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ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY1

OPERATOR IN TWO DIMENSIONS2

DENIS S. GREBENKOV∗ AND BERNARD HELFFER†3

Abstract. We investigate a two-dimensional Schrödinger operator, −h2∆ + iV (x), with a4
purely complex potential iV (x). A rigorous definition of this non-selfadjoint operator is provided for5
bounded and unbounded domains with common boundary conditions (Dirichlet, Neumann, Robin6
and transmission). We propose a general perturbative approach to construct its quasimodes in the7
semi-classical limit. An alternative WKB construction is also discussed. These approaches are local8
and thus valid for both bounded and unbounded domains, allowing one to compute the approximate9
eigenvalues to any order in the small h limit. The general results are further illustrated on the10
particular case of the Bloch-Torrey operator, −h2∆ + ix1, for which a four-term asymptotics is11
explicitly computed. Its high accuracy is confirmed by a numerical computation of the eigenvalues12
and eigenfunctions of this operator for a disk and circular annuli. The localization of eigenfunctions13
near the specific boundary points is revealed. Some applications in the field of diffusion nuclear14
magnetic resonance are discussed.15

Key words. Transmission boundary condition, spectral theory, Bloch-Torrey equation, semi-16
classical analysis, WKB17
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1. Introduction. In a previous paper [17], we have analyzed in collaboration19

with R. Henry one-dimensional models associated with the complex Airy operator20

− d2

dx2 + igx on the line, with g ∈ R . We revisited the Dirichlet and Neumann real-21

ization of this operator in R+ and the main novelty was to consider a transmission22

problem at 0 . In higher dimensions, an extension of the complex Airy operator is the23

differential operator that we call the Bloch-Torrey operator or simply the BT-operator24

−D∆+ igx1 ,25

where ∆ = ∂2/∂x21+ . . .+∂
2/∂x2n is the Laplace operator in Rn, and D and g are real26

parameters. More generally, we will study the spectral properties of some realizations27

of the differential Schrödinger operator28

(1.1) A#
h = −h2∆+ i V (x) ,29

in an open set Ω, where h is a real parameter and V (x) a real-valued potential with30

controlled behavior at∞, and the superscript # distinguishes Dirichlet (D), Neumann31

(N), Robin (R), or transmission (T) conditions. More precisely we discuss32

1. the case of a bounded open set Ω with Dirichlet, Neumann or Robin boundary33

condition;34

2. the case of a complement Ω := ∁Ω− of a bounded set Ω− with Dirichlet,35

Neumann or Robin boundary condition;36

3. the case of two components Ω− ∪ Ω+, with Ω− ⊂ Ω− ⊂ Ω and Ω+ = Ω\Ω−,37

with Ω bounded and transmission conditions at the interface between Ω− and38

Ω+;39
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2 D. S. GREBENKOV AND B. HELFFER

4. the case of two components Ω− ∪ ∁Ω− , with Ω− bounded and transmission40

conditions at the boundary;41

5. the case of two unbounded components Ω− and Ω+ separated by a hypersur-42

face with transmission conditions.43

In all cases, we assume that the boundary is C∞ to avoid technical difficulties related44

to irregular boundaries (see [18]). Roughly speaking (see the next section for a precise45

definition), the state u (in the first two items) or the pair (u−, u+) in the last items46

should satisfy some boundary or transmission condition at the interface. In this paper,47

we consider the following situations:48

• the Dirichlet condition: u|∂Ω = 0 ;49

• the Neumann condition: ∂νu|∂Ω = 0 , where ∂ν = ν · ∇, with ν being the50

outwards pointing normal;51

• the Robin condition: h2∂νu|∂Ω = −Ku|∂Ω , where K ≥ 0 denotes the Robin52

parameter;53

• the transmission condition:

h2∂νu+ |∂Ω−
= h2∂νu− |∂Ω−

= K(u+ |∂Ω−
− u− |∂Ω−

) ,

where K ≥ 0 denotes the transmission parameter, and the normal ν is directed54

outwards Ω−.55

From now on Ω# denotes Ω if # ∈ {D,N,R} and Ω− if # = T . L2
# will denote56

L2(Ω) if # ∈ {D,N,R} and L2(Ω−)× L2(Ω+) if # = T .57

58

In [17], we have analyzed in detail various realizations of the complex Airy (or59

Bloch-Torrey) operator A#
0 := − d2

dτ2 + iτ in the four cases corresponding to Dirichlet,60

Neumann, and Robin on the half-line R+ or for the transmission problem on the whole61

line R (in what follows, R# will denote R+ if # ∈ {D,N,R} and R if # = T ). The62

boundary conditions read respectively:63

• u(0) = 0 ;64

• u′(0) = 0 ;65

• u′(0) = κu(0) ;66

• u′−(0) = u′+(0) = κ (u+(0)− u−(0))67

(with κ ≥ 0 in the last items). For all these cases, we have proven the existence of a68

discrete spectrum and the completeness of the corresponding generalized eigenfunc-69

tions. Moreover, there is no Jordan block (for the fourth case, this statement was70

proven only for κ small enough).71

72

In this article, we start the analysis of the spectral properties of the BT operator73

in dimensions 2 or higher that are relevant for applications in superconductivity theory74

[2, 5, 6, 7], in fluid dynamics [30], in control theory [10], and in diffusion magnetic75

resonance imaging [12, 16] (and references therein). We will mainly focus on76

• definition of the operator,77

• construction of approximate eigenvalues in some asymptotic regimes,78

• localization of quasimode states near certain boundary points,79

• numerical simulations.80

In particular, we will discuss the semi-classical asymptotics h→ 0 , the large domain81

limit, the asymptotics when g → 0 or +∞ , the asymptotics when the transmission or82

Robin parameter tends to 0 . Some other important questions remain unsolved like83

the existence of eigenvalues close to the approximate eigenvalues (a problem which is84

only solved in particular situations). We hope to contribute to this point in the future.85
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ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY OPERATOR 3

86

When g = 0, the BT-operator is reduced to the Laplace operator for which87

the answers are well known. In particular, the spectrum is discrete in the case of88

bounded domains and equals [0,+∞) when one or both components are unbounded.89

In the case g 6= 0 , we show that if there is at least one boundary point at which90

the normal vector to the boundary is parallel to the coordinate x1, then there exist91

approximate eigenvalues of the BT-operator suggesting the existence of eigenvalues92

while the associated eigenfunctions are localized near this point. This localization93

property has been already discussed in physics literature for bounded domains [35],94

for which the existence of eigenvalues is trivial. Since our asymptotic constructions95

are local and thus hold for unbounded domains, the localization behavior can be96

conjectured for exterior problems involving the BT-operator.97

Some of these questions have been already analyzed by Y. Almog (see [2] and98

references therein for earlier contributions), R. Henry [25, 26] and Almog-Henry [8]99

but they were mainly devoted to the case of a Dirichlet realization in bounded domains100

in R2 or particular unbounded domains like R2 and R2
+, these two last cases playing101

an important role in the local analysis of the global problem.102

Different realizations of the operator Ah in Ω are denoted by AD
h , AN

h , AR
h and AT

h .103

These realizations will be properly defined in Section 2 under the condition that, when104

Ω is unbounded, there exists C > 0 such that105

(1.2) |∇V (x)| ≤ C
√
1 + V (x)2 .106

Our main construction is local and summarized in the following107

Theorem 1. Let Ω ⊂ R2 as above, V ∈ C∞(Ω;R) and x0 ∈ ∂Ω# such that1108

(1.3) ∇V (x0) 6= 0 , ∇V (x0) ∧ ν(x0) = 0 ,109

where ν(x0) denotes the outward normal on ∂Ω at x0 .110

Let us also assume that, in the local curvilinear coordinates, the second derivative of111

the restriction of V to the boundary at x0 (denoted as 2 v20) satisfies112

v20 6= 0 .113

For the Robin and transmission cases, we also assume that for some κ > 0114

(1.4) K = h
4
3 κ .115

If µ#
0 is a simple eigenvalue of the realization “#” of the complex Airy operator − d2

dx2+116

ix in L2
# , and µ2 is an eigenvalue of the Davies operator117

− d2

dy2 + iy2 on L2(R), then there exists an approximate pair (λ#h , u
#
h ) with u#h in118

the domain of A#
h , such that119

(1.5) λ#h = i V (x0) + h
2
3

∑

j∈N

λ#2j h
j
3 +O(h∞) ,120

121

(1.6) (A#
h − λ#h )u

#
h = O(h∞) in L2

#(Ω) , ||u#h ||L2 ∼ 1 ,122

1 As noticed in [8], a point satisfying the second condition in (1.3) always exists when ∂Ω# is
bounded.
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4 D. S. GREBENKOV AND B. HELFFER

where123

(1.7) λ#0 = µ#
0 | v01|

2
3 exp

(
i
π

3
sign v01

)
, λ2 = µ2|v20|

1
2 exp

(
i
π

4
sign v20

)
,124

with v01 := ν · ∇V (x0) .125

In addition, we will compute λ#4 explicitly (see the Appendix) in the four types of126

boundary conditions and also describe an alternative WKB construction to have a127

better understanding of the structure of the presumably corresponding eigenfunctions.128

We will also discuss a physically interesting case when κ in (1.4) depends on h and129

tends to 0 .130

The proof of this theorem provides a general scheme for quasimode construction in131

an arbitrary planar domain with smooth boundary ∂Ω. In particular, this construction132

allow us to retrieve and further generalize the asymptotic expansion of eigenvalues133

obtained by de Swiet and Sen for the Bloch-Torrey operator in the case of a disk [35].134

The generalization is applicable for any smooth boundary, with Neumann, Dirichlet,135

Robin, or transmission boundary condition. Moreover, since the analysis is local, the136

construction is applicable to both bounded and unbounded components.137

The paper is organized as follows. In Sec. 2, we provide rigorous definitions138

and basic properties of the BT-operator in bounded and unbounded domains, with139

Dirichlet, Neumann, Robin, and Transmission conditions. Section 3 recalls former140

semi-classical results for a general operator −h2∆+ iV (x). In Sec. 4, we provide pre-141

liminaries for semi-classical quasimode constructions in the two-dimensional case. The142

construction scheme is detailed in Sec. 5. In particular, the four-terms asymptotics of143

the approximate eigenvalues is obtained and we prove the main theorem. In Sec. 6 we144

consider other scaling regimes for the Robin or transmission parameter. In Sec. 7 we145

propose an alternative construction for the first approximate eigenvalue using WKB146

quasi-mode states. In Sec. 8, we illustrate general results for simple domains such as147

disk and annulus. Sec. 9 describes numerical results in order to check the accuracy148

of the derived four-terms asymptotics of eigenvalues of the BT-operator in simple do-149

mains such as a disk, an annulus, and the union of disk and annulus with transmission150

boundary condition. We also illustrate the localization of eigenfunctions near circular151

boundaries of these domains. Since a direct numerical computation for unbounded152

domains (e.g., an exterior of the disk) was not possible, we approach this problem by153

considering an annulus with a fixed inner circle and a moving away outer circle. We154

check that the localization of some eigenfunctions near the inner circle makes them155

independent of the outer circle. We therefore conjecture that the BT-operator has156

some discrete spectrum for the exterior of the disk. More generally, this property is157

conjectured to hold for any domain in Rn (bounded or not) with smooth boundary158

which has points whose normal is parallel to the gradient direction. Finally, we briefly159

discuss in Sec. 10 an application of the obtained results in the field of diffusion nuclear160

magnetic resonance.161

Acknowledgments.162

We thank Raphael Henry who collaborated with us in [17] and in the preliminary163

discussions for the present paper. The second author would also like to thank Yaniv164

Almog and Didier Robert for useful discussions.165

2. Definition of the various realizations of the Bloch-Torrey operator.166

2.1. The case of a bounded open set Ω. This is the simplest case. For the167

analysis of the Dirichlet (resp. Neumann) realization AD
h (resp. AN

h ) of the BT-168

operator, the term V (x) is simply a bounded non self-adjoint perturbation of the169
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ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY OPERATOR 5

Dirichlet (resp. Neumann) Laplacian.170

We have for three boundary conditions:171

• For the Neumann case, the form domain V is H1(Ω) and (if Ω is regular) the172

domain of the operator is {u ∈ H2(Ω) , ∂νu/∂Ω = 0}. The quadratic form173

reads174

(2.1) V ∋ u 7→ qV (u) := h2 ||∇u||2Ω + i

∫

Ω

V (x) |u(x)|2 dx .175

• For the Dirichlet case, the form domain is H1
0 (Ω) and (if Ω is regular) the176

domain of the operator is H2(Ω)∩H1
0 (Ω). The quadratic form is given by177

(2.1).178

• For the Robin case (which is a generalization of the Neumann case), the form179

domain is H1(Ω) and (if Ω is regular) the domain of the operator AR
h is180

{u ∈ H2(Ω) , −h2∂νu/∂Ω = Ku/∂Ω} , where K denotes the Robin coefficient,181

and ν is pointing outwards. The quadratic form reads182

(2.2) u 7→ qV (u) := h2 ||∇u||2Ω + i

∫

Ω

V (x)|u(x)|2 dx+K
∫

∂Ω

|u|2ds .183

The Neumann case is retrieved for K = 0 .184

For bounded domains, there are standard theorems, coming back to Agmon [1], per-185

mitting to prove the non-emptiness of the spectrum and moreover the completeness186

of the “generalized” eigenfunctions2. In the case V (x) = gx1 (here we can think of187

g ∈ C), the limit g −→ 0 can be treated by regular perturbation theory. In particular,188

Kato’s theory [29] can be applied, the spectrum being close (modulo O(g)) to the189

real axis. It is interesting to determine the variation of the lowest real part of an190

eigenvalue.191

For the Dirichlet problem, the Feynman-Hellmann formula gives the coefficient in192

front of g as i
∫
Ω
x1|u0(x)|2 dx, where u0 is the first L2(Ω)-normalized eigenfunction193

of the Dirichlet Laplacian. In fact, using the standard Kato’s procedure we can look194

for an approximate eigenpair (λ, u) in the form:195

(2.3) u = u0 + i g u1 + g2 u2 + . . .196

and197

(2.4) λ = λ0 + i g λ1 + g2 λ2 + . . .198

Developing in powers of g, we get for the coefficient in front of g:199

(2.5) (−∆− λ0)u1 = −x1u0 + λ1u0 ,200

and λ1 is chosen in order to solve (2.5)201

(2.6) λ1 =

∫

Ω

x1|u0(x)|2 dx .202

We then take203

(2.7) u1 = −(−∆− λ0)
(−1,reg) ((x1 − λ1)u0) ,204

2 By this we mean elements in the kernel of (A#
h

− λ)k for some k ≥ 1 .
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6 D. S. GREBENKOV AND B. HELFFER

where (−∆ − λ0)
(−1,reg) is the regularized resolvent, defined on the vector space205

generated by u0 as206

(−∆− λ0)
(−1,reg)u0 = 0 ,207

and as the resolvent on the orthogonal space to u0 .208

To look at the coefficient in front of g2, we write209

(2.8) (−∆− λ0)u2 = (x1 − λ1)u1 + λ2u0 ,210

and get211

λ2 = −
∫

Ω

(x1 − λ1)u1(x)u0(x) dx ,212

from which213

λ2 =
〈
(−∆− λ0)

(−1,reg)((x1 − λ0)u0) | ((x1 − λ0)u0)
〉
L2(Ω)

> 0 .214

The effect of the perturbation is thus to shift the real part of the “first” eigenvalue215

on the right.216

217

The limit g → +∞ for a fixed domain, or the limit of increasing domains (i.e.218

the domain obtained by dilation by a factor R → +∞) for a fixed g can be reduced219

by rescaling to a semi-classical limit h→ 0 of the operator Ah with a fixed potential220

V (x). In this way, the BT-operator appears as a particular case (with V (x) = x1)221

of a more general problem. We can mention (and will discuss) several recent pa-222

pers, mainly devoted to the Dirichlet case, including: Almog [2], Henry [25] (Chapter223

4), Beauchard-Helffer-Henry-Robbiano [10] (analysis of the 1D problem), Henry [26],224

Almog-Henry [8] and in the physics literature [35, 12] (and references therein).225

2.2. The case of a bounded set in Rn and its complementary set with226

transmission condition at the boundary. We consider Ω− ∪ ∁Ω− , with Ω−227

bounded in Rn and ∂Ω− connected. In this case the definition of the operator is228

similar to what was done for the one-dimensional case in [17]. However, we start with229

a simpler case when Ω− ⊂ Ω− ⊂ Ω with Ω bounded and Ω+ = Ω\Ω− (with Neumann230

boundary condition imposed on the exterior boundary ∂Ω). After that, we explain231

how to treat the unbounded case with Ω = Rn and Ω+ = ∁Ω− .232

2.2.1. Transmission property in the bounded case. To treat the difficulties233

one by one, we start with the situation when Ω− ⊂ Ω− ⊂ Ω , Ω+ := Ω \ Ω− , and Ω234

bounded and connected (e.g., a disk inside a larger disk).235

We first introduce the variational problem, with the Hilbert space236

H = L2(Ω−)× L2(Ω+)237

and the form domain238

V := H1(Ω−)×H1(Ω+) .239

This manuscript is for review purposes only.



ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY OPERATOR 7

The quadratic form reads on V240

u = (u−, u+) 7→ qV (u) := h2||∇u−||2Ω−
+ h2||∇u+||2Ω+

+ K ||(u− − u+)||2L2(∂Ω−)

+ i

∫

Ω−

V (x)|u−(x)|2 dx+ i

∫

Ω+

V (x)|u+(x)|2 dx ,

(2.9)

241

where K is a positive parameter of the transmission problem, and h > 0 is a semi-242

classical parameter whose role will be explained later and which can be thought of as243

equal to one in this section. The dependence of K on h > 0 will be discussed later.244

We denote by aV the associated sesquilinear form:245

aV (u, u) = qV (u) .246

The potential V (x) is assumed to be real (and we are particularly interested in the247

example V (x) = gx1). In this case, one gets continuity and coercivity of the associ-248

ated sesquilinear form on V . This is true for any K without assumption on its sign.249

The trace of u− and u+ on ∂Ω− is indeed well defined for (u−, u+) ∈ V .250

251

Applying Lax-Milgram’s theorem, we first get that (u−, u+) should satisfy ∆u− ∈252

L2(Ω−) and ∆u+ ∈ L2(Ω+). Together with (u−, u+) ∈ V this permits to define the253

Neumann condition (via the Green formula) for both u− and u+ in H− 1
2 (∂Ω−), and254

in addition for u+ in H− 1
2 (∂Ω). Indeed, to define ∂νu− as a linear form on H

1
2 (∂Ω−),255

we use that for any v ∈ H1(Ω−),256

(2.10) −
∫

Ω−

∆u− v dx =

∫

Ω−

∇u− · ∇v dx+

∫

∂Ω−

∂νu− v dσ ,257

and the existence of a continuous right inverse for the trace from H
1
2 (∂Ω−) into258

H1(Ω−) . Here the normal ν is oriented outwards Ω− and when u− is more regular259

(u− ∈ H2(Ω−)), we have ∂νu− = ν · ∇u−. In a second step we get the Neumann260

condition for u+ on ∂Ω,261

(2.11) ∂νu+ = 0 on ∂Ω ,262

and the transmission condition on ∂Ω−263

(2.12)
∂νu− = ∂νu+

h2∂νu− = K
(
u+ − u−

) on ∂Ω− ,264

which is satisfied in H− 1
2 (∂Ω−). We keep here the previous convention about the265

outwards direction of ν on ∂Ω−.266

Finally, we observe that the first traces of u− and u+ on ∂Ω− belong to H
1
2 (∂Ω−).267

Hence by (2.12), the second traces of u− and u+ are in H
1
2 (∂Ω−). But now the268

regularity of the Neumann problem in Ω− and Ω+ implies that269

(u−, u+) ∈ H2(Ω−)×H2(Ω+) .270

Here we have assumed that all the boundaries are regular.271
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8 D. S. GREBENKOV AND B. HELFFER

Remark 2. One can actually consider a more general problem in which the two272

diffusion coefficients D− and D+ in Ω− and Ω+ are different. The transmission273

condition reads274

D−∂νu− = D+∂νu+ = K(u+ − u−) on ∂Ω− .275

If we take D− = D+ = D = h2, we recover the preceding case. In the limit D+ → ∞,276

we can consider the particular case where u+ is identically 0 and we recover the Robin277

condition on the boundary ∂Ω− of the domain Ω−.278

2.2.2. The unbounded case with bounded transmission boundary. In279

the case Ω+ = ∁Ω− (i.e., Ω = Rn), we have to treat the transmission problem through280

∂Ω− with the operator −h2∆+ iV (x) on L2(Ω−)× L2(Ω+). Nothing changes at the281

level of the transmission property because ∂Ω− is bounded. However, the variational282

space has to be changed in order to get the continuity of the sesquilinear form. Here283

we have to account for the unboundedness of V in Ω+. For this purpose, we introduce284

(2.13) V := {(u−, u+) ∈ H , |V | 12u+ ∈ L2(Ω+)} .285

If V has constant sign outside a compact, there is no problem to get the coercivity286

by looking separately at Re aV (u, u) and Im aV (u, u). When V does not have this287

property (as it is in the case V (x) = x1), one cannot apply Lax-Milgram’s theorem288

in its standard form. We will instead use the generalized Lax-Milgram Theorem as289

presented in [4] (see also [17]).290

Theorem 3. Let V denote a Hilbert space and let a be a continuous sesquilinear291

form on V × V. If a satisfies, for some Φ1,Φ2 ∈ L(V) , and some α > 0,292

(2.14) |a(u, u)|+ |a(u,Φ1(u))| ≥ α ‖u‖2V , ∀u ∈ V ,293

294

(2.15) |a(u, u)|+ |a(Φ2(u), u)| ≥ α ‖u‖2V , ∀u ∈ V ,295

then A ∈ L(V) defined by296

(2.16) a(u, v) = 〈Au , v〉V , ∀u ∈ V , ∀v ∈ V ,297

is a continuous isomorphism from V onto V.298

We now consider two Hilbert spaces V and H such that V ⊂ H (with continuous299

injection and dense image). Let A be defined by300

(2.17) D(A) = {u ∈ V | v 7→ a(u, v) is continuous on V in the norm of H}301

and302

(2.18) a(u, v) = 〈Au , v〉H ∀u ∈ D(A) and ∀v ∈ V .303

Then we have304

Theorem 4. Let a be a continuous sesquilinear form satisfying (2.14) and (2.15).305

Assume further that Φ1 and Φ2 extend into continuous linear maps in L(H) . Let A306

be defined by (2.17)-(2.18). Then307

1. A is bijective from D(A) onto H .308

2. D(A) is dense in both V and H .309
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ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY OPERATOR 9

3. A is closed.310

Example 5. For V (x) = x1, we can use on V the multiplier311

Φ1(u−, u+) =

(
u− ,

x1√
1 + x21

u+

)
.312

We first observe that, for some C > 0,313

Re aV (u, u) ≥
1

C

(
||∇u−||2 + ||∇u+||2

)
− C

(
||u−||2 + ||u+||2

)
.314

To obtain the generalized coercivity, we now look at Im aV (u,Φ1(u)) and get, for some315

Ĉ > 0,316

Im aV (u, φ1(u)) ≥
∫

Ω+

|V (x)||u+|2 dx− Ĉ (||u||2 + ||∇u||2) .317

Note that this works (see [4]) for general potentials V (x) satisfying (1.2).318

Note also that the domain of the operator AT associated with the sesquilinear319

form is described as follows320

(2.19)
D := {u ∈ V , (−h2∆+ iV )u− ∈ L2(Ω−) , (−h2∆+ iV )u+ ∈ L2(Ω+)

and transmission condition on ∂Ω−} .321

It is clear that this implies u− ∈ H2(Ω−). The question of showing that u+ ∈ H2(Ω+)322

is a priori unclear. By using the local regularity, we can show that for any χ in323

C∞
0 (Ω+),324

(−h2∆+ iV )(χu) ∈ L2(Rn) ,325

and consequently χu ∈ H2(Rn).326

In order to show that u+ ∈ H2(Ω+), one needs to introduce other techniques and327

additional assumptions. For example, using the pseudodifferential calculus, it is pos-328

sible to prove (see [32]), that u+ ∈ H2(Ω+) and V u+ ∈ L2(Ω+) under the stronger329

condition that for any α ∈ Nn, there exists Cα such that330

(2.20) |Dα
xV (x)| ≤ Cα

√
1 + V (x)2 , ∀x ∈ Rn .331

Remark 6 (No compactness of the resolvent). There is no compact resolvent in332

this problem. We note indeed that the pairs (u−, u+) with u− = 0 and u+ ∈ C∞
0 (Ω+)333

belong to the domain of the operator. It is easy to construct a sequence of L2 normal-334

ized u
(k)
+ in C∞

0 (Ω+) which is bounded in H2(Ω+), with support in (−R,+R)×Rn−1,335

and weakly convergent to 0 in L2(Ω+). This implies that the resolvent cannot be336

compact.337

Remark 7. The noncompactness of the resolvent does not exclude the existence338

of eigenvalues. Actually, when K = 0 , the spectral problem is decoupled into two inde-339

pendent problems: the Neumann problem in Ω− which gives eigenvalues (the potential340

ix1 in Ω− is just a bounded perturbation, as discussed in Sec. 2.2.1) and the Neu-341

mann problem for the exterior problem in Ω+ with −∆+ igx1 for which the question342

of existence of eigenvalues is more subtle if we think of the model of the half-space343

analyzed in Almog [2] or [25]. We will see that in the semi-classical limit (or equiv-344

alently g → +∞) the points of ∂Ω− at which the normal vector to ∂Ω− is parallel to345

(1, 0, . . . , 0), play a particular role.346
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10 D. S. GREBENKOV AND B. HELFFER

2.2.3. The case of two unbounded components in R2 separated by a347

curve. The case of two half-spaces is of course the simplest because we can come back348

to the one-dimensional problem using the partial Fourier transform. The analysis of349

the resolvent should however be detailed (see Henry [25] who treats the model of the350

half-space for the BT operator with Neumann or Dirichlet conditions). In fact, we351

consider the quadratic form352

q(u) = h2
∫

x1<0

|∇u−(x)|2 dx+ i

∫

x1<0

ℓ(x)|u−(x)|2 dx

+ h2
∫

x1>0

|∇u+(x)|2 dx + i

∫

x1>0

ℓ(x)|u+(x)|2 dx

+K
∫

|u−(0, x2)− u+(0, x2)|2 dx2 ,

353

where x 7→ ℓ(x) is a nonzero linear form on R2:354

ℓ(x) = αx1 + βx2 .355

Here, we can also apply the general Lax-Milgram theorem in order to define a closed356

operator associated to this quadratic form. The extension to a more general curve357

should be possible under the condition that the curve admits two asymptotes at in-358

finity.359

360

In this section, we have described how to associate to a given sesquilinear form a361

defined on a form domain V an unbounded closed operator A in some Hilbert spaceH.362

We will add the superscript # with # ∈ {D,N,R, T } in order to treat simultaneously363

the different cases. The space H# will be L2(Ω) when # ∈ {D,N,R} and will be364

L2(Ω−) × L2(Ω+) in the case with transmission # = T . V# will be respectively365

H1
0 (Ω), H

1(Ω), H1(Ω) , and H1(Ω−) × H1(Ω+). The corresponding operators are366

denoted A#
h with # ∈ {D,N,R, T }.367

3. Former semi-classical results. In order to treat simultaneously various368

problems we introduce Ω# with # ∈ {D,N,R, T } and ΩD = Ω , ΩN = Ω , ΩR = Ω369

and ΩT = Ω− .370

R. Henry [26] (see also [8]) looked at the Dirichlet realization of the differential oper-371

ator372

(3.1) AD
h := −h2∆+ i V (x) ,373

in a fixed bounded domain Ω, where V is a real potential and h a semi-classical pa-374

rameter that goes to 0.375

Setting V (x) = x1, one gets a problem considered by de Swiet and Sen [35] in the376

simple case of a disk but these authors mentioned a possible extension of their com-377

putations to more general cases.378

For a bounded regular open set, R. Henry in [26] (completed by Almog-Henry [8],379

see below) proved the following380

Theorem 8. Let V ∈ C∞(Ω;R) be such that, for every x ∈ Ω ,381

(3.2) ∇V (x) 6= 0 .382

Then, we have383

(3.3) lim
h→0

1

h2/3
inf
{
Reσ(AD

h )
}
≥ |a1|

2
J2/3
m ,384
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where AD
h is the operator defined by (3.1) with the Dirichlet condition, a1 < 0 is the385

rightmost zero of the Airy function Ai , and386

(3.4) Jm = min
x∈∂Ω⊥

|∇V (x)| ,387

where
∂Ω⊥ = {x ∈ ∂Ω , ∇V (x) ∧ ν(x) = 0} .

This result is essentially a reformulation of the result stated by Y. Almog in [2].388

Remark 9. The theorem holds in particular when V (x) = x1 in the case of the389

disk (two points) and in the case of an annulus (four points). Note that in this390

application Jm = 1.391

A similar result can be proved for the Neumann case.392

Remark 10. To our knowledge, the equivalent theorems in the Robin case and393

the transmission case are open. We hope to come back to this point in a future work.394

A more detailed information is available in dimension 1 (see [10]) and in higher di-395

mension [8] under some additional assumption on ∂Ω⊥. The authors in [8] prove the396

existence of an approximate eigenvalue. Our main goal is to propose a more general397

construction which will work in particular for the case with transmission condition.398

Remark 11 (Computation of the Hessian). For a planar domain, let us denote399

by (x1(s), x2(s)) the parameterization of the boundary by the arc length s starting from400

some point, t(s) = (x′1(s), x
′
2(s)) is the normalized oriented tangent, and ν(s) is the401

outwards normal to the boundary at s. Now we compute at s = 0 (corresponding to a402

point x0 = x(0) ∈ ∂Ω#
⊥, where ∇V · t(0) = 0 ),403

(
d2

ds2
V (x1(s), x2(s))

)

s=0

= 〈t(0)|HessV(x1(0), x2(0)) |t(0)〉

− c(0) (∇V (x1(0), x2(0)) · ν(0)) ,
404

where we used t′(s) = −c(s)ν(s) , c(s) representing the curvature of the boundary at405

the point x(s).406

Example 12. When V (x1, x2) = x1, we get407

(
d2

ds2
V (x1(s), x2(s))

)

s=0

= −c(0)(e1 · ν(0)) ,408

with e1 = (1, 0) .409

In the case of the disk of radius 1, we get410

(3.5)

(
d2

ds2
V (x1(s), x2(s))

)

s=0

(
e1 · ν(0)

)
= −1 ,411

for (x1, x2) = (±1, 0).412

Let us now introduce a stronger assumption for # ∈ {N,D}.413

414

Assumption 13. At each point x of ∂Ω#
⊥, the Hessian of V/∂Ω is415

• positive definite if ∂νV < 0 ,416

• negative definite if ∂νV > 0 ,417
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12 D. S. GREBENKOV AND B. HELFFER

with ν being the outwards normal and ∂νV := ν · ∇V .418

Under this additional assumption3, the authors in [8] (Theorem 1.1) prove the419

equality in (3.3) by proving the existence of an eigenvalue near each previously con-420

structed approximate eigenvalue, and get a three-terms asymptotics.421

Remark 14. Note that this additional assumption is verified for all points of ∂Ω⊥422

when V (x) = x1 and Ω is the disk. In fact, for this model, there are two points (−1, 0)423

and (1, 0), and formula (3.5) gives the solution.424

Y. Almog and R. Henry considered in [2, 26, 8] the Dirichlet case but, as noted425

by these authors in [8], one can similarly consider the Neumann case.426

Without Assumption 13, there is indeed a difficulty for proving the existence of427

an eigenvalue close to the approximate eigenvalue. This is for example the case for428

the model operator429

−h2 d
2

dx2
− h2

d2

dy2
+ i(y − x2) ,430

on the half space. The operator is indeed not sectorial, and Lemma 4.2 in [8] is431

not proved in this case. The definition of the closed operator is questionable. One432

cannot use the technique given in a previous section because the condition (1.2) is not433

satisfied. The argument used by R. Henry in [25] for the analysis of the Dirichlet BT-434

operator in a half space R2
+ (based on [31] (Theorem X.49) and [28]) can be extended435

to this case.436

This problem occurs for the transmission problem in which the model could be related437

to438

−h2 d
2

dx2
− h2

d2

dy2
+ i(y + x2) ,439

on the whole space R2 with transmission on y = 0 . This case will not be treated in440

this paper.441

On the growth of semi-groups. In the case of Dirichlet and Neumann realiza-442

tions, one can study the decay of the semi-group exp(−tA#
h ) relying on the previous443

results and additional controls of the resolvent (see [25], [8]). When the domain is444

bounded, the potential is a bounded perturbation of self-adjoint operators. In this445

case, the control of the resolvent when Imλ tends to ±∞ is straightforward, with446

the decay as O(1/|Imλ|). Applying the Gearhardt-Prüss theorem (see for example in447

[19]), the decay is448

Oǫ

(
exp
(
−t(1− ǫ) inf

λ∈σ(A#

h
)
{Reλ}

))
∀ǫ > 0 ,449

where σ(A) denotes the spectrum of A. In this case, σ(A#
h ) is not empty and the set450

of generalized eigenfunctions is complete (see [1]).451

In the unbounded case, the situation is much more delicate. The spectrum σ(A#
h )452

can be empty and one has to control the resolvent as |Imλ| → +∞ . The behavior of453

the associate semi-group can be super-exponential when σ(A#
h ) is empty. Moreover,454

it is not granted that infλ∈σ(A#

h
){Reλ} gives the decay rate of the semi-group.455

456

3 We actually need this assumption only for the points x of ∂Ω⊥ such that |∇V (x)| = Jm .
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4. Quasimode constructions – Preliminaries. Let us present in more detail457

the situation considered in Theorem 1.458

4.1. Local coordinates. Choosing the origin at a point x0 at which ∇V (x0) ∧459

ν(x0) = 0, we replace the Cartesian coordinates (x1, x2) by the standard local vari-460

ables (s, ρ), where ρ is the signed distance to the boundary, and s is the arc length461

starting from x0. Hence462

• In the case of one component, ρ = 0 defines the boundary ∂Ω and Ω is locally463

defined by ρ > 0 .464

• In the case of two components, ρ = 0 defines ∂Ω−, while ρ < 0 and ρ > 0465

correspond, in the neighborhood of ∂Ω−, respectively to Ω− and Ω+ .466

In the (s, ρ) coordinates, the operator reads467

(4.1) Ah = −h2a−1∂s(a
−1∂s)− h2a−1∂ρ(a∂ρ) + i Ṽ (s, ρ) ,468

with469

Ṽ (s, ρ) := V (x1(s, ρ), x2(s, ρ)) ,470

where471

(4.2) a(s, ρ) = 1− c(s) ρ ,472

c(s) representing the curvature of the boundary at x(s, 0).473

For future computation, we also rewrite (4.1) as474

(4.3) Ah = −h2a−2∂2s + h2a−3∂sa ∂s − h2∂2ρ − h2a−1∂ρa ∂ρ + i Ṽ (s, ρ) .475

The boundary conditions read476

• Dirichlet condition477

(4.4) u(s, 0) = 0 ,478

• Neumann condition479

(4.5) ∂ρu(s, 0) = 0 ,480

• Robin condition with parameter K481

(4.6) h2∂ρu(s, 0) = Ku(s, 0) ,482

• Transmission condition with parameter K483

(4.7)

{
∂ρu+(s, 0) = ∂ρu−(s, 0) ,
h2∂ρu+(s, 0) = K

(
u+(s, 0)− u−(s, 0)

)
.

484

In the last two cases, the link between K and h will be given later in (4.30).485

We omit the tilde of Ṽ in what follows.486

487

We recall that the origin of the coordinates is at a point x0 such that488

∇V (x0) 6= 0 and ∇V (x0) ∧ ~ν(x0) = 0 .489
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14 D. S. GREBENKOV AND B. HELFFER

Hence we have490

(4.8)
∂V

∂s
(0, 0) = 0 ,491

and492

(4.9)
∂V

∂ρ
(0, 0) 6= 0 .493

We also assume in our theorem that494

(4.10)
∂2V

∂s2
(0, 0) 6= 0 .495

Hence we have the following Taylor expansion496

(4.11) V (s, ρ) ∼
∑

j,k

vjks
jρk ,497

where498

(4.12) vjk =
1

j! k!

(
∂j+k

∂sj∂ρk
V (s, ρ)

)

s=ρ=0

,499

with500

(4.13) v00 = V (0, 0) , v10 = 0 , v01 6= 0 , v20 6= 0 ,501

corresponding to the assumptions of Theorem 1.502

4.2. The blowing up argument. Approximating the potential V near x0 by503

the first terms of its Taylor expansion v00 + v01ρ+ v20s
2 , a basic model reads504

−h2 d
2

ds2
− h2

d2

dρ2
+ i (v01ρ+ v20s

2) on the half space {ρ > 0},505

in the case when # ∈ {D,N,R}, and on R2 when # = T , which is reduced by a506

natural scaling507

(4.14) (s, ρ) = (h
1
2σ, h

2
3 τ)508

to509

h

(
− d2

dσ2
+ iv20σ

2

)
+ h

2
3

(
− d2

dτ2
+ iv01τ

)
,510

whose definition and spectrum can be obtained by separation of variables in the four511

cases.512

513

4.2.1. Expansions. In the new variables (σ, τ) introduced in (4.14), the expan-514

sion is515

(4.15) V̂h(σ, τ) := V (h
1
2σ, h

2
3 τ) ∼

∑

m≥0

h
m
6


 ∑

3k+4p=m

vkpσ
kτp


 .516
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In particular, the first terms are517

(4.16) V̂h(σ, τ) = v00 + h
2
3 v01τ + hv20σ

2 + h
7
6 v11στ + h

8
6 v02τ

2 + h
3
2 v30σ

3 +O(h
5
3 ) .518

519

Similarly, we consider the dilation of a(s, ρ)520

(4.17) âh(σ, τ) := a(h
1
2σ, h

2
3 τ) = 1− h

2
3 τ c(h

1
2σ),521

which can be expanded in the form522

(4.18) âh(σ, τ) ∼ 1− h
2
3 τ

(∑

ℓ

1

ℓ!
c
(ℓ)(0)σℓh

ℓ
2

)
.523

In the (σ, τ) coordinates, we get524

(4.19) Âh = −hâ−2
h ∂2σ + h

3
2 â−3

h (̂∂sa)h ∂σ − h
2
3 ∂2τ − h

4
3 â−1

h (̂∂ρa)h ∂τ + i V̂h(σ, τ) .525

We note that526

(̂∂sa)h(σ, τ) = −h 2
3 c

′(h
1
2σ) and (̂∂ρa)h(σ, τ) = −c(h

1
2σ) .527

We rewrite Âh by expanding in powers of h
1
6 :528

(4.20) Âh ∼ i v00 + h
2
3

∑

j≥0

h
j
6Lj(σ, τ, ∂σ , ∂τ ) ,529

where the first terms are given by530

(4.21)

L0 = −∂2τ + i v01 τ ,
L1 = 0 ,
L2 = −∂2σ + i v20 σ

2 ,
L3 = i v11 στ ,
L4 = c(0) ∂τ + i v02 τ

2 ,
L5 = −c

′(0)∂σ + i v03 σ
3 .

531

For any j ≥ 0, each Lj is a differential operator of order ≤ 2 with polynomial co-532

efficients of degree which can be controlled as a function of j . In particular these533

operators preserve the vector space S(Rσ) ⊗ S#. The Fréchet space S# denotes534

S(R+) in the case when # ∈ {D,N,R} and S(R−)× S(R+) when # = T .535

4.2.2. Parity. Note also that we have536

Lemma 15.

(4.22) ˇ(Ljf) = (−1)jLj f̌ ,537

where f̌(τ, σ) = f(τ,−σ) .538

Proof539

This is a consequence of540

(4.23) Lj(σ, τ, ∂σ , ∂τ ) = (−1)j Lj(−σ, τ,−∂σ, ∂τ )541
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16 D. S. GREBENKOV AND B. HELFFER

that can be seen by observing that542

h−
2
3 (Âh − iv00) = h

1
3 â−2

h ∂2σ + h
5
6 â−3

h (̂∂sa)h ∂σ − ∂2τ

− h
2
3 â−1

h (̂∂ρa)h ∂τ + i h−
2
3 (V̂h(σ, τ) − v00)

∼
∑

j≥0

h
j
6Lj(σ, τ, ∂σ , ∂τ ) .

(4.24)543

We will see that each term in the right hand side of (4.24) satisfies (4.22).544

First, denoting ĥ = h
1
6 , we can rewrite545

(4.25) âh(σ, τ) ∼ 1− ĥ4τ


∑

ℓ≥0

1

ℓ!
c
(ℓ)(0)σℓĥ3ℓ


 ,546

and expanding in powers of ĥ, we see that the coefficient in front of ĥℓ has the parity547

of ℓ in σ. The same is true for âh(σ, τ)
−2 . Hence the coefficient in front of h

j
6 in548

h
1
3 âh(σ, τ)

−2∂2σ satisfies (4.23).549

We now look at h
5
6 â−3

h (̂∂sa)h and write550

h
5
6 (̂∂sa)h(σ, τ)∂σ = −ĥ9c′(ĥ3σ)∂σ .551

It is clear from this formula that the second term in the right hand side of (4.24)552

satisfies (4.23).553

The third term −∂2τ clearly satisfies (4.23). For the forth term −h 2
3 â−1

h (̂∂ρa)h ∂τ , it554

is enough to use the previous expansions and to observe that555

(̂∂ρa)h(σ, τ) = −c(ĥ3σ) .556

Finally, we consider557

i h−
2
3 (V̂h(σ, τ) − v00) ∼ i

∑

m≥4

ĥm−4


 ∑

3k+4p=m

vkp σ
k τp


 ,558

and we observe that k and m should have the same parity.559

This lemma will be useful for explaining cancellations in the expansion of the quasi-560

mode.561

4.2.3. Boundary or transmission conditions. In these local coordinates, the562

boundary conditions read563

• the Dirichlet condition564

(4.26) u(σ, 0) = 0 ,565

• the Neumann condition566

(4.27) ∂τu(σ, 0) = 0 ,567

• the Robin condition568

(4.28) ∂τu(σ, 0) = Kh− 4
3u(σ, 0) ,569
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• the transmission condition570

(4.29) ∂τu−(σ, 0) = ∂τu+(σ, 0) , ∂τu+(σ, 0) = K h−
4
3

(
u+(σ, 0)−u−(σ, 0)

)
.571

Depending on the physical problem, the Robin or Transmission parameter K can572

exhibit different scaling with h. Here we assume the scaling573

(4.30) K = κh
4
3 ,574

so that the Robin or transmission conditions in the variables (σ, τ) are independent575

of h and read576

(4.31) ∂τu(σ, 0) = κu(σ, 0) ,577

and578

(4.32) ∂τu−(σ, 0) = ∂τu+(σ, 0) , ∂τu+(σ, 0) = κ
(
u+(σ, 0)− u−(σ, 0)

)
.579

In Sec. 4.3, we justify this scaling by considering the transmission problem in dilated580

domains, while other scalings are discussed in Sec. 6. We denote by L#
0 the realization581

of L0 with # = D,N,R, T for Dirichlet, Neumann, Robin, or Transmission condition.582

We recall that the Hilbert space L2
# denotes L2(R+) in the case when # ∈ {D,N,R},583

and L2(R−) × L2(R+) when # = T . For the complex harmonic oscillator L2 we584

consider (with the same notation) the self-adjoint realization on L2(Rσ).585

4.3. Comparison with the large domain limit. We assume that 0 ∈ Ω− and586

we dilate Ω− and Ω by the map (x1, x2) 7→ (Sx1, Sx2) (S > 0 supposed to be large)587

and get ΩS
− and ΩS .588

It remains to check how the transmission problem for ΩS with V (x) = x1 is modified589

by dilation. If we start from the form590

u 7→
∫

ΩS

|∇u|2dx+ i

∫

ΩS

x1|u(x)|2 dx + κS

∫

∂ΩS
−

|u+ − u−|2 dsS ,591

with a transmission coefficient κS , we get by the change of coordinates x = Sy, for592

v(y) = u(Sy) ,593

∫

Ω

|∇yv|2dy + i S3

∫

Ω

y1|v(y)|2 dy + κS S

∫

∂Ω−

|v+ − v−|2 ds .594

Dividing by S3, we get595

1

S3

∫

Ω

|∇yv|2dy + i

∫

Ω

y1|v(y)|2 dy + κS S
−2

∫

∂Ω−

|v+ − v−|2 ds .596

In order to treat this problem as semi-classical, we set597

h2 =
1

S3
, K = κS S

−2 ,598

Hence we get599

κ = κS ,600

and our assumption (4.30) on K corresponds to what we get by rescaling from the601

problem in ΩS with κS independent of R .602

603

For this application, Theorem 1 gives the following604
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Theorem 16. For S > 0, let VS(x) = S V (S−1x), with the potential V defined605

on Ω satisfying the conditions of Theorem 1, and κS is independent of S. Then, with606

the notation of Theorem 1, one can construct a quasimode λ#S of the # realization of607

the operator −∆+ iVS in Ω#
S such that608

(4.33) λ#S = i SV (x0) +
∑

j∈N

λ#2j S
− j

2 +O(S−∞) ,609

as S → +∞.610

This theorem can also be applied to V (x) = x1, in which case VS is independent611

of S.612

Remark 17. More generally, one can consider613

VS(x) = Sm V (S−1x) ,614

with m > −2. In this case, we get κ = κS S
1−m. If κ is independent of S or tends to615

0 as S → +∞, one can apply the semi-classical analysis of the previous sections.616

5. The quasimode construction. Proof of the main theorem.617

5.1. The form of the quasimode. In what follows, we assume in the Robin618

or transmission cases that κ is independent of h (see (4.30)). We now look for a619

quasimode uapp,#h that we write in the (σ, τ) variables in the form:620

(5.1) uapp,#h ∼ d(h)


∑

j≥0

h
j
6 u#j (σ, τ)


 ,621

associated with an approximate eigenvalue622

(5.2) λapp,#h ∼ i v00 + h
2
3

∑

j≥0

h
j
6 λ#j .623

Here d(h) ∼ d0h
− 7

12 with d0 6= 0 chosen such that, coming back to the initial coordi-624

nates, the L2-norm of the trial state equals 1.625

626

Note that the u#j are in the domain of L#
j if we take the condition # (with627

# ∈ {N,D,R, T }).628

Note also that we do not assume a priori that the λ#j for j odd are 0 as claimed in629

our theorem.630

As will be seen in the proof, we can choose631

(5.3) u#j (σ, τ) = φ#j (σ)ψ
#
0 (τ) , j = 0, 1, 2 ,632

and633

(5.4) u#j (σ, τ) = φ#j (σ)ψ
#
0 (τ) +

Nj∑

ℓ=1

φ#j,ℓ(σ)ψ
#
j,ℓ(τ) , j ≥ 3 ,634

with φ#j,ℓ ∈ S(R) and ψj,ℓ ∈ S# to be specified below.635

Moreover, we have636

(5.5) L#
0 ψ

#
0 = λ#0 ψ

#
0 ,637
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638

(5.6) L2φ
#
0 (σ) = λ#2 φ

#
0 (σ) ,639

with640

(5.7) 〈ψ#
j,ℓ , ψ̄

#
0 〉L2

#
= 0 ,641

and642

(5.8) 〈ψ#
0 , ψ̄#

0 〉L2
#
6= 0 .643

The construction will consist in expanding (Âh − λapp,#h )uapp,#h in powers of h
1
6 and644

finding the conditions of cancellation for each coefficient of this expansion.645

646

If we succeed in this construction and come back to the initial coordinates, using647

a Borel procedure to sum the formal expansions and multiplying by a cutoff function648

in the neighborhood of a point x0 of ∂Ω#, we obtain an approximate spectral pair649

localized near x0 (i.e. O(h∞) outside any neighborhood of x0).650

The Borel procedure consists in choosing a cutoff function θ (with θ = 1 in a small651

neighborhood of 0 and a sequence Hn such that β 7→
∑

j β
jλjθ(β/Hj) converges in652

C∞([0, β0]) for some β0 > 0. We then define653

λ#h = i v00 + h
2
3

∑

j≥0

βjλjθ(β/Hj) ,654

with β = h
1
6 .655

This λ#h is not unique but the difference between two different choices is O(h∞). A656

similar procedure can be used to define a quasimode state u#h strongly localized near657

x0.658

659

Remark 18. We emphasize that the above construction is not sufficient (the prob-660

lem being non self-adjoint) for proving the existence of an eigenvalue with this expan-661

sion. The construction is true for any regular domain (exterior or interior) under the662

conditions (4.8)-(4.10). When V (x) = x1, we recover in this way the condition that663

the curvature does not vanish at x0. We recall that this construction can be done near664

each point where ∇V (x0) ∧ ν(x0) = 0. The candidates for the spectrum are deter-665

mined by ordering different quasimodes and comparing their real parts. We guess that666

the true eigenfunctions will have the same localization properties as the constructed667

quasimode states.668

5.2. Term j = 0 . Identifying the powers in front of h
1
6 , after division by d(h),669

one gets the first equation corresponding to j = 0 .670

We consider four boundary conditions.671

672

Neumann and Dirichlet cases. For the Neumann boundary condition, one673

has674

(5.9) LN
0 uN0 = λN0 u

N
0 , ∂τu

N
0 (σ, 0) = 0 ,675

and we look for a solution in the form676

(5.10) uN0 (σ, τ) = φN0 (σ)ψN
0 (τ) .677
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At this step, we only look for a pair (λN0 , ψ
N
0 ) with ψN

0 non identically 0 such that678

(5.11) (−∂2τ + i v01τ)ψ
N
0 (τ) = λN0 ψ

N
0 (τ) in R+ , (ψN

0 )′(0) = 0 .679

We recall from (4.13) that v01 6= 0 so we have the standard spectral problem for the680

complex Airy operator in the half line with Neumann condition at 0 . The spectral681

theory of this operator is recalled in [17]. The spectrum consists of an infinite sequence682

of eigenvalues (λN,(n))n≥1 (ordered by increasing real part) that can be expressed683

through the zeros a′n (n ≥ 1) of the derivative of the Airy function Ai′(z):684

(5.12) λN,(n) = −a′n | v01|
2
3 exp

(
iπ

3
sign v01

)
.685

Different choices of n will determine the asymptotic expansion of different approximate686

eigenvalues of the original problem. If we are interested in controlling the decay of the687

associated semi-group, we choose λN0 = λN,(1) which corresponds to the eigenvalue688

with the smallest real part.689

One can similarly treat the Dirichlet problem (like in [8]). In this case, one has690

(5.13) LD
0 u

D
0 = λD0 u

D
0 in R+ , uD0 (σ, 0) = 0 ,691

and we look for a solution in the form692

(5.14) uD0 (σ, τ) = φD0 (σ)ψD
0 (τ) ,693

where ψD
0 (τ) satisfies694

(5.15) LD
0 ψ

D
0 = λD0 ψ

D
0 in R+ , ψD

0 (0) = 0 .695

The spectral theory of this operator is also recalled in [17]. The spectrum consists of696

an infinite sequence of eigenvalues (λD,(n))n≥1 (ordered by increasing real part) that697

can be expressed through the zeros an (n ≥ 1) of the Airy function Ai(z):698

(5.16) λD,(n) = −an | v01|
2
3 exp

(
iπ

3
sign v01

)
.699

One can show (see [25] for a proof by analytic dilation) that700

(5.17)

∫ +∞

0

ψN
0 (τ)2 dτ 6= 0 and

∫ +∞

0

ψD
0 (τ)2 dτ 6= 0 .701

This is also a consequence of the completeness of the eigenfunctions of the complex702

Airy operator in the half-line with Neumann or Dirichlet boundary condition. This703

property is true for any eigenvalue λ#0 of L#
0 .704

705

For n ≥ 1, the eigenfunctions ψN
0 = ψN,(n) and ψD

0 = ψD,(n) are specifically706

translated and complex dilated Airy functions:707

ψN,(n)(τ) = cNn Ai

(
a′n + τ | v01|

1
3 exp

(
iπ

6
sign v01

))
for τ ≥ 0 ,(5.18)708

ψD,(n)(τ) = cDn Ai

(
an + τ | v01|

1
3 exp

(
iπ

6
sign v01

))
for τ ≥ 0 ,(5.19)709
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where the normalization constants cNn and cDn can be fixed by choosing the following710

normalization that we keep throughout the paper:711

∞∫

0

ψ#
0 (τ)2dτ = 1 .712

These coefficients are computed explicitly in Appendix A (see (A.24), (A.20)) .713

Robin case. For the Robin boundary condition, one has714

(5.20) LR
0 u

R
0 = λR0 u

R
0 , ∂τu

R
0 (σ, 0) = κuR0 (σ, 0) ,715

and we look for a solution in the form716

(5.21) uR0 (σ, τ) = φR0 (σ)ψ
R
0 (τ) ,717

where the function ψR
0 (τ) satisfies718

(5.22) (−∂2τ + iv01τ)ψ
R
0 (τ) = λR0 ψ

R
0 (τ) in R+, (ψR

0 )
′(0) = κψR

0 (0) .719

This one-dimensional problem was studied in [17]. In particular, the spectrum consists720

of an infinite sequence of eigenvalues (λR,(n))n≥1 (ordered by increasing real part) that721

can be expressed as722

(5.23) λR,(n)(κ) = −aRn (κ) | v01|
2
3 exp

(
πi

3
sign v01

)
,723

where aRn (κ) is a solution of the equation724

(5.24) exp

(
πi

6
sign v01

)
Ai′
(
aRn (κ)

)
− κ

|v01|
1
3

Ai
(
aRn (κ)

)
= 0 ,725

and κ ≥ 0 denotes the Robin parameter.4726

Except for the case of small κ, in which the eigenvalues are close to the eigenvalues727

of the Neumann problem, it does not seem easy to localize all the solutions of (5.24)728

in general. Note that from (5.24), we deduce that729

(5.25) (λR,(n))′(0) = −(aRn )
′(0) | v01|

2
3 exp

(
πi

3
sign v01

)
,730

where731

(5.26) (aRn )
′(0) =

1

aRn (0)|v01|
1
3

exp

(
−πi

6
sign v01

)
6= 0 .732

Nevertheless it is proven in [17] that the zeros of the function in (5.24) are simple733

and that there is no Jordan block. So as can be deduced from the next lemma, any734

eigenfunction satisfies
∫
ψR
0 (τ)

2 dτ 6= 0 . We consequently fix the normalization of ψR
0735

by imposing736

(5.27)

∞∫

0

ψR
0 (τ)

2 dτ = 1 .737

4 In [17], we discussed the complex Airy operator with v01 = −1, see Eq. (3.25).
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For n ≥ 1, the associated eigenfunction ψR
0 = ψR,(n) reads738

(5.28) ψR,(n)(τ) = cRn Ai

(
aRn (κ) + τ |v01|

1
3 exp

(
πi

6
sign v01

))
(τ ≥ 0),739

where cRn is the normalization constant given by (A.28).740

5.2.1. Transmission case. In the transmission case, one gets, with ψT
0 =741

(ψ−
0 , ψ

+
0 ),742

(5.29)
L0ψ

−
0 = λT0 ψ

−
0 in R− , L0ψ

+
0 = λT0 ψ

+
0 in R+ ,

∂τψ
−
0 (σ, 0) = ∂τψ

+
0 (σ, 0) , ∂τψ

+
0 (σ, 0) = κ

(
ψ+
0 (σ, 0)− ψ−

0 (σ, 0)
)
.

743

The existence of λT0 has been proved in [17]. In addition, the eigenvalue (of the744

smallest real part) is simple (no Jordan block) for κ ≥ 0 small. We can use the745

explicit computations in [17] or the following abstract lemma by Aslayan-Davies for746

a closed operator A [9]:747

Lemma 19. If f and f∗ are the normalized eigenvectors of A and A∗ associated748

with the eigenvalues λ and λ̄ respectively, and if the the spectral projector P has rank749

1, then 〈f , f∗〉 6= 0 and750

||P || = 1

|〈f , f∗〉| .751

The proof that P has rank 1 for the case V (x) = x1 is given in [17] but only for κ ≥ 0 .752

In general, we make the assumption753

Assumption 20. λT0 (κ) is simple (no Jordan block) .754

Under this assumption, we have755

(5.30)

∫ ∞

−∞

ψT
0 (τ)

2 dτ :=

∫ 0

−∞

ψ−
0 (τ)

2 dτ +

∫ +∞

0

ψ+
0 (τ)

2 dτ 6= 0 .756

The explicit form of the eigenfunctions ψT,(n) (n ≥ 1) can be obtained from the757

analysis provided in [16, 17]:758

ψ+,(n)(τ) = −cTn δ̄Ai′
(
a−n (κ)

)
Ai
(
a+n (κ) + τ | v01|

1
3 δ
)
,

ψ−,(n)(τ) = cTn δAi
′
(
a+n (κ)

)
Ai
(
a−1 (κ)− τ | v01|

1
3 δ̄
)
,

(5.31)759

where cTn is a normalization constant (to satisfy (5.35)), δ = exp
(
iπ
6 sign v01

)
, and760

(5.32) a±n (κ) = λ̂T,(n)
(
κ/| v01|

1
3

)
exp

(
±2πi

3
sign v01

)
,761

where the λ̂T,(n)(κ̌) are the eigenvalues of the complex Airy operator − d2

dx2 + ix on
the line with transmission condition at 0, with coefficient

κ̌ = κ/|v01|
1
3 .

They are defined implicitly as complex-valued solutions (enumerated by the index762

n = 1, 2, . . .) of the equation [16, 17]763

(5.33) 2πAi′
(
e2πi/3λ̂T,(n)(κ̌)

)
Ai′
(
e−2πi/3λ̂T,(n)(κ̌)

)
= −κ̌ .764
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The eigenvalues λ̂T,(n)(κ̌) are ordered according to their increasing real parts:765

Re{λ̂T,(1)(κ̌)} ≤ Re{λ̂T,(2)(κ̌)} ≤ . . .766

767

Note that ψ−,(n)(0−) 6= ψ+,(n)(0+). The associated eigenvalue is768

(5.34) λT,(n)(κ) = λ̂T,(n)
(
κ/|v0|

1
3

)
| v01|

2
3 .769

In what follows, (λT0 (κ), ψ
T
0 ) denotes an eigenpair (λT,(n)(κ), ψT,(n)) corresponding to770

a particular choice of n ≥ 1.771

772

Summary at this stage. For # ∈ {D,N,R, T }, we have constructed u#0 in the773

form (5.3). At this step φ#0 (σ) remains “free” except that it should not be identically774

0 . We have chosen λ#0 as an eigenvalue of L#
0 (assuming that it is simple, with no775

Jordan block) and ψ#
0 is the associated eigenfunction of L#

0 , which belongs to S#776

and permits, according to Lemma 19, to have the normalization777

(5.35)

∫

R#

ψ#
0 (τ)2dτ = 1 .778

From now on, we do not mention (except for explicit computations) the reference779

to Dirichlet, Neumann, Robin or Transmission condition when the construction is780

independent of the considered case.781

5.3. Term j = 1. The second equation (corresponding to j = 1) reads782

(5.36) (L#
0 − λ0)u

#
1 = λ1 u

#
0 .783

We omit sometimes the superscript # for simplicity.784

The guess is that λ1 = 0 . To see if it is a necessary condition, one can take the scalar785

product (in the τ variable) with ψ̄0 (to be understood as the element in Ker(L∗
0− λ̄0)).786

We take the convention that the scalar product is antilinear in the second argument.787

This leads to788

(∫
ψ2
0(τ)dτ

)
λ1 φ0(σ) = 0 ,789

the integral being on R+ for Dirichlet, Neumann or Robin, and on R in the transmis-790

sion case. From Eq. (5.35), we get then791

λ1φ0(σ) = 0 ,792

and by the previous condition on φ0(σ)793

(5.37) λ1 = 0 .794

Hence, coming back to (5.36), we choose795

(5.38) u#1 (σ, τ) = φ#1 (σ)ψ#
0 (τ) ,796

where φ#1 remains free at this step.797

798

This manuscript is for review purposes only.



24 D. S. GREBENKOV AND B. HELFFER

5.4. Term j = 2 . The third condition (corresponding to j = 2) reads799

(5.39) (L#
0 − λ0)u2 + L2 u0 = λ2 u0 .800

To find a necessary condition, we take the scalar product (in the τ variable) with ψ̄0.801

In this way we get (having in mind (5.35))802

〈L2 u0 , ψ̄0〉 = λ2 φ0(σ) .803

Computing the left hand side, we get804

(−∂2σ + i v20 σ
2)φ0(σ) = λ2 φ0(σ) .805

From Assumption (4.13), we know that v20 6= 0 . Hence we are dealing with an effec-806

tive complex harmonic oscillator whose spectral analysis has been done in detail (see807

Davies [11] or the book by Helffer [19]). The eigenvalues can be explicitly computed808

(by analytic dilation) and there is no Jordan block. Moreover the system of corre-809

sponding eigenfunctions is complete. This implies that (λ2, φ0) should be a spectral810

pair for (−∂2σ + i v20 σ
2) .811

The eigenpairs of the quantum harmonic oscillator are well known:812

(5.40) λ
(k)
2 = γ(2k − 1), φ

(k)
0 (σ) =

γ
1
4 e−γσ2/2Hk−1(γ

1
2σ)

π
1
4

√
2k−1 (k − 1)!

(k = 1, 2, . . .),813

where γs = |v20|
s
2 exp

(
πsi
4 sign v20

)
(for s = 1

4 ,
1
2 , 1), Hk(z) are Hermite polynomials,814

and the prefactor ensures that815

∞∫

−∞

φ
(k)
0 (σ)2 dσ = 1 .816

The eigenvalue with the smallest real part corresponds to k = 1 for which817

(5.41) φ
(1)
0 (σ) = cφ0

exp

(
−λ2

σ2

2

)
,818

while the corresponding eigenvalue is819

(5.42) λ
(1)
2 = |v20|

1
2 exp

(
iπ

4
sign v20

)
,820

and cφ0
ensures the normalization of φ

(1)
0 (σ):821

(5.43) cφ0
= |v20|

1
8 π− 1

4 exp

(
iπ

16
sign v20

)
.822

We do not need actually the specific expression of φ#0 = φ0 and it is enough to know823

that φ#0 ∈ S(R).824

825

Coming back to the solution of (5.39), which simply reads826

(5.44) (L0 − λ0)u2 = 0 ,827
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we consequently look for u#2 (σ, τ) in the form828

(5.45) u#2 (σ, τ) = φ#2 (σ)ψ#
0 (τ) ,829

where φ#2 (σ) is free at this stage.830

831

Summary at this stage. We note that the construction is conform with the832

general form introduced in (5.3). At this stage, (λ#0 , ψ
#
0 ) is a spectral pair for L#

0 ,833

λ#1 = 0 , u#1 (σ, τ) = φ#1 (σ)ψ#
0 (τ) (with φ#1 free), (λ#2 , φ

#
0 ) is a spectral pair for L2834

(actually independent of #).835

5.5. Term j = 3 . The fourth equation corresponds to j = 3 and reads836

(5.46) (L0 − λ0)u3 + (L2 − λ2)u1 + L3u0 = λ3u0 .837

Taking the scalar product (in L2⊗̂L2
# := L2(Rσ × R+

τ ) for Dirichlet, Neumann and838

Robin, and in L2⊗̂L2
# := L2(Rσ ×R−

τ )×L2(Rσ ×R+
τ ) for the transmission case) with839

ū0 and having in mind our normalizations of ψ0 and φ0, we obtain840

〈L3u0 , ū0 〉 = λ3 ,841

so λ3 is determined by842

(5.47) λ3 = i v11

(∫
σφ0(σ)

2dσ

)(∫
τψ#

0 (τ)2dτ

)
.843

Note that whatever the parity of φ0, φ
2
0 is even, so

∫
σφ0(σ)

2dσ = 0 . Hence,844

(5.48) λ3 = 0 .845

We come back to (5.46), but now take the scalar product with ψ̄0 in the τ variable.846

So we get847

〈(L2 − λ2)u1 + (L3 − λ3)u0 , ψ̄0〉 = 0 .848

Taking into account (4.13) and the form of u0 and u1, this reads849

(5.49) (L2 − λ2)φ1 = −i v11 σ
(∫

τψ0(τ)
2dτ

)
φ0 .850

The right hand side is in the image of the realization of (L2 − λ2) . There is a unique851

φ1 solution of (5.49) satisfying852

(5.50)

∫

R

φ1(σ)φ0(σ) dσ = 0 .853

Remark 21. Note that φ0φ1 is odd.854

We can now solve (5.46). We observe that855

(L2 − λ2)u1 + (L3 − λ3)u0 = ((L2 − λ2)φ1)ψ0 + (L3 − λ3)u0 .856

According to what we have done already, (5.46) has the form857

((L0 − λ0)u3) (σ, τ) = g3(τ)f3(σ) ,858
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where859

g3(τ) = (τ − c3)ψ0(τ)860

is orthogonal to ψ̄0, i.e.861

c3 =

∫
τψ0(τ)

2 dτ ,862

and863

f3(σ) = i v11 σφ0(σ) .864

Remark 22. Note that φ0f3 is odd.865

We then write for j = 3 the expression (5.4), with N3 = 1,866

(5.51) u3(σ, τ) = φ3(σ)ψ0(τ) + φ3,1(σ)ψ3,1(τ) ,867

where ψ3,1 is determined as the unique solution of the problem868

(5.52) (L#
0 − λ#0 )ψ3,1 = g3 ,869

which is orthogonal to ψ̄0, and870

(5.53) φ3,1(σ) = f3(σ) .871

872

Remark 23. Note that φ0φ3,1 is odd.873

Summary at this stage. We note that the construction is conform with the874

general form introduced in (5.3)-(5.4). At this stage, φ#3 is introduced, λ#3 = 0 and875

φ#1 are determined but φ#2 and φ#3 remain free. Note that N3 = 1 in (5.4), φ#3,1 is876

determined in S(R) and ψ#
3,1 is determined in S#.877

5.6. Term j = 4 . The fifth condition corresponds to j = 4 and reads878

(5.54) (L0 − λ0)u4 + (L2 − λ2)u2 + (L3 − λ3)u1 + L4u0 = λ4u0 .879

We follow the same procedure as in the preceding step. λ4 is determined by integrating880

(5.54) after multiplication by u0 :881

λ4 = 〈(L3 − λ3)u1 + L4u0 , ū0〉

= i v11

(∫
σφ1(σ)φ0(σ)dσ

) (∫
τψ0(τ)

2dτ

)

+ c(0)

∫
ψ′
0(τ)ψ0(τ)dτ + i v02

∫
τ2ψ0(τ)

2 dτ .

(5.55)882

φ2 is determined by integrating (5.54) in the τ variable over R# after multiplication883

by ψ0 . We get884

(5.56) (L2 − λ2)φ2 = 〈(L3 − λ3)u1 , ψ̄0〉L2
τ
+ 〈L4u1 , ψ̄0〉L2

τ
− λ4 := f4 ,885
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where our choice of λ4 implies the orthogonality of f4 to φ̄0 in L2
# .886

There exists consequently a unique φ2 solution of (5.56) that is orthogonal to φ̄0 .887

888

We then proceed like in the fourth step, observing that u4 should satisfy, for some889

N4 ≥ 1,890

(5.57) (L0 − λ0)u4 =

N4∑

ℓ=1

f4,ℓ(σ) g4,ℓ(τ) ,891

with f4,ℓ in S(R), g4,ℓ in S# and orthogonal to ψ̄0 in L2
#. The expression in the right892

hand side is deduced from our previous computations of u0, u2 and u3 and λ4 .893

We then look for a solution u4 in the form894

(5.58) u4(σ, τ) = φ4(σ)ψ0(τ) +

N4∑

ℓ=1

φ4,ℓ(σ)ψ4,ℓ(τ) ,895

which is obtained by solving for each ℓ896

(5.59) (L#
0 − λ#0 )ψ4,ℓ = g4,ℓ ,

∫
ψ4,ℓ(τ)ψ0(τ) dτ = 0 ,897

with the suitable boundary (or transmission) condition at 0 and taking898

φ4,ℓ = f4,ℓ .899

900

Although not needed, we make explicit the computation of the right hand side in901

(5.57). Using our choice of λ4 and φ2, we obtain902

− (L2 − λ2)u2 − (L3 − λ3)u1 − L4u0 + λ4u0

= (−(L2 − λ2)φ2)ψ0 − ((L3 − λ3)φ1ψ0 − L4φ0ψ0 + λ4φ0ψ0

= g4,1(σ)(τ − c3)ψ0(τ) + g4,2(σ)(∂τψ0 − c4ψ0) + g4,3(σ)(τ
2 − c5)ψ0 ,

903

with c4 =
∫
(∂τψ0)(τ)ψ0(τ)dτ and c5 =

∫
τ2ψ0(τ)dτ .904

Moreover the g4,ℓ are even with respect with σ.905

Hence we can take N4 = 3 and906

g4,1(τ) := (τ − c3)ψ0(τ) ,

g4,2(τ) := (∂τψ0 − c4ψ0) ,

g4,3(τ) := (τ2 − c5)ψ0(τ) .

(5.60)907

We do not provide explicit formula for the corresponding ψ4,ℓ .908

909

Summary at this stage. At the end of this step we have determined the λ#j910

for j ≤ 4 , the ψ#
j,ℓ and φ#4,ℓ for 3 ≤ j ≤ 4 and the φ#j (σ) for j ≤ 2 . Like in [21], this911

construction can be continued to any order. This achieves the proof of Theorem 1.912

5.7. Term j = 5 and vanishing of the odd terms. We first focus on the913

sixth step corresponding to the computation of λ5. The sixth condition corresponds914

to j = 5 and reads915

(5.61) (L0 − λ0)u5 + (L2 − λ2)u3 + (L3 − λ3)u2 + (L4 − λ4)u1 + L5u0 = λ5u0 .916
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λ5 is determined by integrating (5.61) after multiplication by ū0 . By our preceding917

constructions and (4.22), we see that918

σ 7→ u0(σ)
(
(L2 − λ2)u3 + (L3 − λ3)u2 + (L4 − λ4)u1 + L5 u0

)
(σ)919

is odd. This immediately leads to λ5 = 0 .920

921

With some extra work consisting in examining the symmetry properties with922

respect to σ and using Sec. 4.2.2, we obtain923

Proposition 24. In the formal expansion, λj = 0 if j is odd.924

5.8. Four-terms asymptotics. Gathering (4.20), (5.12) and (5.55), the four-925

terms asymptotics of approximate eigenvalues reads for n, k = 1, 2, . . .926

λapp,#h := λ
#,(n,k)
h = i v00 + h

2
3 | v01|

2
3µ#

n exp

(
iπ

3
sign v01

)

+ h(2k − 1)|v20|
1
2 exp

(
iπ

4
sign v20

)
+ h

4
3 λ

#,(n)
4 +O(h

5
3 ) ,

(5.62)927

where µD
n = −an, µN

n = −a′n, µR
n = −aRn (κ) (defined by (5.24)), and µT

n = −a+n (κ)928

(defined by (5.32)), while λ
#,(n)
4 is explicitly computed in Appendix A (see (A.23),929

(A.27), (A.31), and (A.39) for Dirichlet, Neumann, Robin, and Transmission cases),930

and the involved coefficients vjk of the potential V (s, ρ) are defined in (4.12).931

932

Remark 25. In the above construction, if we take φ#j = 0 for j ≥ 3, we get an933

eigenpair (λapp,#h , uapp,#h ) with934

uapp,#h = u#0 + h
1
6u#1 + h

1
3u#2 ,935

such that936

(5.63) (A#
h − λapp,#h )uapp,#h = O(h

3
2 ) .937

To get in (5.63) the remainder O(h
5
3 ), one should continue the construction for two938

more steps.939

Remark 26. Note that the leading terms in the eigenvalue expansion do not con-940

tain the curvature which appears only in λ4 (see Eq. (A.27)) and is thus of order941

h
4
3 .942

6. Other scalings in the Robin or transmission problems. The scaling943

(4.30) of the transmission parameter K with h was appropriate to keep the Robin944

or transmission condition for the rescaled problem. In biophysical applications, the945

transmission condition reads946

(6.1) D∂νu+ = D∂νu− = K
(
u+ − u−

)
,947

where D is the bulk diffusion coefficient, while the transmission parameter K repre-948

sents the permeability of a membrane which is set by the membrane properties and949

thus does not necessarily scale with h. Similarly, in the Robin boundary condition,950

(6.2) −D∂νu− = K u−,951
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which accounts for partial reflections on the boundary, K represents partial reactivity952

or surface relaxivity which are set by properties of the boundary.953

954

We consider two practically relevant situations for the BT-operator955

−D∆+ i g x1:956

• When D → 0 with fixed g, one can identify h2 = D and V (x) = g x1 so that957

the rescaled transmission condition in (4.29) gives Kh− 4
3 which tends to +∞958

as h → 0 if K is fixed. In this limit, the transmission condition is formally959

reduced to the continuity condition at the boundary: u+(σ, 0) = u−(σ, 0),960

together with the flux continuity in the first relation of (4.29). In other961

words, the interface between two subdomains is removed. The construction962

of the previous section seems difficult to control in this asymptotics and the963

mathematical proof of the heuristics should follow other ways.964

• When g → ±∞ with fixed D, one can divide the BT-operator and (6.1)965

by g and then identify h2 = D/g and V (x) = x1. In this situation, the966

rescaled transmission condition in (4.29) gives a parameter κ = (K/D)h
2
3967

which tends to 0 as h → 0. In this limit, the transmission condition is968

reduced to two Neumann boundary conditions on both sides of the interface:969

∂τu+(σ, 0) = ∂τu−(σ, 0) = 0 .970

We now discuss how the eigenvalue asymptotic expansion obtained for rescaled971

K can be modified for the second situation. The constructions of the previous section972

can be adapted and controlled with respect to κ for κ small enough. As observed973

along the construction, one can start with (5.62) and then expand the factor µ#
n (κ)974

into Taylor series that results in the quasi-mode in the Robin or Transmission case:975

Theorem 27. With the notation of Theorem 1 except that in (1.4) we assume976

(6.3) κ = κ̂ h
2
3 ,977

we have for # ∈ {R, T }, n, k = 1, 2, . . .978

λ
#,(n,k)
h = i v00 − h

2
3 | v01|

2
3 a′n exp

(
iπ

3
sign v01

)

+ h (2k − 1) |v20|
1
2 exp

(
iπ

4
sign v20

)

+ h
4
3

(
λ
N,(n)
4 − κ̂

|v01|
1
3

a′n
exp

(
iπ

6
sign v01

))
+O(h

5
3 ) ,

(6.4)979

where λ
N,(n)
4 is explicitly given in (A.27), and the involved coefficients vjk of the980

potential V (s, ρ) are defined in (4.12).981

Here, we have used that λ
#,(n)
4 (κ) = λ

N,(n)
4 for κ = 0 (see Remark 33). The coefficient982

in front of κ̂ involves (µ#
n )

′(0) that was computed explicitly by differentiating the983

relation determining µ#
n (κ) with respect to κ. For the Robin case, we used (5.26) to984

get985

(6.5) (µR
n )

′(0) = −(aRn )
′(0) = − 1

a′n |v01|
1
3

exp

(
− iπ

6
sign v01

)
,986

with aRn (0) = a′n.987
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Similarly, differentiating (5.33) with respect to κ and using (5.32), we got (see Ap-988

pendix A.3)989

(6.6) (µT
n )

′(0) = −(a+n )
′(0) = − 1

a′n |v01|
1
3

exp

(
− iπ

6
sign v01

)
,990

with a+n (0) = a′n. The effect of Robin or transmission condition appears only in the991

coefficient of h
4
3 .992

In order to control the construction with respect to κ, it is enough to get an993

expression of the kernel of the regularized resolvent for z = λ#0 . Let us treat the994

Robin case and assume v01 = −1.995

As proven in [17], the kernel of the resolvent is given by996

G−,R(x, y ;λ) = G−
0 (x, y ;λ) + G−,R

1 (x, y ;κ, λ) for (x, y) ∈ R2
+,997

where998

(6.7) G−
0 (x, y ;λ) =

{
2πAi(eiαwx)Ai(e

−iαwy) (x < y),

2πAi(e−iαwx)Ai(e
iαwy) (x > y),

999

and1000

G−,R
1 (x, y ;κ, λ) = −2π

ieiαAi′(eiαλ)− κAi(eiαλ)

ie−iαAi′(e−iαλ)− κAi(e−iαλ)

×Ai
(
e−iα(ix+ λ)

)
Ai
(
e−iα(iy + λ)

)
.

(6.8)1001

The kernel G−
0 (x, y ;λ) is holomorphic in λ and independent of κ. Setting κ = 0 , one1002

retrieves the resolvent for the Neumann case. Its poles are determined as (complex-1003

valued) solutions of the equation1004

(6.9) fR(κ, λ) := ie−iαAi′(e−iαλ)− κAi(e−iαλ) = 0 .1005

For κ = 0, we recover the equation determining the poles of the Neumann problem:1006

fN(λ) := ie−iαAi′(e−iαλ) = 0 .1007

We look at the first pole and observe that1008

(6.10) (∂λf
R)(0, λR,(1)(0)) = (∂λf

R)(0, λN,(1)) = (fN )′(λN,(1)) 6= 0 .1009

This evidently remains true for κ small enough:1010

(6.11) (∂λf
R)(κ, λR,(1)(κ)) 6= 0 .1011

As done in [17], we can compute the distribution kernel of the projector associated1012

with1013

λ0(κ) := λR,(1)(κ) .1014

We get1015

ΠR
1 (x, y;κ) = −2π

ieiαAi′(eiαλ0(κ))− κAi(eiαλ0(κ))

(∂λfR)(κ, λ0(κ))

×Ai
(
e−iα(ix+ λ0(κ))

)
Ai
(
e−iα(iy + λ0(κ))

)
.

(6.12)1016
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This kernel is regular with respect to κ.1017

The distribution kernel of the regularized resolvent at λ0(κ) is obtained as1018

GR,reg(x, y;κ, λ0(κ)) := G−
0 (x, y;κ, λ0(κ))

+ lim
λ→λ0

(
G−,R
1 (x, y ;κ, λ)− (λ0 − λ)−1ΠR

1 (x, y;κ)
)
.

1019

It remains to compute the second term of the right hand side. Writing G−,R
1 (x, y;κ, λ)1020

in the form1021

G−,R
1 (x, y, κ, λ) =

Φ(x, y;κ, λ)

λ− λ0(κ)
,1022

we observe that Φ(x, y;κ, λ) is regular in κ, λ and we get1023

GR,reg(x, y;κ, λ0(κ)) := G−
0 (x, y;κ, λ0(κ)) + ∂λΦ(x, y;κ, λ0(κ)) .1024

It is regular in κ and we recover for κ = 0 the regularized resolvent of the Neumann1025

problem at λ = λN,(1).1026

1027

With this regularity with respect to κ, we can control all the constructions for1028

j = 0, . . . , 4 (and actually any j) and in particular solve (5.52) for κ small and simi-1029

larly (5.59), with a complete expansion in powers of κ at the origin.1030

1031

Remark 28. Similarly, one can treat the transmission case.1032

7. WKB construction. In this section, we propose an alternative analysis1033

based on the WKB method. This construction is restricted to quasimodes with k = 11034

in (5.40) but it gives a quasimode state that is closer to the eigenfunction than that1035

obtained by the earlier perturbative approach. Here we follow the constructions of1036

[21, 22] developed for a Robin problem.1037

We start from1038

(7.1) Ah = −h2a−2∂2s + h2a−3(∂sa) ∂s − h2∂2ρ − h2a−1(∂ρa) ∂ρ + i Ṽ (s, ρ) .1039

Here, instead of what was done in (4.14), we only dilate in the ρ variable:1040

ρ = h
2
3 τ .1041

In the (s, τ) coordinates, we get1042

(7.2) Âh = −h2ǎ−2
h ∂2s + h2ǎ−3

h (∂sǎh) ∂s − h
2
3 ∂2τ − h

4
3 ǎ−1

h
ˇ(∂ρa) ∂τ + i V̌h(s, τ) ,1043

with1044

V̌h(s, τ) = Ṽ (s, h
2
3 τ) ,

ǎh(s, τ) = 1− τh
2
3 c (s) ,

∂sǎh(s, τ) = −τh 2
3 c

′ (s) ,

ˇ∂ρa = −c(s) ,

ǎh(s, τ)
2 = 1− 2τh

2
3 c (s) + τ2h

4
3 c (s)2 ,

ǎh(s, τ)
−2 = 1 + 2τh

2
3 c (s) + 3τ2h

4
3 c (s)2 +O(h2) .

(7.3)1045
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We consider the Taylor expansion of V̌h:1046

(7.4) V̌h(s, τ) ∼
∑

j∈N

vj(s)h
2j
3 τ j ,1047

with1048

(7.5) vj(s) =
1

j!
(∂jρṼ )(s, 0) .1049

We look for a trial state in the form1050

(7.6) u#,wkb
h := d(h)bh(s, τ) exp

(
−θ(s, h)

h

)
,1051

with1052

(7.7) θ(s, h) = θ0(s) + h
2
3 θ1(s) ,1053

and1054

(7.8) bh(s, τ) ∼
∑

j∈N

bj(s, τ)h
j
3 .1055

Here d(h) is a normalizing constant such that, when coming back to the initial co-1056

ordinates, the L2 norm of u#,wkb
h is 1. In the initial coordinates, we should actually1057

consider u#,wkb
h (s, h−

2
3 ρ) multiplied by a suitable cut-off function in the neighborhood1058

of the point x0 of ∂Ω⊥.1059

This gives an operator acting on bh1060

Âh,θ := exp

(
θ(s, h)

h

)
Âh exp

(
−θ(s, h)

h

)

= −ǎ−2
h (h∂s − θ′(s, h))2 + hǎ−3

h (∂sǎh) (h∂s − θ′(s, h))

− h
2
3 ∂2τ − h

4
3 ǎ−1

h
ˇ(∂ρa) ∂τ + i V̌h(s, τ) .

(7.9)1061

We rewrite this operator in the form1062

(7.10) Âh,θ ∼
∑

j≥0

Λjh
j
3 ,1063

with1064

Λ0 := iv0(s)− θ′0(s)
2 ,

Λ1 := 0 ,

Λ2 := −∂2τ + (iv1(s)− 2c(s)θ′0(s)
2)τ − 2θ′0(s)θ

′
1(s) ,

Λ3 := 2θ′0(s)∂s ,

Λ4 := c(s)∂τ + (iv2(s)− c(s)2θ′0(s)
2)τ2 + 4c(s)2θ′0(s)θ

′
1(s)τ − θ′1(s)

2 .

(7.11)1065

We recall that v′0(0) = 0, v1(0) 6= 0 .1066

We look for a quasimode in the form1067

(7.12) λ#,wkb
h ∼ iv0(0) + h

2
3

∑

j∈N

µjh
j
3 .1068
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The construction should be local in the s-variable near 0 and global in the τ variable1069

in R#.1070

1071

Expanding (Âh,θ − λh)bh in powers of h
1
3 and looking at the coefficient in front1072

of h0, we get1073

(Λ0 − iv0(0))b0 = 01074

as a necessary condition. Hence we choose θ0 as a solution of1075

(7.13) i(v0(s)− v0(0))− θ′0(s)
2 = 0 ,1076

which is usually called the (first) eikonal equation.1077

We take the solution such that1078

(7.14) Re θ0(s) ≥ 0 , θ0(0) = 0 ,1079

and we note that1080

(7.15) θ′0(0) = 0 .1081

With this choice of θ0, we note that1082

(7.16) Λ2 = −∂2τ + i
(
v1(s)− 2c(s)[v0(s)− v0(0)]

)
τ − 2θ′0(s)θ

′
1(s) ,1083

with1084

(7.17) v̂1(s) := v1(s)− 2c(s)[v0(s)− v0(0)]1085

being real.1086

As operator on L2
#, with the corresponding boundary or transmission condition # ∈1087

{D,N,R, T }, it satisfies1088

Λ#,∗
2 = Λ#

2 .1089

The coefficient in front of h
1
3 vanishes and we continue with imposing the cancellation1090

of the coefficient in front of h
2
3 which reads1091

(Λ0 − iv0(0))b2 + Λ2b0 = µ0b0 ,1092

or, taking account of our choice of θ0,1093

(7.18) − 2θ′0(s)θ
′
1(s)b0(s, τ) + (−∂2τ + iv̂1(s)τ)b0(s, τ)− µ0b0(s, τ) = 0 .1094

Considering this equation at s = 0, we get as a necessary condition1095

(7.19) (−∂2τ + iv1(0)τ) b0(0, τ) = µ0 b0(0, τ) .1096

If we impose a choice such that b0(0, τ) is not identically 0, we get that µ0 should be1097

an eigenvalue of (the suitable realization of) −∂2τ + iv1(0)τ , i.e. L#
0 . We take some1098

simple eigenvalue µ0 and define µ0(s) as the eigenvalue of the operator1099

(7.20) − ∂2τ + iv̂1(s)τ1100
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such that µ0(0) = µ0. If f0(s, τ) denotes the corresponding eigenfunction normalized1101

as1102

(7.21)

∫
f0(s, τ)

2dτ = 1 ,1103

we can look for1104

(7.22) b0(s, τ) = c0(s)f0(s, τ) .1105

We now come back to (7.18), which reads, assuming c0(s) 6= 0,1106

(7.23) − 2θ′0(s)θ
′
1(s) + (µ0(s)− µ0) = 0 .1107

This equation can be seen as the second eikonal equation. It has a unique regular1108

solution θ1 if we add the condition1109

(7.24) θ1(0) = 0 .1110

The first transport equation is obtained when looking at the coefficient in front1111

of h which reads1112

(Λ0 − iv0(0))b3 + (Λ2 − µ0)b1 + Λ3b0 = µ1b0 ,1113

or1114

(7.25)
(−∂2τ + iv̂1(s) τ − µ0(s))b1(s, τ) + 2θ′0(s)∂sb0(s, τ) + θ′′0 (s)b0(s, τ)− µ1b0(s, τ) = 0 .1115

We assume1116

(7.26) b1(s, τ) = c1(s)f0(s, τ) + b̂1(s, τ) , with

∫
f0(s, τ)b̂1(s, τ)dτ = 0 .1117

Multiplying it by f0(s, τ) and integrating with respect to τ , we get1118

(7.27) 2θ′0(s)

∫
∂sb0(s, τ)f0(s, τ)dτ + θ′′0 (s)c0(s) = µ1c0(s) ,1119

which leads to1120

(7.28) 2θ′0(s)c
′
0(s) + θ′′0 (s)c0(s) = µ1c0(s) ,1121

where we have used in the last line (7.21). Taking s = 0 and assuming c0(0) 6= 0, one1122

gets1123

(7.29) θ′′0 (0) = µ1 ,1124

which is also sufficient for solving (7.28). We have determined at this stage c0(s)1125

assuming for normalization1126

(7.30) c0(0) = 1 .1127

Coming back to (7.25), we have to solve, for each s in a neighborhood of 01128

(7.31)
(
−∂2τ + iv̂1(s)τ − µ0(s)

)
b̂1(s, τ) = g1(s, τ) ,1129
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with g1(s, τ) satisfying
∫
f0(s, τ)g1(s, τ)dτ = 0 .1130

At this stage, the function c1 is free.1131

We continue, one step more, in order to see if the proposed approach is general.1132

The second transport equation is obtained when looking at the coefficient in front of1133

h
4
3 , which reads1134

(Λ0 − iv0(0))b4 + (Λ2 − µ0)b2 + (Λ3 − µ1)b1 + Λ4b0 = µ2b0 ,1135

or1136

(−∂2τ + iv̂1(s)τ − µ0(s))b2(s, τ) + 2θ′0(s)∂sb1(s, τ) + θ′′0 (s)b1(s, τ)

− µ1b1(s, τ)− µ2b0(s, τ) + (iv2(s)τ
2 − θ′1(s)

2)b0(s, τ) − 3τ2c(s)2θ′0(s)
2

+ 4τc(s)2θ′0(s)θ
′
1(s)b0 + c(s)∂τ b0 = 0 .

(7.32)1137

We look for b2 in the form1138

(7.33) b2(s, τ) = c2(s)f0(s, τ) + b̂2(s, τ) , with

∫
f0(s, τ)b̂1(s, τ)dτ = 0 .1139

We then proceed as before. If we write1140

g2(s, τ) = −2θ′0(s)∂sb1(s, τ)

− θ′′0 (s)b1(s, τ) + µ1b1(s, τ) + µ2b0(s, τ)(s) + (θ′1(s)
2 − iv2τ

2)b0(s, τ)

− 3τ2c(s)2θ′0(s)
2b0 + 4τc(s)2θ′0(s)θ

′
1(s)b0 + c(s)∂τ b0 ,

1141

the orthogonality condition reads1142

0 =

∫
g2(s, τ)f0(s, τ) dτ

= −2θ′0(s)c
′
1(s) + (µ1 − θ′′0 (s))c1(s)− 2θ′0(s)

∫
∂sb̂1(s, τ)f0(s, τ)dτ

+

(
µ2 + θ′1(s)

2 − iv2

∫
τ2f0(s, τ)

2dτ

)
c0(s)

+

∫ (
−3τ2c(s)2θ′0(s)

2b0 + 4τc(s)2θ′0(s)θ
′
1(s)b0 f0(s, τ)dτ

)

+

∫
c(s)∂τ b0 f0(s, τ) dτ .

1143

Observing that1144

∫ (
−3τ2c(s)2θ′0(s)

2b0(s, τ) + 4τc(s)2θ′0(s)θ
′
1(s)b0(s, τ) f0(s, τ) + c(s)∂τ b0 f0(s, τ)

)
dτ

= c(0)

(∫
∂τf0(0, τ)f0(0, τ) dτ

)
c0(0) ,

1145

for s = 0, this determines µ2 as a necessary condition at s = 0 which reads1146

(7.34) µ2 = iv2(0)

∫
τ2f0(0, τ)

2dτ − θ′1(0)
2 − c(0)

∫
∂τf0(0, τ)f0(0, τ) dτ .1147

Note that in the case when # ∈ {D,N,R}, we get1148

∫
∂τf0(0, τ)f0(0, τ) dτ =

1

2
f0(0, 0)

2 .1149
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We can then determine c1 if we add the condition c1(0) = 0 .1150

Since g2 is orthogonal to f̄0, we can find b̂2, while c2 remains free for the next step.1151

1152

Hence, we have obtained the following theorem1153

Theorem 29. Under the assumptions of Theorem 1, if µ#
0 is a simple eigenvalue1154

of the realization “#” of the complex Airy operator − d2

dx2 + ix in L2
# , and µ̃1 is the1155

eigenvalue of the Davies operator − d2

dy2 + iy2 on L2(R) with the smallest real part,1156

then there exists an approximate pair (λ#,wkb
h , u#,wkb

h ) with u#,wkb
h in the domain of1157

A#
h , such that (7.6), (7.7) and (7.8) are satisfied and1158

(7.35) exp

(
θ

h

)
(A#

h − λ#h )u
#,wkb
h = O(h∞) in L2

#(Ω) , ||u#,wkb
h ||L2 ∼ 1 ,1159

where1160

(7.36) λ#0 = µ#
0 | v01|

2
3 exp

(
i
π

3
sign v01

)
, λ2 = µ̃1|v20|

1
2 exp

(
i
π

4
sign v20

)
,1161

with v01 := ν · ∇V (x0) .1162

Remark 30. In this approach, we understand more directly why no odd power of1163

h
1
6 appears for λh. Note that µj = λ2j.1164

8. Examples. In this Section, we illustrate the above general results for the1165

potential V (x) = x1 and some simple domains.1166

8.1. Disk. Let Ω = {(x1, x2) ∈ R2 : |x| < R0} be the disk of radius R0. In this1167

case, Ω⊥ = {(R0, 0), (−R0, 0)}. The local parameterization around the point (R0, 0)1168

reads in polar coordinates (r, θ) as ρ = R0 − r, s = R0θ, so that1169

(8.1) V (x) = x1(s, ρ) = (R0 − ρ) cos(s/R0),1170

c(0) = 1/R0, and we get1171

(8.2) v00 = R0, v01 = −1, v20 = − 1

2R0
, v11 = v02 = 0 .1172

Using Eqs. (A.27), (A.23), (A.31) or (A.39) for λ
#,(n)
4 , one can write explicitly the1173

four-term expansion for four types of boundary condition:1174

• Dirichlet case,1175

(8.3) λ
D,(n,k)
h = iR0 − h

2
3 ane

−iπ/3 + h(2k − 1)
e−iπ/4

√
2R0

+O(h
5
3 ) .1176

1177

• Neumann case1178

(8.4) λ
N,(n,k)
h = iR0 − h

2
3 a′ne

−iπ/3 + h(2k − 1)
e−iπ/4

√
2R0

+ h
4
3
e−πi/6

2R0 a′n
+O(h

5
3 ) .1179

1180

• Robin case1181

λ
R,(n,k)
h = iR0 − h

2
3 aRn (κ)e

−iπ/3 + h(2k − 1)
e−iπ/4

√
2R0

+ h
4
3

i

2R0(κ2 − aRn (κ)e
−πi/3)

+O(h
5
3 ) .

(8.5)1182
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When κ = 0, aRn (0) = a′n, and one retrieves the expansion (8.4) for Neumann case.1183

• Transmission case,1184

(8.6) λ
T,(n,k)
h = iR0 − h

2
3 a+n (κ)e

−iπ/3 + h(2k − 1)
e−iπ/4

√
2R0

+ h
4
3

e−iπ/6

2R0 a
+
n (κ)

+O(h
5
3 ) .1185

When κ = 0, one has a+n (0) = a′n and thus retrieves the expansion (8.4) for Neumann1186

case.1187

We recall that the indices n = 1, 2, . . . and k = 1, 2, . . . enumerate eigenvalues of1188

the operators L#
0 and L#

2 that were used in the asymptotic expansion. The approxi-1189

mate eigenvalue with the smallest real part corresponds to n = k = 1.1190

The three-terms version of the Neumann expansion (8.4) was first derived by de1191

Swiet and Sen [35] (note that we consider the eigenvalues of the operator −h2∆+ ix11192

while de Swiet and Sen looked at the complex conjugate operator).1193

Remark 31. At the other point (−R0, 0), the parameterization is simply1194

V (x) = −(R0 − ρ) cos(s/R0)1195

that alters the signs of the all involved coefficients vjk. As a consequence, the asymp-1196

totics is obtained as the complex conjugate of λ
#,(n,k)
h .1197

In the WKB approach, one needs to compute the functions θ0(s) and θ1(s) that1198

determine the asymptotic decay of the quasimode state in the tangential direction.1199

We only consider the Neumann boundary condition while the computation for other1200

cases is similar. From (7.5) and (7.17), we have for the potential in (8.1):1201

v0(s) = R0 cos(s/R0), v1(s) = − cos(s/R0), v̂1(s) = 2− 3 cos(s/R0).1202

In what follows, we consider s > 0 though the results will be the same for s < 0 due1203

to the symmetry. From Eqs. (7.13, 7.14), we first obtain1204

(8.7) θ0(s) =

s∫

0

√
−iR0(1 − cos(s′/R0)) ds

′ = e−πi/4 (2R0)
3
2

(
1− cos(s/(2R0))

)
.1205

For Neumann boundary condition, µ0 = −a′1e−πi/3 (here v1(0) = −1) and the eigen-1206

value of the operator in (7.20) reads1207

µ0(s) = −a′1 |2− 3 cos(s/R0)|
2
3 exp

(
πi

3
sign (2− 3 cos(s/R0))

)
.1208

Since v̂1(s) was assumed to be nonzero, we restrict the analysis to |s/R0| < arccos(2/3)1209

for which 2− 3 cosx does not vanish (and remains negative) so that1210

(8.8) µ0(s) = −a′1
(
3 cos(s/R0)− 2

) 2
3 exp

(
−πi

3

)
.1211

From (7.23), one gets then1212

θ1(s) =

s∫

0

−a′1 e−πi/3
[
(3 cos(s′/R0)− 2)

2
3 − 1

]

2e−πi/4R
1
2

0

√
1− cos(s′/R0)

ds′

=
1

2
|a′1| e−πi/12R

1
2

0

s/R0∫

0

(3 cosx− 2)
2
3 − 1√

1− cosx
dx .

(8.9)1213
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8.2. Annulus. For an annulus Ω = {(x1, x2) ∈ R2 : R1 < |x| < R2} between1214

two circles of radii R1 and R2, there are four points in Ω⊥: (±R1, 0) and (±R2, 0).1215

In order to determine the candidate for an eigenvalue with the smallest real part (in1216

short the “first eigenvalue”), one needs to compare the asymptotics of the quasimodes1217

associated with these points and identify those with the smallest real part. Of course,1218

this analysis depends on the imposed boundary conditions. We consider four combi-1219

nations: NN (Neumann condition on both circles), ND (Neumann condition on the1220

inner circle and Dirichlet on the outer circle), DN (Dirichlet condition on the inner1221

circle and Neumann on the outer circle), and DD (Dirichlet condition on both circles).1222

Since the leading contribution is proportional |a1| ≈ 2.3381 for the Dirichlet case and1223

to |a′1| ≈ 1.0188 for the Neumann case, the asymptotics for the circle with Neumann1224

boundary condition always contributes to the first eigenvalue. In turn, when the same1225

boundary condition is imposed on the two circles, the first eigenvalue expansion cor-1226

responds to the outer circle of larger radius because the real part of the next-order1227

term (of order h) is always positive and scales as 1/
√
R0. As a consequence, the first1228

eigenvalue asymptotics is given by (8.4) with R0 = R2 for cases NN and DN, and1229

by (8.3) with R0 = R2 for the case DD. Only in the case ND, the first eigenvalue1230

asymptotics is determined by the points (±R1, 0) on the inner circle. In this case, the1231

potential reads in local coordinates around (R1, 0) as V (s, ρ) = (R1 + ρ) cos(s/R1) so1232

that the only change with respect to the above results is v01 = 1 (instead of v01 = −1)1233

and c(0) = −1/R1 (instead of c(0) = 1/R1) so that Eq. (8.4) becomes1234

(8.10) λND,(n,k)
app = iR1 + h

2
3 |a′n|eiπ/3 + h(2k − 1)

e−iπ/4

√
2R1

+ h
4
3
eπi/6

2|a′n|R1
+O(h

5
3 ) .1235

Remark 32. When the outer radius R2 of an annulus goes to infinity, the above1236

problem should progressively5 become an exterior problem in the complement of a1237

disk: Ω = {(x1, x2) ∈ R2 : |x| > R1}. Due to the local character of the asymptotic1238

analysis, the expansion (8.10) is independent of the outer radius R2 and holds even1239

for the unbounded case. This argument suggests the non-emptiness of the spectrum1240

for unbounded domains. This conjecture is confirmed by numerical results in Sec. 9.1241

8.3. Domain with transmission condition. Finally, we consider the union1242

of two subdomains, the disk Ω− = {(x1, x2) ∈ R2 : |x| < R1} and the annulus Ω+ =1243

{(x1, x2) ∈ R2 : R1 < |x| < R2} separated by a circle on which the transmission1244

boundary condition is imposed. A Dirichlet, Neumann or Robin boundary condition1245

can be imposed at the outer boundary (circle of radius R2). As for the annulus, there1246

are four points in Ω⊥: (±R1, 0) and (±R2, 0). Here we focus only on the asymptotic1247

behavior at points (±R1, 0) for the transmission boundary condition (the behavior1248

at the points (±R2, 0) was described in Sec. 8.1). We consider the case described in1249

Theorem 27 when the transmission parameter κ scales with h according to (6.3). As1250

discussed in Sec. 6, this situation is relevant for diffusion MRI applications. The case1251

with fixed κ can be treated similarly.1252

As stated in Theorem 27, the asymptotic expansion is obtained by starting from1253

the “basic” expansion (with κ = 0) of either of two problems with Neumann boundary1254

condition corresponding to the two subdomains Ω− and Ω+.1255

If we start from the expansion for the disk, one has V (x) = (R1 − ρ) cos(s/R1), and1256

5We do not have a mathematical proof, the statement remains conjectural.
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the asymptotic expansion (6.4) at the point (R1, 0) reads1257

λ
#,(n,k)
h = i R1 − h

2
3 a′ne

−πi/3 + h (2k − 1)
e−πi/4

√
2R1

− h
4
3
e−πi/6

a′n

(
κ̂− 1

2R1

)
+O(h

5
3 ) .

(8.11)1258

In turn, if we start from the expansion for the inner boundary of the annulus, one has1259

V (x) = (R1 + ρ) cos(s/R1), and the asymptotic expansion (6.4) at the point (R1, 0)1260

reads1261

λ
#,(n,k)
h = i R1 − h

2
3 a′ne

πi/3 + h (2k − 1)
e−πi/4

√
2R1

− h
4
3
eπi/6

a′n

(
κ̂+

1

2R1

)
+O(h

5
3 ) .

(8.12)1262

These two expressions are different, in particular, their imaginary parts differ already1263

in the order h
2
3 . In turn, the real parts differ at the term of order h

4
3 that contains1264

two contributions: from the curvature of the boundary, and from the transmission.1265

While the curvature changes its sign on both sides of the boundary, the contribution1266

due to the transmission remains the same. As a consequence, the real part of (8.12) is1267

larger than the real part of (8.11). One can thus expect the existence of two distinct1268

eigenstates living on both sides of the boundary, as confirmed numerically in the next1269

section. For k = 1, the eigenstate associated with the eigenvalue with the smallest1270

real part is mainly localized in the disk side of the boundary.1271

9. Numerical results. This section presents some numerical results to illustrate1272

our analysis. The claims of this section are supported by numerical evidence but1273

should not be considered as rigorous statements, in contrast to previous sections.1274

The numerical analysis will be limited to bounded domains, for which the BT-1275

operator has compact resolvent and hence discrete spectrum (see Sec. 2). In order1276

to compute numerically its eigenvalues and eigenfunctions, one needs to approximate1277

the BT-operator in a matrix form. For this purpose, one can either (i) discretize the1278

domain by a square lattice and replace the Laplace operator by finite differences (finite1279

difference method); (ii) discretize the domain by a mesh and use a weak formulation of1280

the eigenvalue problem (finite elements method); or (iii) project the BT-operator onto1281

an appropriate complete basis of functions. We choose the last option and project the1282

BT-operator onto the Laplacian eigenfunctions which for rotation-invariant domains1283

(such as disk, annuli, circular layers) are known explicitly [15]. In this basis, the1284

Laplace operator −∆ is represented by a diagonal matrix Λ. Moreover, the matrix1285

representation of the potential V (x) = x1 was computed analytically, i.e., the elements1286

of the corresponding matrix B are known explicitly [12, 13, 14]. As a consequence,1287

the computation is reduced to finding the Laplacian eigenvalues for these rotation-1288

invariant domains, constructing the matrices Λ and B through explicit formulas, and1289

then diagonalizing numerically the truncated matrix h2Λ+iB which is an approximate1290

representation of the BT-operator −h2∆+ ix1. This numerical procedure yields the1291

eigenvalues λ
(m)
h of the truncated matrix h2Λ + iB, while the associated eigenvectors1292

allow one to construct the eigenfunctions u
(m)
h . All eigenvalues are ordered according1293

to their increasing real parts:1294

(9.1) Re{λ(1)h } ≤ Re{λ(2)h } ≤ . . .1295
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Fig. 1. The rescaled eigenvalues λ
(1)
h

and λ
(2)
h

of the BT-operator in the unit disk with Neumann
boundary condition. Symbols (squares and crosses) show the numerical results of the diagonalization
of the matrix h2Λ+ iB (truncated to the size 2803×2803), solid line presents the four-terms asymp-

totics (8.4) for λ
N,(1,1)
h

while the dashed line shows its three-terms versions (without h
4
3 term).

Note that, for a bounded domain, the potential ix is a bounded perturbation of1296

the unbounded Laplace operator −h2∆, if h 6= 0. To preserve this property after1297

truncation of the matrix h2Λ + iB, the truncation size should be chosen such that1298

h2µ(M) ≫ 1, where µ(M) is the largest element of the matrix Λ. Due to the Weyl’s1299

law, M ∼ |Ω|
4π µ

(M) so that the truncation size M should satisfy:1300

(9.2) h2M ≫ |Ω|
4π

,1301

where |Ω| is the surface area of Ω. For larger domains, either larger truncation sizes1302

are needed (that can be computationally limiting), or h should be limited to larger1303

values. In practice, we use M around 3000 to access h up to 0.01. We have checked1304

that the truncation size does not affect the computed eigenvalues.1305

9.1. Eigenvalues. For large h, one can divide the BT operator by h2, −∆ +1306

ix1/h
2, to get a small bounded perturbation of the Laplace operator. In particular, the1307

eigenvalues of the operator −h2∆+ ix1 behave asymptotically as h2µ(m), where µ(m)1308

are the eigenvalues of the Laplace. In this Section, we focus on the more complicated1309

semi-classical limit h→ 0 which is the main topic of the paper.1310

9.1.1. Disk. In order to check the accuracy of the asymptotic expansion of eigen-1311

values, we first consider the BT-operator in the unit disk: Ω = {(x1, x2) ∈ R2 : |x| <1312

R0}, with R0 = 1. We will present rescaled eigenvalues, (λ
(m)
h − iR)/h

2
3 , for which1313

the constant imaginary offset iR is subtracted and the difference λ
(m)
h − iR is divided1314

by h
2
3 in order to emphasize the asymptotic behavior. Note also that, according to1315

Remark 31, the asymptotic expansions for the approximate eigenvalues correspond-1316

ing to the points (−R, 0) and (R, 0) are the complex conjugates to each other. In1317

order to facilitate their comparison and check this property for numerically computed1318

eigenvalues, we will plot the absolute value of the imaginary part.1319

Figure 1 shows the first two eigenvalues λ
(1)
h and λ

(2)
h . For h

1
3 . 0.8, these eigen-1320

values turn out to be the complex conjugate to each other, as expected from their1321

asymptotic expansions (the difference λ
(1)
h − λ̄

(2)
h being negligible within numerical1322

precision). In turn, the eigenvalues λ
(1)
h and λ

(2)
h become real and split for h

1
3 & 0.8.1323

The splitting is expected because these eigenvalues behave differently in the large1324

h limit. This numerical observation suggests the existence of branch points in the1325

spectrum (similar features were earlier reported for the complex Airy operator on the1326

This manuscript is for review purposes only.



ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY OPERATOR 41

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

h1/3

R
e(

λ(3
,4

)
h

)/
h2/

3

 

 

λ
h
(3)

λ
h
(4)

asympt−4
asympt−3

0 0.2 0.4 0.6 0.8 1
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

h1/3

(|
Im

(λ
(3

,4
)

h
)|

−
R

)/
h2/

3

 

 

λ
h
(3)

λ
h
(4)

asympt−4
asympt−3

Fig. 2. The rescaled eigenvalues λ
(3)
h

and λ
(4)
h

of the BT-operator in the unit disk with Neumann
boundary condition. Symbols (squares and crosses) show the numerical results of the diagonalization
of the matrix h2Λ+ iB (truncated to the size 2803×2803), solid line presents the four-terms asymp-

totics (8.4) for λ
N,(1,3)
h

while the dashed line shows its three-terms versions (without h
4
3 term).

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

h1/3

R
e(

λ(1
,2

)
h

)/
h2/

3

 

 

λ
h
(1)

λ
h
(2)

asympt−4

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

h1/3

(|
Im

(λ
(1

,2
)

h
)|

−
R

)/
h2/

3

 

 

λ
h
(1)

λ
h
(2)

asympt−4

Fig. 3. The rescaled eigenvalues λ
(1)
h

and λ
(2)
h

of the BT-operator in the unit disk with Dirichlet
boundary condition. Symbols (squares and crosses) show the numerical results of the diagonalization
of the matrix h2Λ + iB (truncated to the size 2731 × 2731), while solid line shows the four-terms

asymptotic expansion (8.3) for λ
D,(1,1)
h

.

one-dimensional interval with Neumann boundary condition, see [34]). For compari-1327

son, the four-terms asymptotics (8.4) for λ
N,(1,1)
h and its three-terms version (without1328

term h
4
3 ) are shown by solid and dashed lines, respectively. These expansions start1329

to be applicable for h
1
3 . 0.7, while their accuracy increases as h decreases.1330

1331

Figure 2 shows the next eigenvalues λ
(3)
h and λ

(4)
h , the four-terms asymptotics1332

(8.4) for λ
N,(1,3)
h and its three-terms version. These eigenvalues are the complex con-1333

jugates to each other for h
1
3 . 0.57 while become real and split for larger h. One1334

can see that the four-terms asymptotics is less accurate for these eigenvalues than for1335

those from Fig. 1. A small deviation can probably be attributed to higher-order terms1336

(it is worth noting that contributions from the h
4
3 and h

5
3 terms can be comparable1337

for the considered values of h).1338

1339

For comparison, Figure 3 shows the first rescaled eigenvalues λ
(1)
h and λ

(2)
h of the1340

BT-operator in the unit disk with Dirichlet boundary condition. As earlier for the1341

Neumann case, these eigenvalues are complex conjugate to each other for h
1
3 . 0.61342

while become real and split for larger h. One can see that the asymptotics (8.3) for1343

λ
D,(1,1)
h captures the behavior for the imaginary part very accurately. In turn, the1344

behavior of the real part is less accurate, probably due to higher-order corrections.1345
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Fig. 4. The rescaled eigenvalues λ
(1)
h

and λ
(2)
h

of the BT-operator in the unit disk with Robin

boundary condition (with κ̂ = 1 and κ = κ̂h
2
3 ). Symbols (squares and crosses) show the numerical

results of the diagonalization of the matrix h2Λ+ iB (truncated to the size 2803× 2803), while solid

and dashed lines show the four-terms asymptotic expansion (8.3) for λ
R,(1,1)
h

and its three-term

version (without term h
4
3 ).

1346

Finally, Figure 4 illustrates the case with Robin boundary condition, with κ̂ = 11347

while κ scaling as κ̂h
2
3 . The four-term expansion (6.4) accurately captures their1348

asymptotic behavior.1349

9.1.2. Annulus. Due to its local character, the quasimodes construction is1350

expected to be applicable to the exterior problem, i.e., in the complement of a1351

disk of radius R1, Ω = {(x1, x2) ∈ R2 : |x| > R1}. Since we cannot numer-1352

ically solve this problem for unbounded domains, we consider a circular annulus1353

Ω = {x ∈ R2 : R1 < |x| < R2} with a fixed inner radius R1 = 1 and then in-1354

crease the outer radius R2. In the limit h → 0, the eigenfunctions are expected to1355

be localized around the four points (±R1, 0), (±R2, 0) from the set Ω⊥, with corre-1356

sponding asymptotic expansions for eigenvalues.1357

Figure 5 illustrates the discussion in Sec. 8.2 about different asymptotics of the1358

first eigenvalue λ
(1)
h for four combinations of Neumann/Dirichlet boundary conditions1359

on inner and outer circles. In particular, one observes the same asymptotic expansion1360

(8.4) with R = R2 for NN and DN cases because the first eigenvalue is determined1361

by the local behavior near the point (R2, 0) which is independent of the boundary1362

condition on the inner circle as h → 0 . The expansion (8.3) with R = R2 for the1363

Dirichlet condition appears only for the case DD. Finally, the case ND is described by1364

the local behavior at the inner circle by the expansion (8.10) with R = R1. In what1365

follows, we focus on this case in order to illustrate that the local behavior at the inner1366

boundary is not affected by the position of the outer circle as h→ 0 .1367

For the case ND, Fig. 6 shows the first rescaled eigenvalue λ
(1)
h that corresponds1368

to an eigenfunction which, for small h, is localized near the inner circle. As a con-1369

sequence, the asymptotic behavior of λ
(1)
h as h → 0 is expected to be independent1370

of the outer boundary. This is indeed confirmed because the numerical results for1371

three annuli with R2 = 1.5 , R2 = 2 and R3 = 3 are indistinguishable for h
1
3 smaller1372

than 0.5. For comparison, we also plot the four-terms asymptotics (8.10) that we1373

derived for the exterior of the disk of radius R1 = 1. One can see that the inclusion1374

of the term h
4
3 improves the quality of the expansion (as compared to its reduced1375

three-terms version without h
4
3 term).1376
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(1)
h

of the BT-operator in the annulus with Neumann boundary
condition at the inner circle of radius R1 = 1 and Dirichlet boundary condition at the outer circle
of radius R2, with R2 = 1.5 (circles), R2 = 2 (squares) and R3 = 3 (triangles), obtained by the
diagonalization of the matrix h2Λ + iB (truncated to sizes 1531 × 1531 for R2 = 1.5, 2334 × 2334
for R2 = 2, and 2391 × 2391 for R2 = 3). Solid line presents the four-terms expansion (8.10) for

λ
ND,(1,1)
h

, while dashed line shows its reduced three-terms version (without h
4
3 term).

9.1.3. Domain with transmission condition. Finally, we consider the BT-1377

operator in the union of two subdomains, the disk Ω− = {(x1, x2) ∈ R2 : |x| < R1}1378

and the annulus Ω+ = {(x1, x2) ∈ R2 : R1 < |x| < R2} separated by the circle of1379

radius R1 on which the transmission boundary condition is imposed. We impose the1380

Dirichlet boundary condition at the outer boundary of the domain (at the circle of1381

radius R2) to ensure that first eigenfunctions are localized near points (±R1, 0) with1382

transmission boundary condition.1383

1384

Figure 7 shows the rescaled eigenvalues λ
(1)
h and λ

(2)
h of the BT-operator with a1385

fixed κ̂ = 1 and κ scaling as κ̂h
2
3 . As in earlier examples, the first two eigenvalues are1386

complex conjugate to each other for small h but they split at larger h. One can see1387

that the asymptotic relation (8.11) with n = k = 1 accurately describes the behavior1388

of the these eigenvalues for small h.1389

1390

Figure 8 shows the first rescaled eigenvalue λ
(1)
h for several values of κ̂ (with κ1391

scaling as κ̂h
2
3 ). In the special case κ̂ = 0, the two subdomains are separated from1392

each other by Neumann boundary condition, and the spectrum of the BT operator1393
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(2)
h

of the BT-operator in the union of the disk
and annulus with transmission condition at the inner boundary of radius R1 = 1 (with κ̂ = 1) and
Dirichlet condition at the outer boundary of radius R2 = 2. Symbols (squares and crosses) show the
numerical results of the diagonalization of the matrix h2Λ+ iB (truncated to the size 3197× 3197),
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T,(1,1)
h

, while dashed line shows its reduced

three-terms version (without h
4
3 term).
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.

is obtained from its spectra for each subdomain. As a consequence, we plot in this1394

case the first rescaled eigenvalue for the BT operator in the unit disk with Neumann1395

boundary condition (as in Fig. 1). One can see that the expansion (8.11) accurately1396

captures the asymptotic behavior. We recall that the transmission parameter κ̂ ap-1397

pears only in the fourth term of order h
4
3 . Note also that this term vanishes in the1398

case κ̂ = 1/2 as two contributions in (8.11) compensate each other.1399

9.2. Eigenfunctions. For the annulus with Neumann boundary condition at1400

the inner circle of radius R1 = 1 and Dirichlet boundary condition at the outer circle1401

of radius R2 = 2 , Fig. 9(top) shows two eigenfunctions of the BT operator with1402

h = 0.1 (corresponding to h
1
3 ≈ 0.4642). One can already recognize the localization1403

of the first eigenfunction u
(1)
h at the inner boundary, while the eigenfunction u

(3)
h tends1404

to localize near the outer boundary. Their pairs u
(2)
h and u

(4)
h (not shown) exhibit1405

the same behavior near the opposite points (−R1, 0) and (−R2, 0), respectively. Since1406

h = 0.1 is not small enough, the localization becomes less and less marked for other1407

eigenfunctions which progressively spread over the whole annulus (not shown). For1408

comparison, we also plot in Fig. 9(bottom) the eigenfunctions u
(1)
h and u

(3)
h for a1409

thicker annulus of outer radius R2 = 3. One can see that these eigenfunctions look1410
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Fig. 9. Real (left) and imaginary (right) parts of the eigenfunctions u
(1)
h

(top) and u
(3)
h

(bottom)
at h = 0.1 for the annulus with Neumann boundary condition at the inner circle of radius R1 = 1
and Dirichlet boundary condition at the outer circle of radius R2 = 2 (four plots above horizontal
line) or R2 = 3 (four plots below horizontal line). Numerical computation is based on the truncated
matrix representation of sizes 2334 × 2334 and 2391 × 2391, respectively.
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very similar to that of the annulus with R2 = 2.1411

For smaller h = 0.01 (corresponding to h
1
3 ≈ 0.2154), the localization of eigen-1412

functions is much more pronounced. Figure 10 shows four eigenfunctions for the1413

annulus of radii R1 = 1 (Neumann condition) and R2 = 2 (Dirichlet condition). One1414

can see that the eigenfunctions u
(1)
h , u

(3)
h , and u

(7)
h are localized near the inner circle1415

while u
(5)
h is localized near the outer circle. When the outer circle is moved away,1416

the former eigenfunctions remain almost unchanged, suggesting that they would exist1417

even in the limiting domain with R2 = ∞, i.e., in the complement of the unit disk.1418

In turn, the eigenfunctions that are localized near the outer boundary (such as u
(5)
h )1419

will be eliminated. In spite of this numerical evidence, the existence of eigenfunctions1420

of the BT operator for unbounded domains remains conjectural.1421

Figure 11 shows the eigenfunctions u
(1)
h and u

(3)
h at h = 0.01 for the union of the1422

disk and annulus with transmission condition at the inner boundary of radius R1 = 11423

(with κ̂ = 1 and κ = κ̂h
2
3 ) and Dirichlet condition at the outer boundary of radius1424

R2 = 2. Both eigenfunctions are localized near the inner boundary. Moreover, a1425

careful inspection of this figure shows that u
(1)
h is mainly supported by the disk and1426

vanishes rapidly on the other side of the inner circle (i.e., in the annulus side), while1427

u
(3)
h exhibits the opposite (i.e., it is localized in the annulus). This is a new feature of1428

localization as compared to the one-dimensional case studied in [16, 17] because the1429

curvature has the opposite signs on two sides of the boundary.1430

Finally, we check the accuracy of the WKB approximation of the first eigenfunc-1431

tion u
(1)
h for the unit disk with Neumann boundary condition. To make the illustration1432

easier, we plot in Figure 12 the absolute value of u
(1)
h at h = 0.01, normalized by its1433

maximum, along the boundary (on the circle of radius R0 = 1), near the localization1434

point s = 0. One can see that the WKB approximation, exp(−(θ0(s) + h
2
3 θ1(s))/h),1435

obtained with θ0(s) and θ1(s) given by (8.7) and (8.9), accurately captures the be-1436

havior over the range of s between −0.3 and 0.3 . Note that its reduced version,1437

exp(−θ0(s)/h), is also accurate.1438

10. Application to diffusion NMR. In this section, we briefly discuss (with1439

no pretention to mathematical rigor) a possible application of the proposed spectral1440

analysis of the Bloch-Torrey operator to diffusion NMR [12]. In this field, the BT-1441

operator governs the evolution of the transverse nuclear magnetization which satisfies1442

the Bloch-Torrey equation1443

(10.1)
∂

∂t
m(x, t) =

[
D∆− iγgx1

]
m(x, t),1444

subject to the uniform initial conditionm(x, 0) = 1. HereD is the diffusion coefficient,1445

g the magnetic field gradient, γ the gyromagnetic ratio, and the gradient is considered1446

to be constant in time. For a bounded domain, the long-time asymptotic behavior of1447

the solution is determined by the first eigenvalue λ(1) of the BT-operator (with the1448

smallest real part):1449

(10.2) m(x, t) ≃ Cu(1)(x) exp(−ωt) (t→ ∞),1450

where1451

(10.3) ω = γgλ
(1)
h , h2 = D/(γg).1452
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Fig. 10. Real (left) and imaginary (right) parts of the eigenfunctions u
(1)
h

(top), u
(3)
h

, u
(5)
h

and

u
(7)
h

(bottom) at h = 0.01 for the annulus with Neumann boundary condition on the inner circle of
radius R1 = 1 and Dirichlet boundary condition on the outer circle of radius R2 = 2 (numerical
computation based on the truncated matrix representation of size 2334× 2334).
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Fig. 11. Real (left) and imaginary (right) parts of the eigenfunctions u
(1)
h

(top) and u
(3)
h

(bot-
tom) at h = 0.01 for the union of the disk and annulus with a transmission boundary condition (with

κ̂ = 1 and κ = κ̂h
2
3 ) at the inner circle of radius R1 = 1 and Dirichlet boundary condition at the

outer circle of radius R2 = 2 (numerical computation based on the truncated matrix representation
of size 3197 × 3197).
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Fig. 12. The absolute value of the first eigenfunction u
(1)
h

(r, s) (solid line) at h = 0.01 and
r = 1 for the unit disk with Neumann boundary condition, near the boundary point s = 0. For

convenience, u
(1)
h

(r, s) is normalized by its maximum at s = 0. For comparison, the absolute value

of the WKB approximation, exp(−(θ0(s) + h
2
3 θ1(s))/h) and of its reduced version, exp(−θ0(s)/h),

are shown by dashed and dash-dotted lines, respectively.

Admitting6 that the formal asymptotic expansion (5.42) with n = k = 1 is the1453

asymptotics of the eigenvalue λ
(1)
h with the smallest real part, we obtain in the limit1454

6This has not be proven mathematically.
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of large g1455

ω = i γgv00 +D
1
3 (γg)

2
3µ#

0 |v01|
2
3 exp

(
iπ

3
sign v01

)

+D
1
2 (γg)

1
2 |v20|

1
2 exp

(
iπ

4
sign v20

)
+D

2
3 (γg)

1
3λ

#,(1)
4 +O(g

1
6 ) ,

(10.4)1456

where the coefficients vjk are defined by the local parameterization V (x) = x1 of the1457

boundary near a point from Ω⊥. The real part of ω determines the decay rate of the1458

transverse magnetization and the related macroscopic signal.1459

The leading term of order (γg)
2
3 was predicted for impermeable one-dimensional1460

domains (with Neumann boundary condition) by Stoller et al. [34] and experimen-1461

tally confirmed by Hürlimann et al. [27]. The next-order correction was obtained by1462

de Swiet and Sen [35] for an impermeable disk. In the present paper, we general-1463

ized these results to arbitrary planar domains with smooth boundary and to various1464

boundary conditions (Neumann, Dirichlet, Robin, transmission) and provided a gen-1465

eral technique for getting higher-order corrections (in particular, we derived the last1466

term). Moreover, we argued (without rigorous proof) that these asymptotic relations1467

should also hold for unbounded domains.1468

Appendix A. Explicit computation of λ4.1469

A.1. Evaluation of the integral with φ1. In order to compute λ4 from (5.55),1470

we first evaluate the integral1471

(A.1) η =

∞∫

−∞

σ φ1(σ)φ0(σ) dσ.1472

We recall that φ1(σ) satisfies1473

(A.2) (L2 − λ2)φ1 = c11 σ φ0 ,1474

with1475

(A.3) c11 := −i v11
∫
τψ#

0 (τ)2dτ .1476

As a solution of (A.2), we search for some eigenpair {λ2, φ0} = {λ(k)2 , φ
(k)
0 }, with1477

some fixed k ≥ 1, where λ
(k)
2 and φ

(k)
0 are the eigenvalues and eigenfunctions of1478

the quantum harmonic oscillator given explicitly in (5.40). Since φ
(k)
0 are expressed1479

through the Hermite polynomialsHk, one can use their recurrence relation,Hk+1(x) =1480

2xHk(x)− 2kHk−1(x), to express1481

(A.4) σ φ
(k)
0 =

√
k φ

(k+1)
0 +

√
k − 1φ

(k−1)
0

(2γ)
1
2

.1482

It is therefore natural to search for the solution of (A.2) in the form1483

(A.5) φ1(σ) = C1 φ
(k+1)
0 (σ) + C2 φ

(k−1)
0 (σ) .1484

The coefficients C1 and C2 are determined by substituting this expression into (A.2):1485

(L2 − λ2)φ1 = C1

(
λ
(k+1)
2 − λ

(k)
2

)
φ
(k+1)
0 + C2

(
λ
(k−1)
2 − λ

(k)
2

)
φ
(k−1)
0

= c11

√
k φ

(k+1)
0 +

√
k − 1φ

(k−1)
0

(2γ)
1
2

,
(A.6)1486
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from which C1 = c11
√
k/(2γ)

3
2 and C2 = −c11

√
k − 1/(2γ)

3
2 , where we used λ

(k)
2 =1487

γ(2k − 1), with γ = |v20|
1
2 exp

(
πi
4 sign v20

)
. We get then1488

(A.7) φ1(σ) =
c11

(2γ)
3
2

(√
k φ

(k+1)
0 (σ)−

√
k − 1φ

(k−1)
0 (σ)

)
.1489

Substituting this expression into (A.1), one gets1490

(A.8) η =
c11
4γ2

= − v11
4v20

∫
τψ#

0 (τ)2dτ ,1491

independently of n. We conclude from (5.55) that1492

(A.9) λ#4 = −i v
2
11[I

#
1 ]2

4v20
+

c(0)

2

∫
∂τ [ψ

#
0 (τ)]2 + iv02I

#
2 ,1493

where1494

(A.10) I#1 =

∫
τ ψ#

0 (τ)2 dτ , I#2 =

∫
τ2 ψ#

0 (τ)2 dτ .1495

A.2. Evaluation of the integrals with ψ#
0 . In order to compute these inte-1496

grals, we consider the function Ψ(x) = Ai(α+ βx) that satisfies the Airy equation1497

(A.11) (−∂2x + β3x+ β2α)Ψ(x) = 0 .1498

Multiplying this equation by Ψ′(x), Ψ(x), xΨ′(x), xΨ(x), or x2Ψ′(x) and integrating1499

from 0 to infinity, one gets the following five relations:1500

1.

−
∞∫

0

Ψ′′(x)Ψ′(x) dx +

∞∫

0

(β3x+ β2α)Ψ(x)Ψ′(x) dx = 0 ,1501

which leads to the determination of
∫ +∞

0
Ψ(x)2dx by the formula1502

(A.12) Ψ′(0)2 − β2αΨ(0)2 − β3

∞∫

0

Ψ(x)2 dx = 0 .1503

2.

−
∞∫

0

Ψ′′(x)Ψ(x) dx +

∞∫

0

(β3x+ β2α)Ψ(x)2dx = 0 .1504

Here we remark that1505

∞∫

0

Ψ′′(x)Ψ(x) dx = Ψ′(0)Ψ(0)−
∞∫

0

Ψ′(x)2 dx1506

and get1507

(A.13) −Ψ′(0)Ψ(0) +

∞∫

0

Ψ′(x)2 dx+

∞∫

0

(β3x+ β2α)Ψ(x)2dx = 0 .1508
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3.

−
∞∫

0

Ψ′′(x)xΨ′(x) dx +

∞∫

0

(β3x+ β2α)xΨ(x)Ψ′dx = 0 =⇒1509

1510

(A.14)
1

2

∞∫

0

Ψ′(x)2 dx− 1

2

∞∫

0

(2β3x+ β2α)Ψ(x)2dx = 0 .1511

4.

−
∞∫

0

Ψ′′(x)xΨ(x) dx +

∞∫

0

(β3x+ β2α)xΨ(x)2dx = 0 =⇒1512

1513
∞∫

0

Ψ′(x)(xΨ(x))′ dx+

∞∫

0

(β3x+ β2α)xΨ(x)2dx = 0 =⇒1514

1515

(A.15)

∞∫

0

xΨ′(x)2 dx− 1

2
Ψ(0)2 +

∞∫

0

(β3x+ β2α)xΨ(x)2dx = 0 .1516

5.

−
∞∫

0

Ψ′′(x)x2Ψ′(x) dx +

∞∫

0

(β3x+ β2α)x2Ψ(x)Ψ′dx = 0 =⇒1517

1518

(A.16)

∞∫

0

xΨ′(x)2 dx+

∞∫

0

(β3x+ β2α)x2Ψ(x)Ψ′dx = 0 .1519

So we get a linear system of five equations satisfied by
∫
Ψ2dx,

∫
xΨ2dx,

∫
x2Ψ2dx,1520 ∫

Ψ′(x)2dx and
∫
xΨ′(x)2dx. Solving this system, we obtain1521

∞∫

0

Ψ2(x)dx = β−3[Ψ′(0)]2 − αβ−1[Ψ(0)]21522

=
[Ai′(α)]2 − α[Ai(α)]2

β
,(A.17)1523

∞∫

0

xΨ2(x)dx =
1

3β3

(
−Ψ′(0)Ψ(0)− 2αβ2

∞∫

0

Ψ2(x)dx

)
1524

= −Ai(α)Ai′(α) + 2α[Ai′(α)]2 − 2α2[Ai(α)]2

3β2
,(A.18)1525

∞∫

0

x2Ψ2(x)dx =
1

5β3

(
[Ψ(0)]2 − 4αβ2

∞∫

0

x Ψ2(x)dx

)
1526

=
[Ai(α)]2 + 4

3α
(
Ai(α)Ai′(α) + 2α[Ai′(α)]2 − 2α2[Ai(α)]2

)

5β3
,(A.19)1527

This manuscript is for review purposes only.



52 D. S. GREBENKOV AND B. HELFFER

where we assume that the parameter β is such that | arg(β)| < π/3 so that Ψ(+∞) =1528

Ψ′(+∞) = 0 (otherwise the integrals could diverge). These relations allow one to1529

compute the normalization constant c#n of quasimodes and the contribution λ#4 to the1530

eigenvalue. We consider successively Dirichlet, Neumann, Robin, and Transmission1531

cases.1532

Dirichlet case. The function ψD
0 (τ) from (5.19) corresponds to α = an and1533

β = | v01|
1
3 exp

(
iπ
6 sign v01

)
so that Ai(α) = 0 . The normalization constant cDn in1534

(5.18) is then1535

(A.20) (cDn )−2 =
[Ai′(an)]

2

β
.1536

Using (A.17), one gets1537

ID1 =

∞∫

0

τ [ψD
0 (τ)]2dτ = −2an

3β
,(A.21)1538

ID2 =

∞∫

0

τ2[ψD
0 (τ)]2dτ =

8a2n
15β2

.(A.22)1539

Using (5.42) and (A.8), we obtain1540

λ
D,(n)
4 = i

v211a
2
n

9v20β2
− c(0)

2
[ψD

0 (0)]2 + iv02
8a2n
15β2

1541

=
ia2n

| v01|
2
3 exp

(
iπ
3 sign v01

)
(
1

9

v211
v20

+
8

15
v02

)
,(A.23)1542

where we used ψD
0 (0) = 0 .1543

Neumann case. The function ψN
0 (τ) from (5.18) corresponds to α = a′n and1544

β = | v01|
1
3 exp

(
iπ
6 sign v01

)
so that Ai′(α) = 0. The normalization constant cNn in1545

(5.18) is then1546

(A.24) (cNn )−2 =
[Ai′(α)]2 − α[Ai(α)]2

β
= −a

′
n[Ai(a

′
n)]

2

β
.1547

Using (A.17), one gets1548

IN1 =

∞∫

0

τ [ψN
0 (τ)]2dτ = −2a′n

3β
,(A.25)1549

IN2 =

∞∫

0

τ2[ψN
0 (τ)]2dτ =

8(a′n)
3 − 3

15a′nβ
2

,(A.26)1550

from which1551

(A.27)

λ
N,(n)
4 =

i

| v01|
2
3 exp

(
iπ
3 sign v01

)
(
− (a′n)

2

18

v211
v20

+
1

2a′n
c(0) v01 +

8(a′n)
3 − 3

15a′n
v02

)
.1552
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Robin case. The function ψR
0 (τ) from (5.28) corresponds to β = | v01|

1
3 δ and1553

α = aRn (κ) so that Ai′(α) = κ̂Ai(α) , with κ̂ = κ/(δ |v01|
1
3 ) and δ = exp

(
iπ
6 sign v01

)
.1554

The normalization constant cRn in (5.28) is then1555

(A.28) (cRn )
−2 =

[Ai(aRn (κ))]
2

β

[
κ̂2 − aRn (κ)

]
= [Ai(aRn (κ))]

2 κ2 + λR0
iv01

,1556

where we used (5.23) for λR0 .1557

Using (A.17), one gets1558

IR1 =

∞∫

0

τ [ψR
0 (τ)]

2dτ = − κ̂+ 2κ̂2aRn (κ)− 2[aRn (κ)]
2

3β[κ̂2 − aRn (κ)]
1559

=
2λR0
3iv01

− κ

3(κ2 + λR0 )
,(A.29)1560

IR2 =

∞∫

0

τ2[ψR
0 (τ)]

2dτ =
1 + 4

3a
R
n (κ)

[
κ̂+ 2κ̂2aRn (κ)− 2[aRn (κ)]

2
]

5β2[κ̂2 − aRn (κ)]
1561

=
1

5(κ2 + λR0 )
− 8[λR0 ]

2

15 v201
− 4κλR0

15 iv01(κ2 + λR0 )
.(A.30)1562

Using (5.42) and (A.8), we obtain1563

λ
R,(n)
4 = −i v

2
11[I

R
1 ]2

4v20
− c(0)

2
[ψR

0 (0)]
2 + iv02I

R
21564

= −i v
2
11[I

R
1 ]2

4v20
− c(0)

2

iv01

κ2 + λR0
+ iv02I

R
2 .(A.31)1565

Remark 33. It is clear from the computation that λ
R,(n)
4 belongs to C∞ in a1566

neighborhood of 0 . In particular, we recover1567

(A.32) λ
R,(n)
4 (0) = λ

N,(n)
4 .1568

Transmission case. In order to compute the above integrals for the transmission1569

case, we note that (5.33) can be written as1570

(A.33) Ai′(a+n )Ai
′(a−n ) = − κ

2π| v01|
1
3

,1571

while the Wronskian for Airy functions yields another relation:1572

(A.34) δ̄Ai′(a−n )Ai(a
+
n ) + δAi′(a+n )Ai(a

−
n ) = − 1

2π
,1573

where δ = exp
(
πi
6 sign v01

)
, and a±n = a±n (κ) are given by (5.32).1574

From (5.31), we then obtain1575

(A.35) (cTn )
−2 =

a+n δ̄

2π| v01|
1
3

(
δ̄Ai′(a−n )Ai(a

+
n )− δAi′(a+n )Ai(a

−
n )

)
.1576
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Using (A.17), we get1577

IT1 =

∞∫

−∞

τψT
0 (τ)

2dτ =
(cTn )

2

3| v01|
2
3

(
κδ3

4π2| v01|
1
3

1578

+
(a+n )

2δ4

π

(
δ̄Ai′(a−n )Ai(a

+
n )− δAi′(a+n )Ai(a

−
n )
))

1579

= (cTn )
2 κi

12π2 v01
− 2a+n

3δ| v01|
1
3

,(A.36)1580

IT2 =

∞∫

−∞

τ2ψT
0 (τ)

2dτ =
(cTn )

2

5| v01|

(
κa+n δ̄

4

3π2| v01|
1
3

1581

− 8[a+n ]
3 − 3

6π
δ3
(
δ̄Ai′(a−n )Ai(a

+
n )− δAi′(a+n )Ai(a

−
n )
))

1582

= (cTn )
2 κa+n δ̄

4

15π2| v01|
4
3

+
8[a+n ]

3 − 3

15a+n δ2| v01|
2
3

.(A.37)1583

Finally, we compute the coefficient in front of 1
2 c(0) in (A.9):1584

(A.38) IT0 :=

∫
∂τ [ψ

T
0 (τ)]

2 = [ψ−
0 (0)]

2 − [ψ+
0 (0)]

2 =
| v01|

1
3 exp

(
iπ
6 sign v01

)

a+n
.1585

We conclude that1586

(A.39) λ
T,(n)
4 = −i v

2
11[I

T
1 ]

2

4v20
+ c(0)

| v01|
1
3 exp

(
iπ
6 sign v01

)

2a+n
+ i v02 I

T
2 .1587

Remark 34. It is clear from the computation that λ
T,(n)
4 (κ) belongs to C∞ in a1588

neighborhood of 0. In particular, we recover1589

(A.40) λ
T,(n)
4 (0) = λ

N,(n)
4 .1590

A.3. Evaluation of the derivative (µT
n )

′(0). The asymptotic relation (6.4)1591

involves the derivative of µ#
n (κ) with respect to κ at κ = 0. In this subsection, we1592

provide its explicit computation for the transmission case. According to (5.32), we1593

have1594

(A.41) µT
n (κ) = −a+n (κ) = −λTn (κ/|v01|

1
3 ) exp

(
2πi

3
sign v01

)
,1595

where λTn satisfies (5.33).1596

The derivative with respect to κ at κ = 0 reads1597

(A.42) (µT
n )

′(0) =

(
∂

∂κ
µT
n (κ)

)

κ=0

= −(λTn )
′(0)

1

|v01|
1
3

exp

(
2πi

3
sign v01

)
.1598

In turn, (λTn )
′(0) can be obtained by differentiating (5.33) with respect to κ1599

2π
(λTn )

′(0)

|v01|
1
3

[
e−iα λTn (0)Ai

′(e−iαλTn (0))Ai(e
iαλTn (0))

+ eiα λTn (0)Ai
′(eiαλTn (0))Ai(e

−iαλTn (0))

]
= − 1

|v01|
1
3

,

(A.43)1600
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where we used the Airy equation: Ai′′(z) = zAi(z), and a shortcut notation α = 2π/3 .1601

At κ = 0 , (5.33) admits two solutions, λTn (0) = eiα a′n and λTn (0) = e−iα a′n , that1602

correspond to v01 < 0 and v01 > 0 , respectively.1603

When v01 < 0, the first term in (A.43) vanishes (as Ai′(e−iαλTn (0)) = 0 ), while1604

the second term can be expressed by using the Wronskian,1605

(A.44) e−iαAi′(e−iαz)Ai(eiαz)− eiαAi′(eiαz)Ai(e−iαz) =
i

2π
∀ z ∈ C .1606

We get then1607

(λTn )
′(0) =

i

λTn (0)
=

i

a′ne
iα
.1608

In turn, when v01 > 0, the second term in (A.43) vanishes, while the first term yields1609

(λTn )
′(0) =

−i
λTn (0)

=
−i

a′ne
−iα

.1610

Combining these relations, we obtain1611

(A.45) (µT
n )

′(0) = − 1

a′n |v01|
1
3

exp

(
−πi

6
sign v01

)
.1612
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