
HAL Id: hal-01456511
https://hal.science/hal-01456511

Submitted on 5 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

OMLILY: FILLING THE NOTATIONAL GAP
BETWEEN COMPOSITION AND PERFORMANCE

Karim Haddad, Carlos Agon

To cite this version:
Karim Haddad, Carlos Agon. OMLILY: FILLING THE NOTATIONAL GAP BETWEEN COMPO-
SITION AND PERFORMANCE. Second International Conference on Technologies for Music Nota-
tion and Representation, Anglia Ruskin University, Cambridge UK, May 2016, Cambridge, United
Kingdom. pp.ISBN : 978-0-9931461-1-4. �hal-01456511�

https://hal.science/hal-01456511
https://hal.archives-ouvertes.fr

OMLILY: FILLING THE NOTATIONAL GAP BETWEEN COMPOSITION
AND PERFORMANCE

Karim Haddad
IRCAM

karim.haddad@ircam.fr

Carlos Agon
IRCAM - UPMC

carlos.agon@ircam.fr

ABSTRACT

This paper describes the design, development, usage, limi-
tations and prospects for future development of Omlily, an
OpenMusic library for editing scores with Lilypond, using
OpenMusic musical editors 1 .

1. INTRODUCTION

Using a Computer Assisted Composition (CAC) environ-
ment such as OpenMusic (OM) [1], rich in functions, macros,
and algorithms for composition, we assemble a huge amount
of musical material, such as pitch, rhythm, and other mu-
sical structures contained in OpenMusic musical classes
and editors. OpenMusic editors are powerful objects, they
can deal with the most complex musical structures. How-
ever, they also have certain limitations regarding display
and typesetting capabilities. Furthermore, editing scores
directly in these editors seems to be very laborious when
particulary if the pieces are of long duration. This is due
to two important factors that could be considered as flaws
(or weaknesses) in OpenMusic: lack of efficient editing
tools and slowness in the display time. Another essential
element not available to the composer in the OpenMusic
environment, but also related to display, is the music sheet
layout view. Although this option is present, the score dis-
played has very few (if any) options for layout. In order to
have a presentable draft for the composer to work with, we
can benefit greatly from Lilypond’s extraordinary typeset-
ting layout features 2 .

Writing a fully featured typesetter and viewer from scratch
in OpenMusic involves coding it in CommonLisp [2]. This
does not seem to be a bright approach for this issue at
all. In the past we have developed internal Lisp code in
OpenMusic to export OpenMusic musical objects to com-
mercial typesetting programs based on their own private
SDK standard format. We have also written code for Mu-
sicXML standard format export. However the validation
of this standard format does not seem stable as a standard
due to private parsers of each commercial typesetting soft-

1 https://github.com/karimhaddad/omlily/
2 such as paper, tuplet, even color display

Copyright: c©2016 First author et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided

the original author and source are credited.

ware. Therefore, we decided to use a pre-existing typeset-
ter, Lilypond is a GNU opensource typesetting software
[3], that is maintained up to date continually. We have
based our exchange code on Lilypond’s own syntax. More-
over, Lilypond as MusicXML, are widely used in other
CAC environment such as PWGL, FOMUS, Orchids, Ab-
jad, etc. . . Lilypond seems be the best choice and solution
regarding rendering, efficiency and notational possibilities.
OpenMusic’s architecture, conceived as a modular envi-
ronment, handling and loading only essential features, and
following the user’s needs and requirements, will welcome
such a library, typesetting being the most requested and
necessary feature for OpenMusic’s end user.

2. USAGE

2.1 General usage

The purpose of this library is to combine both of the poten-
tialities of a CAC environment by devising complex forms
of compositions with the editing efficiency of a powerful
typesetter in a dynamic form of interaction. Moreover, an-
other aim will be to require minimal effort for producing
huge and complex input content such as rhythm, pitch and
other musical material in the form of a typesetting docu-
ment. In another sense, the composer, most of the time,
will need to go back and forth from a CAC environment to
typesetting and vice versa most of the time managing huge
amounts of musical data, particularly in the case of big en-
semble or orchestral compositions.

If we schematize the work-flow of the different steps of
a typical compostional process using CAC tools, we can
describe it as follows:

• The pre-compositional stage, which involves auto-
matic or algorithmic computation, sound analysis,
combinatory computations, etc., in other words, the
first draft of musical material production;

• The first stage of typesetting: pre-editing, previsual-
ization, in order to rearrange and revisit the material
as a score sheet. This might lead to adjustments,
pre-instrumentation, voice redistribution, form edit-
ing, etc.;

• The intermediate feedback phase in CAC for re-computation,
corrections, arrangements, modifications, form re-
injections, segmentation,etc.; this step is the most
dynamic one;

mailto:author1@adomain.org
mailto:author2@adomain.org
https://github.com/karimhaddad/omlily/
http://creativecommons.org/licenses/by/3.0/

Figure 1. Exporting from OpenMusic to Lilypond

Figure 2. Lilypond rendering

• Finalization of typesetting by Lilypond (final score
engraving).

2.1.1 Exporting Lilypond files from OpenMusic

This is done using the om→ lily method (see Fig.1). It
handles VOICE, POLY, and CHORD-SEQ OpenMusic ob-
jects. Four arguments are given to this method :

• self : the OpenMusic object to translate into Lily-
pond;

• clef : the clef needed (it could be a list of clefs in the
case of a POLY object);

• paper: the paper default or user’s template;

• layout: the default or user’s score context (equiva-
lent to notational preferences).

Once the .ly file is written, OpenMusic will redirect the
file to Lilypond present binary and compile the file (Fig.2)
opening it with the user’s preferred PDF reader 3 .

2.1.2 Importing Lilypond files to OpenMusic

Each exported score from OpenMusic will generate a file
where a commented code will be included. This code (cf.
Fig 3), once uncommented, and recompiled with Lilypond

3 The Lilypond binary and version number are generated automatically
once the library is loaded in OpenMusic. However, the user may search
for the desired Lilypond and PDF reader binaries in OpenMusic’s ”Exter-
nal” preferences tab.

binary, will create a Scheme translation file of the score.
By default it will be named temp.lisp.

% #(with-output-to-file "temp.lisp"
% (lambda () #{ \displayMusic {
<<
\new StaffGroup
<< non unecessary

\new Staff {
\one
}
>>
>>

% } #}))
}

Figure 3. Lilypond’s compilation instructions for a
Scheme transcript of a .ly file

Lilypond will then generate a Scheme code where all of
the musical and layout elements are translated by the make-
music method. Again, once this file is evaluated with the
lily→om method in OpenMusic, the necessary data will be
translated and instantiated into an OpenMusic editor (Fig.
4)

2.2 Particular usage

2.2.1 Polymetrics and polytempi notation

OpenMusic has the ability to display and perform the most
complicated and sophisticated rhythmical expression due
to the implementation of Rhythm Trees (RT) [4]. This
includes embedded tuplets, polymetric music, polytempi,
and irrational measures 4 such as 3/21 or 4/10 for exam-
ple (Fig. 5). Such cases are handled poorly or at all, by
most commercial typesetters since these features are seen
as completely experimental and related specifically to con-
temporary compositional practice, and therefore not pop-
ular for most users and musicians; as a result, they are
not supported in these environments. Fortunately, Lily-
pond has the ability to deal with most, if not all, of these
issues, with a standard approach. However in cases such
as polymetric music, one should rely upon a slightly dif-
ferent syntax in order to display the complex polyphony
correctly.

When using polymetrics in standard notation, i.e with bi-
nary time signatures, Lilypond will automatically display
the correct score. Hence, the om→lily-gen method will be
used. If the score uses non-standard, non-binary time sig-
natures, the user should choose the om→lily-spec method.
Both methods are included in the generic method om→lily-
gen, which will automatically depict the presence of poly-
metric time signatures.

4 cf. Livre Premier de Motets: The Time-Block Concept in
OpenMusic[5]

Figure 4. Importing form Lilypond to OpenMusic

Figure 5. Polymetric score exportation

Although polyphonic polymetric notation is possible in
Lilypond, it is not fully documented for the case of ”irra-
tional” time signatures. The scaling factor of duration is
calculated as follows :

For instance, if we consider a measure with a time signa-
ture of 3/20 (this will be a measure of three sixteenth note
of a quintuplet), we will multiply all sixteenth notes fig-
ures by 1/5 (note 16*1/5). For binary time signatures, the
multiplication factor would invariably be 1/4.

The calculation is made using the calc-scale-fact

function (Fig.7). This will first calculate the beat-symbol
using the find-beat-symbol function (the note figure,
e.g. quarter note, eighth note, etc. . .) that the denominator
of the time signature is related to. For instance, if we have
a time signature of 4/12, twelve will refer to a twelfth of a
whole note, equaling an eighth note of a triplet 5 . The fac-
tor will be then calculated with this formula: (beat−symb/4)

denom

= 8/4
12 . The scaling factor in our example will therefore be

equal to 1/6.

2.2.2 Discrete spanner notation

One immediately see that this library is addressed mainly
for written instrumental compositions. However, in prospect,
there is also to be some audio/graphical symbolic nota-
tional outputs that can be extracted from break-point func-

5 1/3 of a whole note = a half note figure. 1/6 = a quarter note, etc. . .

tions (BPF), or representation of audio sources. Indeed,
some OpenMusic classes have the ability to enclose both
representations, symbolic and graphical outputs of musical
objects. Fig.8 shows an example of a Lilypond score ren-
dering exported from OpenMusic’s BPF objects. make-music
Scheme function

3. IMPLEMENTATION

OpenMusic Lisp code and Lilypond Scheme [6] syntax
handle most of the communication between the two en-
vironments. We can describe two different levels for both
environments: the first level is proprietary and typical for
each (OpenMusic patches, as a visual programming lan-
guage, or VPL); and a latex-like scripting language, a syn-
tax for editing Lilypond .ly files. Consequently, each of
these levels remains opaque to each others. It is on an inter-
nal level that the communication occurs: the CommonLisp
language used by OpenMusic’s kernel, and the Scheme ex-
pressions which are part of Lilypond’s Guile interpreter.
This is where the link between both environments lies, due
to the fact that both Scheme and Commonlisp are dialects
of the Lisp language.

We can summarize this communication schematically with
a straightforward process :

OM patch (VPL)→(CommonLisp) RT→Lilypond (ly syn-
tax)→Scheme interpreter→OM musical class object edi-
tor

An example of this translation : A simple voice bearing a
single note (Fig.9), such as a middle C on a G staff 6 in a
quarter note figure in a 1/4 time signature will be written 7

in OpenMusic as :

(make-instance ’voice
:tree ’(1/4 (((1 4) (1))))
:chords ’((6000))
:tempo ’(60)
)

Skipping the paper settings, page layout and contexts, the
translation of this simple object will render this Lilypond
code :

...

"one"=
{
\tempo 4 = 60
\time 1/4
c’4
|
}

\score {
{

% #(with-output-to-file "temp.lisp"
% (lambda () #{ \displayMusic {
<<

6 In OpenMusic, the staff keys are not explicitly formulated.
7 We may notice that in OpenMusic, the rhythmical inforamtion is sep-

arated from pitch information.

Figure 6. Polymetric score rendering

(defun calc-scale-fact (time-signature)
(let*
((denom (second time-signature))

(beat-symb (find-beat-symbol denom))
(fact (/ (/ beat-symb 4) denom)))

(if (= 1 fact) 1/4 fact)))

Figure 7. Calculating scaling factor of each note figure
according to its time signature.

\new StaffGroup
<<

\new Staff {
\one
}
>>
>>

% } #}))

}

...

We can already observe what new data has been produced
in this translation:

• Paper settings, layout and contexts (omitted here).

• Alteration display rules.

• Staff grouping layout (not shown here, since it is a
single voice).

The generated data will grow more and more as we progress
toward typesetting. This is due to the required paper set-

tings, staff layout, line breaks, etc. Inversely, from Lily-
pond to OpenMusic, most of the typesetting content will
be omitted and filtered to the strict minimum since these
will not be necessary for the instantiation of an OM object,
which editor is a set of linear display of graphical notation
using fonts and line drawings without page layout.

The intermediary Scheme translation code generated from
OM using the lily→om method will look like this:

(make-music
...

(make-music
’TimeSignatureMusic

’beat-structure
’()
’denominator
4
’numerator
1)

(make-music
’NoteEvent

’duration
(ly:make-duration 2)
’pitch
(ly:make-pitch 0 0))

(make-music
’BarCheck)

...
)

After retrieving pagination, layout, and some unneeded
information 8 , if we carefully examine the reduced Scheme

8 We have omitted some headings in order to save some place in our
paper. However, we have displayed intentionally most of the required
essential notational data.

Where the wind is weightless in the leaves
For Flute and live electronics

Karim Haddad
(May 2014)

pppp

!! = 72

"

"

!# $

ppp
%
[8 * !]

&
'

""

p
7

3

5

5

3

7

3

5

3

7

! = 40

pp
%
[4 * !]

! = 40

"

"

mp

""

Flute

Ptch. var.

(

)

Filter I

Filter II

(

)

p

!

pp

"

mf

"

"

Figure 8. Control spanners

Figure 9. Single note

code above, carefully we will distinguish three redundant
and distinct calls of the make-music Scheme function.
This function is ”for internal use, which is the preferred
interface for creating music objects”[7]. These objects are
created in Lilypond by C++ code, and represent a hierar-
chy of instances of musical notation. Thus in our example,
our instances will be the three arguments of make-music
function ’TimeSignatureMusic, ’NoteEvent, and ’BarCheck.

In order to translate these instances into OpenMusic com-
pliant objects, we have transformed the make-music Scheme
function into a CommonLisp (CLOS) method. This method
will in turn, instantiate the different classes, such as staff,
pitch, duration, etc. needed for OpenMusic to construct a
compliant object according to each given type. Inspecting
the previous example, we will again find our initial data
unaltered.

Here is an example of the make-music Scheme function
translation in CommonLisp regarding pitch and rhythm tran-
scription 9 :

9 In Lilypond, time signature is a separate piece of information (as
we may have seen in the intermediate Scheme translation given above),
which is not the case with OpenMusic’s RT structure[4], where it is com-
pletely integrated into rhythm information. We are not displaying the
method concerning it per se.

(defmethod make-music
((type (eql ’NoteEvent))

&rest other-args)
(if *lil-imp-pitch*

(let* ((art (car
(find-value-in-lily-args
other-args

’articulations)))
(tie
(if (equal ’tieevent art)
1 0))

(durs
(find-value-in-lily-args
other-args ’duration))

(fig (car durs))
(dot (second durs))
(fact (third durs)))

(make-instance ’lily-dur
:figure fig :dot dot
:fact fact :tieevent tie

:restevent 0))
(if (not (member ’tieevent
(flat (find-value-in-lily-args
other-args ’articulations))))

(remove nil (list
(find-value-in-lily-args
other-args ’pitch))))))

However, we should point out that only data necessary
for OpenMusic’s objects instantiation will be taken into ac-
count. If the Lilypond file has been modified by including
extra notations such as dynamics or text markings, the im-
port procedure will ignore these. Round tripping is some-
thing which will be included in the future as a standard

Figure 10. Score with audio wave shape

procedure (cf. future development section).

4. LIMITATIONS

Modern score setting is a field that embraces rich figuration
and symbolic notational representation. It would likely be
an extremely difficult task to encompass the majority of the
musical symbolic representations necessary to render them
in such a varied context. As indicated above, most of the
essential hierarchical musical classes are represented with
the inclusion of independent features such as polytempo;
embedded and recursive rhythm structures; dynamics; lin-
ear spanners with the exclusion of musical elements not yet
supported by OpenMusic, such as grace notes 10 ; lyrics;
crescendos/diminuendos; and other continuous symbolic
extra notation features.

In Lilypond, page breaking process is an implemented al-
gorithm. This performs well with strictly measured music.
However, exporting page turns from OpenMusic is not sup-
ported, since in this environment, no such concept exists.
It is based on graphical display edits rather than on ratio-
nal musical ones. The main issue will therefore be the page
setup regarding the segmentation of a printed output. In the
case of graphical representation such as audio amplitude
profile embedded in the score, as in Fig.10 for instance,
the page layout will be determined by the graphical repre-
sentation itself. This task normally left to the typesetter’s
discretion (weight of notes by page, performer breaks, etc
. . .) cannot be automated in any way, since it is based on

10 Grace notes are not yet supported graphically. However they are in-
tegrated as objects. There is an ongoing effort to implement them in our
recent development of a notational viewer which will be hopefully inte-
grated into OpenMusic.

a performer-composer appreciation mostly by typesetting
rules with regard to a graphical layout that will constrain
the page settings.

For instance, if we examine Fig.6 closely, we will see
that the first system has a greater line span than the second
one which is more dense than the former. Here, the line
breaks were calculated by Lilypond without any explicit
instructions on the part of the user. For the time being with
the absence of a graphical interface within OpenMusic, for
such a task we would have to, if needed, edit the breaks in
Lilypond manually.

5. FUTURE DEVELOPMENT

Certain immediate issues are under imminent implementa-
tion. We can list some of these here:

• CHORD-SEQ structure import from Lilypond to Open-
Music; 11

• PianoStaff support, most particularly cross stemming
and automatic voice splitting;

• Graphical interface for page layout and other type-
setting preferences.

Apart form these peripheral additions, our goal for an
innovative implementation of this inter-exchange program
would ideally be to achieve complete interaction between
the two environments, such as musical computation inter-
acting directly with the resulting typesetting. This could

11 The Lilypond-to-OpenMusic import feature works only for a simple
general usage for the time being. It does not yet support the CHORD-SEQ
export, since it is not metered music and requires a different approach.

be achieved by automatic computation, i.e. building rou-
tines which will deal with the given data (musical mate-
rial/typesetting material) automatically in order to have di-
rect rendering and transformation on both sides of the plat-
form, e.g. changing a section in the editor (here, Lilypond)
and feeding this back in an OpenMusic patch or vice-versa.
Ideally, the goal is to build an embedded graphical editor
in OpenMusic as stated before, containing Lilypond type-
setting rendering with a Lilypond-syntax-embedded editor.

With this in perspective, we are planning to implement
an intermediate inter-exchange format for round tripping.
This will allow for the safe keeping of all incoming and
outgoing data to and from OpenMusic and Lilypond. In or-
der to achieve this objective, we should survey most of the
existing classes and internal properties of Lilypond mak-
ing them available in a registry that will be compliant with
both platforms.

Such a thing is possible, even recommended, since the
SHEET object[8] (see Fig.11), still in beta state, should be
finalized in such a way.

SHEET[8] is a graphical OpenMusic editor whose pur-
pose is to have abilities in editing and ”throwing” a compu-
tational operation such as transposition or any other serial
operation on symbolic objects such as measures, groups,
chords, rhythm, etc. It has the capacity to display sym-
bolic notation (scores), audio wave forms, and Break Point
functions (BPF) along with OpenMusic patches.

Figure 11. OpenMusic SHEET editor object

6. CONCLUSIONS

Omlily OpenMusic’s library seems for us to be, for the
time being, a very good solution for musical score inter-
change between OpenMusic and Lilypond. It is also a
powerful research tool for experimentation for a new scope
of musical ideas due to its unique potentialities in explor-
ing complex musical structures. We have been using it for
sometime now and have conceived many compositional
scores with it, from solo to ensemble music. Extending
its potentialities in order to enclose more notational data
seems promising. This interchange can lead to expanding
both environments, having, on one side, the ability to in-
tegrate CAC functions and computations in the Lilypond
environment, and on the other, one of the best typesetters
for rendering scores in OpenMusic.

Acknowledgments

We would like to thank Jean Bresson for his cooperation,
Jeremy Coffman and Deborah Lopatin for their proofread-
ing and last but not least, Gerard Assayag for his valuable
expertise and advice.

7. REFERENCES

[1] C. Agon, “Openmusic : Un langage visuel pour la com-
position musicale assiste par ordinateur,” Ph.D. disser-
tation, IRCAM - Univ. Paris 6, dcembre 1998.

[2] G. Steele, Common Lisp the Language, 2nd edition.
Digital Press, 1990.

[3] LilyPond, a system for automated music engraving.
Firenze, Italy: Colloquium on Musical Informatics,
2003.

[4] C. Agon, K. Haddad, and G. Assayag, “Representa-
tion and rendering of rhythmic structures,” WedelMusic
Darmstadt, vol. 25, pp. 109–113, 2002.

[5] K. Haddad, Livre Premier de Motets: The Time-Block
Concept in OpenMusic, 1st ed., ser. The OM com-
poser’s book. Edition Delatour, 2008, vol. II.

[6] G. J. Sussman and G. L. S. Jr., “Scheme: An interpreter
for extended lambda calculus,” in MEMO 349, MIT AI
LAB, 1975.

[7] Lilypond - Internals Reference, 2000-2012.

[8] J. Bresson and C. Agon, “Scores, programs and time
representations:the sheet object in openmusic,” Com-
puter Music Journal, vol. 32, no. 4, 2008.

	 1. Introduction
	 2. Usage
	2.1 General usage
	2.1.1 Exporting Lilypond files from OpenMusic
	2.1.2 Importing Lilypond files to OpenMusic

	2.2 Particular usage
	2.2.1 Polymetrics and polytempi notation
	2.2.2 Discrete spanner notation

	 3. Implementation
	 4. Limitations
	 5. Future development
	 6. Conclusions
	 7. References

