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Abstract—This paper addresses the formation control prob-
lem of a multi-agent system (MAS) under the leader-follower
scheme. Thus, the followers must to keep a desired relative
distance with respect to the leader trajectory against known and
constant communication delay. Thus, in order to ensured the
coordinated behavior and formation control against parametric
uncertainties and external disturbances, a decentralized control
approach based on a state predictor and a Second Order Sliding
Mode control is proposed. Sufficient conditions are provided
to guarantee the stability of the closed-loop system. Finally,
simulation results illustrate the effectiveness of the proposed
method.

I. INTRODUCTION

Motion control in MAS has been trendy topic in the last
years, due that there are tasks that can be performed more
efficiently by a MAS instead of by a single agent. A MAS
is a set of autonomous units that interact with each other
in a common environment under cooperative or coordinated
schemes. In coordinated schemes there are only intercon-
nections from the leader or dominant system to rest, while
in cooperative schemes there are interconnections among all
the agents, such that they have influence on the combined
dynamics [7]. Thus, an example of MAS is a group of
mobile robots, that interact in order to perform tasks such
as surveillance, exploration, or to move large objects, where
it is required to keep a desired formation with respect to
global1 reference given by the leader robot. A formation is
a set of coordinates that defines a geometric structure in a
coordinate space. Thus, leader-follower formation objective
is such that followers form a desired formation given by
its own desired relative distances with respect to the leader
trajectory, where the leader is independent of their followers.
This objective can be addressed by a decentralized approach
where only local information from the neighbors is required
[5]. Several approaches based on decentralized control have

1”global” is used in this paper to refer to variables that involve to the
MAS and are denoted by typeface in bold, whereas ”local” is used to refer
to variables related to each particular agent.

been proposed in order to tackle the formation control pro-
blem. For example in [1] a leader-followers based formation
controller is presented for a group of non disturbed unicycle
robots. In this control approach it is assumed that the lineariza-
tion is possible, this being a disadvantage against parametric
uncertainties. On the other hand, traditional sliding modes
control is used in many applications including formation
and consensus control, as it enables accuracy tracking and
robustness to disturbances and plant parameter variations.
In [3] an adaptive sliding mode formation controller based
on leader-follower approach is considered for a six degree
of freedom (DOF) nonlinear systems. Under this approach,
the upper bounds of uncertainties are estimated via neural
networks to compensate the effects of unknown disturbances
and modeling errors. Nevertheless, the main disadvantage in
these works is chattering phenomenon. Approaches based on
high-order sliding modes technique represent an interesting
alternative, because chattering phenomenon is attenuated. In
[8], the finite time consensus problem of disturbed second-
order MAS is addressed through Super Twisting Algorithm
(STA) for the disturbance-rejection. However, it should be
pointed out that in practical multi-agent system network time
delay is unavoidable and is a factor that causes instability in
MAS, and should be taken into account in consensus controller
design. The communication delay is related to the information
flow between agents [9]. In [11] a consensus protocol based
on Smith Predictor, finite spectrum assignment method and the
Arstein reduction is proposed with the aim to avoid the effect
of large time delay. It should be mentioned that this control
approach is not robust to model uncertainties and external
disturbances.

In this work, the leader-follower formation control problem
for a group of unicycle mobile robots with communication
delays is addressed. In order to solve this problem, a decen-
tralized formation control based on recent predictive method
[13] and STA is proposed. Thus, the delay is compensated
and robustness against parametric uncertainties and external



disturbances is ensured. This paper is organized as follows:
in Section II, a system description and mathematical model
of a mobile robot are provided. Thus, a MAS model based
on leader-follower approach is introduced. The synthesis of
control scheme is derived in Section III, where a state predictor
is presented in order to compensate delay effects. Then, a
Super-Twisting Control design for driving trajectories of the
mobile robots is addressed. Simulation results are given in
Section IV with the aim to illustrate the feasibility of the
proposed scheme. Finally, conclusions of this work are drawn.

II. SYSTEM DESCRIPTION

In this section, a system description is presented. In the first
paragraph of this section, the mathematical model for a single
agent is described. Thus, a global representation of MAS under
leader-follower scheme is derived in the second paragraph.

A. Unicycle mobile robot model

The unicycle mobile robot represent an attractive combi-
nation of a simple wheel configuration with a high traction
through pneumatic tires (see Fig. 1). The mathematical model
without external disturbances [12] of the i-th robot for i =
1, 2, . . . , N ; is defined as

Ẋi = fi(Xi) + g(Xi)ui, Yi = hi(Xi), (1)

where Xi = [xi, yi, vi, ωi, θi]
T ∈ R5 denotes the state vector.

The input vector is denoted by ui = [ Fi τi ]T ∈ R2 and
the terms Fi, τi correspond to the translation force and to
the torque applied to guide the robot in the cartesian space,
respectively. The position of the i-th robot in the cartesian
space is a measurable function denoted by the hand position
hi(Xi) = [xi yi]

T ∈ R2 [12] and corresponds to system
output. The functions fi(Xi), gi(Xi) are smooth vector fields
defined as

fi(Xi) =


vicθi − liωisθi

visθi + liωicθi

0
0
ωi

 , gi(Xi) =


0 0
0 0
1
mi

0

0 1
Ii

0 0

 ,

(2)
where the terms θi denoted the orientation, vi the linear speed,
and ωi the angular speed; s(·) and c(·) correspond to sine
and cosine functions. Moreover, mi correspond to the mass
and Ii to the moment of inertia. In addition, it is considered
that the center of mass coincide with the geometric center.
On the other hand, system (1) has relative degree vector ρ =
(2, 2). Then, directed relationship between the output Yi and
input ui is generated after the 2nd derivative of the output as
Ÿi = L2

fi
hi + LgiLfihiui, where Lfihi is the Lie derivative

of hi with respect to fi for i = 1, . . . , N ; Thus, there exists a
diffeomorphism Φ : R5 → R5 defined as

Φ(Xi) =


h1i(Xi)
h2i(Xi)

Lfh1i(Xi)
Lfh2i(Xi)

ηi(t)

 =


xi

yi
vicθi − liωisθi

visθi + liωicθi

θi

 , (3)

so that Xi = Φ−1([ζi(t), ηi(t)]), for ζi(t) =
[ζ1i(t), ζ2i(t), ζ3i(t), ζ4i(t)]

T ∈ R4 and ηi(t) ∈ R. Note that,
from (3) the vector [ζ1i(t), ζ2i(t)]

T = [xi, yi]
T is the hand

position and its derivative as [ζ3i(t), ζ4i(t)]
T = [ẋi, ẏi]

T .
Thus, if the trajectories of (1) are perturbed by a bounded
external input disturbance di(t), the system can be written in
transformated coordinates as

ζ̇i(t) = Aζi(t) +B [αi(ζi, ηi) + βi(ζi, ηi)(ui(t) + di(t))] ,
(4)

η̇i(t) = φi(ζi, ηi), (5)

Yi(t) = Cζi(t), i = 1, 2, ..., N ; (6)

where, the matrix A, B, and C are given by

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , B =


0 0
0 0
1 0
0 1

 ,

C =

[
1 0 0 0
0 1 0 0

]
,

(7)

from (3), the matrix αi(ζi, ηi) ∈ R2, βi(ζi, ηi) ∈ R2×2 and
φi(ζi, ηi) ∈ R for i = 1, 2, . . . , N ; are continuous functions
where ”(t)” it is omitted of its argument, and are defined as

αi(Φ(Xi)) =

[
−viωisθi − liω

2
i cθi

viωicθi − liω
2
i sθi

]
,

βi(Φ(Xi)) =

[
1
mi
cθi − li

Ii
sθi

1
mi
sθi

li
Ii
cθi

]
,

(8)

φi(Φ(Xi)) = − 1
Li
ẋisθi +

1
Li
ẏicθi . (9)

The unknown bounded function βi(ζi, ηi) = β̂i(ζi, ηi) +
∆βi(ζi, ηi) is invertible and positive definite for all ζi(t) and
t ∈ [0,∞). The term β̂i(ζi, ηi) = LGi

LFi
hi is the nominal

part known of βi(ζi, ηi), where the functions Fi ∈ R5,
Gi ∈ R5×2 are smooth vector fields (similar to (2)) with
the nominal value of mass m̂i and moment of inertia Îi. The
function ∆βi(ζ, ηi) ∈ R2×2 is a bounded perturbation with the
same structure of βi(ζi, ηi) in (8), and has unknown variations
on mass ∆mi and moment of inertia ∆Ii. The equation (9)
represent the internal dynamics which are rendered unobserv-
able and uncontrollable by the transformation (3) [12]. The
zero dynamic is stable, due to η̇i = 0 for ζ3i, ζ4i = 0 [12].
On the other hand, in order to provide adequate structure for
the design of the proposed scheme, the control input ui is
implemented by auxiliary control Ωi(t) ∈ R2 as

ui(t) = β̂−1
i (ζi, ηi)Ωi(t), (10)

Now, the system (4) with the feedback (10) can be expressed
as perturbed linear system:

ζ̇i(t) = Aζi(t) +BΩi(t) +Bpi(t), (11)

where the perturbation term pi(t) ∈ R2 is,

pi(t) = αi(Φ(Xi)) + βi(ζi, ηi)di(t)

+(βi(ζi, ηi)β̂
−1
i (ζi, ηi)− I2)Ωi(t).

(12)



Figure 1. Differential-drive mobile robot.

In the next section, the MAS under leader-follower scheme
will be formulated.

B. MAS model based on Leader-Follower approach
Let us define a set of N linear systems described by (11)

and (6), given by

ζ̇̇ζ̇ζ(t) = (IN ⊗A)ζζζ(t) + (IN ⊗B)ΩΩΩ(t) + (IN ⊗B)ppp(t),
YYY (t) = (IN ⊗ C)ζζζ(t),

(13)
where operator ⊗ denotes the Kronecker product (or tensor

product) [6]; ζζζ(t) =
[
ζT1 (t), . . . , ζ

T
N (t)

]T represents the global
state vector, and its elements are the state vectors of the
followers. The ppp(t) = [p1(t), . . . , pN (t)]T denotes the vector
perturbation term and ΩΩΩ(t) =

[
ΩT

1 (t), . . . ,Ω
T
N (t)

]T is the
formation control vector.

The multi-agent system follower (13) must track the leader
trajectory, that is described in global form as

ζ̇̇ζ̇ζo(t) = (IN ⊗A)ζζζo(t) + (IN ⊗B)ΩΩΩo(t) +Bpppo(t),
(14)

where the perturbation term pppo(t) = 111N ⊗ po(t) has the
same structure than (12), and 111N is a N dimensional vec-
tor of ones. The state vector ζζζo(t) = 111N ⊗ ζo(t) and
ζo(t) = [ζ1o(t), ζ2o(t), ζ3o(t), ζ4o(t)]

T respect to position
and speed in coordinated space; finally, the control input
ΩΩΩo(t) = 111N ⊗ Ωo(t), where the vector Ω0(t) is the leader
input.

Assumption 1. The control signal Ωo(t) ∈ R2 is a locally
integrable function at unbounded interval [−r,+∞[.

Assumption 2. The unknown disturbance signal po(t) ∈ R2

is a locally integrable function at unbounded interval R ≥ 0
for all t ≥ 0, with a pmax ≥ 0 as upper bound, i.e.,
∥po(t)∥ ≤ pmax < +∞.
A desired formation is a set of references that defines a geo-
metric structure in a coordinate space. Thus, in order to keep a
desired formation, each subsystems in (13) cooperate to keep
a desired relative distance with respect to the leader trajectory
(14). Desired relative distance for i-th robot is denoted by
L1i(t) and L2i(t) on x-axis and y-axis, respectively, and
satisfies the follow equation:

L̇i(t) = ALi(t) + B̂L̇i(t), (15)

where Li(t) = [L1i(t),L2i(t), L̇1i(t), L̇2i(t)]
T ; the expression

B̂L̇i(t) = B[ L̈1i(t) L̈2i(t) ]T , where B̂ = I4 − CTC.
Thus, the expression (15) can be written in global form as

L̇̇L̇L(t) = (IN ⊗A)LLL(t) + (IN ⊗ B̂)L̇̇L̇L(t), (16)

that will be used in the sliding surface design (presented
in the next section), where LLL(t) = [LT

1 (t), . . . ,LT
N (t)]T .

Now, the interconnection topology is given by network star
configuration, where the leader trajectory is the centroid of the
desired formation. However, only delayed leader information
ζo(t − r) is available and the consensus objective is not
ensured. Therefore, the prediction ζ̄o(t) ≃ ζo(t + r) will be
transmitted to provide the approximation of actual value ζo(t)
for each robot (see Figure 2). The prediction of leader state is
estimated thank to a state predictor, that will be introduced in
the next section.

III. CONTROL SCHEME

In this section, a control scheme based on STA with a
Robust Predictor (RP) is presented. In order to compensate
time delay, the prediction of leader state is transmitted through
communication channel. Thus, the approximate actual value
arrive to the followers (see Figure 2). Therefore, the RP will
be introduced in the first part of this section, subsequently the
sliding surface and the STA are presented at the end of this
section.

A. State Predictor [13]

Since the leader trajectory is delayed in communication
channel, a RP will be implemented to calculate an estimation
of the prediction of leader state. The prediction state of (14)
without disturbance is denoted by XXX o(t) = 111N ⊗ Xo(t) and
reads as

Xo(t) = eArζo(t) +

∫ t

t−r

eA(t−Θ)BΩo(Θ)dΘ, (17)

Now, with the aim to improve the approximated prediction
XXX o(t), disturbances effect can be estimated from available
state in (14) and previous information from (17) as

ζo(t)−Xo(t− r) =

∫ t

t−r

eA(t−Θ)Bpo(Θ)dΘ, (18)

that is well defined for all t ≥ 0. Finally, the RP is defined as

ζ̄̄ζ̄ζo(t) = XXX o(t) + ζζζo(t)−XXX o(t− r), (19)

where the term ζζζo(t)−XXX o(t−r) = 111N ⊗ [ζo(t)−Xo(t− r)],
and ζ̄̄ζ̄ζo(t) ≃ ζζζo(t+ r).
Remark 1. The disturbance compensation in (18) depends
on time delay, because only previous leader information is
available. Then, the compensation disturbance in the prediction
is given at time (t− r).

B. Super-Twisting Algorithm

In this paragraph, a controller described in [2] is extended
to a formation control of MAS with communication delay. In
order to ensure the formation control based on consensus, the
formation error εεε(t) is defined as

εεε(t) = ζζζ(t)− ζ̄̄ζ̄ζo(t− r)−LLL(t). (20)

Note that term ζζζ(t) − ζ̄̄ζ̄ζo(t − r) of (20) corresponds to the
relative position of follower with respect to the leader. Thus,



Figure 2. Transmission of state predicted trough channel communication.

if formation error εεε(t) → 0002N , the relative distances between
leader and followers converge to desired relative distances, i.e.,
ζζζ(t)−ζ̄̄ζ̄ζo(t−r) →LLL(t). The vector ζ̄̄ζ̄ζo(t−r) = 111N⊗ζ̄o(t−r) ≃
111N ⊗ ζo(t). Now, considering that the speed is available, the
chosen sliding variable is written as a function of the states
predicted as

SSS(t) = λλλ(IN ⊗ C)εεε(t) + (IN ⊗ CA)εεε(t), (21)

where SSS(t) = [sT1 (t), . . . , s
T
N (t)]T ∈ R2N is a global vector

composed of local sliding variables of each agent si(t) =
[si1(t), si2(t)]

T ∈ R2 for i = 1, . . . , N ; the first term in (21)
is linked to the relative position error and the second term to its
derivative. λλλ = diag{λi} ∈ R2N×2N is a diagonal matrix gain,
and λi ∈ R2×2 as local diagonal matrix gain definite positive
for i = 1, . . . , N ; and is chosen such that all elements of SSS(t),
Ṡ̇ṠS(t) converges to 0 in finite time.

Remark 2. Taken 0002N ∈ R2N as a null vector of dimension
2N . The sliding variable (21) is designed taking into account
that the desired compensated dynamics of the system (13) are
achieved in the sliding mode SSS(t) → 0002N .

From (21), (13) and (19), the input-output dynamics of (21)
result as

Ṡ̇ṠS(t) = aaa(ζζζ(t), ζζζo(t− r), t) +ΩΩΩ(t), (22)

where, for simplicity, aaa(ζζζ(t), ζζζo(t− r), t) = aaa and,

aaa = λλλ(IN ⊗ CA)(ζζζ(t)− ζζζo(t− r)−LLL(t))−ΩΩΩo(t)

−(1 + r)λλλpppo(t− r) + (IN ⊗BT )L̇̇L̇L(t) + ppp(t).

Assumption 3. There exists unknown positive constant δ1
such that the derivative of the function aaa(ζζζ(t), ζζζo(t− r), t) is
bounded as ∥ȧ̇ȧa(ζζζ(t), ζζζo(t− r), t)∥ ≤ δ1.

The problem is to drive the global sliding variable SSS(t)
and Ṡ̇ṠS(t) to 0002N in finite time in presence of the bounded
perturbation with the boundary δ1 > 0, where the argument
”(t)” from sliding variable (21) and (22) will be omit. The
robust control ΩΩΩ(t) = ΩΩΩ is obtained using the following STA
algorithm given by

ΩΩΩ = −KKK1DDD
1/2
s sign(SSS) + ν, ν̇ = −1

2
K2K2K2sign(SSS) (23)

where the function sign(SSS) returns a vector with the signs of
the corresponding elements of SSS ∈ R2N ; the matrix DDDs =
diag{Dsi}. The submatrices Dsi = diag{|siι|} for ι = 1, 2,

where si1, si2 are elements of the local sliding surface of
each agent si = [si1, si2]

T for i = 1, . . . , N , i.e., siι ∈ si
for ι = 1, 2; so that si ∈ SSS. The control gains are given by
KKK1 = diag{k1i} and KKK2 = diag{k2i}, where all submatrices
k1i, k2i ∈ R2×2 are diagonal matrices, for i = 1, . . . , N . From
the system (22) and (23), the closed loop system is given by

Ṡ̇ṠS = aaa−KKK1ς1 + ν, ν̇ = −1

2
KKK2sign(SSS). (24)

In that case, stability criteria are given in the following
theorem.

Theorem 1: Consider the system (13) and (21) in closed-
loop with control (23) and references given by state pre-
dictor (19). Then, from the assumptions 1, 2 and 3, finite
time convergence of SSS and Ṡ̇ṠS is provided under STA to 2-
sliding mode for a unknown bound δ1 > 0 and given initial
conditions ς(0) and SSS(0), if the control gains satisfies the
matrix inequalities ||KKK1|| > 0 and λj(KKK2) > 2δ1, where the
unknown bounded function 0 < ∥ϱϱϱ(ζζζ(t), ζζζo(t − r), t)∥ ≤ δ1,
and λj(KKK2) denotes the real part of the eigenvalues of the
matrix KKK2 for j = 1, . . . , 2N .

Proof: Consider the following vector [10]

ς =
[
ςT1 , ς

T
2

]T
=

[
sign(SSS)TDDD1/2

s , aaaT + νT
]T

. (25)

Then, system (24) can be written as

ς̇ =
1

2

[
−DDD−1/2

s KKK1 DDD
−1/2
s

−DDD−1/2
s KKK2 0002N×2N

]
ς +

[
0
1

]
⊗ ȧ̇ȧa, (26)

Furthermore, in similar way than [10] and due to the As-
sumption 5, the boundary of the uncertain function ȧ̇ȧa =
1
2DDD

−1/2
s ϱϱϱ(ζζζ(t), ζζζo(t− r), t)ς1 exists. In that case, the system

(26) can be rewritten as follows

ς̇ =
1

2
(I2 ⊗DDDs)

−1/2AAAς, (27)

taken AAA =

[
−KKK1 I2N

−(KKK2 − 2ϱϱϱ(ζζζ(t), ζζζo(t− r), t)) 0002N×2N

]
,

where ∥ς1∥ ≥ ∥(I2 ⊗ DDDs)∥1/2 = ∥DDDs∥1/2 and the matrix
KKK2 − 2ϱϱϱ(ζζζ(t), ζζζo(t − r), t) > 0 if all submatrix are definite
positive too. Now, consider the quadratic function as a strict
Lyapunov candidate function for (23), such that

V = ςTPPPς, (28)



where PPP = PPPT > 0 is a constant, symmetric and positive
matrix. Now, the derivative of strict Lyapunov function result

V̇ ≤ ∥DDDs∥−1/2ςT
[
AAATPPP +PPPAAA

]
ς. (29)

Thus, since the matrix A is Hurwitz, the matrix PPP = PPPT > 0
is an unique solution that satisfies the Algebraic Lyapunov
Equation

[
AAATPPP +PPPAAA

]
= −Q̃ and V̇ can be written as

V̇ ≤ −∥DDDs∥−1/2λMin(Q̃)∥ς∥2, (30)

taken λMin(Q̃) as the minimum eigenvalue of the matrix Q̃.
On the other hand, since ∥ς∥ ≥ ∥DDDs∥1/2 it is true that −∥ς∥ ≥
−∥DDDs∥−1/2∥ς∥2, then one gets that V̇ ≤ −λMin(Q̃)∥ς∥.
Now, since that V ≤ λMax(PPP )∥ς∥2, taken λMax(PPP ) as the
minimum eigenvalue of the matrix PPP , this leads to show that

V̇ ≤ −λMin(Q̃)

λ
1/2
Max(PPP )

V 1/2. (31)

Therefore, since ς1 and ς2 convergence in finite time, conver-
gence of SSS and Ṡ̇ṠS in finite time is ensured.

IV. SIMULATIONS

In this section, simulation results are provided to illustrate
the feasibility and the performance of the proposed method-
ology. In order to compare the performance of the proposed
scheme, standard predictor [14] with STA has been also con-
sidered. System and control scheme have been developed with
MATLAB/Simulink environment, using Runge-Kutta solver
with an integration step of 0.001s. The MAS is composed by
three unicycle robots (one leader and two followers), where
the system parameters are given in the Table I. Note that
simulation are made with parametric uncertainties in order to
evaluated the robustness of proposed approach (for example,
mass of the system mi = 0.2kg [see Table I], whereas
nominal mass m̂i = 0.16kg in the controller [see Table II]).
The simultaneous time-varying external disturbances applied
to each robot are displayed in Figure 3. On the other hand,
According to leader-follower formation control approach, the
follower robots must keep a desired relative distance with
respect to the leader (see Figure 4), where the control of the
leader and followers Ωi(t) are based on (23) for i = o, 1, 2. In
order to evaluate the performance of the STA with RP, STA
using standard predictor (SP) is tested. A time delay r = 0.4
seconds in flow leader information is considered. The norm
of prediction error for SP and RP are displayed on Figure 5-
Top; it is clear to see that RP has a higher accuracy than SP.
The simulation results are shown in Figure 5-Bottom, where
the norms of formation error for each approach (STA+SP
and STA+RP) are displayed. The trajectories of robots are
shown on Figures 7-6. From the graphs, it appears that
formation control is ensured with high accuracy with the
STA+RP scheme versus external disturbances and parametric
uncertainties. Thus, the tracking error is smaller with for
STA+RP than with STA+SP.

Table I
MODEL PARAMETERS FOR i = o, 1, 2.

Parameter value Description

mi 0.2kg Mass of the system

Ii 6.89× 10−5kgm2 Moment of Inertia

li 0.045m Distance from center of mass

Table II
PARAMETERS OF CONTROL SCHEME FOR i = o, 1, 2.

Parameter value Description

r 0.4sec Communication time delay

m̂i 0.16kg Nominal Mass of the system

Îi 1.2× 10−4kgm2 Nominal Moment of Inertia

KKKι 100 I4 Control gain for ι = 1, 2

λλλ I4 Sliding gain

Figure 3. Input disturbances for all agents, where force dFi
∈ di(t) and

torque dτi ∈ di(t) concerns to 41.5% of the input Fi and 92.91% of the
input τi, respectively, for i ∈ {o, 1, 2}.

Figure 4. General scheme of desired formations with respect leader trajectory
at different interval times, where j = 1, 2; denote x and y axis, respectively.

V. CONCLUSION

In this work, the leader follower formation control problem
with time delay communication has been considered. Thus, a
control strategy combining a robust state predictor and super



Figure 5. Comparison of error norm of the leader state prediction (Top) for
ε∗(t) = ζζζo(t)− ζ̄̄ζ̄ζo(t− r) and r = 0.4 seconds. Comparison of the norm of
formation error (Bottom) for delay r=0.4 seconds, with εεε(t) = ζζζ(t)−ζζζo(t)−
LLL(t).

Figure 6. MAS trajectories with STA + SP, where switching of formation is
denoted by vertical dashed line at 15 seconds

twisting algorithm has been proposed. On the other hand,
since a good prediction plays an important role in consensus,
the predicted leader trajectory is estimated by a robust state
predictor. Therefore, dynamics of state predictor is treated
as disturbance term in the input-output dynamics of sliding
surface. Thus, in order to ensure finite time convergence,
sufficient conditions of stability have been presented. Finally,
simulation results demonstrated the feasibility and robustness
of the proposed scheme.

VI. FUTURE WORKS

This work present some opportunities for extending, for
example: evaluate the proposed scheme in experimental way;
extend the result to adaptive sliding mode control; include the

Figure 7. MAS trajectories with STA + RP, where switching of formation is
denoted by vertical dashed line at 15 seconds

interactions among followers; and addressing the consensus
problem for time-varying delay.
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