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Abstract. In the present article, we study the numerical approximation of

a system of Hamilton-Jacobi and transport equations arising in geometrical

optics. We consider a semi-Lagrangian scheme. We prove the well posedness of
the discrete problem and the convergence of the approximated solution toward

the viscosity-measure valued solution of the exact problem.

1. Introduction. In this article, we consider the following system

∂tu+H(x, t,∇u) = 0 , in Rd × (0, T ], (1.1)

∂tm+∇ · (a(x,∇u)m) = 0 , in Rd × (0, T ], (1.2)

u(x, 0) = u0(x), m(0) = m0 , in Rd , (1.3)

of an Hamilton-Jacobi type equation (HJ) and a continuity equation (CE) describing
the transport of the conserved measure m0. Even if the vector field a can be smooth
(e.g. in the simplest and reference case, a(x, p) = p), the scalar function u as a
solution of (1.1) is intended in the viscosity sense. Therefore, ∇u is at most L∞,
even for smooth initial data u0, and the regularity that we can expect for the vector
field a(·,∇u) is the very weak regularity

a(· ,∇u(·, ·)) ∈ (L∞(Rd × [0, T ]))d . (1.4)

As a consequence, despite the fact that the (HJ) equation can be solved indepen-
dently from (CE), system (1.1)-(1.2) leads to some interesting mathematical issues
as well as numerical challenges.
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In order to obtain global solutions in the general multi-dimensional case, a well
adapted notion of solution for (1.2) under hypothesis (1.4) is that of measure so-
lutions introduced by Poupaud-Rascle [26] (see also [25] for the non-conservative
transport equation). Indeed, the latter perfectly makes sense if the vector field
a(·,∇u) satisfies a one-sided Lipschitz condition (OSL), (see (2.3) below), and this
condition can be obtained by the semiconcavity of the viscosity solution of (1.1),
at least in the reference case a(x, p) = p, or in the one dimensional case for a class
of functions a.

Existence, uniqueness and stability results for problem (1.1)-(1.2)-(1.3) in the
framework of viscosity-measure solutions have been given for example in [2, 29].
Therefore, our goal here is not to refine these previous results but to construct
consistent numerical approximations.

Finite difference schemes for systems of type (1.1)-(1.2)-(1.3) have been given
in [18]. There the authors make use of the notion of duality solution for the (CE)
equation, as introduced in [4]. Consequently, they have to restrict the analysis to the
one dimensional case. Moreover, in order to obtain discrete semiconcave estimates
for the numerical solution of the (HJ) equation, they consider Lax-Friedrichs type
schemes for the latter and the strict convexity in p for the hamiltonian H is required.
A general class of upwind schemes previously analyzed in [17] has been considered
for the approximation of the (CE) equation.

In this paper, the considered scheme is based on a semi-lagrangian discretization
of (1.1)-(1.2) for the time approximation coupled with a finite element discretization
for the space variable. It requires a convex hamiltonian H and no restriction on
the spatial dimension is necessary. Since the semiconcavity of the initial data u0
is conserved by the scheme, it is sufficient to require only a weak (OSL) condition
at the discrete level (automatically satisfied in the reference case a(x, p) = p, see
Remark 6) without semiconcavity requirement for the viscosity solution u.

The stability of the Filippov characteristics and of the corresponding measure
solution of the transport equation (CE) will be the key tool to prove the convergence
of the numerical schemes. As a by-product, we obtain of course a new existence
and uniqueness result for the viscosity-measure solution of (1.1)-(1.2)-(1.3).

Regarding the applications of our numerical approximations of (1.1)-(1.2)-(1.3),
it is worth to recall that these types of systems arise for example in the semi-classical
limit for the Schrödinger equation [8] and of the spinless Bethe-Salpeter equation
(the relativistic Schrödinger equation, [3]), or in the high frequency approximation
of the Helmholtz equation. In these cases, the hamiltonian H and the vector field
a take the forms

H(x, t, p) =
1

2
|p|2 + V (x, t); a(x, p) = p , (Schrödinger and Helmholtz), (1.5)

H(x, t, p) =

(
|p|2

2
+ 1

) 1
2

+ V (x, t); a(x, p) = p

(
|p|2

2
+ 1

)− 1
2

, (Bethe-Salpeter),

(1.6)

where V (x, t) is the potential (see [2, 18, 29] for a rapid derivation of (1.5) and
(1.6)). It is worth noticing that in the examples above a = c∇pH. However, this
condition is not required in the rest of the paper.

Coupling between first or second order Hamilton-Jacobi equations and trans-
port equations has been also recently considered in the framework of Mean Field
Games theory [7, 19]. Nonetheless, in this case, the system is given by a backward
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Hamilton-Jacobi equation and a forward transport equation, with initial condition
for the transport equation and terminal condition for the Hamilton-Jacobi equation,
plus coupling terms in both equations. Moreover, while MFG preserves the regu-
larity of the initial data, for system (1.1)-(1.2)-(1.3) the use of the measure valued
solution cannot be avoided.

The paper is organized as follows. Section 2 is devoted to the preliminary def-
initions and known results concerning system (1.1)–(1.2)–(1.3). In Section 3 we
construct a semi-lagrangian scheme for the time discretization of system (1.1)–
(1.2)–(1.3) and we prove its convergence. The corresponding fully discrete scheme
is given and analyzed in Section 4. Finally, the appendix is devoted to the proof of
some technical lemmas for the reader convenience.

Throughout the paper, we will denote by C0
0 (Rd) (resp. C0

c (Rd)) the space of
continuous functions which tend to 0 at infinity (resp. with compact support); by ρε
a standard mollifier, i.e. ρε(x) = 1

εd
ρ(xε ), ρ ∈ C∞c (Rd), ρ ≥ 0 and

∫
Rd ρ(x) dx = 1;

by ∗ the convolution with respect the space variable and by C any numerical con-
stant that can vary from line to line in the computations.

2. Preliminaries: The viscosity-measure solutions. As mentioned in the in-
troduction, a solution of (1.1)–(1.2) is intended in the viscosity sense for (1.1), while
in the sense of Poupaud-Rascle [26] for (1.2). Concerning the definition of viscosity
solutions, we refer to the pioneering articles [12, 11]. Here, for the reader’s conve-
nience, we recall the usual assumptions on H and the consequent general existence
and uniqueness result for (1.1) that we shall use in the sequel.

Let us define QT := Rd × [0, T ], T > 0, d ≥ 1, and let the hamiltonian H satisfy
the following:
(H1) H is uniformly continuous on QT ×B(0, R) for any R > 0 ;
(H2) H(x, t, 0) is uniformly bounded : supQT

|H(x, t, 0)| ≡ M < +∞ ;
(H3) there exists η > 0 s.t. : |H(x, t, p) − H(y, t, p)| ≤ η (1 + |p|)|x − y| , ∀ t ∈
[0, T ] , ∀ x, y, p ∈ Rd .

Theorem 2.1 ([12]). Under hypothesis (H1), (H2) and (H3), if in addition the
initial data u0 belongs to (W 1,∞∩BUC)(Rd), there exists a unique viscosity solution
u ∈ (W 1,∞ ∩BUC)(QT ) of (1.1), (1.3).

As stated in Theorem 2.1, the expected regularity for ∇u is L∞(QT ). Therefore,
the characteristics X(t;x) associated to the conservative transport equation (1.2)
cannot be defined as classical or distributional solutions of the system below{

∂tX(t;x) = a(X(t;x),∇u(X(t;x), t))

X(0;x) = x , x ∈ Rd ,
(2.1)

but have to be understood in a generalized sense. Once the flow X(t;x) is uniquely
defined and continuous on [0, T ] × Rd, the natural definition of a solution of the
conservation law (1.2) with a given initial datam0 belonging to the space of bounded
measures M1(Rd) is, see [26],

m(t) = X(t ; ·) #m0 . (2.2)

Equation (2.2) means that the measure solution m(t) is the image (or the push-
forward) of m0 by the flow X(t ; ·), i.e. for any Borel set B ⊂ Rd,

m(t)(B) = m0(X(t ; ·)−1(B)) = m0({x ∈ Rd : X(t;x) ∈ B}) ,
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or equivalently

〈m(t), φ〉 = 〈m0, φ(X(t; ·))〉 , for any φ ∈ C0
0 (Rd) .

It turns out that the definition of Filippov characteristics is well suited and that
with it, (2.2) perfectly make sense as soon as the characteristics are unique. A
definition of Filippov characteristics solution of (2.1) equivalent to the original one
and easier to handle is given in [26], as follows:

Definition 2.2 (Filippov characteristics). For any given x ∈ Rd and T > 0, a gen-
eralized solution in the sense of Filippov of system (2.1) is an absolutely continuous
map X(· ;x) : [0, T ] 7→ Rd which satisfies X(0;x) = x and

{M(a(·,∇u(·, t)) · v)}(X(t;x)) ≤ ∂tX(t;x) · v ≤ {M(a(·,∇u(·, t)) · v)}(X(t;x))

for a.e. t ∈ [0, T ] and for any v ∈ Rd, where

{M(a(·,∇u(·, t)) · v)}(z) := sup
r>0

(
ess inf
y∈B(z,r)

a(y,∇u(y, t)) · v
)

{M(a(·,∇u(·, t)) · v)}(z) := inf
r>0

(
ess sup
y∈B(z,r)

a(y,∇u(y, t)) · v

)
.

Then, assuming

(A1) |a| ∈ L∞x (Rd ; L∞loc, p(Rd)),
the vector field a(·,∇u) satisfies (1.4) and the Filippov characteristics of system
(2.1) exist. Moreover, if the following one-sided Lipschitz condition (OSL) holds
true

(a(x,∇u(x, t))− a(y,∇u(y, t))) · (x− y) ≤ γ(t)|x− y|2 a.e. t ∈ [0, T ], x, y ∈ Rd
(2.3)

for a function γ ∈ L1([0, T ]), these characteristics are unique, the flow (t, x) 7→
X(t;x) is continuous on [0, T ] × Rd, the map from Rd to Rd, x 7→ X(t;x) is onto;
the following existence and uniqueness result of a viscosity-measure solution of (1.1)-
(1.2)-(1.3) can be stated, following [2, 26].

Theorem 2.3. Let u0 ∈ (W 1,∞ ∩ BUC)(Rd) and m0 ∈ M1(Rd). Assume (H1)-
(H2)-(H3) and (A1). Then, if the viscosity solution u satisfies (2.3), there exists a
unique measure solution m ∈ C0([0, T ];M1(Rd) − weak ∗) of (1.2)-(1.3) given by
(2.2).

In the reference case a(x, p) = p, as in (1.5), requiring the (OSL) condition (2.3)
is equivalent to require that the viscosity solution u be semiconcave with respect
to x, i.e.

u(x+ y, t)− 2u(x, t) + u(x− y, t) ≤ β(t) |y|2 , (2.4)

for all x, y ∈ Rd, t ∈ [0, T ] and for some β ∈ L1([0, T ]). The semiconcavity property
(2.4) often characterizes the viscosity solution of Hamilton-Jacobi equations arising
in control problems. However, for general vector fields a, it does not imply the
necessary condition (2.3). Indeed, for uε = u∗ρε, where ρε is the mollifier introduced
above, the semiconcavity (2.4) implies: νT D2uε(x, t) ν ≤ β(t), for all ν ∈ Rd s.t.
|ν| = 1 and for all (x, t) ∈ QT , (see [6]). Moreover, ∇uε(x, t)→ ∇u(x, t) as ε→ 0,
for a.a. (x, t) ∈ QT . Owing to this convergence property, it is sufficient to obtain
(2.3) for uε, whenever a is at least continuous w.r.t. p. Assuming in addition that a
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is differentiable w.r.t. p and satisfies a one sided Lipschitz condition w.r.t. x locally
uniformly in p, we have

a(x, p)− a(y, q) =

∫ 1

0

Dpa(x, q + s(p− q))(p− q) ds+ a(x, q)− a(y, q) ,

and the estimate

(a(x,∇uε(x, t))− a(y,∇uε(y, t))) · (x− y) ≤∫ 1

0
ds
∫ 1

0
dσ (x− y)T Γ(s)D2

xu
ε(y + σ(x− y), t)(x− y) + C |x− y|2 ,

(2.5)
with Γ(s) = Dpa(x,∇uε(y, t) + s(∇uε(x, t) − ∇uε(y, t))). Therefore, the (OSL)
condition follows easily from (2.4), if either Dpa(x, p) = I, as expected, or d = 1
and ∂pa(x, p) is non negative and upper bounded, as for (1.6). Apart from these
two cases (already considered in [2]), the (OSL) condition is an assumption and has
to be verified for the specific model at hand.

We conclude this section by listing the properties that the measure solution (2.2)
satisfies, see [26] :
(i) monotonicity : m0 ≥ ν0 ⇒ X(t ; ·) #m0 ≥ X(t ; ·) # ν0;
(ii) mass conservation : m(t)(Rd) = m0(Rd);
(iii) contraction property : |m(t)|(B) ≤ |m0|(X(t)−1(B)) , for any Borel set B ⊆ Rd;
(iv) semi-group property : X(t− s ; ·) # (X(s ; ·) #m0) = X(t ; ·) #m0;
(v) uniform compactness at infinity : ∀ ε > 0 there exists R > 0 s.t. |m(t)|(Rd \
BR(0)) ≤ ε, ∀ t ∈ [0, T ].
It is worth to underline that the uniform compactness at infinity property (v) is
fundamental to prove the convergence of approximate measure solutions toward the
exact one in C0([0, T ];M1(Rd)w − ∗).

3. The semi-lagrangian scheme. This section is devoted to the construction and
the convergence analysis of a semi-lagrangian scheme for the time discretization of
system (1.1)-(1.2) over the time interval [0, T ]. For an introduction to this class of
schemes we refer to [1, Appendix B] and [10, 14, 15, 16]. To proceed, we need to
refine the previous hypothesis on the hamiltonian H and to add assumptions on the
growth of H w.r.t. p. Therefore, let us assume in this section (H1), (H3) and

(H′2) for any R > 0, supQT×B(0,R) |H(x, t, p)| ≡ M(R) < +∞;

(H4) H is convex in p and either linear at infinity (i) or superlinear (ii):

(i) ∃ K > 0 s.t. lim
|p|→∞

H(x,t,p)
|p| = K, uniformly in (x, t) ∈ QT , and there

exists a positive function α ∈ L∞(Rd) such that |H(x, t, p)−H(y, t, p)| ≤
α(p)|x− y| uniformly on QT × Rd ;

(ii) lim
|p|→∞

inf
QT

H(x,t,p)
|p| = +∞ .

Remark 1. It is worth noticing that the hamiltonians (1.5) and (1.6) satisfy all
the required assumptions as soon as the potential V is uniformly continuous and
bounded over QT and Lipschitz continuous in x uniformly in t. The growth assump-
tion (H4)-(i) can be relaxed to include also hamiltonians that are not uniformly
positive at infinity. But we leave this generalization to the reader.

3.1. The semi-lagrangian scheme for the (HJ) equation. Let N ∈ N be
fixed and let h = T N−1 be the associated time step used in the semi-discrete
scheme to be defined. Since the hamiltonian H is convex in p and continuous (in
fact lower semi-continuity would be sufficient [27]), then H(x, t, p) = H∗∗(x, t, p),
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where H∗ is the Legendre transform of H with respect to p, i.e. H∗(x, t, ξ) =
supp∈Rd{ξ · p−H(x, t, p)}, and the (HJ) equation can be written as

∂tu(x, t) = inf
ξ∈Rd
{−ξ · ∇u(x, t) +H∗(x, t, ξ)}. (3.1)

Next, plugging the first order forward finite difference for the approximation of ∂tu

∂tu(x, t) ∼ u(x, t+ h)− u(x, t)

h

and the first order approximation of the directional derivative −ξ · ∇u

− ξ · ∇u(x, t) ∼ u(x− ξh, t)− u(x, t)

h
, (3.2)

into (3.1), one easily obtains the following first order approximation for u(x, t+ h)

u(x, t+ h) ∼ inf
ξ∈Rd

{u(x− ξ h, t) + hH∗(x, t, ξ)} .

Remark 2. For the Helmholtz equation (1.5), it holds H∗(x, t, ξ) = H(x, t, ξ) −
V (x, t). In the case of the Bethe-Selpeter equation (1.6), H∗(x, t, ξ) = −

√
1− 2|ξ|2

if |ξ| ≤ 1/
√

2, while H∗(x, t, ξ) = +∞ if |ξ| > 1/
√

2. For general hamiltonian H
whose Legendre transform H∗ cannot be computed explicitly see [5, 9, 22, 23].

Let us observe that whenever the exact solution u of (HJ) is semiconcave in x,
then it possesses one-sided directional derivatives at any x and in any direction, i.e.
the limit as h ↘ 0 of the right hand side of (3.2) always exists. Moreover, if u is
differentiable w.r.t. x, the previous limit coincides with the left hand side of (3.2).
In other words, the approximation (3.2) is consistent.

For the semi-discrete scheme, it is sufficient to inductively define the approxima-
tion un = un(x) of the exact solution u of (HJ) at time tn = nh for n = 0, . . . , N ,
by

un+1(x) = inf
ξ∈Rd

{un(x− ξh) + hH∗(x, tn, ξ)} , x ∈ Rd , (3.3)

with u0 = u0, the initial data for (HJ) in (1.3). Next, we need to show that un as
given by (3.3) shares the properties of u0, in the same way as the exact viscosity
solution u does. These are well established facts in the context of the approximation
of functions by the inf-convolution operator (see for example [6]). However, the
difficulties here are on the one hand to show that the properties of the initial data
u0 are propagated to un uniformly with respect to n and h, and on the other hand
to handle the dependency of H on (x, t).

Let us define Qh := Rd × {0, . . . , N} and the set of the arguments associated to
the infimum in (3.3)

An(x) := arg inf
ξ∈Rd

{un(x− ξh) + hH∗(x, tn, ξ)} , (x, n) ∈ Qh . (3.4)

Lemma 3.1 (Properties of H∗). Let H satisfy (H1), (H′2) and (H3). If in addition
H satisfies (H4)-(i), then :

(a) H∗(x, t, ξ) = +∞ if |ξ| > K, for any (x, t) ∈ QT , H∗(·, ·, 0) ∈ L∞(QT ) and
H∗ is Lipschitz continuous in x uniformly in (ξ, t) ∈ B(0,K)× [0, T ].

On the other hand, if in addition H satisfies (H4)-(ii), then :

(b) H∗ also satisfies (H4)-(ii), for any r > 0 there exists R = R(r) > 0 such that

H∗(x, t, ξ) = max
p∈B(0,R)

{p · ξ −H(x, t, p)} , ∀ (x, t, ξ) ∈ QT ×B(0, r) , (3.5)
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H∗ ∈ L∞(QT × B(0, r)) and H∗ is Lipschitz continuous in x uniformly in
(ξ, t) ∈ B(0, r)× [0, T ].

The proof of the Lemma above is given in the Appendix. Let us just point out
here that we have chosen to take the hamiltonian H to be Lipschitz continuous in
x uniformly in p and t when H is linear in p for |p| → +∞, in order to obtain the
Lipschitz continuity of H∗ w.r.t. x. Indeed, in this case the supremum defining H∗

may not be reached. Therefore we cannot conclude as in case (H4)-(ii).

Lemma 3.2 (Properties of un). Under hypothesis (H1), (H′2), (H3) and (H4),
for any u0 ∈ W 1,∞(Rd), un is well defined over Qh by (3.3), i.e. An(x) is a non
empty bounded set of Rd uniformly in (x, n) ∈ Qh and the infimum is a minimum.
Moreover, un ∈ W 1,∞(Rd) and ‖un‖W 1,∞(Rd) is bounded uniformly in n and, as-

suming H∗ ∈ L∞(QT × B(0,K)) when the growth condition (H4)-(i) is satisfied,
un is Lipschitz continuous with respect to n uniformly in x, i.e. there exist three
positive constants C0, C1 and C2 independent of h and n, s.t.

‖un‖L∞(Rd) ≤ C0 , ‖∇un‖L∞(Rd) ≤ C1 and |un(x)− um(x)| ≤ C2|n−m|h ,
(3.6)

for all n,m = 0, · · · , N , and x ∈ Rd.

Proof. We suppose that un ∈W 1,∞(Rd) with

‖un‖L∞(Rd) ≤ Cn0 and ‖∇un‖L∞(Rd) ≤ Cn1 ,

where Cn0 and Cn1 are independent of h. Then, the proof will follow by induction
on n.

It follows immediately by Lemma 3.1 that un+1 is upper bounded since

un+1(x) ≤ un(x) + hH∗(x, tn, 0) ≤ Cn0 + h ‖H∗(·, ·, 0)‖L∞(QT ), ∀x ∈ Rd .

Moreover, un+1 is obviously lower bounded since un is bounded and H∗(x, t, ξ)≥
−M , for any (x, t, ξ) ∈ QT × Rd, where M ≡ supQT

|H(x, t, 0)|, so that

‖un+1‖L∞(Rd) ≤ Cn0 + hmax{M, ‖H∗(·, ·, 0)‖L∞(QT )} .

Next, if H satisfies (H4)-(i), An(x) ⊂ B(0,K) for any x ∈ Rd and the infimum
in (3.3) is attained due to the continuity of un(x− ξh) + hH∗(x, tn, ξ) w.r.t. ξ.

On the other hand, if H satisfies (H4)-(ii), since un and H∗(x, t, 0) are bounded
and H∗ is superlinear, there exists Rn > 0 (increasing w.r.t. n but upper bounded
uniformly in n and h) s.t. An(x) ⊂ B(0, Rn) for any x ∈ Rd and again the infimum
in (3.3) is attained.

Let us prove now that un+1 is Lipschitz continuous. We have for any x, y ∈ Rd
and for αn(x) ∈ An(x)

un+1(x) = un(x− hαn(x)) + hH∗(x, tn, αn(x))

and

un+1(y) ≤ un(y − hαn(x)) + hH∗(y, tn, αn(x)) .

Therefore,

un+1(y)− un+1(x) ≤ [‖∇un‖∞ + hLH∗ ] |x− y| ≤ [Cn1 + hLH∗ ] |x− y| ,

where LH∗ is the Lipschitz constant of H∗ w.r.t. x, and the statement follows
exchanging the role of x and y. Consequently, un+1 ∈W 1,∞(Rd).
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It remains to prove that un is Lipschitz continuous with respect to n. As before,
we have for any x ∈ Rd and the corresponding argument αn(x) ∈ An(x)

|un+1(x)− un(x)| = |un(x− hαn(x))− un(x+ hH∗(x, tn, αn(x))|
≤ h‖∇un‖∞ (|αn(x)|+ |H∗(x, tn, αn(x))|)
≤ Cn1 h (|An|+ |H∗(x, tn, αn(x))|) ,

and the proof is completed, thanks to the uniform boundedness of An and H∗.

Let us observe that when the hamiltonian H grows linearly at infinity, i.e. when
the growth condition (H4)-(i) is satisfied, then H∗ is not necessarily upper bounded.
Therefore, the additional hypothesis H∗ ∈ L∞(QT ×B(0,K)) in Lemma 3.2 is nec-
essary. It is easily seen that this additional hypothesis is satisfied by the hamiltonian
(1.6) for K = 1√

2
(see also Remark 2).

Finally, in order to obtain semiconcavity, we need the following semiconcavity
hypothesis on H∗.

(H5) H∗ = H∗(x, t, ξ) is semiconcave in x uniformly in t and ξ, with semiconcavity
constant CH

∗

conc.

Lemma 3.3 (Semiconcavity). Let u0 ∈W 1,∞(Rd) be semiconcave. Then, under
hypothesis (H1), (H′2), (H3), (H4) and (H5), un is also semiconcave uniformly in
h and n.

Proof. We proceed as in Lemma 3.2 supposing that un is semiconcave with semi-
concavity constant Cnconc . Then, for any x ∈ Rd, any corresponding argument
αn(x) ∈ An(x) and any y ∈ Rd, we have that

un+1(x+ y)− 2un+1(x) + un+1(x− y)

≤ un(x+ y − hαn(x))− 2un(x− hαn(x)) + un(x− y − hαn(x))

+ h [H∗(x+ y, tn, αn(x))− 2H∗(x, tn, αn(x)) +H∗(x− y, tn, αn(x))]

≤
[
Cnconc + hCH

∗

conc

]
|y|2 .

Hence, un+1 is semiconcave with Cn+1
conc ≤ Cnconc + hCH

∗

conc, and by induction un is
semiconcave for all n = 1, . . . , N with : Cnconc ≤ Cu0

conc + T CH
∗

conc .

Remark 3. Assumption (H5) is necessary since the hamiltonian H depends on
x and t. It can be satisfied under regularity hypothesis on H. In the case of the
Hamiltonians (1.5) and (1.6), (H5) is satisfied if the potential V is convex in x
uniformly in t.

3.2. The semi-lagrangian scheme for the (CE) equation. Now we can pro-
ceed to the construction of a semi-discrete scheme for the transport equation (1.2),
replacing the time continuous flow X(t;x) with a time discrete one, (see [13, 24] for
similar schemes in the framework of crowd dynamics). Set unε = un ∗ ρε and let us
consider the following implicit backward Euler scheme{

Xn+1 = Xn + h a(Xn+1,∇un+1
ε (Xn+1)) , n = 0, · · · , N − 1,

X0 = x , x ∈ Rd . (3.7)

Next, given the initial measure m0 and replacing (2.1) with (3.7), we define the
semi-discrete approximation of the measure solution (2.2) as

mn = Xn(·) #m0 , for n = 0, . . . , N , (3.8)
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i.e. for any Borel set B ⊂ Rd

mn(B) = m0((Xn)−1(B)) = m0({x ∈ Rd : Xn(x) ∈ B}) ,

or equivalently

〈mn, φ〉 = 〈m0, φ(Xn(·))〉 for any φ ∈ C0
0 (Rd).

Above, the dependence of Xn on x and ε and consequently of mn on ε has been
skipped to simplify the notations, but it will be made explicit when necessary below.

It is worth noticing that it is not possible to define the semi-discrete flow (3.7)
with ∇un+1 instead of the gradient of the regularized function un+1

ε , since we need
Xn to be defined for all (x, n) ∈ Qh. Moreover, it is also not possible to use an
explicit forward Euler scheme to define the trajectories Xn, because the discrete
(OSL) condition (3.9) does not provide the necessary equicontinuity of these tra-
jectories, in contrast with the implicit one (3.7), (see Lemma 3.4 and Remark 4
below).

The following Lemma gives us the existence, uniqueness and the regularity prop-
erties of Xn necessary to the well posedness for mn and to pass to the limit as h
and ε go to 0. Owing to the implicit nature of the Euler scheme (3.7), we have to
assume an upper bound on the space-time step h.

Lemma 3.4 (Properties ofXn). Let u0 ∈W 1,∞(Rd) and assume (H1), (H′2), (H3),
(H4) and (A1). Then, if in addition a ∈ (C0(Rd × Rd))d, the (OSLh) condition

(a(x,∇unε (x))− a(y,∇unε (y)))·(x−y) ≤ C|x−y|2, x, y ∈ Rd, n = 0, · · · , N (3.9)

is satisfied, with constant C independent of ε and h, and C h < 1, the solution of
(3.7) is univocally defined. Moreover, the flow (n, x) 7→ Xn(x) is locally bounded
in x uniformly in n and ε, and Lipschitz continuous w.r.t. (x, n) ∈ Qh, uniformly
in ε.

Proof. The existence of Xn+1 given Xn, is insured by the Brouwer fixed point
theorem, the map y 7→ Xn + h a(y,∇un+1

ε (y)) being continuous and bounded.
The uniqueness of Xn+1 and the Lipschitz continuity w.r.t. x follow both from
(3.9) and the upper bound on h. Indeed, for Xn+1 and Y n+1 defined by (3.7)
we have

|Xn+1 − Y n+1|2 = (Xn+1 − Y n+1) · (Xn − Y n)

+ h (Xn+1 − Y n+1) ·
(
a(Xn+1,∇un+1

ε (Xn+1))− a(Y n+1,∇un+1
ε (Y n+1))

)
≤ |Xn+1 − Y n+1||Xn − Y n|+ C h |Xn+1 − Y n+1|2 , (3.10)

i.e.

|Xn+1 − Y n+1| ≤
(

1 +
C h

1− C h

)
|Xn − Y n| .

Taking Xn = Y n we get the uniqueness, while iterating over n we get for two
starting points x, y ∈ Rd

|Xn(x)−Xn(y)| ≤
(

1 +
C h

1− C h

)n
|x− y| .

Therefore, for δ ∈ (0, 1) s.t. C h ≤ 1 − δ, we have that 1 + Ch/(1 − Ch) ≤
eCh/(1−Ch) ≤ eChδ−1

and

|Xn(x)−Xn(y)| ≤ exp(nC h δ−1)|x− y| ≤ exp(CT δ−1)|x− y| , n = 0, · · · , N .
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Finally, for any x ∈ Rd it holds true that

|Xn(x)−Xm(x)| ≤ h|n−m| sup
x∈Rd

sup
p∈B(0,C1)

|a(x, p)| ,

where C1 is given in (3.6), and we obtain the Lipschitz continuity w.r.t. n. The
above estimate also gives us that the image by Xn of B(0, R) is contained in the
ball of radius (R + T sup

x∈Rd

sup
p∈B(0,C1)

|a(x, p)|). Therefore, Xn is locally bounded

uniformly in ε and n and the Lemma is proved.

Lemma 3.5 (Properties of mn). Under the same hypothesis as in Lemma 3.4,
for any m0 ∈ M1(Rd), the approximated solution mn in (3.8) is well defined in
M1(Rd). Moreover, mn satisfies the same properties (i)-(v) as the exact measure
solution m, uniformly in n.

Proof. By Lemma 3.4, the map x 7→ Xn(x) is uniquely defined and continuous over
Rd. Moreover, it is onto from Rd to Rd. Therefore, the approximated solution mn

is well defined in M1(Rd). Furthermore, it is easy to see that mn satisfies all the
properties (i)-(v) of the exact measure solution m, uniformly in n. Concerning (v),
it follows from the local and uniform in n boundedness of Xn proved above and the
contraction property (iii) (see Lemma 3.1 in [26]).

3.3. The convergence. We can finally discuss the convergence of the semi-discrete
scheme (3.3)-(3.7)-(3.8) to the solution of the continuous problem (1.1)-(1.2)-(1.3).
The key tools to prove the convergence result have been given in [26], where the
authors analyzed the stability of the measure solution with respect to perturbations
of the vector field a. The stability of the Filippov characteristics is of course the
basic stone. Later, these tools have been also used in [2] to analyze the stability of
the viscosity-measure solution of (1.1)-(1.2)-(1.3) with a(x, p) = p, with respect to
the vanishing viscosity perturbation of the (HJ) equation.

To discuss the convergence, we define the piecewise constant w.r.t. time approx-
imated solutions

uh(x, t) = u[t/h](x) , (x, t) ∈ QT , mε
h(t) = m[t/h] , t ∈ [0, T ] ,

and uεh = uh ∗ ρε. Moreover, we also need to define the following time continuous
trajectories by linear interpolation of Xn(x) and Xn+1(x), for any x ∈ Rd, n =
0, · · · , N

Xε
h(t;x) = Xn(x) + (t− tn) a(Xn+1(x),∇un+1

ε (Xn+1(x))), t ∈ [tn, tn+1]. (3.11)

Note that (3.11) gives us time continuous trajectories Xε
h with the same regularity

as Xn, i.e. Xε
h is locally bounded and Lipschitz continuous w.r.t. (t, x) ∈ [0, T ]×Rd,

uniformly in ε and h.

Theorem 3.6 (Convergence). Let u0 ∈ (W 1,∞ ∩BUC)(Rd) be semiconcave, m0 ∈
M1(Rd) and assume (H1), (H′2), (H3), (H4), (H5) and (A1). Assume in addition
that a ∈ (C0(Rd × Rd))d, unε satisfies the (OSLh) condition (3.9) and Ch < 1. Let
ε = ε(h) be s.t. ε(h)→ 0 as h→ 0. Then, as h→ 0,

(i) uh → u in L∞(QT ) and ∇uεh(x, t) → ∇u(x, t) at any point (x, t) ∈ QT of
differentiability of u, where u is the unique viscosity solution of (1.1);

(ii) Xε
h converges locally uniformly in QT toward the unique Filippov characteristic

X associated to the vector field a(·,∇u);
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(iii) mε
h ⇀m in C0([0, T ];M1(Rd)w−∗), where m is the unique measure solution

of (1.2).

Proof. Following standard results in the viscosity solution theory (see for instance
[28]), it can be proved that there exists a constant C independent of h, s.t.

‖un − u(tn)‖L∞(Rd) ≤ C h1/2 , n = 0, · · · , N . (3.12)

Next, let (x, t) ∈ QT be a point of differentiability of u. For n =
[
t
h

]
, by Taylor

expansion and the semiconcavity of unε , we have that

unε (y)− unε (x)−∇unε (x) · (y − x) ≤ (Cu0
conc + T CH

∗

conc)|y − x|2 , ∀ y ∈ Rd .

By the uniform bound on ∇unε , there exists p such that, up to a subsequence
extraction, ∇unε → p. Therefore, the previous inequality and the convergence of
unε (t) toward u(t) give us

u(y, t)− u(x, t)− p · (y − x) ≤ (Cu0
conc + T CH

∗

conc)(t)|y − x|2 ,

i.e. p belongs to the subdifferential of u at x. Being u differentiable at (x, t),
p = ∇u(x, t) and we have obtained the proof of (i).

We now prove the second part of the statement. From Lemma 3.4 it immediately
follows that, up to a subsequence, Xε

h converges uniformly on every compact set
of QT to an absolutely continuous function Y , as h → 0. Next, since by (i) and
the (OSLh) condition (3.9), the (OSL) condition (2.3) is also satisfied, the Filippov
characteristic X associated to the vector field a(·,∇u) is unique for any x ∈ Rd. In
order to prove that Y = X, let us define ∆ε

h(t;x) := Xε
h(t;x) − X(t;x). We are

going to prove that ∆ε
h(t;x)→ 0 as h→ 0. Indeed, we have

1

2
∂t|∆ε

h(t;x)|2 = ∂tX
ε
h(t;x) ·∆ε

h(t;x)− ∂tX(t;x) ·∆ε
h(t;x) . (3.13)

By the Definition 2.2 of Filippov characteristics it holds true, for all x ∈ Rd, a.e.
t ∈ [0, T ] and all r > 0, that

∂tX(t;x) ·∆ε
h(t;x) ≥ ess inf

y∈B(X(t;x),r)
a(y,∇u(y, t)) ·∆ε

h(t;x) .

Hence, for all δ > 0, there exists x = x(δ) ∈ B(X(t;x), δ) point of differentiability
of u, s.t.

∂tX(t;x) ·∆ε
h(t;x) ≥ a(x,∇u(x, t)) ·∆ε

h(t;x)− δ . (3.14)

Plugging (3.14) into (3.13) and using the definition (3.11) of Xε
h, we obtain for

n =
[
t
h

]
− 1,

1
2∂t|∆

ε
h(t;x)|2

≤ a(Xn+1(x),∇un+1
ε (Xn+1(x))) ·∆ε

h(t;x) − a(x,∇u(x, t)) ·∆ε
h(t;x) + δ

=
(
a(Xn+1(x),∇un+1

ε (Xn+1(x)))− a(x,∇un+1
ε (x))

)
·∆ε

h(t;x)

+
(
a(x,∇un+1

ε (x))− a(x,∇u(x, t))
)
·∆ε

h(t;x) + δ := I1 + I2 + δ .
(3.15)

In order to estimate I1, we decompose ∆ε
h(t;x) as

∆ε
h(t;x) = (Xε

h(t;x)−Xn+1(x)) + (Xn+1(x)− x) + (x−X(t;x)) ,
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we note A := sup
x∈Rd

sup
p∈B(0,C1)

|a(x, p)|, where C1 is given in (3.6), and we make use

of the (OSLh) condition (3.9) to get

I1 ≤ 2A |Xε
h(t;x)−Xn+1(x)|+ C |Xn+1(x)− x|2 + 2A δ

≤ 2A2 h+ C |Xn+1(x)− x|2 + 2Aδ .
(3.16)

From (3.16), (3.15) and the uniform boundedness of ∆ε
h(t;x) on every compact

subset of QT , we have obtained

1

2
∂t|∆ε

h(t;x)|2 ≤ 2A2 h+ C |Xn+1(x)− x|2 + 2Aδ + C|a(x,∇un+1
ε (x))

− a(x,∇u(x, t))|+ δ.

Using the convergence results obtained above and passing to the limit into the
previous inequality as h→ 0 and δ → 0, we get that

1

2
∂t|Y (t;x)−X(t;x)|2 ≤ C |Y (t;x)−X(t;x)|2 ,

i.e. Y (t; ·) = X(t; ·) in L2
loc(Rd) a.e. t ∈ [0, T ]. Finally, from the continuity of Y and

X we deduce that Y = X. By the uniqueness of X and the uniform boundedness
of Xε

h, we have that all the sequence Xε
h converge.

It remains to prove the convergence of mε
h. This can be obtained exactly as in

Proposition 3.1 in [26] and we give the proof for the reader convenience. By the
strong convergence of the trajectories Xε

h and the Lebesgue dominated convergence
theorem, the sequence 〈mε

h(t), φ〉 converges toward 〈m(t), φ〉 as h→ 0, for any φ ∈
C0

0 (Rd). By the uniform compactness at infinity of mε
h (property (v), Lemma 3.5), it

is sufficient to consider test functions φ ∈ C0
c (Rd). Then, (iii) follows by the Ascoli-

Arzela theorem since the time equicontinuity of Xε
h yields the time equicontinuity

of 〈mε
h(t), φ〉.

Proceeding as in (2.5), one can obtain the (OSLh) condition (3.9) for special a.
This is summarized in the following Corollary which is a straightforward conse-
quence of Theorem 3.6. It is worth noticing that the Hamiltonians (1.5) and (1.6)
enter in the framework of this Corollary.

Corollary 1. Assume the same hypothesis of Theorem 3.6, except the (OSLh)
condition (3.9). If in addition, a is differentiable w.r.t. p, satisfies a one sided
Lipschitz condition w.r.t. x locally uniformly in p and either Dpa(x, p) = I or
d = 1 and ∂pa(x, p) is nonnegative and upper bounded, then the same conclusions
as in Theorem 3.6 hold true.

Remark 4 (The explicit Euler scheme). The explicit Euler scheme

Xn+1 = Xn + h a(Xn,∇unε (Xn)) , (3.17)

does not provide a family of equicontinuous characteristics under the (OSLh) condi-
tion (3.9). This is a difficulty naturally intrinsic to the (OSL) condition that allows
discontinuity of compressive type only, while the map x 7→ Xn(x) given by (3.17)
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can be expansive. Indeed, we have

|Xn+1 − Y n+1|2 = (Xn+1 − Y n+1) · (Xn − Y n)

+ h (Xn+1 − Y n+1) · (a(Xn,∇unε (Xn))− a(Y n,∇unε (Y n)))

≤ 1

2
|Xn+1 − Y n+1|2 +

1

2
|Xn − Y n|2 + C h |Xn − Y n|2

+ h2|a(Xn,∇unε (Xn))− a(Y n,∇unε (Y n))|2 ,
i.e., with the same constant A as in Theorem 3.6,

|Xn+1 − Y n+1|2 ≤ (1 + 2Ch)|Xn − Y n|2 + 8A2 h2

and iterating over n : |Xn(x)−Xn(y)|2 ≤ e2C T
[
|x− y|2 + 8A2 T h

]
.

4. The fully discrete semi-lagrangian scheme. In this section we introduce a
finite element discretization of (3.3) and an approximation of (3.8) by a bounded
discrete measure, yielding a fully discrete scheme for (1.1)-(1.2)-(1.3).

For an arbitrarily fixed space step k > 0, we consider the regular uniform grid
of Rd given by X k := {xi = ik , i ∈ Zd} . Let T k = {Skj }j∈J k be an associated
collection of non-degenerate, pairwise disjoint and uniform simplices having as ver-
tices lattice points xi ∈ X k and covering Rd, (Skj are triangles in dimension 2 and
tetrahedra in dimension 3). We denote also by

W k = {w ∈ C(Rd) : w is linear on Skj , j ∈ J k},

the space of continuous and piecewise linear functions on T k. Then, each w ∈ W k

can be expressed as

w(x) =
∑
i∈Zd

βki (x)w(xi), (4.1)

for basis functions βki ∈ W k satisfying βki (xj) = δij for i, j ∈ Zd. It immediately
follows that any βki has compact support, 0 ≤ βki (x) ≤ 1,

∑
i∈Zd βki (x) = 1 and at

any x ∈ Rd at most (d+1) functions βki are non-zero. In the sequel, the interpolation
operator defined by (4.1) will be denoted Pk.

The fully discrete approximation of (3.3) based on the above space discretization
is naturally given by

unk (x) =
∑
i∈Zd βki (x)unk,i , n = 0, · · · , N ,

un+1
k,i = infξ∈Rd {unk (xi − ξh) + hH∗(xi, t

n, ξ)} , i ∈ Zd ,
(4.2)

where u0k,i = u0(xi). It is obvious that, thanks to the continuous piecewise linear

interpolation of the discrete approximation (unk,i)i∈Zd on the lattice at any time

step, the continuous function unk ∈ W k shares the properties of the semi-discrete
approximation un given in Lemma 3.2. Therefore, the equivalent of Lemma 3.2 for
the fully discrete approximation unk will be skipped here. On the other hand, the
semiconcavity of unk , given a semiconcave initial data u0, is not straightforward.
Therefore, we shall give the equivalent of Lemma 3.3 here and the proof in the
Appendix.

Lemma 4.1 (Semiconcavity). Let u0 ∈ W 1,∞(Rd) be semiconcave. Then, under
hypothesis (H1), (H′2), (H3), (H4) and (H5), unk is discretely semiconcave for all
n = 0, · · ·N , i.e. it verifies both

unk (x+xj)−2unk (x)+unk (x−xj) ≤ (Cu0
conc+T C

H∗

conc)|xj |2 , x ∈ Rd , j ∈ Zd , (4.3)
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and

unk (xj+y)−2unk (xj)+unk (xj−y) ≤ 2(Cu0
conc+T CH

∗

conc)|y|2+c k2 , y ∈ Rd , j ∈ Zd ,
(4.4)

and weakly semiconcave on Rd, i.e.

unk (x+y)−2unk (x)+unk (x−y) ≤ 2(Cu0
conc+T CH

∗

conc)|y|2 +O(k) , x, y ∈ Rd . (4.5)

Remark 5. We have chosen to consider a uniform grid X k, i.e. a uniform space
step k in any axial direction, only for simplicity of notations. It is obvious that
Lemma 4.1 still holds true if one chooses different space steps for each direction of
the grid, but with an additional non-degeneracy condition. On the other hand, it
seems difficult to obtain the discrete-semiconcavity of unk if the regular lattice X k
is replaced with a general non-degenerate triangulation of Rd. Moreover, this key
property strongly depends on the continuous piecewise linear interpolation (4.1).
Therefore, it is not possible to use a nonlinear interpolation operator in order to
preserve the semiconcavity of |x|2 and to obtain the semiconcavity of unk over Rd
from (4.3).

We now turn to the approximation of (3.8). A definition of space continuous
trajectories is still necessary. Therefore, take unk,ε = unk ∗ ρε and set{

Xn+1
k = Xn

k + h a(Xn+1
k ,∇un+1

k,ε (Xn+1
k )) , n = 0, · · · , N − 1,

X0
k = x , x ∈ Rd . (4.6)

Again, the existence of Xn+1
k given Xn

k is due to the Brouwer fixed point theorem

applied to the map y 7→ Xn
k + h a(y,∇un+1

k,ε (y)). However, the same argument as

in Lemma 3.4 giving the uniqueness of Xn+1
k cannot be reproduced here. Indeed,

due to the discrete semiconcavity of unk , unk,ε is only weak semiconcave in general,
i.e. unk,ε satisfies

Lemma 4.2. Under the hypothesis of Lemma 4.1, unk,ε is weakly semiconcave on Rd,
i.e.

unk,ε(x+y)−2unk,ε(x)+unk,ε(x−y) ≤ 4(Cu0
conc+T C

H∗

conc)|y|2+O

(
k2

ε

)
+O(k2) (4.7)

for x, y ∈ Rd.

The proof of Lemma 4.2 is given in the Appendix. As a consequence of that
property, we are only allowed to assume the following weak (OSLkh) condition,(
a(x,∇unk,ε(x))− a(y,∇unk,ε(y))

)
· (x− y) ≤ C ′ |x− y|2 +O

(
k2

ε2

)
, x, y ∈ Rd ,

(4.8)
for n = 0, · · · , N , a constant C ′ independent of h, k and ε.

Remark 6. In the reference case a(x, p) = p, the (OSLkh) condition (4.8) is satisfied.
Indeed, the weak semiconcavity property (4.7) implies

vnk,ε(x)− 2 vnk,ε

(
x+ y

2

)
+ vnk,ε(y) ≤ O

(
k2

ε

)
+O(k2) , (4.9)
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for vnk,ε(x) = unk,ε(x) − 2(Cu0
conc + T CH

∗

conc)|x|2 and any x, y ∈ Rd. Set λl = 2−l,

l ∈ N, zλl
= λly + (1− λl)x and applying iteratively (4.9), it follows easily that

(1− λl)vnk,ε(x)− vnk,ε(zλl
) + λl v

n
k,ε(y) ≤ (

l∑
i=1

2−i)(O(
k2

ε
) +O(k2))

= (1− λl)(O(
k2

ε
) +O(k2)) .

(4.10)

Then, by Taylor expansion we obtain from (4.10)

∇vnk,ε(x) · (y − x) +
λl
2

(y − x)TD2
xv
n
k,ε(ξ)(y − x)

+ (λ−1l − 1)(O(
k2

ε
) +O(k2)) ≥ vnk,ε(y)− vnk,ε(x) .

Exchanging the role of x and y, we have similarly as before

∇vnk,ε(y) · (x− y) +
λl
2

(x− y)TD2
xv
n
k,ε(η)(x− y)

+ (λ−1l − 1)(O(
k2

ε
) +O(k2)) ≥ vnk,ε(x)− vnk,ε(y) .

Finally, adding the last two inequalities, writing

D2
xv
n
k,ε(x) = D2

xu
n
k,ε(x)− 4(Cu0

conc + T CH
∗

conc)I ,

using the Lipschitz property of unk,ε and choosing l so that λl ≤ ε < λl−1, we have

the (OSLkh) condition (4.8).

Remark 7. If d = 1, we get a better estimate than (4.5), namely

unk (x+ y)− 2unk (x) + unk (x− y) ≤ 2 (Cu0
conc + T CH

∗

conc)|y|2 +O(k2) , x, y ∈ R ,
and the same for unk,ε by convolution.

In order to obtain the well posedeness of the implicit Euler scheme (4.6), we
assume

(A2) a locally Lipschitz w.r.t. p uniformly in x and one sided Lipschitz continuous
w.r.t. x locally uniformly in p.

Then, combining hypothesis (A2) with the Lipschitz property of unk , there exists a
constant C ′′, independent of h, k and ε, such that if h is small enough, i.e.

C ′′ h ε−1 < 1 , (4.11)

Xn+1
k is unique and the flow (n, x) 7→ Xn

k (x) is locally uniformly bounded and
Lipschitz continuous w.r.t. (x, n) ∈ Qh, uniformly in k.

Remark 8. Condition (4.8) gives us nonetheless the interesting property that the
characteristics Xn

k do not move much away from each other. Indeed, for Xn+1
k and

Y n+1
k defined by (4.6) and such that |Xn+1

k − Y n+1
k | ≥ k, proceeding as in (3.10),

we obtain
|Xn+1

k − Y n+1
k | ≤ (1 + C ′ h δ−1)|Xn

k − Y nk | .
Therefore,

|Xn+1
k − Y n+1

k | ≤ (1 + C ′ h δ−1) max{|Xn
k − Y nk |, k} ,

and iterating over n,

|Xn
k (x)−Xn

k (y)| ≤ exp(C ′ T δ−1) max{|x− y|, k} . (4.12)
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Next, let δi be the Dirac measure concentrated on the lattice points xi. Let
m0
k :=

∑
i∈Zd m0

k,i δi be an approximation of the initial measure m0 in the space

of discrete bounded measures, for theM1(Rd)w−∗ topology, conserving the mass
and compact at infinity uniformly w.r.t. k sufficiently small, i.e. for all ε > 0 there
exist R > 0 and K > 0 s.t.

|m0
k|(Rd \BR(0)) < ε ∀ k < K . (4.13)

For example, one can consider m0
k,i := m0(Aki ), with (Aki )i∈Zd a partition of Rd

such that xj ∈ Aki if i = j. Then, the mass is obviously conserved and (4.13) is
satisfied since for any Borel set B

|m0
k|(B) ≤ |m0|

(
∪i∈IkAki

)
, Ik = {i ∈ Zd : xi ∈ B} .

We define µnk as the image of m0
k by means of the flow Xn

k (·). As for mn, µnk is
well defined in M1(Rd), the map x 7→ Xn

k (x) being uniquely defined, continuous
and onto from Rd to Rd. µnk satisfies also all the properties (i)-(v) with respect to
m0
k, for any n. However, µnk is not a discrete bounded measure. Hence, following

the classical procedure of the finite element approximation, we observe first that to
determine µnk , it is sufficient to test the equation

〈µnk , φ〉 = 〈m0
k, φ(Xn

k (·))〉 , (4.14)

against any φ ∈ C0
c (Rd). Indeed, C0

c (Rd) is dense in C0
0 (Rd) and µnk tends to 0 at

infinity, uniformly in t and in k sufficiently small owing to (4.13). Moreover, since
any function in C0

c (Rd) can be approximated uniformly by a function w ∈W k with
compact support, (4.14) becomes for such test functions

〈µnk , w〉 =
∑
i∈Zd

∑
j∈Zd

m0
k,i β

k
j (Xn

k (xi))w(xj) =
∑
j∈Zd

mn
k,j w(xj) , (4.15)

with mn
k,j :=

∑
i∈Zd m0

k,i β
k
j (Xn

k (xi)). Let us observe that the last identity in (4.15)

holds since the series
∑
i∈Zd m0

k,i is absolutely convergent and for the same reason

mn
k,j is well defined. Finally, (4.15) leads naturally to the following definition of the

discrete bounded measure approximating µnk

mn
k :=

∑
i∈Zd

mn
k,i δi . (4.16)

It immediately follows that mn
k conserves the mass, i.e.∑

i∈Zd

mn
k,i =

∑
i∈Zd

m0
k,i = m0(Rd) , n = 0, . . . , N .

Furthermore, property (4.13) is also satisfied by mn
k uniformly in n = 0, . . . , N , by

the definition of the coefficients mn
k,i and (4.12).

With the above definitions, set Unk = (unk,i)i∈Zd and Mn
k = (mn

k,i)i∈Zd . The fully

discrete scheme (4.2), (4.16), reads{
Un+1
k = infξ∈Rd{Bk(ξ)Unk + hLn(ξ)} , n = 0, · · · , N − 1 ,

Mn
k = ΛnkM

0
k , n = 1, · · · , N ,

(4.17)

with

Bk(ξ) = (βki (xj − hξ))i,j∈Zd , Ln(ξ) = (H∗(xi, t
n, ξ))i∈Zd

Λnk = (βki (Xn
k (xj)))i,j∈Zd .
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It is worth noticing that Bk is a stochastic matrix, while Λnk is the transpose of
a stochastic matrix.

Defining again the following time piecewise constant approximations

uh,k(x, t) = u
[t/h]
k (x) , (x, t) ∈ QT , mε

h,k(t) = m
[t/h]
k , t ∈ [0, T ] , (4.18)

as well as uεh,k = uh,k ∗ρε and the time linear interpolated trajectories Xε
h,k exactly

as in (3.11), we can prove the convergence of the fully discrete scheme (4.17).

Theorem 4.3 (Convergence). Let u0 ∈ (W 1,∞ ∩ BUC)(Rd) be semiconcave and
m0 ∈M1(Rd). Assume hypothesis (H1), (H′2), (H3), (H4), (H5), (A1) and (A2).

Assume in addition that the (OSLkh) condition (4.8) is satisfied with h sufficiently
small such that C ′ h < 1 and that (4.11) is satisfied with ε = λh, (λ > C ′′). Then,
as h→ 0 and k

h2 → 0,

(i) uh,k → u in L∞(QT ) and ∇uεh,k(x, t) → ∇u(x, t) in any point (x, t) ∈ QT of

differentiability of u, where u is the unique viscosity solution of (1.1);
(ii) Xε

h,k converges locally uniformly in QT toward the unique Filippov character-

istic X associated to the vector field a(·,∇u);
(iii) mε

h,k ⇀m in C0([0, T ];M1(Rd)w−∗), where m is the unique measure solution

of (1.2).

Proof. We shall prove that there exists a constant C independent of h and k, such
that

‖unk − un‖L∞(Rd) ≤ C(n+ 1)k , n = 0, . . . , N . (4.19)

As a consequence, by the time regularity of u and by estimate (3.12), it follows that

‖uh,k(t)− u(t)‖L∞(Rd) ≤ C(h+
k

h
+ h1/2) , ∀ t ∈ [0, T ] .

Estimate (4.19) is obvious for n = 0, being u0k = Pku0 and u0 = u0. Let us
suppose that it holds true for a given n. Then, for any argument αn(xi) ∈ An(xi),
we have by (3.3), (3.4) and (4.2)

un+1
k,i − u

n+1(xi) ≤ unk (xi − hαn(xi))− un(xi − hαn(xi)) ≤ C(n+ 1)k .

Exchanging the roles of un+1
k,i and un+1(xi) we obtain

|un+1
k,i − u

n+1(xi)| ≤ C(n+ 1)k , ∀ i ∈ Zd ,

so that for any x ∈ Rd,

|un+1
k (x)− un+1(x)| ≤ |un+1(x)− Pkun+1(x)|+

∑
i∈Zd

βki (x)|un+1(xi)− un+1
k,i |

≤ Ck + C(n+ 1)k .

Since the convergence of ∇uεh,k can be proved exactly as in Theorem 3.6, from the

weak-semiconcavity of unk,ε, statement (i) is proved.

Next, from (4.19), we have the same estimate for the regularized approximation
unk,ε and unε , yielding

‖∇unk,ε −∇unε ‖L∞(Rd) ≤ C
k

εh
=
C

λ

k

h2
, n = 0, . . . , N . (4.20)
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Then, from the (OSLkh) condition (4.8), the (OSLh) condition (3.9) with constant
C ′ follows as k → 0, and the trajectories Xn can be defined as in (3.7), under the
assumption C ′h < 1. Moreover,

|Xn+1
k −Xn+1|2 = (Xn+1

k −Xn+1) · (Xn
k −Xn)

+ h (Xn+1
k −Xn+1) ·

(
a(Xn+1

k ,∇un+1
k,ε (Xn+1

k ))− a(Xn+1,∇un+1
ε (Xn+1))

)
≤ |Xn+1

k −Xn+1||Xn
k −Xn|

+ h (Xn+1
k −Xn+1) ·

(
a(Xn+1

k ,∇un+1
k,ε (Xn+1

k ))− a(Xn+1
k ,∇un+1

ε (Xn+1
k ))

)
+ h (Xn+1

k −Xn+1) ·
(
a(Xn+1

k ,∇un+1
ε (Xn+1

k ))− a(Xn+1,∇un+1
ε (Xn+1))

)
≤ |Xn+1

k −Xn+1||Xn
k −Xn|+ h (Lippa) |Xn+1

k −Xn+1|·
|∇un+1

k,ε (Xn+1
k )−∇un+1

ε (Xn+1
k )|+ C ′ h|Xn+1

k −Xn+1|2 ,

i.e. using (4.20),

|Xn+1
k −Xn+1| ≤ (1 + C ′ h δ−1)

(
|Xn

k −Xn|+ C̃
k

ε

)
,

for δ ∈ (0, 1) s.t. C ′ h ≤ 1− δ. Iterating over n, we obtain for any x ∈ Rd

|Xn
k (x)−Xn(x)| ≤ C̃ k

ε

n∑
i=1

(1 + C ′ h δ−1)i ≤ C k

εh
=
C

λ

k

h2
. (4.21)

Combining (4.21) with statement (ii) in Theorem 3.6, we have proved statement
(ii).

Finally, to obtain the convergence of mε
h,k towards m, it is enough to prove that,

as k , h → 0, (mε
h,k −mε

h) ⇀ 0 in C0([0, T ];M1(Rd)w − ∗). The latter combined

with statement (iii) in Theorem 3.6, gives us the claim.
Again, using the compactness at infinity of (mε

h,k−mε
h), uniformly in ε , h , t and

k sufficiently small, it is possible to consider only test functions φ ∈ C0
c (Rd). Then,

for n =
[
t
h

]
, we have

〈mε
h,k(t)−mε

h(t), φ〉 = 〈mn
k −mn, φ〉 = 〈mn

k −mn, φ− Pkφ〉+ 〈mn
k −mn, Pkφ〉

=
∑
i∈Zd

mn
k,i(φ(xi)− Pkφ(xi))− 〈m0, φ(Xn(·))− Pkφ(Xn(·))〉

+ 〈mn
k −mn, Pkφ〉 := I1 + I2 + I3 .

The term I1 is obviously equal to 0. The term I2 goes to 0 as k , h→ 0 by Lebesgue
dominated convergence theorem. Concerning I3, using (4.15), we have

I3 = 〈µnk , Pkφ〉 − 〈mn, Pkφ〉 = 〈m0
k, Pkφ(Xn

k (·))〉 − 〈m0, Pkφ(Xn(·))〉
= 〈m0

k, Pkφ(Xn
k (·))− Pkφ(Xn(·))〉+ 〈m0

k −m0, Pkφ(Xn(·))〉

=
∑
i∈Zd

m0
k,i (Pkφ(Xn

k (xi))− Pkφ(Xn(xi))) + 〈m0
k −m0, Pkφ(Xn(·))〉 := I ′3 + I ′′3 .

By (4.21), the uniform continuity of Pkφ and the uniform boundedness of m0
k,

I ′3 → 0 as k , h → 0. The same holds true for I ′′3 since m0
k ⇀ m0 in M1(Rd)w − ∗

as k → 0. To conclude, it is sufficient to prove that the sequence 〈mε
h,k(t) −

mε
h(t), φ〉, converging to 0, is also equicontinuous on [0, T ], exactly as at the end of
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Theorem 3.6. The latter is a consequence of the time equicontinuity of 〈mε
h(t), φ〉

(see Theorem 3.6) and of the identity

〈mε
h,k(t1)−mε

h,k(t2), φ〉 = 〈mn1

k −m
n2

k , Pkφ〉 = 〈µn1

k − µ
n2

k , Pkφ〉

=
∑
i∈Zd

m0
k,i (Pkφ(Xn1

k (xi))− Pkφ(Xn2

k (xi))) ,

where n1 =
[
t1
h

]
and n2 =

[
t2
h

]
. Then, using the Lipschitz continuity of the trajec-

tory Xn
k w.r.t. n, the uniform continuity of Pkφ and the uniform boundedness of

m0
k, we obtain the time equicontinuity of 〈mε

h,k(t), φ〉 and the claim.

Appendix.

Proof of Lemma 3.1. (Properties of H∗). If H satisfies (H4)-(i), we need only to
prove that H∗(·, ·, 0) ∈ L∞(QT ), the other claims being straightforward. Then,
let us define A = {p ∈ Rd : H(x, t, p) ≤ M , ∀ (x, t) ∈ QT }, where M ≡
supQT

|H(x, t, 0)|. A is a non empty set of Rd and it is bounded since H growths
linearly for |p| → +∞ and

H(x, t, p)

|p|
≤ M

|p|
, ∀ p ∈ A .

Thus, there exists R > 0 such that A ⊂ B(0, R) and

H∗(x, t, 0) = sup
p∈Rd

{−H(x, t, p)} = max
p∈B(0,R)

{−H(x, t, p)} ∈ L∞(QT ) .

On the other end, if H satisfies (H4)-(ii), the uniform superlinearity of H∗ is a
direct consequence. To prove (3.5), let us denote A(ξ) = {p ∈ Rd : p·ξ−H(x, t, p) ≥
−M , ∀ (x, t) ∈ QT }. Then, A(ξ) is again non empty (0 ∈ A(ξ) for all ξ) and
bounded whenever |ξ| ≤ r since

H(x, t, p)

|p|
≤ p · ξ
|p|

+
M

|p|
≤ r +

M

|p|
, ∀ p ∈ A ,

uniformly in (x, t) ∈ QT . Finally, it follows immediately that H∗ ∈ L∞(QT ×
B(0, r)) and

|H∗(x, t, ξ)−H∗(y, t, ξ)| ≤ η(1+R)|x−y| , ∀ x, y ∈ Rd ,∀ t ∈ [0, T ] ,∀ ξ ∈ B(0, r) .

Proof of Lemma 4.1. (Semiconcavity of unk ). We follow here [10],[14] and [21]. The
discrete semiconcavity (4.3) for x = xi ∈ X k can be proved by induction. Indeed,
this is true for u0k by the semiconcavity of u0. Let αnk,i be one argument of the

infimum in (4.2). Then,

un+1
k,i+j − 2un+1

k,i + un+1
k,i−j ≤ u

n
k (xi+j − hαnk,i)− 2unk (xi − hαnk,i)

+ unk (xi−j − hαnk,i) + hCH
∗

conc|xj |2 .
(4.22)

Next, since the point (xi − hαnk,i) belongs to a simplex Skj , it can be written as a

convex combination of its vertices, i.e. (xi−hαnk,i) =
∑
l λlxl, where λl ∈ [0, 1] and
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l λl = 1. By the regularity of the lattice, the same holds true for (xi±j−hαnk,i) =∑
l λlxl±j . Finally, being unk piecewise linear on T k, (4.22) becomes

un+1
k,i+j − 2un+1

k,i + un+1
k,i−j ≤

∑
l

λlu
n
k (xl+j)− 2

∑
l

λlu
n
k (xl) +

∑
l

λlu
n
k (xl−j)

+ hCH
∗

conc|xj |2 ,

and (4.3) is proved on the lattice X k. For an arbitrary x ∈ Rd, we have again as
before x =

∑
l λlxl and x± xj =

∑
l λlxl±j . Hence,

unk (x+ xj)− 2unk (x) + unk (x− xj) =
∑
l

λl[u
n
k,l+j − 2unk,l + unk,l−j ] ,

and (4.3) follows.
Property (4.4) is a direct consequence of (4.3). Indeed, for any arbitrary y ∈ Rd,

xj + y belongs to a simplex Skl so that xj + y =
∑
l λl xl. Then, y =

∑
l λl xl−j and

xj − y =
∑
l λl x2j−l. Again, by the piecewise linearity of unk , we have

unk (xj + y)− 2unk (xj) + unk (xj − y) =
∑
l

λl[u
n
k (xl)− 2unk (xj) + unk (x2j−l) ]

=
∑
l

λl[u
n
k (xj + xl−j)− 2unk (xj) + unk (xj − xl−j) ]

≤ (Cu0
conc + T CH

∗

conc)
∑
l

λl|xl−j |2.

Furthermore, using the estimate

|xl−j |2 ≤ 2|xl−j − y|2 + 2|y|2 ≤ C k2 + 2|y|2 ,

where C depends only on the dimension d, (4.4) follows.
Finally, owing to the Lipschitz property of unk , (4.3) or (4.4) as well gives us (4.5).

Proof of Lemma 4.2. By convolution, we first obtain from (4.3) the same estimate
for unk,ε, i.e.

unk,ε(x+ xj)− 2unk,ε(x) + unk,ε(x− xj) ≤ (Cu0
conc + T CH

∗

conc)|xj |2 , x ∈ Rd , j ∈ Zd.
(4.23)

Let us now prove that if xi , xj ∈ X k are two arbitrary grid points, then

unk,ε(xi)−2unk,ε

(
xi + xj

2

)
+unk,ε(xj) ≤ 2 (Cu0

conc+T CH
∗

conc)|xi − xj |2 +C
k2

ε
+C k2.

(4.24)

Indeed, if
xi+xj

2 is a grid point, (4.24) is an immediate consequence of (4.23). Next,

assume that
xi+xj

2 is not a grid point. Then,
xi+xj

2 belongs to a simplex and it is

the midpoint of two vertices of that simplex, say
xi+xj

2 = a+b
2 . Since (a − xi) and

(b− xi) are grid points, from (4.23), we see that

unk,ε(xi)− 2unk,ε(a) + unk,ε(2a− xi) ≤ (Cu0
conc + T CH

∗

conc)|a− xi|2

and

unk,ε(xi)− 2unk,ε(b) + unk,ε(2b− xi) ≤ (Cu0
conc + T CH

∗

conc)|b− xi|2 .
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Summing the previous two estimates yields

unk,ε(xi)− (unk,ε(a) + unk,ε(b)) +
1

2
(unk,ε(2a− xi) + unk,ε(2b− xi))

≤ 1

2
(Cu0

conc + T CH
∗

conc)(|a− xi|2 + |b− xi|2) .

(4.25)

Furthermore, by Taylor expansions, the Lipschitz bound on unk,ε and |2a−xi−xj | =
|a− b| = O(k), we deduce that∣∣∣∣unk,ε(a) + unk,ε(b)− 2unk,ε

(
a+ b

2

)∣∣∣∣ ≤ C k2 ‖D2unk,ε‖L∞(Rd) ≤ C
k2

ε
, (4.26)

and similarly ∣∣unk,ε(2a− xi) + unk,ε(2b− xi)− 2unk,ε(xj)
∣∣ ≤ C k2

ε
. (4.27)

Plugging (4.26) and (4.27) into (4.25) yields (4.24), because 1
2 (|a−xi|2+ |b−xi|2) ≤

2|xi − xj |2 + Ck2.
Finally, let x and y be two arbitrary points. Then, x and y can be expressed as

the convex combinations x =
∑
i λixi and y =

∑
j µjyj , where {xi}i and {yj}j are

the vertices of two simplices. Applying (4.24) to xi and yj , we get

unk,ε(xi)− 2unk,ε

(
xi + yj

2

)
+unk,ε(yj) ≤ 2(Cu0

conc +T CH
∗

conc)|xi − yj |2 +C
k2

ε
+C k2.

(4.28)
Multiplying (4.28) by λiµj , summing w.r.t. i and j, using |xi − yj |2 ≤ 2|x− y|2 +
O(k2) and the following estimates obtained by Taylor expansion again∣∣∣∣∣∑

i

λiu
n
k,ε(xi)− unk,ε(x)

∣∣∣∣∣ ≤ C k2

ε
,

∣∣∣∣∣∣
∑
j

µju
n
k,ε(yj)− unk,ε(y)

∣∣∣∣∣∣ ≤ C k2

ε
,

and ∣∣∣∣∣∣
∑
i,j

λiµju
n
k,ε

(
xi + yj

2

)
− unk,ε

(
x+ y

2

)∣∣∣∣∣∣ ≤ C k2

ε
,

we obtain

unk,ε(x)− 2unk,ε

(
x+ y

2

)
+ unk,ε(y) ≤ 4(Cu0

conc + T CH
∗

conc)|x− y|2 + C
k2

ε
+ C k2 ,

which yields the desired result (4.7).
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[29] T. Strömberg, Well-posedness for the system of the Hamilton-Jacobi and the continuity equa-

tions, J. Evol. Equ., 7 (2007), 669–700.

Received January 2013; revised October 2013.

E-mail address: achdou@ljll.univ-paris-diderot.fr

E-mail address: camilli@dmmm.uniroma1.it

E-mail address: lucilla.corrias@univ-evry.fr

http://www.ams.org/mathscinet-getitem?mr=MR0052996&return=pdf
http://dx.doi.org/10.1103/PhysRev.84.1232
http://www.ams.org/mathscinet-getitem?mr=MR1618393&return=pdf
http://dx.doi.org/10.1016/S0362-546X(97)00536-1
http://dx.doi.org/10.1016/S0362-546X(97)00536-1
http://www.ams.org/mathscinet-getitem?mr=MR1001813&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2041617&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2406566&return=pdf
http://dx.doi.org/10.1142/9789812793133
http://www.ams.org/mathscinet-getitem?mr=MR1403558&return=pdf
http://dx.doi.org/10.1137/S0036142993260208
http://dx.doi.org/10.1137/S0036142993260208
http://www.ams.org/mathscinet-getitem?mr=MR1265013&return=pdf
http://dx.doi.org/10.1090/S0025-5718-1995-1265013-5
http://dx.doi.org/10.1090/S0025-5718-1995-1265013-5
http://www.ams.org/mathscinet-getitem?mr=MR1118699&return=pdf
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
http://dx.doi.org/10.1090/S0273-0979-1992-00266-5
http://www.ams.org/mathscinet-getitem?mr=MR0690039&return=pdf
http://dx.doi.org/10.1090/S0002-9947-1983-0690039-8
http://www.ams.org/mathscinet-getitem?mr=MR2769993&return=pdf
http://dx.doi.org/10.1137/100797515
http://dx.doi.org/10.1137/100797515
http://www.ams.org/mathscinet-getitem?mr=MR1880118&return=pdf
http://dx.doi.org/10.1006/jcph.2001.6954
http://dx.doi.org/10.1006/jcph.2001.6954
http://dx.doi.org/10.1137/1.9781611973051
http://dx.doi.org/10.1137/1.9781611973051
http://www.ams.org/mathscinet-getitem?mr=MR2128794&return=pdf
http://dx.doi.org/10.3934/dcds.2005.13.103
http://www.ams.org/mathscinet-getitem?mr=MR1670896&return=pdf
http://dx.doi.org/10.1090/S0025-5718-00-01185-6
http://dx.doi.org/10.1090/S0025-5718-00-01185-6
http://www.ams.org/mathscinet-getitem?mr=MR1888836&return=pdf
http://dx.doi.org/10.1007/s002110100309
http://dx.doi.org/10.1007/s002110100309
http://www.ams.org/mathscinet-getitem?mr=MR2295621&return=pdf
http://dx.doi.org/10.1007/s11537-007-0657-8
http://www.ams.org/mathscinet-getitem?mr=MR1980267&return=pdf
http://dx.doi.org/10.1016/S0021-9991(03)00100-1
http://dx.doi.org/10.1016/S0021-9991(03)00100-1
http://www.ams.org/mathscinet-getitem?mr=MR1815732&return=pdf
http://dx.doi.org/10.1007/PL00005430
http://dx.doi.org/10.1007/PL00005430
http://www.ams.org/mathscinet-getitem?mr=MR1619184&return=pdf
http://dx.doi.org/10.1023/A:1019191114493
http://www.ams.org/mathscinet-getitem?mr=MR2680544&return=pdf
http://dx.doi.org/10.1137/100788458
http://dx.doi.org/10.1137/100788458
http://www.ams.org/mathscinet-getitem?mr=MR2826756&return=pdf
http://dx.doi.org/10.3934/nhm.2011.6.485
http://dx.doi.org/10.3934/nhm.2011.6.485
http://www.ams.org/mathscinet-getitem?mr=MR1708110&return=pdf
http://dx.doi.org/10.1080/03605309908821484
http://www.ams.org/mathscinet-getitem?mr=MR1434148&return=pdf
http://dx.doi.org/10.1080/03605309708821265
http://dx.doi.org/10.1080/03605309708821265
http://www.ams.org/mathscinet-getitem?mr=MR0274683&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR0803085&return=pdf
http://dx.doi.org/10.1016/0022-0396(85)90136-6
http://www.ams.org/mathscinet-getitem?mr=MR2369675&return=pdf
http://dx.doi.org/10.1007/s00028-007-0327-6
http://dx.doi.org/10.1007/s00028-007-0327-6
mailto:achdou@ljll.univ-paris-diderot.fr
mailto:camilli@dmmm.uniroma1.it
mailto:lucilla.corrias@univ-evry.fr

	1. Introduction
	2. Preliminaries: The viscosity-measure solutions
	3. The semi-lagrangian scheme
	3.1. The semi-lagrangian scheme for the (HJ) equation
	3.2. The semi-lagrangian scheme for the (CE) equation
	3.3. The convergence

	4. The fully discrete semi-lagrangian scheme
	Appendix
	Acknowledgments
	REFERENCES

