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Stability analysis of coupled torsional vibration and pressure in oilwell drillstring
system
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To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous 
but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the 
drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure 
change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-
posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equa-tion (PDE-ODE) coupled system, 
and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping 
term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system 
equilibrium is shown to be exponentially stable.

1. Introduction

In recent years an extensive literature was devoted to

modelling and control of drilling systems (Bailey &

Finnie, 1960; Fridman, Mondié, & Saldivar, 2010; Liu,

Vlajic, Long, Meng, and Balachandran, 2014a; Navarro

& Corts, 2007; Rouchon, 1998; Sagert, Di Meglio, Krstic,

andRouchon, 2013; Saldivar, Boussaada,Mounier, Iulian,

& Niculescu, 2015; Saldivar, Mondie, Loiseau, & Rasvan,

2011; Toumi, Beji, Mlayeh, & Abichou, 2016a). Despite

the work of Bailey and Finnie of Shell Development

Company which is the first developed experimental and

analytical study on axial and torsional drilling vibra-

tions (Bailey & Finnie, 1960), nowadays many problems

remains open for drilling systems (more details in Jansen,

1993). In fact, the petroleum and gas extraction indus-

try consists in the creation of a borehole several hundred

metres deep in the ground until an oil and gas reservoir

is reached. The main components of drillstring are: drill

collars, drill pipe, and the rock-cutting tool referred to as

drill-bit rotates around its vertical axis. The rotary table

gives the necessary torque to put the system into a rotary

motion at the top of the drillstring. There exits threemain

types of instabilities (more details in Jansen, 1993): axial

(bit-bouncing phenomenon) leading to pressure oscilla-

tions in the mud, lateral (whirling phenomenon) due to

an imbalanced drillstring, and torsional vibrations (stick-

slip oscillations).

The torsional dynamic of the drillstring is modelled

by a damped wave equation (Saldivar et al., 2011; Sagert

et al., 2013). The stick-slip phenomenon is a common

type of instability for drilling, which is an undesirable

limit cycle of the drill string velocity yielding potentially

significant damages on oil production facilities. Many

authors applied different strategies to suppress the tor-

sional vibrations. In Sagert et al. (2013), the authors

proposed a control law to avoid undesirable torsional

oscillations of the drillstring in oilwell drilling systems

using flatness approaches and backstepping techniques.

We even refer to Saldivar et al. (2011) inwhich the authors

proposed the energy function to find a control law that

ensures the energy dissipation during the drilling opera-

tion. The range of stability for the coupled axial-torsional

motions in the presence of state-dependent delay as well

as to investigate the effectiveness of a feedback controller

to suppress torsional vibrations can be found in Liu,

Vlajic, Long, Meng, & Balachandran (2014b). In Toumi,

Mlayeh, Beji, and Abichou (2016b), the authors intro-

duced a control law to avoid the torsional vibrations of

the drillstring in oilwell drilling systems using Lyapunov

theory and backstepping techniques, leading to stability

results. Also, an original model considering time-delay

and stick-slip effects has been presented in Liu, Vlajic,

Long, and Meng (2013).

During drilling operations, the torsional dynamics of

the drillstring depend on a system of fluid mud which

should be injected for the operation. It is called Man-

aged Pressure Drilling (MPD) (Stamnes, Zhou, Kaasa,

& Aamo, 2008). The principal reason for pressure con-

trol is above the pore pressure of the reservoir or the
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collapse pressure of the bore hole, and below the fractur-

ing pressure of the bore hole. Numerous researchers were

interested in stabilising the MPD with different meth-

ods (Kaasa, Stamnes, Aamo, & Imsland, 2012; Zoghlami,

Latrach, & Beji, 2015). In Zoghlami et al. (2015) the

authors proposed a finite dimensional model to all fluid

phenomena between the main pump till the fluid outlet

through the annulus. The derivation of an MPD is mod-

elled by the next fundamental equations (Merrit, 1967):

fluid viscosity, equation of state, conservation of mass,

conservation of momentum, and conservation of energy.

Hence, the MPD is governed by five ordinary differential

equations (Toumi et al., 2016a).

The key contribution in this work is to model and to

study the MPD coupled with the torsional drilling sys-

tem in oil-gas industry. First, we prove thewell-posedness

of the controlled coupled torsional vibration and pres-

sure proposed model. In a next step, we show the stabil-

ity of the coupled system. To achieve our objectives, we

use the operator theory (Pazy, 2012), the backstepping

techniques and the Lyapunov theory (Kokotovic, 1992;

Skjetne & Fossen, 2004).

The paper is structured as follows: in Section 2, we

recall the PDE as damped wave equation including the

adequate boundary conditions that permits to describe

the torsional vibration problem. Based on the mass bal-

ance method and the momentum balance equation, we

present an MPDmodel that describes the flow behaviour

in the drillstring and annulus. In Section 3, the controlled

coupled torsional vibration and pressure is proved to be

well-posed. The control objectives which is defined as a

stabilising problem of the controlled coupled torsional-

vibration and pressure at the equilibrium is presented

in Section 4. In Section 5, using d’Alembert transforma-

tion the drillstring distributed parameter model is trans-

formed to a neutral type retarded equation. The control

laws obtained in this section are shown to have a key effect

in the reduction of stick-slip oscillations at the bottom

extremity. We provide simulation results and some con-

cluding remarks in Section 6.

2. Managing coupled torsional vibration and

pressure

2.1 Torsional vibration characteristics

The torsional vibration phenomenon, also known as the

drillstring stick-slip oscillations, constitutes the major

source of failures in drilling operations. It is characterised

by two phases: stick phases, during which the rotation

stops completely, and slip phases, during which the angu-

lar velocity of the tool increases up to two times the nom-

inal angular velocity. These both phenomena occur when

a section of the rotating drillstring is momentarily caught

by friction against the borehole, and then releases.

The rotary drilling system is known in oilwell drilling

processes, and the dynamic of the torsional variable

ϑ(t, ς) along the drill pipe is described by Sagert et al.

(2013) and Saldivar et al. (2011):

GJ
∂2ϑ

∂ς2
(t, ς ) − I

∂2ϑ

∂t2
(t, ς ) − ρ

∂ϑ

∂t
(t, ς ) = 0,

ς ∈ (0, L), t ∈ (0, +∞) (1)

An appropriate choice of boundary conditions allows

characterisation of torsional waves propagation along the

drillstring. This is introduced in the work of Saldivar et al.

(2011).

� At the top (ς = 0)

GJ
∂ϑ

∂ς
(t, 0) = ca

(

∂ϑ

∂t
(t, 0) − �(t )

)

(2)

� At the bottom (ς = L)

GJ
∂ϑ

∂ς
(t, L) + Ib

∂2ϑ

∂t2
(t, L) = −T

(

∂ϑ

∂t
(t, L)

)

(3)

whereL is the drillstring length, ca the sliding torque coef-

ficient, I the inertia at the bottom, G the shear modulus,

Ib inertia of the drill pipe, J the geometrical moment of

inertia, ρ the drillstring damping, and� the control input

which is also the angular velocity due to the rotary table.

The extremity (ς = L) is subject to a torque on the bit

(Navarro and Corts, 2007; Saldivar et al., 2011)

T

(

∂ϑ

∂t
(t, L)

)

= cb
∂ϑ

∂t
(t, L)

+WobRbμ

(

∂ϑ

∂t
(t, L)

)

sgn

(

∂ϑ

∂t
(t, L)

)

which is a function of the bit velocity such that Rb > 0

is the bit radius and Wob > 0 the weight on the bit. The

terms cb
∂ϑ
∂t

(t, L) and WobRbμ( ∂ϑ
∂t

(t, L)) sgn( ∂ϑ
∂t

(t, L))

represent the viscous damping torque at the bit and

the dry friction torque modelling the bit-rock contact,

respectively. The bit dry friction coefficient is governed

as (Saldivar et al., 2011)

μ

(

∂ϑ

∂t
(t, L)

)

= μcb + (μsb − μcb)e
− γb

υb
| ∂ϑ

∂t
(t,L)|

such that μsb � μcb � (0, 1) are the static and Coulomb

friction coefficients, 0< γ b < 1 is a constant defining the

velocity decrease rate, and the constant velocity υb > 0 is

2
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introduced in order to have appropriate units. Using the

following change of variable (Toumi et al., 2016b):

u(t, x) = ϑ

(

L

√

I

GJ
t, L(1 − x)

)

, x ∈ (0, 1),

we obtain

∂ttu(t, x) = ∂xxu(t, x) − λ∂tu(t, x), x ∈ (0, 1) (4)

∂tu(t, 1) = L

√

I

GJ
�(t ) −

√
I GJ

ca
ux(t, 1) (5)

∂ttu(t, 0) = a∂xu(t, 0) + aF(∂tu(t, 0)) (6)

where λ = ρL
√

1
IGJ

,a = LI
Ib

,

F
(

∂tu(t, 0)
)

= −
L

GJ
T

(

1

L

√

GJ

I
∂tu(t, 0)

)

,

= −cb

√

1

GJI
∂tu(t, 0) −

√

1

GJI
WobRb

×μ

(

1

L

√

GJ

I
∂tu(t, 0)

)

sgn(∂tu(t, 0))

in which

μ

(

1

L

√

GJ

I
∂tu(t, 0)

)

= μcb + (μsb − μcb)e
− γb

υb
| 1
L

√
GJ
I

∂tu(t,0)|

2.2 Mud and slider dynamics

During drilling opertaions, down hole cuttings need to

be transported out of the bore hole. This done by using

a mud circulation system. On board the rig, tanks filled

with drilling mud feed the principal mud pump which

pumps the drilling fluid from the top drive and into the

drillstring. Then, Drill-mud is pumped down the inside

of drill pipe through the drillstring and fate through the

choke. The drill mud transports cuttings out of the well

bore and helps maintain the desired pressure in the well

bore (see Figure 1).

The dynamic of the drillstring stability depends on a

system of fluid which should be injected to bring cuttings

out of the well bore (more discussion about mud in Skalle

(2011)) and amplify the torsional vibrations phenomena.

In drilling process, drilling mud is pumped down the

drillstring and flows through the drill bit in the bottom of

the well. Therefore, the mud flows up the annulus carry-

ing cuttings out of the well. Then, the pressure of fluid in

Figure . Drill mud through the drilling system.

the downhole can be so important and damage whole the

system. To suppress fracturing collapse or influx of flu-

ids surrounding the well, it is important to integrate the

dynamic of the pressure in this study: PDE-ODE control

problem. Hence, the model of the mud part is described

by a finite dimensional system (Toumi et al., 2016a)

Mq̇bit(t ) = P1(t ) − P3(t )

−R(qbit) + g(ρ1L − ρ3y(t ))

V1

β1

Ṗ1(t ) = q1(t ) − qbit(t )

(V0 + sy(t ))Ṗ3(t ) = β3

[

qbit(t ) + q2(t ) − q3(t ) −
dV3

dt

]

ẏ(t ) = v(t )

v̇(t ) = τ3(t )

in which M is the integrated density per cross section,

y(t) � [0, L] is the penetration depth, V3 = V0 + sy(t)

is the crown’s volume such that dV3

dt
= sv(t ) in which v is

the penetration rate, q1 is the pump flow at the surface, q2
describes the amount of flow due to bit-rock interaction, s

is the annular surface, q3 is the flow out of the crown,V1 is

the inside the drillstring volume, β1 and β3 are the effec-

tive bulk moduli, qbit is the flow rate from the tool, P1 is

the pumppressure,P3 is the pressurewhen y= L, ρ1 is the

drillingmud density in the drillstring, and ρ3 is the annu-

lus fluid density. The total pressure drop due to friction

on the bit is represented by R(qbit) (Mahdianfar, Pavlov, &

Aamo, 2013). Let us introduce q1 = τ 2 as a control input

in flow. Hence, (τ 2, τ 3) is the stabilising control vector

of the mud pressure and the slider position and velocity.
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From the next variable change z(t ) = 1
V0+sy(t )

, the system

given below is written as

q̇bit(t ) = c1P1(t ) − c1P3(t ) − c1R(qbit) + h(z)

Ṗ1(t ) = cτ2(t ) − cqbit(t )

Ṗ3(t ) = β3

[

qbit(t ) + q2(t ) − q3(t )
]

z(t ) − β3z(t )sv(t )

ż(t ) = −sz2(t )v(t )

v̇(t ) = τ3(t )

where c1 = 1
M
, c = β1

V1
, h(z) = c1g(ρ1L − ρ3

s
( 1
z(t )

−V0)).

2.3 Coupled torsional vibration and pressure

The flow q2 in rotary drilling system is written in this

form q2 = ρ3sr∂tϑ(L
√

I
GJ
t, L) = ǫ∂tu(t, 0), where r is

the bit annular radius and ǫ = ρ3sr
L

√

GJ
I
. Then, we obtain

the following coupled PDE-ODE equations:

∂ttu(t, x) = ∂xxu(t, x) − λ∂tu(t, x)

∂tu(t, 1) = L

√

I

GJ
�(t ) −

√
I GJ

ca
ux(t, 1)

∂ttu(t, 0) = a∂xu(t, 0) + aF(∂tu(t, 0))

q̇bit (t ) = c1P1(t ) − c1P3(t ) − c1R(qbit) + h(z)

Ṗ1(t ) = cτ2(t ) − cqbit(t )

Ṗ3(t ) = β3(qbit(t ) − q3)z(t )

+β3ǫ∂tu(t, 0)z(t ) − β3z(t )sv(t )

ż(t ) = −sz2(t )v(t )

v̇(t ) = τ3(t ).

The main purpose contribution is the study of both tor-

sional and drilling mud occuring along a rotary oil-

well drilling system. The model considered consits of a

dampedwave equation (PDE) coupled to an ordinary dif-

ferential equation (ODE). Then, we are going to study the

well-posedness and the stability of the PDE-ODE coupled

equations obtained in which (�, τ 2, τ 3) as control inputs

from, the injected fluid dynamic τ 2, the table rotary speed

� and the slider velocity τ 3.

3. Well-posedness problem

The aim of this section is to prove the existence and

uniqueness of the controlled coupled torsional-vibration

and pressure using Lumer-Phillips’ theorem and opera-

tor theory (see Coron, 2007; Pazy, 2012). Let T > 0, the

solution of the Cauchy problem is written in this form

∂ttu(t, x) = ∂xxu(t, x) − λ∂tu(t, x) (7)

∂tu(t, 1) = L

√

I

GJ
�(t ) −

√
I GJ

ca
ux(t, 1) (8)

∂ttu(t, 0) = a∂xu(t, 0) + aF(∂tu(t, 0)) (9)

q̇bit(t ) = c1P1(t ) − c1P3(t ) − c1R(qbit) + h(z)

Ṗ1(t ) = cτ2(t ) − cqbit(t )

Ṗ3(t ) = β3(qbit(t ) − q3)z(t )

+β3ǫ∂tu(t, 0)z(t ) − β3z(t )sv(t )

ż(t ) = −sz2(t )v(t )

v̇(t ) = τ3(t ) (10)

u(0, x) = u0(x), ut (0, x) = u1(x), qbit(0) = q0bit ,

P1(0) = P0
1 , P3(0) = P0

3 , z(0) = z0, v(0) = v
0 (11)

where x � (0, 1), t � (0, T), u0 � K � {u � H1(0,

1), u0(0) = 0}, u1 � L2(0, 1). q0
bit

, P0
1 , P

0
3 , z

0, v0 are the

imposed values to the solution at t= 0. Let us consider the

vector spaceKwhich is equippedwith the scalar product

< u1(t, x), u2(t, x) >K=
∫ 1

0

u1x(t, x)u
2
x(t, x)dx (12)

It is obvious thatK is aHilbert space. Let us introduceZ=
(u(t, x), ut(t, x), u(t, 1), ut(t, 0), qbit(t), P1(t), P3(t), z(t),

v(t))T. Equations (7)–(11) can be compactly written as

Ż(t ) = AZ(t ) + H(Z(t )) + f (t ) (13)

Z(0) = Z0 (14)

where

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0 0 0 0 0

∂xx −λ 0 0 0 0 0 0 0

k1 0 0 0 0 0 0 0 0

k2 0 0 0 0 0 0 0 0

0 0 0 0 0 c1 −c1 0 0

0 0 0 0 −c 0 0 0 0

0 0 0 0 0 0 0 0 −β3q3
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,
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H(Z(t )) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

0

aF(ut (t, 0))

−c1R(qbit) + h(z)

0

β3qbitz − β3szv + β3ǫzut (t, 0)

−sz2v

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, and

f (t ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0

0

L
√

I
GJ

�(t )

0

0

cτ2
0

0

τ3

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

for which k1 = GJ
L

< δ′
1(x), . >, k2 = −a < δ′

0(x), . >

such that δ denotes the Dirac function, 〈δ′
1(x), u(t, x)〉 =

−ux(t, 1) and 〈δ′
0(x), u(t, x)〉 = −ux(t, 0).

Our purpose in this section is to prove the existence

and uniqueness of system (13)–(14). First, let us consider

the problem (13)–(14) with H(Z) = 0 and f(t) = 0, we

have the next theorem.

Theorem 3.1: The operator A generates a C0 semigroup

eAt, t � 0 of contractions on H.

Proof: Let X = {Z : u ∈ K, ut ∈ L2([0, 1]), u(t, 1) ∈ R,

ut (t, 0) ∈ R, qbit ∈ R, P1 ∈ R, P3 ∈ R, z ∈ R, v ∈ R}.
To show that A generates a C0 semigroup of contrac-

tions on X, it is equivalent to prove that the operator A is

dissipative and (I − A) is surjective. Let us introduce

Z1 = (u1(t, x), u1t (t, x), u
1(t, 1), u1t (t, 0), q

1
bit(t ),

×P1
1 (t ), P1

3 (t ), z1(t ), v1(t ))T

and

Z2 = (u2(t, x), u2t (t, x), u
2(t, 1), u2t (t, 0), q

2
bit(t ),

× P2
1 (t ), P2

3 (t ), z2(t ), v2(t ))T

The vector space X is equipped with the inner product

〈

Z1,Z2〉X = 〈u1, u2〉K + 〈u1t , u2t 〉L2[0,1]
+〈u1(t, 1), u2(t, 1)〉R+〈u1t (t, 0), u2t (t, 0)〉R
+〈q1bit, q2bit(t )〉R + 〈P1

1 (t ), P2
1 (t )〉R

+〈P1
3 (t ), P2

3 (t )〉R + 〈z11(t ), z21(t )
〉

R

Wedenote by ‖.‖ the norm inX associatedwith this scalar

product.

Let A: D(A)�X → X be the linear operator defined by

D(A) = {Z ∈ X, u ∈ H2(0, 1), ut ∈ K, ux(t, 1) =
ux(t, 0) = 0, u(t, 1) ∈ R, ut (t, 0) ∈ R, qbit ∈ R, P1 ∈
R, P3 ∈ R, z ∈ R, v ∈ R}.

We have

A

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u(t, x)

ut (t, x)

u(t, 1)

ut (t, 0)

q1
bit

(t )

P1
1 (t )

P1
3 (t )

z1(t )

v
1(t )

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

ut (t, x)

∂xxu(t, x)−λut (t, x)

−GJ
L
ux(t, 1)

aux(t, 0)

c1P1(t ) − c1P3
−cqbit

−β3q3(t )z(t )

0

0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, ∀Z ∈ D(A)

The operator A satisfies

< AZ,Z >X = −λ

∫ 1

0

u2t dx + (c1 − c)P1(t )qbit

−c1P3qbit − β3q3(t )z(t )P3

Physically c1 � c, then<AZ, Z> X � 0. This implies that

A is dissipative.

It is obviously to verify that �m = (m1, m2, m3, m4,

m5, m6, m7, m8, m9) � X, there exists w = (w1, w2, w3,

w4, w5, w6, w7, w8, w9) � D(A) such that w − Aw = m.

Then, D(A) is dense in X and A is closed. Hence, using

the Lumer-Phillips theorem, A is the infinitesimal gen-

erator of a strongly continuous group of isometries S(t),

t � [0, +�), on X. �

Remark 3.1: In this case, for everyZ0 �D(A), the cauchy

problem

Ż(t ) = AZ(t ), Z(0) = Z0

has a unique solution

Z ∈ C1([0,T],X )
⋂

C0([0,T],D(A))

Now, we are going to prove the existence and unique-

ness of system (13)–(14) such that H(Z) and f(t) are dif-

ferent from zero.

Theorem 3.2: Let f � L1([0, T], X) and Z0 � D(A), then

the problem Ż(t ) = AZ(t ) + H(Z) + f (t ) has a unique

solution

Z ∈ C1([0,T],X )
⋂

C0([0,T],D(A))

given by:

Z(t ) = S(t )Z(0) +
∫ t

0

S(t − s)(H(Z(s)) + f (s))ds

To prove Theorem 3.2, we need the following lemmas:
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Lemma 3.1: The nonlinear operator H(Z) is dissipative

and locally Lipschitz.

Proof: As at first, it is obvious that H(Z) is locally Lips-

chitz. Second, we will prove that H(Z) is dissipative. We

have

〈H(Z(t ))),Z(t )〉X = aF(ut (t, 0))ut (t, 0) − c1R(qbit)qbit

+h(z)qbit + β3qbitzP3 − β3szvP3

+β3ǫzut (t, 0)P3 − sz3v

= F(ut (t, 0))ut (t, 0) − qbit(c1R(qbit)

−h(z) − β3zP3) − sz3v

−β3zP3(sv − ǫut (t, 0)) (15)

Recall that the nonlinear function F(	tu(t, 0)) is written

in this form

F
(

∂tu(t, 0)
)

= −
L

GJ
T

(

1

L

√

GJ

I
∂tu(t, 0)

)

,

= −cb

√

1

GJI
∂tu(t, 0)

−
√

1

GJI
WobRbμ(∂tu(t, 0))

×sgn

(

1

L

√

GJ

I
∂tu(t, 0)

)

where μ is given by

μ

(

1

L

√

GJ

I
∂tu(t, 0)

)

= μcb + (μsb − μcb)e
− γb

υb
| 1
L

√
GJ
I

∂tu(t,0)|

Since μsb � μcb

〈F(∂tu(t, 0)), ∂tu(t, 0)〉R = F(ut (t, 0))ut (t, 0)

= −cb

√

1

GJI
(∂tu(t, 0))2

−
L

GJ
WobRb

(

μcb + (μsb − μcb)e
− γb

υb
| 1
L

√
GJ
I

∂tu(t,0)|
)

× sgn

(

1

L

√

GJ

I
∂tu(t, 0)

)

∂tu(t, 0)

Hence, 〈F(∂tu(t, 0)), ∂tu(t, 0)〉R ≤ 0.

As v � [vmin , vmax ], choosing v such that svmin

ǫ
≥

ut (t, 0) guarantees the negativity of the last term in

(15). Further, let us consider the pressure at the annu-

lus such that P3 ≤ 1
β3z

[c1R(qbit) − h(z)]. Accordingly to

these assumptions, for a minimum slider velocity and a

known behaviour of the annulus pressure P3 with respect

to the flow qbit and the slider position z(t), we may guar-

antee that the operator H(Z) is dissipative. Moreover,

H(Z) is locally Lipschitz. �

Lemma 3.2: For any function f � L1([0, T], X), and any

initial condition Z0 � D(A), the problem (13)–(14) has at

most one solution in C1([0,T],X )
⋂

C0([0,T],D(A)).

Proof: Suppose Z1 and Z2 are two solutions of (13)–

(14) in the class C1([0,T],X )
⋂

C0([0,T],D(A)).

Then the difference Z = Z1 − Z2 is an element of

C1([0,T],X )
⋂

C0([0,T],D(A)) which satisfies the

next system

{

Ż(t ) = AZ(t ) + H(Z(t ))

Z(0) = 0
(16)

Since A and H(Z) are dissipative, we get

〈Ż(t ),Z(t )〉X = 〈AZ(t ),Z(t )〉X + 〈H(Z(t )),Z(t )〉X ≤ 0

Then

1

2

d

dt
‖ Z(t ) ‖X≤ 0 ⇒‖ Z(t ) ‖X= 0

Hence, problem (16) has a unique solution Z(t) =
0 for every Z0 � D(A), thus proves that Z1 =
Z2 and shows that (13)–(14) has a solution in

C1([0,T],X )
⋂

C0([0,T],D(A)), then this one is

unique. �

Proof of Theorem 3.2: By applying the two Lemmas

given above and from results given in Theorem 4.2

in Slemrod (1989), Nguyen and Egeland (2004), Pazy

(2012), Coron (2007), it is easy to prove that our system

(13)–(14) has a unique solution. �

4. Stability analysis of the controlled coupled

system

Let τ1(t ) = caL
GJ

(

�(t ) − 1
L

√

GJ
I
∂tu(t, 1)

)

. In order to

make easy the stability study of the coupled torsional

vibration and pressure system, we linearise the bound-

ary condition (6) towards the next reference trajectory (as

presented in Sagert et al., 2013)

ū(t, x) =
λwr

2
x2 − F(wr)x + wrt + u0

where wr = ∂t ū(t, x). Then, we find the next system:

∂ttu(t, x) = ∂xxu(t, x) − λ∂tu(t, x) (17)

∂xu(t, 1) = τ1(t ) (18)
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∂ttu(t, 0) = a∂xu(t, 0) + ab∂tu(t, 0) (19)

q̇bit(t ) = c1P1(t ) − c1P3(t ) − c1R(qbit) + h(z)

Ṗ1(t ) = cτ2(t ) − cqbit(t )

Ṗ3(t ) = β3(qbit(t ) − q3)z(t ) + β3ǫ∂tu(t, 0)z(t )

−β3z(t )sv(t )

ż(t ) = −sz2(t )v(t )

v̇(t ) = τ3(t ) (20)

such that b = ∂F
∂w

(wr) and w(t) = 	tu(t, 1).

In this subsection, we establish the stability of the con-

trolled coupled torsional vibration and pressure model.

Theorem 4.1: Consider system (17)–(20), and the follow-

ing three control laws

τ1(t ) =
1

∂tu(t, 1)

[

(1 − a)∂tu(t, 0)∂xu(t, 0) − ab∂tu(t, 0)2

− P3
(

β3(qbit(t ) − q3(t ))z(t ) + ǫβ3∂tu(t, 0)z(t )
)

− qbit(−c1P3(t ) − c1R(qbit) + h(z))

]

τ2(t ) =
c − c1

c
qbit(t )

τ3(t ) = β3P3(t )z(t )s + sz2(t )

(

z(t ) −
ρ3

ρ3V0 + ρ1sL

)

Then system (17)–(20) is stable at the equilibrium

(0, 0, 0, 0, ρ3

ρ3V0+ρ1sL
, 0).

Proof: In order to prove the controlled coupled system

stability, let us introduce the next Lyapunov function:

L =
1

2

[

∫ 1

0

(

(∂xu)2 + (∂tu)2
)

dx + (∂tu(t, 0))2 + cqq
2
bit

+cpP
2
1 + cp3P

2
3 + cz

(

z −
ρ3

ρ3V0 + ρ1sL

)2

+ cvv
2

]

The constants cq, cp, cp3, cz, and cv are introduced for the

homogeneity of units and in the following we assume that

cq = cp = cp3 = cz = cv = 1. Hence, differentiating L with

respect to time and using the boundary conditions (18)–

(19), we find

L̇(t ) =
∫ 1

0

∂txu∂xu + ∂tu∂ttudx + ∂tu(t, 0)∂ttu(t, 0)

+ q̇bitqbit + Ṗ1P1 + Ṗ3P3

+ ż

(

z −
ρ3

ρ3V0 + ρ1sL

)

+ v̇v

=
∫ 1

0

∂txu∂xu + ∂tu(∂xxu − λ∂tu)dx

+ ∂tu(t, 0)∂ttu(t, 0)

+ q̇bitqbit + Ṗ1P1 + Ṗ3P3

+ ż

(

z −
ρ3

ρ3V0 + ρ1sL

)

+ v̇v

= − λ

∫ 1

0

(∂tu)2dx + ∂tu(t, 1)τ1(t )

− (1 − a)∂tu(t, 0)∂xu(t, 0) + ab∂tu(t, 0)2

+ qbit(t )(c1P1(t ) − c1P3(t ) − c1R(qbit)

+ h(z)) + P1(t )(cτ2(t ) − cqbit(t ))

+ P3(t )(β3(qbit(t ) − q3(t ))z(t )

+ ǫβ3∂tu(t, 0)z(t ) − β3z(t )sv(t ))

− sz2(t )

(

z(t )−
ρ3

ρ3V0+ρ1sL

)

v(t ))+v(t )τ3(t )

= −λ

∫ 1

0

(∂tu)2dx + ∂tu(t, 1)τ1(t )

− (1 − a)∂tu(t, 0)∂xu(t, 0) + ab∂tu(t, 0)2

+ qbit(t )(−c1P3(t ) − c1R(qbit) + h(z))

+ P1(t )(c1qbit(t ) + cτ2(t ) − cqbit(t ))

+ P3(t )(β3(qbit(t )−q3(t ))z(t )+ǫβ3∂tu(t, 0)z(t ))

+ v(t )

(

−β3P3z(t )s−sz2(t )

(

z(t )−
ρ3

ρ3V0+ρ1sL

)

+ τ3(t )

)

In order to ensure the stability of system (17)–(20), the

following three control laws are chosen:

τ1(t ) =
1

∂tu(t, 1)
[(1−a)∂tu(t, 0)∂xu(t, 0)−ab∂tu(t, 0)2

− P3(β3(qbit(t ) − q3)z(t ) + ǫβ3∂tu(t, 0)z(t ))

− qbit(−c1P3(t ) − c1R(qbit) + h(z))]

τ2(t ) =
(c − c1)

c
qbit(t )

τ3(t ) = β3P3z(t )s + sz2(t )

(

z(t ) −
ρ3

ρ3V0 + ρ1sL

)

Then, we find L̇(t ) ≤ −λ
∫ 1

0
(∂tu)2dx. Hence L̇(t ) ≤ 0.

This establish the stability of the controlled system

(17)–(20). �

5. Neutral-type, delay-coupled torsional

vibration and pressure

This section shows the importance of the backstepping

techniques, and the Lyapunov theory, providing a use-

ful analysis for the stability of the oilwell drilling system
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at the bottom extremity. We assume that the damping

λ (given in (17)) is zero. We use the d’Alembert’s trans-

formation to the distributed parameter model (17)–(19)

to a difference equation model (neutral-type delay sys-

tem). u(t, x) = η(σ ) + ν(γ ) is the general solution of

the unidimensional wave equation (17) when λ = 0, with

σ = t + x, γ = t − x. Defining

α̇(t ) = ∂tu(t, 0) = η̇(t ) + ν̇(t ), (21)

as the angular velocity at the drill pipe bottom extremity.

Introducing this into the boundary conditions (18)–(19),

this yields

η̇(t + 1) − ν̇(t − 1) = τ4(t ) (22)

η̈(t ) + ν̈(t ) = a(η̇(t ) − ν̇(t )) + ab(η̇(t ) + ν̇(t ) (23)

We can write (21) in this form

η̇(t ) = α̇(t ) − ν̇(t ) (24)

Plugging (24) into (23), we get

ν̇(t ) =
1 + b

2
α̇(t ) −

1

2a
α̈(t ) (25)

Plugging (25) into (24), we get

η̇(t ) =
1 − b

2
α̇(t ) +

1

2a
α̈(t ) (26)

Introducing both the η and ν expressions in (22), we get

a neutral-type, time-delay drillstring model:

1 − b

2
α̇(t + 1) +

1

2a
α̈(t + 1) −

1 + b

2
α̇(t − 1)

+
1

2a
α̈(t − 1) = τ4(t )

Then, we may define the following

α̈(t ) = a(b− 1)α̇(t ) + a(1 + b)α̇(t − 2)

− α̈(t − 2) + 2aτ4(t − 1)

Now, the coupledPDE-ODE stability is analysed through

α̈(t ) = a(b− 1)α̇(t ) + a(1 + b)α̇(t − 2)

− α̈(t − 2) + 2aτ4(t − 1)

q̇bit(t ) = c1P1(t ) − c1P3(t ) − c1R(qbit) + h(z)

Ṗ1(t ) = cτ5(t ) − cqbit(t )

Ṗ3(t ) = β3(qbit(t ) − q3(t ))z(t )

+ ǫβ3Ḃ(t )z(t ) − β3z(t )sv(t )

ż(t ) = −sz2(t )v(t )

v̇(t ) = τ6(t ).

Let us introduce x1 = α, x2 = α̇. Then, we have:

ẋ1(t ) = x2(t ) (27)

ẋ2(t ) = a(b− 1)x2(t ) + a(1 + b)x2(t − 2)

− ẋ2(t − 2) + 2aτ4(t − 1) (28)

q̇bit (t ) = c1P1(t ) − c1P3(t ) − c1R(qbit) + h(z) (29)

Ṗ1(t ) = cτ5(t ) − cqbit(t ) (30)

Ṗ3(t ) = β3(qbit(t ) − q3(t ))z(t )

+ ǫβ3x2(t )z(t ) − β3z(t )sv(t ) (31)

ż(t ) = −sz2(t )v(t ) (32)

v̇(t ) = τ6(t ) (33)

It is easy to verify that (0, 0, 0, 0, 0, ρ3

ρ3V0+ρ1sL
, 0) is an

equilibrium of (27)–(33).

In order to avoid a large increase of pressure which

may lead to a plugging phenomenon, the coupled tor-

sional vibration and pressure stabilising problem is sum-

marized in controlling simultaneously the downhole

pressure, the slider’s linear velocity, and the bottomhole

angular velocity.

Theorem 5.1: Let consider system (27)–(33) and the three

control laws given by:

τ4(t − 1) =
1

2a

[

− x1(t ) − ǫβ3P3(t )z(t ) + aζ + ζ̇

− abx2(t ) − a(1 + b)x2(t − 2) + ẋ2(t − 2)
]

(34)

τ5(t ) = −
1

c
(x2(t ) − ζ1(qbit, P3, z))

+
c − c1

c
qbit(t ) +

1

c
ζ̇1(qbit, P3, z).

τ6(t ) = sz2(t )

(

z(t ) −
ρ3

ρ3V0 + ρ1sL

)

+ ζ2 − v(t ) + ζ̇2

in which for x = 0, under

u(t, 0) = u(0, 0) − x1(0) − ǫβ3P3(t )z(t ) + B,

ζ (x1, qbit, P3, z, v ) =
1

(x1(t ) + ǫβ3P3(t )z(t ))

[

− s0x
2
1(t )

− s1P
2
3 (t ) − P3(t )(β3(qbit(t )

− q3(t ))z(t ) − β3z(t )sv(t ))
]
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ζ1(qbit, P3, z) = P3(t ) −
(

1

c1
qbit(t ) − R(qbit)

)

−
h(z)

c1

ζ2(z) =
(z(t )− ρ3

ρ3V0+ρ1sL
)

sz2(t )
such that ζ (0, 0, 0, ρ3

ρ3V0+ρ1sL
, 0) =

0, ζ1(0, 0,
ρ3

ρ3V0+ρ1sL
) = 0, ζ2(

ρ3

ρ3V0+ρ1sL
) = 0, B is a con-

stant different from zero, and si is a constant positif for

i = 0, 1. Then (27)–(33) is exponentially stable.

Proof: To prove this theorem, we use the backstepping

techniques. As at first, let us consider the next sub-system

ẋ1(t ) = x2(t ) (35)

Ṗ3(t ) = β3(qbit(t ) − q3(t ))z(t )

+ ǫβ3x2(t )z(t ) − β3z(t )sv(t ) (36)

ẋ2(t ) = a(b− 1)x2(t ) + a(1 + b)x2(t − 2)

− ẋ2(t − 2) + 2aτ4(t − 1) (37)

We define ζ (x1, qbit, P3, z, v) as a virtual control law

for system (35)–(36). We introduce the Lyapunov func-

tionW = 1
2
(x21 + P2

3 ). We differentiateW with respect to

time,

Ẇ = ẋ1x1 + Ṗ3P3

≤ −s0x
2
1 − s1P

2
3 + s0x

2
1 + (x1 + ǫβ3P3z)x2 + s1P

2
3

+ P3(β3(qbit − q3)z − β3zsv )

Hence, we select the virtual control law

ζ =
1

(x1(t ) + ǫβ3P3(t )z(t ))

×
[

− s0x
2
1(t ) − s1P

2
3 (t ) − P3(t )(β3(qbit(t )

− q3(t ))z(t ) − β3z(t )sv(t ))
]

Now, introducing the virtual state variable χ = x2 − ζ in

(35)–(37), we get

ẋ1 = (χ + ζ )

Ṗ3(t ) = β3(qbit(t ) − q3(t ))z(t )

+ ǫβ3(χ + ζ )z(t ) − β3z(t )sv(t )

χ̇ (t ) = −ζ̇ + a(b− 1)(χ + ζ ) + a(1 + b)x2(t − 2)

− ẋ2(t − 2) + 2aτ4(t − 1)

Here, we propose the next Lyapunov functionW1 = W +
1
2
χ2 where the time derivative is as:

Ẇ1 = Ẇ + χχ̇

≤ −min(s0, s1)S − aχ2 + χ
(

x1 + ǫβ3P3z

− ζ̇ + abχ + a(b− 1)ζ + a(1 + b)x2(t − 2)

− ẋ2(t − 2) + 2aτ4(t − 1)
)

We select the actual control law given by

τ4(t − 1) =
1

2a

[

− β3ǫP3z − a(b− 1)ζ − ab(x2 − ζ )

+ ζ̇ − a(1 + b)x2(t − 2) + ẋ2(t − 2) − x1
]

Then we get Ẇ1 ≤ −min(s0, s1, a)W1.

Second, we consider the second sub-system

q̇bit(t ) = c1P1(t ) − c1P3(t ) − c1R(qbit) + h(z) (38)

Ṗ1(t ) = cτ5(t ) − cqbit(t ) (39)

As aforementioned, we consider the next equation

q̇bit(t ) = c1P1(t ) − c1P3(t ) − c1R(qbit) + h(z)

and introduce a virtual control law which might

ζ1(qbit, P3, z) = P3 − ( 1
c1
qbit − R(qbit)) − h(z)

c1
in which

ζ1(0, 0,
ρ3

ρ3V0+ρ1sL
) = 0. Then we get q̇bit = −qbit. We

introduce the next Lyapunov functionW2 = 1
2
q2
bit
, then

Ẇ2 = −2W2. This proves that (38) is exponentially stable

at the equilibrium qbit = 0.

Now, let us consider the next virtual state variable

χ1(t) = P1(t) − ζ 1(qbit, P3, z). Then we obtain

q̇bit(t ) = c1χ1(t ) − qbit(t )

χ̇1(t ) = −ζ̇1(qbit, P3, z) + cτ5(t ) − cqbit(t )

We choose the following Lyapunov function

W3 = W2 + 1
2
χ2
1 = 1

2
(q2bit + χ2

1 ). The time derivative

ofW3 is given by

Ẇ3 = q̇bitqbit + χ̇1χ1

= −q2bit − χ2
1 + χ1(χ1 + (c1 − c)qbit

− ζ̇1(qbit, P3, z) + cτ5)

Hence, tacking

τ5(t ) = −
1

c
χ1(t ) +

c − c1

c
qbit(t ) +

1

c
ζ̇1(qbit, P3, z)

This proves that Ẇ3 = −2W3. Then system (38)–(39) is

exponentially stable at the equilibrium (qbit, P1) = (0, 0).

Finally, let us consider the last sub-system

ż(t ) = −sz2(t )v(t ) (40)

v̇(t ) = τ6(t ) (41)

We define a virtual control law for equation system (40),

say ζ2(z) =
(z(t )− ρ3

ρ3V0+ρ1sL
)

sz2(t )
in which ζ2(

ρ3

ρ3V0+ρ1sL
) = 0.
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We introduce χ2 = v − ζ 2 be a virtual state variable.

Then we find

ż(t ) = −sz2(t )χ2(t ) − sz2(t )ζ2(z)

χ̇2(t ) = τ6(t ) − ζ̇2(z)

We consider the next Lyapunov function

W4(P3, z) =
1

2

(

χ2
2 +

(

z −
ρ3

ρ3V0 + ρ1sL

)2
)

We differentiateW4 with respect to time. Then we get

Ẇ4 = ż

(

z −
ρ3

ρ3V0 + ρ1sL

)

+ χ̇2χ2

= −sz2
(

z −
ρ3

ρ3V0 + ρ1sL

)

ζ2(z) + χ2(−ζ̇2 + τ6)

≤ −
(

z −
ρ3

ρ3V0 + ρ1sL

)2

− χ2
2

+ χ2

(

−sz2(z −
ρ3

ρ3V0 + ρ1sL
) + χ2 − ζ̇2 + τ6

)

Now, we select the actual control law

τ6 = sz2
(

z −
ρ3

ρ3V0 + ρ1sL

)

− χ2 + ζ̇2

= sz2
(

z −
ρ3

ρ3V0 + ρ1sL

)

+ ζ2 − v + ζ̇2

Then Ẇ4 ≤ −2W4.

Figure . Velocity in the bottom extremity of the drillstring system. (a) Time evolution of the state x(t)
 u(t, ). (b) Time evolution of the
state x(t)= 	tu(t, ).

Figure . Control laws. (a) Schema of the control law τ (t− ). (b) Schema of the control law τ (t).
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Figure . Time evolution of the states. (a) Time evolution of the state z(t). (b) Time evolution of the state qbit(t).

Table . Different physical parameters.

Variable Value Description

L  m Drillstring length
I . kg.m Inertia per unit length

Ib  kg.m Inertia at the drillstring bottom

J ..− m Geometrical moment of inertia

ca  Nm.s.rad− Sliding torque coefficient

G .. N.m− Shear modulus

ρ = ρ  kg.m− Density of the drilling

M  kg.m− Integrated density
β = β ,  bar Effective bulk modulus,

V  m Volume of the drillstring

g . m.s− Gravity

s π × (.) m Surface
cd .

Here, let us introduce the global Lyapunov function

L1 =
1

2

(

x21 + P2
3 + (x2 − ζ )2 + q2bit + (P1 − ζ1)

2

+ (v − ζ2)
2 +

(

z −
ρ3

ρ3V0 + ρ1sL

)2
)

Then

L̇1 ≤ −2(W1 +W3 +W4) ≤ −2L1

This proves that system (27)–(33) is exponentially stable

at the equilibrium (0, 0, 0, 0, 0, ρ3

ρ3V0+ρ1sL
, 0). �

6. Numerical simulation

Now, we are able to test the effectiveness of the proposed

control schemes for the neutral-type, delay-coupled tor-

sional vibration and pressure. The numerical values cor-

responding to the torsional were taken from the work

of Sagert et al. (2013), Saldivar et al. (2015), Challamel

(2000), and the ones corresponding to the mud part from

that ofMahdianfar et al. (2013). The next physical param-

eters are used in simulation:

The signification of each system physical parameter is

addressed in Table 1. In Toumi et al. (2016a), the flow rate

due to the mud leaving through an open annulus is given

by (the balance momentum Bernoulli’s law):

q3 = cds

√

2

ρ3

(

Pdh − P3 +
ρ3g

s

(

1

z
−V0

))

The bit displacement and characteristics permit to con-

struct the bottomhole pressurePdh from the annulus pres-

sure P3 (Zoghlami et al., 2015)

Pdh = P3 −
ρ3g

s

(

1

z
−V0

)

+ Faq
2
bit

with Fa denotes the friction factor in the annulus.

According to practical experience, two strategies to

suppress the torsional vibration phenomenon are: the

reduction of the weight on the bit and the increase of

the velocity at the surface. From Figures 2–4, all the sim-

ulations imply an adequate convergence of the system

variables to the equilibrium. As an analysis example, a

limit cycle stability is reduced by means of the control

law τ 4(t − 1) in (34) depending on the angular velocity
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at the bottom extremity (Figure 2). Also, under the pro-

posed control inputs τ 4, 6 (Figure 3), the controlled cou-

pled system avoids an excessive increase (saturation) in

pressures. One notes that z(t) converges to the equilib-

rium ρ3

ρ3V0+ρ1sL
= 2.10−3m−3 (Figure 4(a)).

7. Conclusion

In this paper, by coupling the mud flow dynamics and the

torsional vibration in oilwell drilling operation, we have

shown that the mud evacuation control is crucial. This is

well known as a MPD which is commonly studied in the

literature but with respect to the torsional variables, and

no interaction phenomenon with fluid was investigated.

We use the D’Alembert transformation to obtain a cou-

pled neutral-type delay system that includes the pressure

behaviour in order to simplify the analysis and the simu-

lations of the drillstring. From the Lyapunov theory and

the backstepping approach, control inputs are designed in

rotary’s velocity, the injected fluid flow, and the force act-

ing on the drillstring’s displacement. In the future work,

automatic drilling applications performances are to be

studied, and some variables such that the downhole pres-

sure need to be estimated.
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