relationship seems to be elusive. As explained by Lazega (1994; 2013), SNA is mainly focused on the 

relational specificities of social entities and recognizes (their) norms and values (the constituent 

elements of their culture) only implicitly and/or a posteriori. More emphatically, Emirbayer and 

Goodwin (1994) consider this relationship as theoretically under developed: “gains its purchase upon 

social structure only at the considerable cost of losing its conceptual grasp upon culture, agency and 

process” (Emirbayer and Goodwin, 1994, p. 1446-7). Now, from a practical and empirical point of 

view, SNA in multicultural settings has been for example applied in intercultural socialization studies 

(Kadushin, 2012; Chi & Suthers, 2015) because it has been recognized as useful to identify structural 

patterns that might be conducive or constraining for individuals’ cultural adaptation such as ethnic 

diversity or cohesiveness of hosting communities.  

Here again and following Okazaki and Taylor (2013), we can intuitively consider that social networks 

(user-user and user-brand interactions) built within brand pages could be related to 

individualism/collectivism because these related communities are not inclined to develop the same 

social patterns: loosely linked for individualist cultures vs in-group subordinate for collectivist ones, 

for example. We will therefore examine in this paper how these differences could be reflected in the 

SNA specificities (namely (1), (3) and (4)) in the two communities under study French vs Saudi 

Arabian.  



3 THE CASE OF A BEAUTY & COSMETICS FACEBOOK BRAND 

PAGE DEPLOYED IN FRANCE AND SAUDI ARABIA 

Social networking sites (SNS) initiated the possibility for companies to publish brand pages to interact 

and communicate with their brand communities (followers/fans). Facebook emerges as a leading actor 

in this area (Xie & Lee, 2015) with over 3 million active brand pages, with the top 20 exceeding each 

20 million fans. Companies have the possibility to post branded content on their pages (including 

videos, brand messages, contests and other promotional materials like coupons) that can be used and 

shared by their fans (De Vries et al. 2012). Consumers can become brand page fans by clicking the 

“like” button on the brand page or on any of the brand Facebook ads. They can interact with the brand 

and/or with the other members of the community (De Vries et al., 2012). Statistics and ratings of 

Facebook brand pages in terms of audience (number of fans) are published by some SMM commercial 

platforms (e.g. http://www.socialbakers.com).  

From the academic research perspective, only a few studies focus on assessing the effectiveness of 

brand pages, and use most of the time online surveys to investigate the determinant factors of users’ 

(fans) engagement in various activities on these pages (Wolny & Muller, 2013; Muk et al., 2013; 

Smith, 2013). In another research avenue, practical recommendations are proposed concerning the 

configuration of the page, in order to drive more consumers’ reactions (De Vries et al., 2012). We can 

nevertheless find only very few studies focusing on brand pages in the beauty & cosmetics industry. 

The study of Shen and Bissel (2013) is worth to be mentioned here, the authors initiated an 

exploratory investigation using content analysis of Facebook posts from six beauty brands to compare 

their branding strategies.   

In this research, we present our framework for collecting, analysing and interpreting the data directly 

generated by all the activities within Facebook brand pages in order to produce social intelligence and 

actionable SMM knowledge. Our framework consists of the following steps:  

1. Brand page(s) Identification: a firm can publish one page (for one brand) or many (for a range 

or a portfolio of brands, in one or many countries). The resulting fan pages may differ not only 

in terms of language but also concerning their configuration and content. To identify the pages 

we need to investigate is therefore determined by the level of marketing strategy we target 

(local, multi-local, global…). In this study, we have chosen two brand pages belonging to the 

same brand deployed in two countries: France, the brand home country; and Saudi Arabia, one 

of its hosts and market of a critical importance  in the Middle-East and Arab region. 

2. Data Collection: Because many brand pages have large audiences consisting of millions of 

fans (e.g. 94 015 245 for Coca Cola, http://www.socialbakers.com/, October 2015), we have to 

be able to handle big data crawling tools.  

3. Data Analysis: concerns data generated by the brand page owner (or his/her SMM agents) and 

the users (fans). Here, we can differentiate between two types: social owned media and social 

earned media (Stephen & Galak, 2012). 

a. Social owned media includes all the data generated by the brand owner activity (or 

his/her agents) on the fan page, i.e. in the case of Facebook: the page owner’s posts, 

comments, comments-replies, likes and shares.   

b. Social earned media corresponds to the data generated by the fans or users of the 

brand page, possibly in reaction to the page owner SMM actions. In the case of 

Facebook, this includes users’ posts (when they are allowed to), comments, 

comments-replies, likes and shares.  

We investigate two sets of networks: the first represents the interactions between the page 

owner and the users and the second relies to the users-users interactions. Then, we conduct 

three major procedures of SNA: topological analysis, centrality analysis, and community 

analysis. Finally, we focus on data content, namely the textual content of all the posts, 

comments and comments-replies.  



4. Data Interpretation: Based on our analyses, we aim to identify the most popular posts, 

especially those of the brand’s owner (which could be part of a given SMM campaign), the 

most influential users (to be probably targeted in future actions), the different relevant 

communities and their specificities, etc. We also highlight the similarities and differences 

concerning all these aspects in our two fan pages.  

In the remainder of this section, we first describe our data set and then our data analyses, results and 

interpretation.  

3.1 Data Set 

We have chosen one of the leading actors of the beauty & cosmetics industry in France (noted YX for 

confidentiality reasons). This brand has extensively engaged in digital marketing since the early 2000s 

and especially in SMM. YX is deploying Facebook brand pages in almost all the countries in which it 

sells its products (online and offline) all over the world. We are reporting in this study the case of YX 

Facebook brand page France which presents the largest audience of all the group (more than one 

million fans; the global number of all YX fan pages is slightly over two millions; ranked 5th in the 

beauty & cosmetics industry in France in terms of audience on Facebook 

(http://www.socialbakers.com/, 2015) and YX brand page Saudi Arabia.  

An important specificity of YX Facebook brand pages has to be mentioned: Posts (containing videos, 

messages, quizzes, information, contests and other material) are only published by YX; who can also 

comment, reply on comments, share and like; whereas, users cannot publish posts. They can only react 

to YX and to other users’ activities, by liking, sharing, commenting and replying to comments.  

To extract the data, we used Netvizz: a Facebook API (Application Programming Interface) designed 

to extract data from Facebook pages. Netvizz is integrated directly into the platform. It allows the 

collection, extraction and exportation in standard file formats from different sections of the Facebook 

social networking service (Rieder, 2013). This API includes a search module, statistics for links shared 

on Facebook, networks of pages, group data and page data. Facebook is imposing a “fan-gate”, so to 

access data and use Netvizz, we had to ‘like’ the pages we intend to explore. We have used the page 

data Netvizz module to extract data from YX fan pages. Data are here explored as “friendship” 

networks (or graphs). We have accessed the Fan pages on 09/12/2015 and extracted data related to all 

the pages’ activity during the last six months (but not exceeding 999 posts: a limitation by Facebook). 

For each fan page, the application has provided us with three files: the first (data file 1) represents a 

bipartite network, where nodes are posts or users. When a user comments or likes a post, a directed 

edge between user and post is represented. The second (data file 2) is a tabular data file ready for 

statistical analyses. Finally, the third (data file 3) contains users’ comments grouped per post, to 

facilitate content analysis. Table 1 shows the specificities of our data set (France & Saudi Arabia 

brand pages).  

Country Language Number 

of fans 

Last 

post 

Graph specificities 

YX France  French 1 012 295 2h Data extracted from 836 

posts, with 30732 users 

liking or commenting 

97182 times 

31568  nodes 

90963 edges 

YX Saudi 

Arabia 

Arabic/English 108244 7h Extracted data from 175 

posts, with 3357 users 

liking or commenting 

8396 times 

3532 nodes 

 

7425 edges 

Table1: France and Saudi Arabia Facebook brand pages data set 



3.2 Network Analysis and Visualization 

First of all, besides the bipartite graph provided by Netvizz (data file 1), we constructed a monopartite 

graph which allows us to process data concerning user-user interactions. It constitutes our data file 4. 

Then data (from data file 3 and data file 4) are imported into Gephi and processed.  Gephi is an open 

and easy to use interactive platform for the visualization and exploration of networks, complex 

systems, dynamic and hierarchical graphs. For the French brand page, we particularly use Gephi Force 

Atlas2 a force-directed layout algorithm able to repulse nodes which are ‘different’ and at the same 

time attract similar ones, in order to express structural proximities into visual proximities (Network 

visualization), and also to facilitate social network analysis (Bastian et al., 2009).  

We proceed to three of the major SNA analyses: topological analysis, centrality analysis and 

community analysis.  

Topological analysis aims to determine the structural properties of the network. It can be assessed 

using the number of nodes and links, the density (ratio of the number of links in the network over the 

total number of links between all pairs of nodes), and the average path length (the average distance 

between two any nodes), etc.  

Centrality analysis aims to determine the nodes which play important roles in the network. Centrality 

can be assessed using a range of statistics, such as degree, betweenness, closeness, Eigenvector, etc. 

(Freeman, 1979). In our case, nodes are either posts (by YX) or users. However, we have to mention 

that YX is considered in the graph as a user-node when he replies to users’ comments (User-Id: page-

owner in tables 3 and 4 below). To identify the popularity of these two categories, i.e. their 

connectedness to other nodes and hence their capacity to spread information, we will not use the same 

indicator. For instance, posts are popular when they are intensively commented, shared, liked, etc. 

(each of these activities represents an incoming link that leads into the post). Whereas, users are more 

or less influential, depending upon the intensity of their activities (outgoing links). So, we can 

calculate the weighted out-degree (the number of out-going links with regard to the weight of each 

link) for users; and the weighted in-degree for posts. Moreover, we calculate a closeness indicator for 

posts: Eigenvector centrality, which is a measure of reach (or speed) for a given post to attain any user. 

Considering the specificities of our network (Opsah et al., 2010), we have chosen to rank users 

according to their weighted out-degree; and posts according to their Eigenvector centrality. Tables 2 

and 3 present, respectively, the 10 most popular posts and the ten most influential users (posts-Ids, 

users-Ids and pages url are masked to preserve confidentiality) for the two pages under investigation 

(France vs Saudi Arabia).  

Community analysis aims to identify within the network subgroups of nodes which ones are presenting 

denser links with each other than with nodes out of their subgroup (Wasserman & Faust, 1994). Each 

subgroup constitutes a cluster of nodes or a community. The procedure here is threefold:  (1) 

Community detection to determine how many communities compose the network and the size of each 

of them (in terms of number of nodes); (2) Modularity which determines the strength of division of a 

network into communities. A high modularity implies dense connections between the nodes within a 

community but sparse connections between nodes belonging to different communities; (3) Community 

interpretation relates to the content exchanged. For example, inside a given community what are 

people talking about. In our case, the thematic content of the posts and the specificities of the users 

belonging to a given community are both useful for community interpretation.  

In tables 2 and 3, we indicate the communities to which belong the most popular posts and users. In 

table 4, we present the 5 largest communities (representing 78,27% of the total nodes in the YX 

France graph; vs 92,76% in the YX Saudi Arabia). For each community, we go back to the posts 

which compose that community and especially to the most important of them. For this purpose, we use 

a page-rank procedure (a variant of Eigenvector centrality which displays the results in terms of url 



pages) to identify the top-ranked posts urls. We then examine (manually) the content information of 

each post and identify the thematic content of these communities.  

Community Interpretation 

Concerning YX brand page France, it appears that the communities ranked 1st and 5th (respectively (29) 

and (5)) are constructed around posts that have no advertising content. They could be described as 

‘socialization’ posts aimed to create and sustain social links between the brand and the users, no 

products to advertise or sell are discussed here. Community (29) is constructed around a single post: 

Labour Day Greetings (the 1st of May, in France is very popular. A day in which French people, 

traditionally, offer friends and relatives a white flower called Lilly of the valley). Similarly, 

community (5) is constructed around a single post: “Happy Mother’s day”, which is locally very 

popular, too. The other communities are concerned with YX products. Community (2) is concerned 

with YX make-up products; community (40) is concerned with fragrances; and community (24) seems 

to be more interested by ‘Botanical cosmetics’ a leading YX product line comprising Hygiene and 

body care natural products. In these three communities, posts are mostly advertising-oriented and 

contain a link to the official website to shop online the products concerned. Figure 2 below shows how 

the communities are displayed by Gephi (to improve the visibility, we used here data concerning only 

50 posts). 

 

 

YX France brand page 

(limited to the 50 last posts for a better visualization) 

YX Saudi Arabia brand page 

Figure 1. Community Detection: France vs Saudi Arabia  

YX Fan page France YX Fan page Saudi Arabia 

Post_id 

Type

_post 

Eigenvector 

Centrality Community Post_id 

Type_

post 

Eigenvector 

Centrality Community 

7151471151_####

### photo 1 30 

26978046306

1741_## photo 1 13 

7151471151_####

### photo 0,381985294 16 

26978046306

1741_## photo 

0,42007211

5 18 

7151471151_####

### photo 0,234283088 33 

26978046306

1741_## photo 

0,10817307

7 0 

7151471151_####

### photo 0,167647059 40 

26978046306

1741_## photo 

0,06610576

9 6 

7151471151_####

## photo 0,149816176 40 

26978046306

1741_## photo 

0,04447115

4 3 

7151471151_####

## photo 0,136764706 8 

26978046306

1741_## photo 

0,04447115

4 3 



7151471151_####

## photo 0,132904412 40 

26978046306

1741_## photo 

0,04326923

1 4 

7151471151_####

## photo 0,126470588 24 

26978046306

1741_## photo 

0,04206730

8 1 

7151471151_####

## photo 0,123805147 23 

26978046306

1741_## photo 0,0390625 1 

7151471151_####

## photo 0,122150735 24 

26978046306

1741_## photo 

0,03725961

5 1 

Table 2: The 10 most popular posts ranked by their Eigenvector Centrality (France vs Saudi Arabia) 

 

Table 3: The 10 most influential users ranked by their weighted out degree (France vs Saudi Arabia) 

 
YX Fan page France YX Fan page Saudi Arabia 

Cluster_Id Theme Nb of 

posts 

% 

Nodes 

Cluster_Id Theme Nb of 

posts 

% Nodes 

29 
1st May Labour day 1 23,71 13 Beauty Arab eyes 

 

1 

43,97% 

2 

Make-up  

(Link to shopping website) 

52 18,49 

 

1 Skin-care & 

fragrances 

 

114 

17,64% 

40 
Fragrances (Link to 

shopping website) 

43 16,69 

 

18 Contests 1 

17,10% 

24 

Botanical Cosmetics 

(Link to the shopping 

website) 

29 12,29% 4 Make-up products 38 

8,61% 

5 

Mother’s day 

 

1 7,09 0 Beauty Arab eyes 

(smoky eyes)  

 

2 

5,35% 

Total 5 largest clusters  (% Nodes)  78,27 Total 5 largest clusters (% Nodes) 92,76 

Table 4: Clusters Interpretation (France vs Saudi Arabia) 

For YX brand page Saudi Arabia, the largest community (13), representing 43, 97% of the total nodes, 

is constructed around a single post ‘Arab Beauty Eyes’ which is a specific content developed only in 

the Saudi Arabian fan page (and some other Arab countries). This can be considered as a socialization 

post with no advertising content. The 5th community (0) is also concerned by beauty eyes but it is 

constructed around an advertising content (‘Smoky eyes’, which is a global advertising’ campaign 

deployed in all YX brand pages). Communities (1) and (4) concern a specific interest in some of YX 

product lines; respectively skin-care/fragrances and make-up products. Brand-users’ and users-users’ 

interactions are here about the physical stores locations and prices, no links to shopping websites are 

provided. Finally, community (18) is constructed around a contest. Posts and comments are in English 

YX Fan page France YX Fan page Saudi Arabia 

User_Id Weighted Out-Degree Community User_Id 

Weighted Out-

Degree Community 

Page owner 1951 0 user_##### 150 1 

user_##### 427 0 user_##### 136 1 

user_##### 152 0 user_##### 122 1 

user_##### 113 16 user_##### 108 1 

user_##### 113 0 user_##### 106 1 

user_##### 108 16 user_##### 104 1 

user_##### 104 2 user_##### 103 0 

user_##### 103 24 Page owner 96 4 

user_##### 103 0 user_##### 94 1 

user_##### 101 24 user_##### 81 1 



or in Arabic, while products’ names are in French and some of the advertising contents refer to Paris 

in order to emphasize YX brand home.  

We have to mention here is that ‘big smoky dark eyes’ represents one of the most salient female 

aesthetic ideals in the Arab culture, jointly with an amber fragrance and a lightened skin. Moreover, in 

the Muslim tradition (where women have to be veiled), it is allowed to highlight the face and 

especially the eyes. These cultural specificities seem to be very helpful to interpret the community 

configuration of the Saudi Arabian YX brand page, compared to the French one. It seems also that YX 

is more engaged in the French brand page (ranked 1st), compared to the Saudi Arabian one (ranked 8th).  

More importantly, none of YX video posts has emerged within the top ten posts (neither in the top 20) 

in the two brand pages. If we consider the importance of videos to advertise beauty & cosmetics 

brands in the web, especially in the blogosphere, this can be considered as a critical shortage in YX’s 

SMM efforts. 

4 DISCUSSION AND CONCLUSION 

We have constructed a framework to extract and analyse social owned and social earned data from two 

Facebook brand pages belonging to a French Beauty & Cosmetics firm.  With regard to our findings,  

firms cannot be encouraged to standardize social media usage across borders, as it has been outlined 

by previous research (Berthon et al. 2012; Okazaki & Taylor 2013). In our case, it appears that YX is 

publishing global and culture specific content on its French and Saudi Arabian Facebook brand pages 

and that these communities react to these two types of content differently. Our content analysis shows 

also that the branded content is argumentation-oriented (defining the products specificities) in the 

French brand page and more visual and ludic (contests) in the Saudi Arabian. This globally 

corresponds to previous research concerning advertising design specificities recommended in 

individualistic versus collectivistic cultures (Okazaki & Taylor 2013; Bianchi & Andrews 2015). For 

each brand page investigated, our framework has provided clear insights to identify the most 

successful product lines, the most popular posts and who to target in order to foster the advertising 

campaigns (the most influential users). This framework can be applied in all local brand pages 

published by a firm and could also be extended to other firms for the purpose of an industry-specific 

competitive analysis.  This represents an important managerial implication of our study. For instance, 

we are able to help marketers assess the effectiveness of their SMM actions and also improve the 

content they are deploying on their diverse Facebook brand pages.   

Some of the choices and assumptions we have made in this research could be theoretically 

questionable, concerning for example the centrality indicators we are using, hence are they part of the 

limitations of this study, along with the use of manual content analysis. To overtake these limitations 

and go a step further with our research, we are planning to use automatic content analysis, sentiment 

analysis and text-mining (He et al., 2013) in larger multicultural brand pages samples within other 

industries.  

Our approach is innovative, in that it uses social network analysis and content analysis to glean 

business intelligence from Facebook brand fan pages in multicultural settings. It brings therefore a 

valuable contribution to the research on social media marketing and analytics. We advocate in our 

study for the use of big data analytics in management information systems (Agarwal & Dhar, 2014) to 

exploit real data generated from web activities, and also for the importance to take into account 

cultural differences which are inherently embedded within these data, as they reflect human activity. 

This importance becomes vital when it concerns businesses related to culture-bounded products and 

services, as it the case of the beauty and cosmetics industry (Preiss, 1998), mainly because they 

involve self-representation and are highly sensitive in terms of aesthetic, social and moral norms.  
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