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ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY
OPERATOR IN TWO DIMENSIONS

DENIS S. GREBENKOV* AND BERNARD HELFFER/'

Abstract. We investigate a two-dimensional Schrédinger operator, —h2A + iV (z), with a
purely complex potential ¢V (x). A rigorous definition of this non-selfadjoint operator is provided for
bounded and unbounded domains with common boundary conditions (Dirichlet, Neumann, Robin
and transmission). We propose a general perturbative approach to construct its quasimodes in the
semi-classical limit. An alternative WKB construction is also discussed. These approaches are local
and thus valid for both bounded and unbounded domains, allowing one to compute the approximate
eigenvalues to any order in the small h limit. The general results are further illustrated on the
particular case of the Bloch-Torrey operator, —h2A + iz1, for which a four-term asymptotics is
explicitly computed. Its high accuracy is confirmed by a numerical computation of the eigenvalues
and eigenfunctions of this operator for a disk and circular annuli. The localization of eigenfunctions
near the specific boundary points is revealed. Some applications in the field of diffusion nuclear
magnetic resonance are discussed.

Key words. Transmission boundary condition, spectral theory, Bloch-Torrey equation, semi-
classical analysis, WKB

AMS subject classifications. 35P10, 47A10, 47A75

1. Introduction. In a previous paper [17], we have analyzed in collaboration
with R. Henry one-dimensional models associated with the complex Airy operator
—dd—; + igx on the line, with ¢ € R. We revisited the Dirichlet and Neumann real-
ization of this operator in R* and the main novelty was to consider a transmission
problem at 0. In higher dimensions, an extension of the complex Airy operator is the
differential operator that we call the Bloch-Torrey operator or simply the BT-operator

—DA +igxy

where A = §%/0x3 +...4+0? /022 is the Laplace operator in R", and D and g are real
parameters. More generally, we will study the spectral properties of some realizations
of the differential Schrédinger operator

(1.1) A = —p2A+iV(z),

in an open set €, where h is a real parameter and V(z) a real-valued potential with
controlled behavior at oo, and the superscript # distinguishes Dirichlet (D), Neumann
(N), Robin (R), or transmission (T) conditions. More precisely we discuss
1. the case of a bounded open set € with Dirichlet, Neumann or Robin boundary
condition;
2. the case of a complement Q := [Q_ of a bounded set Q_ with Dirichlet,
Neumann or Robin boundary condition;
3. the case of two components Q_ U Q,, with Q_ C Q_ C Q and Q4 = Q\Q_,
with £ bounded and transmission conditions at the interface between 2_ and
Q4
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2 D. S. GREBENKOV AND B. HELFFER

4. the case of two components Q_ U 0Q_ , with Q_ bounded and transmission
conditions at the boundary;
5. the case of two unbounded components €2_ and {2 separated by a hypersur-
face with transmission conditions.
In all cases, we assume that the boundary is C'**° to avoid technical difficulties related
to irregular boundaries (see [18]). Roughly speaking (see the next section for a precise
definition), the state u (in the first two items) or the pair (u_,u4) in the last items
should satisfy some boundary or transmission condition at the interface. In this paper,
we consider the following situations:
e the Dirichlet condition: ujgq = 0;
e the Neumann condition: d,ujpq = 0, where 9, = v -V, with v being the
outwards pointing normal,
e the Robin condition: h281,u‘89 = —Kujpq , where K > 0 denotes the Robin
parameter;
e the transmission condition:

h20uy o0 = h*00u_ 90 = K(uy oo —u_jo0_),

where IC > 0 denotes the transmission parameter, and the normal v is directed
outwards 2_.
From now on Q% denotes Q if # € {D,N,R} and Q_ if # = T. Li& will denote
L2(Q)if # € {D,N,R} and L3(2_) x L?(Q,) if # =T.

In [17], we have analyzed in detail various realizations of the complex Airy (or
Bloch-Torrey) operator A# = —%22 447 in the four cases corresponding to Dirichlet,
Neumann, and Robin on the half-line R or for the transmission problem on the whole
line R (in what follows, R# will denote R* if # € {D, N, R} and R if # = T). The
boundary conditions read respectively:

e 4(0)=0;

e v/ (0)=0;

e v/ (0) =ru(0);

o w(0) = u!,(0) = (w4 (0) — u_(0))
(with k > 0 in the last items). For all these cases, we have proven the existence of a
discrete spectrum and the completeness of the corresponding generalized eigenfunc-
tions. Moreover, there is no Jordan block (for the fourth case, this statement was
proven only for k small enough).

In this article, we start the analysis of the spectral properties of the BT operator
in dimensions 2 or higher that are relevant for applications in superconductivity theory
[2, 5, 6, 7], in fluid dynamics [30], in control theory [10], and in diffusion magnetic
resonance imaging [12, 16] (and references therein). We will mainly focus on

e definition of the operator,

e construction of approximate eigenvalues in some asymptotic regimes,

e localization of quasimode states near certain boundary points,

e numerical simulations.
In particular, we will discuss the semi-classical asymptotics h — 0, the large domain
limit, the asymptotics when g — 0 or 400, the asymptotics when the transmission or
Robin parameter tends to 0. Some other important questions remain unsolved like
the existence of eigenvalues close to the approximate eigenvalues (a problem which is
only solved in particular situations). We hope to contribute to this point in the future.

This manuscript is for review purposes only.
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ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY OPERATOR 3

When g = 0, the BT-operator is reduced to the Laplace operator for which
the answers are well known. In particular, the spectrum is discrete in the case of
bounded domains and equals [0, +00) when one or both components are unbounded.
In the case g # 0, we show that if there is at least one boundary point at which
the normal vector to the boundary is parallel to the coordinate x;, then there exist
approximate eigenvalues of the BT-operator suggesting the existence of eigenvalues
while the associated eigenfunctions are localized near this point. This localization
property has been already discussed in physics literature for bounded domains [35],
for which the existence of eigenvalues is trivial. Since our asymptotic constructions
are local and thus hold for unbounded domains, the localization behavior can be
conjectured for exterior problems involving the BT-operator.

Some of these questions have been already analyzed by Y. Almog (see [2] and
references therein for earlier contributions), R. Henry [25, 26] and Almog-Henry [8]
but they were mainly devoted to the case of a Dirichlet realization in bounded domains
in R? or particular unbounded domains like R? and R%, these two last cases playing
an important role in the local analysis of the global problem.

Different realizations of the operator Aj, in Q are denoted by AP, AN | A and AT.
These realizations will be properly defined in Section 2 under the condition that, when
Q) is unbounded, there exists C' > 0 such that

(1.2) IVV(z)| < C\/1+V(z)

Our main construction is local and summarized in the following
THEOREM 1. Let Q C R? as above, V € C*®(;R) and 2° € 00 such that'

(1.3) vV £0, VV(E?)Av®) =0,

where v(x°) denotes the outward normal on O at 2° .
Let us also assume that, in the local curvilinear coordinates, the second derivative of
the restriction of V to the boundary at x° (denoted as 2vyg) satisfies

'U20¢0.

For the Robin and transmission cases, we also assume that for some k > 0
(1.4) K=hdk.

Ifuo is a simple eigenvalue of the realization “#” of the complex Airy operator — d:2 +
T n L# , and pu2 is an eigenvalue of the Davies opemtm’

dd; +iy? on L2(R), then there exists an approvimate pair (/\f,uf) with uh in

the domain ofA , such that

(1.5) N=iV(@®) +hE DN hs + O(h™),
jeN
(1.6) (AF =N uf = 0(h™) in L4(Q),  |Juf|lz2 ~ 1,

1 As noticed in [8], a point satisfying the second condition in (1.3) always exists when dQ# is
bounded.
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4 D. S. GREBENKOV AND B. HELFFER

where
2 LT, 1 LT
(1.7) )\# = u# | vo1|3 exp (zgsgn v01> , A2 = palvagl|? exp (1151gnv20) ,

with vy :== v - VV (20).

In addition, we will compute /\f explicitly (see the Appendix) in the four types of
boundary conditions and also describe an alternative WKB construction to have a
better understanding of the structure of the presumably corresponding eigenfunctions.
We will also discuss a physically interesting case when « in (1.4) depends on h and
tends to 0.

The proof of this theorem provides a general scheme for quasimode construction in
an arbitrary planar domain with smooth boundary 9€2. In particular, this construction
allow us to retrieve and further generalize the asymptotic expansion of eigenvalues
obtained by de Swiet and Sen for the Bloch-Torrey operator in the case of a disk [35].
The generalization is applicable for any smooth boundary, with Neumann, Dirichlet,
Robin, or transmission boundary condition. Moreover, since the analysis is local, the
construction is applicable to both bounded and unbounded components.

The paper is organized as follows. In Sec. 2, we provide rigorous definitions
and basic properties of the BT-operator in bounded and unbounded domains, with
Dirichlet, Neumann, Robin, and Transmission conditions. Section 3 recalls former
semi-classical results for a general operator —h?A +iV (z). In Sec. 4, we provide pre-
liminaries for semi-classical quasimode constructions in the two-dimensional case. The
construction scheme is detailed in Sec. 5. In particular, the four-terms asymptotics of
the approximate eigenvalues is obtained and we prove the main theorem. In Sec. 6 we
consider other scaling regimes for the Robin or transmission parameter. In Sec. 7 we
propose an alternative construction for the first approximate eigenvalue using WKB
quasi-mode states. In Sec. 8, we illustrate general results for simple domains such as
disk and annulus. Sec. 9 describes numerical results in order to check the accuracy
of the derived four-terms asymptotics of eigenvalues of the BT-operator in simple do-
mains such as a disk, an annulus, and the union of disk and annulus with transmission
boundary condition. We also illustrate the localization of eigenfunctions near circular
boundaries of these domains. Since a direct numerical computation for unbounded
domains (e.g., an exterior of the disk) was not possible, we approach this problem by
considering an annulus with a fixed inner circle and a moving away outer circle. We
check that the localization of some eigenfunctions near the inner circle makes them
independent of the outer circle. We therefore conjecture that the BT-operator has
some discrete spectrum for the exterior of the disk. More generally, this property is
conjectured to hold for any domain in R™ (bounded or not) with smooth boundary
which has points whose normal is parallel to the gradient direction. Finally, we briefly
discuss in Sec. 10 an application of the obtained results in the field of diffusion nuclear
magnetic resonance.

Acknowledgments.

We thank Raphael Henry who collaborated with us in [17] and in the preliminary
discussions for the present paper. The second author would also like to thank Yaniv
Almog and Didier Robert for useful discussions.

2. Definition of the various realizations of the Bloch-Torrey operator.

2.1. The case of a bounded open set (2. This is the simplest case. For the
analysis of the Dirichlet (resp. Neumann) realization AP (resp. AY) of the BT-
operator, the term V(x) is simply a bounded non self-adjoint perturbation of the

This manuscript is for review purposes only.
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ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY OPERATOR )

Dirichlet (resp. Neumann) Laplacian.
We have for three boundary conditions:

For the Neumann case, the form domain V is H(Q) and (if © is regular) the
domain of the operator is {u € H?*(Q), d,u/9q = 0}. The quadratic form
reads

(2.1) V3 urs qv(u) = h?|| V|3 +i /QV(x) lu(z)|* dz .

For the Dirichlet case, the form domain is Hg () and (if Q is regular) the
domain of the operator is H2(Q)NHJ(2). The quadratic form is given by
(2.1).

For the Robin case (which is a generalization of the Neumann case), the form
domain is H'(Q) and (if © is regular) the domain of the operator A is
{u € H?(Q), —h28,,u/,99 = Ku,sq}, where K denotes the Robin coefficient,
and v is pointing outwards. The quadratic form reads

(2.2) u— qy(u) := h?||Vul|3 + z/ V(x)|u(z)|? de + IC/ lu|?ds .
Q [519)

The Neumann case is retrieved for = 0.

For bounded domains, there are standard theorems, coming back to Agmon [1], per-
mitting to prove the non-emptiness of the spectrum and moreover the completeness
of the “generalized” eigenfunctions®. In the case V(z) = gz; (here we can think of
g € C), the limit g — 0 can be treated by regular perturbation theory. In particular,
Kato’s theory [29] can be applied, the spectrum being close (modulo O(g)) to the
real axis. It is interesting to determine the variation of the lowest real part of an
eigenvalue.

For the Dirichlet problem, the Feynman-Hellmann formula gives the coeflicient in
front of g as i [, x1|uo(x)|* dz, where ug is the first L?(€2)-normalized eigenfunction
of the Dirichlet Laplacian. In fact, using the standard Kato’s procedure we can look
for an approximate eigenpair (A, u) in the form:

(2.3)
and

(2.4)

(2.5)

u=wug+igus +g2us+ ...

/\:>\0+ig>\1+g2>\2+...

Developing in powers of g, we get for the coefficient in front of g:

(—A = Xo)ur = —z1u0 + Aiuo,

and A1 is chosen in order to solve (2.5)

(2.6)

(2.7)

)\1:/3:1|u0(:1:)|2d3:.
Q

We then take

up = —(=A = Xo) 9D (21— Ar)uo) |

2 By this we mean elements in the kernel of (A# — A for some k > 1.

This manuscript is for review purposes only.
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6 D. S. GREBENKOV AND B. HELFFER

where (—A — X\g)(=17¢9) is the regularized resolvent, defined on the vector space
generated by ug as

(A =) ") yy =0,

and as the resolvent on the orthogonal space to ug .
To look at the coefficient in front of ¢2, we write

(28) (—A — /\0)’(1,2 = (:El — /\1) uy + /\QUO s
and get

Ao = — /Q(a:l = A)ug (2)uo(z) do

from which
X = (=8 = 20) 279 (21 = AoJuo) | (21 = Ao)uo)) 1 > 0

The effect of the perturbation is thus to shift the real part of the “first” eigenvalue
on the right.

The limit ¢ — 400 for a fixed domain, or the limit of increasing domains (i.e.
the domain obtained by dilation by a factor R — +o0) for a fixed g can be reduced
by rescaling to a semi-classical limit A — 0 of the operator A, with a fixed potential
V(z). In this way, the BT-operator appears as a particular case (with V(z) = 1)
of a more general problem. We can mention (and will discuss) several recent pa-
pers, mainly devoted to the Dirichlet case, including: Almog [2], Henry [25] (Chapter
4), Beauchard-Helffer-Henry-Robbiano [10] (analysis of the 1D problem), Henry [26],
Almog-Henry [8] and in the physics literature [35, 12] (and references therein).

2.2. The case of a bounded set in R"” and its complementary set with
transmission condition at the boundary. We consider Q_ U [Q_, with Q_
bounded in R™ and 9€2_ connected. In this case the definition of the operator is
similar to what was done for the one-dimensional case in [17]. However, we start with
a simpler case when ) C Q_ C Q with Q bounded and Q; = Q\ Q_ (with Neumann
boundary condition imposed on the exterior boundary 92). After that, we explain
how to treat the unbounded case with 2 = R™ and Q, =(Q_ .

2.2.1. Transmission property in the bounded case. To treat the difficulties
one by one, we start with the situation when Q_ C Q_ C Q, Q4 :=Q\ Q_, and Q
bounded and connected (e.g., a disk inside a larger disk).
We first introduce the variational problem, with the Hilbert space
H=L*Q_) x L*(9)

and the form domain

Vi=HY Q) x HY(Q,).

This manuscript is for review purposes only.
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ON SPECTRAL PROPERTIES OF THE BLOCH-TORREY OPERATOR 7

The quadratic form reads on V

(2.9)
u=(u—,us) = qv(u) = h?[Vu_||g_ +h*|[Vuil[g, + Kl[(u- —ui)l[F20. )

+i [ Vil @) doti / V(@) () do |

where K is a positive parameter of the transmission problem, and h > 0 is a semi-
classical parameter whose role will be explained later and which can be thought of as
equal to one in this section. The dependence of I on A > 0 will be discussed later.
We denote by ay the associated sesquilinear form:

av(U, u) = QV(U‘) :

The potential V' (x) is assumed to be real (and we are particularly interested in the
example V() = gx1). In this case, one gets continuity and coercivity of the associ-
ated sesquilinear form on V. This is true for any K without assumption on its sign.
The trace of u— and uy on 9Q_ is indeed well defined for (u_,uy) € V.

Applying Lax-Milgram’s theorem, we first get that (u_,uy ) should satisfy Au_ €
L?(Q_) and Auy € L?(2). Together with (u_,u) € V this permits to define the

Neumann condition (via the Green formula) for both u_ and uy in H~ 2 (9Q_), and
in addition for v, in H~2(9Q). Indeed, to define d,u_ as a linear form on Hz (9_),

we use that for any v € H}(Q_),

(2.10) - Au_vdxr = / Vu_ -Vvdx + Oyu_vdo,
Q- Q- on_

and the existence of a continuous right inverse for the trace from H %(89_) into
H'(Q_). Here the normal v is oriented outwards 2_ and when u_ is more regular
(u— € H?(Q_)), we have d,u_ = v-Vu_. In a second step we get the Neumann
condition for uy on 0€,

(2.11) Oyus =0 on 09,
and the transmission condition on 9€)_

(%u, = 8yu+

2.12
(212) R?Ou_ =K (uy —u_)

on 0)_ |

which is satisfied in H~2(9Q_). We keep here the previous convention about the
outwards direction of v on 0§)_.
Finally, we observe that the first traces of u_ and u; on dQ_ belong to Hz (99_).

Hence by (2.12), the second traces of u_ and uy are in H2(9Q_). But now the
regularity of the Neumann problem in 2_ and €4 implies that

(u_,uy) € H*(Q_) x H*(Q4).

Here we have assumed that all the boundaries are regular.

This manuscript is for review purposes only.



8 D. S. GREBENKOV AND B. HELFFER

REMARK 2. One can actually consider a more general problem in which the two
diffusion coefficients D_ and D4 in Q_ and Q4 are different. The transmission
condition reads

D_d,u_ =Didur =K(ugy —u_) ondN_.

If we take D_ = D, = D = h?, we recover the preceding case. In the limit D, — oo,
we can consider the particular case where uy is identically 0 and we recover the Robin
condition on the boundary OQ)_ of the domain 2_.

2.2.2. The unbounded case with bounded transmission boundary. In
the case 2, = 0Q_ (i.e., 2 = R"), we have to treat the transmission problem through
00 _ with the operator —h?A + iV (z) on L*(Q_) x L?(Q2;). Nothing changes at the
level of the transmission property because 9€)_ is bounded. However, the variational
space has to be changed in order to get the continuity of the sesquilinear form. Here
we have to account for the unboundedness of V' in €2 . For this purpose, we introduce

(2.13) Vi={(u_,uy) € ", |V|Tuy € L*(Q4)}.

If V' has constant sign outside a compact, there is no problem to get the coercivity
by looking separately at Reay (u,u) and Imay (u,u). When V does not have this
property (as it is in the case V(z) = x1), one cannot apply Lax-Milgram’s theorem
in its standard form. We will instead use the generalized Lax-Milgram Theorem as
presented in [4] (see also [17]).

THEOREM 3. Let V denote a Hilbert space and let a be a continuous sesquilinear
form on'V x V. If a satisfies, for some ®1, P2 € L(V), and some a > 0,

(2.14) la(u, w)| + Ja(u, P1(u)] > aull, VueV,

(2.15) la(u, u)| + |a(@2(w), u)| = a[lully;, VueV,
then A € L(V) defined by
(2.16) a(u,v) = (Au, v)y,Yu eV, YoeV,

is a continuous isomorphism from V onto V.

We now consider two Hilbert spaces V and H such that V C H (with continuous
injection and dense image). Let A be defined by

(2.17) D(A) ={u €V | v+ a(u,v) is continuous on V in the norm of H}
and
(2.18) a(u,v) = (Au, v)yyy Yu € D(A) and Yo € V.

Then we have

THEOREM 4. Let a be a continuous sesquilinear form satisfying (2.14) and (2.15).
Assume further that ®1 and Py extend into continuous linear maps in L(H). Let A
be defined by (2.17)-(2.18). Then

1. A is bijective from D(A) onto H .
2. D(A) is dense in both V and H .

This manuscript is for review purposes only.
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3. A is closed.

EXAMPLE 5. For V(z) = x1, we can use on V the multiplier

Py (u—,uy) = ue ey |
V1423

We first observe that, for some C > 0,

1
Reav(u,u) 2 = ([Vu- |+ [[Fuy] ) = € (- |2+ [fus )

To obtain the generalized coercivity, we now look at Imay (u, ®1(u)) and get, for some
C >0,

Imay (u, d1(u)) > / |V (@)lJus [ dz — C (|[ul* + | Vul *).

Q4
Note that this works (see [4]) for general potentials V (x) satisfying (1.2).

Note also that the domain of the operator A7 associated with the sesquilinear
form is described as follows

D ={ueV,(—h?A+iV)u_ € L*(Q_), (=h2A +iV)uy € L?()

(2.19) and transmission condition on 0Q_}.

It is clear that this implies u_ € H*(Q_). The question of showing that uy € H?()
is a priori unclear. By using the local regularity, we can show that for any x in

Cgo (QJr)v

(=h2A + V) (xu) € L*(R"),

and consequently yu € H?(R™).

In order to show that u; € H?(2,), one needs to introduce other techniques and
additional assumptions. For example, using the pseudodifferential calculus, it is pos-
sible to prove (see [32]), that uy € H?(Q4) and Vuy € L?(24) under the stronger
condition that for any o € N", there exists C, such that

(2.20) | DSV (2)] < Co/1+V(x)?2, VzeR™.

REMARK 6 (No compactness of the resolvent). There is no compact resolvent in
this problem. We note indeed that the pairs (u_,uy) with u_ =0 and uy € C§*(Qy)
belong to the domain of the operator. It is easy to construct a sequence of L? normal-
ized uf) in C§°(Q4) which is bounded in H*(Qy.), with support in (—R,+R) x R"~1,
and weakly convergent to 0 in L?(Q2y). This implies that the resolvent cannot be
compact.

REMARK 7. The noncompactness of the resolvent does not exclude the existence
of eigenvalues. Actually, when IC = 0, the spectral problem is decoupled into two inde-
pendent problems: the Neumann problem in Q_ which gives eigenvalues (the potential
ixy in Q_ is just a bounded perturbation, as discussed in Sec. 2.2.1) and the Neu-
mann problem for the exterior problem in Q4 with —A + igxy for which the question
of existence of eigenvalues is more subtle if we think of the model of the half-space
analyzed in Almog [2] or [25]. We will see that in the semi-classical limit (or equiv-
alently g — +00) the points of OQ_ at which the normal vector to OQ_ is parallel to
(1,0,...,0), play a particular role.

This manuscript is for review purposes only.
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2.2.3. The case of two unbounded components in R? separated by a
curve. The case of two half-spaces is of course the simplest because we can come back
to the one-dimensional problem using the partial Fourier transform. The analysis of
the resolvent should however be detailed (see Henry [25] who treats the model of the
half-space for the BT operator with Neumann or Dirichlet conditions). In fact, we
consider the quadratic form

q(u) = h2/ |Vu_(x)|? d33—|—z'/ () |u_(2)|? dz
x1<0 r1<0

+ h? / |Vu+(x)|2d:t+i/ 0(2)|uy (2)|? de
x1>0 z1>0

+K / lu_(0,x3) — uy(0,22)|? dao
where x — /() is a nonzero linear form on R?:

U(x) = axy + Pra .

Here, we can also apply the general Lax-Milgram theorem in order to define a closed
operator associated to this quadratic form. The extension to a more general curve
should be possible under the condition that the curve admits two asymptotes at in-
finity.

In this section, we have described how to associate to a given sesquilinear form a
defined on a form domain ¥V an unbounded closed operator A in some Hilbert space H.
We will add the superscript # with # € {D, N, R, T} in order to treat simultaneously
the different cases. The space H# will be L?(Q2) when # € {D, N, R} and will be
L*(Q-) x L*(Q24) in the case with transmission # = T. V# will be respectively
H(Q), HY(Q), HY(Q), and H'(Q_) x H'(Q). The corresponding operators are
denoted A} with # € {D, N, R,T}.

3. Former semi-classical results. In order to treat simultaneously various
problems we introduce Q% with # € {D, N, R, T} and QP = Q, Q¥ =Q, Qff = Q
and QT =Q_.

R. Henry [26] (see also [8]) looked at the Dirichlet realization of the differential oper-
ator

(3.1) AP = —R2A +iV(x),

in a fixed bounded domain €2, where V is a real potential and h a semi-classical pa-
rameter that goes to 0.
Setting V(z) = x1, one gets a problem considered by de Swiet and Sen [35] in the
simple case of a disk but these authors mentioned a possible extension of their com-
putations to more general cases.

For a bounded regular open set, R. Henry in [26] (completed by Almog-Henry [8],
see below) proved the following

THEOREM 8. Let V € C®(S;R) be such that, for every x € €0,
(3.2) VV(z) #0.

Then, we have

) 1, D a1 2/3
(3.3) }llljmommf{Rea(Ah)}ZTJm ,
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where AP is the operator defined by (3.1) with the Dirichlet condition, a; < 0 is the
rightmost zero of the Airy function Ai, and

4 m = i )
(34) Jm = min [VV(2)|

where
00N ={x €, VV(z) Av(z)=0}.

This result is essentially a reformulation of the result stated by Y. Almog in [2].

REMARK 9. The theorem holds in particular when V(x) = x1 in the case of the
disk (two points) and in the case of an annulus (four points). Note that in this
application J,, = 1.

A similar result can be proved for the Neumann case.

REMARK 10. To our knowledge, the equivalent theorems in the Robin case and
the transmission case are open. We hope to come back to this point in a future work.

A more detailed information is available in dimension 1 (see [10]) and in higher di-
mension [8] under some additional assumption on 9§ . The authors in [8] prove the
existence of an approximate eigenvalue. Our main goal is to propose a more general
construction which will work in particular for the case with transmission condition.

REMARK 11 (Computation of the Hessian). For a planar domain, let us denote
by (21(8),22(8)) the parameterization of the boundary by the arc length s starting from
some point, t(s) = (z}(s),z5(s)) is the normalized oriented tangent, and v(s) is the
outwards normal to the boundary at s. Now we compute at s =0 (corresponding to a
point 10 = x(0) € QY , where VV - 1(0) =0),

d2
(@vm(s),m(s») — (1(0)]HessV (a1 (0), 22(0)) [#(0))

s=0

—¢(0) (VV (21(0), 22(0)) - »(0)) ,

where we used t'(s) = —c(s)v(s), c(s) representing the curvature of the boundary at
the point x(s).

EXAMPLE 12. When V (21, 22) = 21, we get

2
(%V(fcl(s), xz(s))) _ = —¢(0)(e1 - v(0)),

with e; = (1,0) .
In the case of the disk of radius 1, we get

(3.5) (%V(Ids),xﬂs))) . (61 . V(O)) =1,
for (x1,x2) = (£1,0).

Let us now introduce a stronger assumption for # € {N, D}.

ASSUMPTION 13. At each point x of 8Qf, the Hessian of V,aq is
e positive definite if 0,V <0,
e negative definite if 0,V >0,
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12 D. S. GREBENKOV AND B. HELFFER

with v being the outwards normal and 9,V :=v-VV.

Under this additional assumption®, the authors in [8] (Theorem 1.1) prove the
equality in (3.3) by proving the existence of an eigenvalue near each previously con-
structed approximate eigenvalue, and get a three-terms asymptotics.

REMARK 14. Note that this additional assumption is verified for all points of 021
when V(z) = 21 and Q is the disk. In fact, for this model, there are two points (—1,0)
and (1,0), and formula (3.5) gives the solution.

Y. Almog and R. Henry considered in [2, 26, 8] the Dirichlet case but, as noted
by these authors in [8], one can similarly consider the Neumann case.

Without Assumption 13, there is indeed a difficulty for proving the existence of
an eigenvalue close to the approximate eigenvalue. This is for example the case for
the model operator

d? d?
2 2 . 2
on the half space. The operator is indeed not sectorial, and Lemma 4.2 in [8] is
not proved in this case. The definition of the closed operator is questionable. One
cannot use the technique given in a previous section because the condition (1.2) is not
satisfied. The argument used by R. Henry in [25] for the analysis of the Dirichlet BT-
operator in a half space R (based on [31] (Theorem X.49) and [28]) can be extended
to this case.
This problem occurs for the transmission problem in which the model could be related
to
d? d?
2 2 . 2
—h @—h d—y2+l(y+$ ),
on the whole space R? with transmission on y = 0. This case will not be treated in
this paper.

On the growth of semi-groups. In the case of Dirichlet and Neumann realiza-
tions, one can study the decay of the semi-group exp(—tAh#) relying on the previous
results and additional controls of the resolvent (see [25], [8]). When the domain is
bounded, the potential is a bounded perturbation of self-adjoint operators. In this
case, the control of the resolvent when Im\ tends to oo is straightforward, with
the decay as O(1/|Im\|). Applying the Gearhardt-Priiss theorem (see for example in
[19]), the decay is

O. <exp(—t(1 —¢) inf {Re/\})) Ve >0,
XEo(AF)

where o(A) denotes the spectrum of \A. In this case, U(Af) is not empty and the set
of generalized eigenfunctions is complete (see [1]).

In the unbounded case, the situation is much more delicate. The spectrum U(Ah#)
can be empty and one has to control the resolvent as |[ImA| — 4+o00. The behavior of

the associate semi-group can be super-exponential when U(Af) is empty. Moreover,
it is not granted that inf co( A#){Re)\} gives the decay rate of the semi-group.
h

3 We actually need this assumption only for the points = of Q) such that [VV (z)| = Jm, .
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157 4. Quasimode constructions — Preliminaries. Let us present in more detail
158 the situation considered in Theorem 1.

159 4.1. Local coordinates. Choosing the origin at a point 2 at which VV (o) A
460 v(xp) = 0, we replace the Cartesian coordinates (z1,z2) by the standard local vari-
461 ables (s, p), where p is the signed distance to the boundary, and s is the arc length
162 starting from z°. Hence

163 e In the case of one component, p = 0 defines the boundary 92 and €2 is locally
164 defined by p > 0.

465 e In the case of two components, p = 0 defines 02_, while p < 0 and p > 0
466 correspond, in the neighborhood of 9€2_, respectively to 2_ and € .

467 In the (s, p) coordinates, the operator reads

468 (4.1) Ap = —h*a"05(a™105) — h*a™10,(ad,) + i Vs, p),

469 with

170 V(s,p) = V(x1(s,p), x2(s, p)) ,

171 where

172 (4.2) a(s,p) =1—c¢(s)p,

173 ¢(s) representing the curvature of the boundary at z(s,0).
174 For future computation, we also rewrite (4.1) as

175 (43)  Ap = —h%a20% + h*a 20,00, — h?02 — h?a”'9,a8, +iV (s, p).

176 The boundary conditions read

477 e Dirichlet condition

178 (4.4) u(s,0) =0,

A79 e Neumann condition

180 (4.5) 0pu(s,0) =0,

181 e Robin condition with parameter }C

182 (4.6) h?9,u(s,0) = Ku(s,0),

183 e Transmission condition with parameter K

o (4.7) { 2515:15?(2?(; ipzitc((irzl:m —u_(s,0)).

185 In the last two cases, the link between K and h will be given later in (4.30).
486 We omit the tilde of V' in what follows.

1:; We recall that the origin of the coordinates is at a point z° such that
189 VV(zg)#0 and VV(xg)Ai(2°)=0.
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14 D. S. GREBENKOV AND B. HELFFER

Hence we have

ov
(4.8) E(O’O)_ ,
and

ov
4.9 —(0,0 0.
(49) 5 (0:0) 7
We also assume in our theorem that

0%V
4.10 ——(0,0 0.
(410) - (0,0) £

Hence we have the following Taylor expansion

(4.11) Vs, p) ~ Zvjksjpk,
jik

where

1 oitk
4.12 Vjp = — <,7V s,p) ,
(4.12) TGk \ 9s70pF (s,0) o= p=0
with
(4.13) voo =V (0,0), vio=0, wvo1#0, v #0,

corresponding to the assumptions of Theorem 1.

4.2. The blowing up argument. Approximating the potential V near z" by
the first terms of its Taylor expansion vog + vo1p + v2052, a basic model reads

d? d?
- 2@ - h2d—p2 + i (vo1p + v20s?) on the half space {p > 0},

in the case when # € {D, N, R}, and on R? when # = T, which is reduced by a
natural scaling

(4.14) (5,p) = (K>, h37)
to
d? d?
h<_ﬁ —+ ’il]2002> + h% <—P + iU017') )

whose definition and spectrum can be obtained by separation of variables in the four
cases.

4.2.1. Expansions. In the new variables (o, 7) introduced in (4.14), the expan-
sion is

(4.15) Vi(o,7) :=V(hZo,h57) ~ Z he Z VgpoF TP
m>0 3k+4p=m
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In particular, the first terms are

(4.16) 17;1(0, T) = oo + h vo17 + huggo? + hévi 0T + h%vog7'2 + h%vgoaB + O(h%) :

Similarly, we consider the dilation of a(s, p)
(4.17) an(o,7) == a(h?o,hst) =1—h37 c(h?0),
which can be expanded in the form
~ 2 1 ¢
(4.18) an(o,7) ~1—hiT (Z Ec(é)(O)oélﬁ) .
¢
In the (o, 7) coordinates, we get

— —

(4.19) Ay, = —ha; 20 + h2a;,°(9sa),, 5 — h3 02 — h3a, H(Bpa), Oy + i Vi(o,7) .

We note that

— —

(0sa), (0, 7) = —h%c/(h%a) and  (0,a),(0,7) = _c(h%g)_
We rewrite Ay, by expanding in powers of hs:

(420) A\hNZ"UOQ-i-h% Zhéﬁj(d,ﬂag,&,—),
Jj=0

where the first terms are given by

Lo :—872_4—1"0017',

L1 =0,

Lo :—834—2'02002,
(421) £3 = i’Ull aT ,

Ly :c(0)87+iv0272,

Ly = —c’(O)BU + 7 vp3 3.

For any j > 0, each L; is a differential operator of order < 2 with polynomial co-
efficients of degree which can be controlled as a function of j. In particular these
operators preserve the vector space S(R,) ® S#. The Fréchet space S# denotes
S(Ry) in the case when # € {D, N, R} and S(R_) x S(R;) when # = T.

4.2.2. Parity. Note also that we have
LEMMA 15.
(4.22) (Lif) = (1YL, f,

where f(r,0) = f(r,—0).

Proof
This is a consequence of

(4.23) Li(0,7,00,0;) = (=1) Lj(—0,7, 0y, 0y)
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that can be seen by observing that

h™5 (Ay — iveo) = h¥a;, 202 + h%a}:?’@h 05 — 07

T

(4.24) — hia, (9pa),, 0 + i3 (Vi (o, 7) — voo)
~ > h5Li(0,7,05,0;) .
Jj=0
We will see that each term in the right hand side of (4.24) satisfies (4.22).

First, denoting h = hé, we can rewrite

~ - 1 -
(4.25) an(o,7) ~1—hir Z —cD0)a’h | |
2!
£>0
and expanding in powers of h, we see that the coefficient in front of A has the parity

of £ in ¢. The same is true for @,(o,7)"2. Hence the coefficient in front of A% in
hiay (o, 7) 202 satisfies (4.23).
We now look at h%a,:g(ﬁsa)h and write

h3(0.a), (0, 7)0s = —h7¢ (h?0)0, .

It is clear from this formula that the second term in the right hand side of (4.24)
satisfies (4.23).

The third term —92 clearly satisfies (4.23). For the forth term —h%agl(apa)h Or, it
is enough to use the previous expansions and to observe that

— N

(0,a),,(0,7) = —c(hP0).
Finally, we consider
ih= 3 (Vi(o,7) — vgo) ~ i Z pm—4 Z vgp o TP |
m2>4 3k+4p=m

and we observe that £ and m should have the same parity.
This lemma will be useful for explaining cancellations in the expansion of the quasi-
mode.

4.2.3. Boundary or transmission conditions. In these local coordinates, the
boundary conditions read
e the Dirichlet condition

(4.26) u(o,0) =0,
e the Neumann condition

(4.27) O-u(0,0) =0,
e the Robin condition

(4.28) dru(c,0) = ICh_%u(a, 0),
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e the transmission condition
(4.29) d,u_(0,0) = dyui(0,0), Srui(0,0)=Kh™ 5 (us(0,0)—u_(0,0)).

Depending on the physical problem, the Robin or Transmission parameter K can
exhibit different scaling with h. Here we assume the scaling

(4.30) K=rhs,

so that the Robin or transmission conditions in the variables (o, 7) are independent
of h and read

(4.31) dru(c,0) = ku(o,0),
and
(4.32) dru_(0,0) = 8rui(0,0), Orui(o,0) = r(us(0,0) —u_(0,0)).

In Sec. 4.3, we justify this scaling by considering the transmission problem in dilated
domains, while other scalings are discussed in Sec. 6. We denote by E# the realization
of Ly with # = D, N, R, T for Dirichlet, Neumann, Robin, or Transmission condition.
We recall that the Hilbert space L3, denotes L*(Ry) in the case when # € {D, N, R},
and L?(R_) x L?*(R;) when # = T. For the complex harmonic oscillator Lo we
consider (with the same notation) the self-adjoint realization on L?(R,).

4.3. Comparison with the large domain limit. We assume that 0 € Q_ and
we dilate Q_ and Q by the map (x1,22) — (Sz1,Sx2) (S > 0 supposed to be large)
and get QF and 0.

It remains to check how the transmission problem for Q° with V(z) = z; is modified
by dilation. If we start from the form

u»—>/ |Vu|2dx+i/ ,’E1|u(,’b)|2d$+1€5/ luy —u_|*dsg,
Qs Qs o0s

with a transmission coefficient kg, we get by the change of coordinates z = Sy, for
v(y) = u(Sy),

/ |Vyv|2dy+i53/ y1|v(y)|2dy+f$55’/ oy —v_|?ds.
Q Q a0
Dividing by S3, we get
1 _ _
@/ |Vyv|2dy—|—z/y1|v(y)|2 dy + kg S2 / oy —v_|*ds.
Q Q o0
In order to treat this problem as semi-classical, we set
K =ksg 52 ,
Hence we get

R=Kg,

and our assumption (4.30) on K corresponds to what we get by rescaling from the
problem in Qg with kg independent of R.

For this application, Theorem 1 gives the following
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18 D. S. GREBENKOV AND B. HELFFER

THEOREM 16. For S > 0, let Vs(z) = SV (S™'z), with the potential V defined
on § satisfying the conditions of Theorem 1, and kg is independent of S. Then, with
the motation of Theorem 1, one can construct a quasimode )\? of the # realization of
the operator —A +iVyg in Q? such that

(4.33) ME=iSV(E®) + Y A ST+ 087,
jEN
as S — +oo.

This theorem can also be applied to V() = 21, in which case Vg is independent
of S.

REMARK 17. More generally, one can consider

Vs(z) = S™V (S x),

with m > —2. In this case, we get k = kg S*~™. If k is independent of S or tends to
0 as S — 400, one can apply the semi-classical analysis of the previous sections.

5. The quasimode construction. Proof of the main theorem.

5.1. The form of the quasimode. In what follows, we assume in the Robin
or transmission cases that x is independent of h (see (4.30)). We now look for a

quasimode uP"# that we write in the (o, 7) variables in the form:

(5.1) up??* o d(h) | Y hsul (o,7) |
j=0

associated with an approximate eigenvalue

(5.2) NP g +hE ST REAE

Jj=20

Here d(h) ~ dygh™ 12 with dy # 0 chosen such that, coming back to the initial coordi-
nates, the L2-norm of the trial state equals 1.

Note that the uf are in the domain of E?& if we take the condition # (with
#¢€{N,D,R,T}).
Note also that we do not assume a priori that the /\f for j odd are 0 as claimed in
our theorem.
As will be seen in the proof, we can choose

(5.3) uf(o,7) = ¢f (o) (1), j=0,1,2,

and
N

(5.4) ul (0,7) = ¢7 (W (1) + > _ ol (0T, (1), =3,
/=1

with ¢j&£ € S(R) and 1, , € S* to be specified below.
Moreover, we have

(5.5) i = Nl
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(5.6) Logf (0) = M 6] (),
with

(5.7) Wy, 08 13, =0,
and

(5.8) Wi 0 s, #0.

The construction will consist in expanding (A, — ASPPAY S PP# in powers of he and

finding the conditions of cancellation for each coefficient of this expansion.

If we succeed in this construction and come back to the initial coordinates, using
a Borel procedure to sum the formal expansions and multiplying by a cutoff function
in the neighborhood of a point z° of 9Q#, we obtain an approximate spectral pair
localized near 2° (i.e. O(h*°) outside any neighborhood of z°).
The Borel procedure consists in choosing a cutoff function 6 (with # = 1 in a small
neighborhood of 0 and a sequence H,, such that 8 >, BIX;0(B8/H;) converges in
([0, Bo]) for some Sy > 0. We then define

N =iveo+h3 > BINO(B/H;),

Jj=0

with 8 = hs.
This )\# is not unique but the difference between two different choices is O(h>°). A

similar procedure can be used to define a quasimode state uh# strongly localized near

20,

REMARK 18. We emphasize that the above construction is not sufficient (the prob-
lem being non self-adjoint) for proving the existence of an eigenvalue with this expan-
sion. The construction is true for any reqular domain (exterior or interior) under the
conditions (4.8)-(4.10). When V() = x1, we recover in this way the condition that
the curvature does not vanish at z°. We recall that this construction can be done near
each point where VV (z°) A v(2°) = 0. The candidates for the spectrum are deter-
mined by ordering different quasimodes and comparing their real parts. We guess that
the true eigenfunctions will have the same localization properties as the constructed
quasimode states.

5.2. Term j = 0. Identifying the powers in front of A, after division by d(h),
one gets the first equation corresponding to j = 0.
We consider four boundary conditions.

Neumann and Dirichlet cases. For the Neumann boundary condition, one
has

(5.9) LY = Xl 0udl (0,0) =0,
and we look for a solution in the form

(5.10) ug (0,7) = ¢ (o) (7) -
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20 D. S. GREBENKOV AND B. HELFFER
At this step, we only look for a pair (A),%{") with ¥{¥ non identically 0 such that
(5.11) (=02 +ivoT) ¥y (1) = A 4 (1) in RY L (4)'(0) = 0.

We recall from (4.13) that vg; # 0 so we have the standard spectral problem for the
complex Airy operator in the half line with Neumann condition at 0. The spectral
theory of this operator is recalled in [17]. The spectrum counsists of an infinite sequence
of eigenvalues (AM:(), 5 (ordered by increasing real part) that can be expressed
through the zeros a!, (n > 1) of the derivative of the Airy function Ai’(z):

(5.12) AN = ! | poy |3 exp (%T sign 001> :

Different choices of n will determine the asymptotic expansion of different approximate
eigenvalues of the original problem. If we are interested in controlling the decay of the
associated semi-group, we choose Ay = AN:() which corresponds to the eigenvalue
with the smallest real part.

One can similarly treat the Dirichlet problem (like in [8]). In this case, one has

(5.13) LEuE =Nul m Ry, ub(s,0)=0,
and we look for a solution in the form

(5.14) ub(0,7) = oP ()P (7).

where 9§’ (1) satisfies

(5.15) LYYy =AYy m Ry, 4y’ (0) =0.

The spectral theory of this operator is also recalled in [17]. The spectrum consists of
an infinite sequence of eigenvalues (\”>(")),>1 (ordered by increasing real part) that
can be expressed through the zeros a,, (n > 1) of the Airy function Ai(z):

(5.16) AP — g, | v01|% exp <%T sign v01) .

One can show (see [25] for a proof by analytic dilation) that
+oo too
(5.17) Y (r)dr £0  and WP (1) dr #0.
0 0

This is also a consequence of the completeness of the eigenfunctions of the complex
Airy operator in the half-line with Neumann or Dirichlet boundary condition. This
property is true for any eigenvalue A of L.

For n > 1, the eigenfunctions " = ¢ (") and P = P (") are specifically
translated and complex dilated Airy functions:

(5.18) N (7) =N Aj (a; + 7 | vo1 |3 exp (%T sign 001>) for >0,

(5.19) PP (7) =P Ai <an + 7 001|% exp (% sign Uo1)) for 7 >0,
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where the normalization constants ¢ and ¢ can be fixed by choosing the following
normalization that we keep throughout the paper:

/¢5¢(7)2d7 =1.
0

These coeflicients are computed explicitly in Appendix A (see (A.24), (A.20)) .

Robin case. For the Robin boundary condition, one has
(5.20) LEul =\l 0.ul(0,0) = kuli(0,0),

and we look for a solution in the form

(5.21) ug (0,7) = ¢ (o) (7)),
where the function 1f*(7) satisfies
(5:22) (=07 +ivor )’ (1) = Agwg' (7) in Ry, (4)'(0) = w5'(0) .

This one-dimensional problem was studied in [17]. In particular, the spectrum consists
of an infinite sequence of eigenvalues (A% (™)), > (ordered by increasing real part) that
can be expressed as

(5.23) A () = —alt (k) |vo1 | exp(%Z sign v01> )
where alf(k) is a solution of the equation
L/ g/ R K ./ R
(5.24) exp| — signvor | Ai'(ay; (k) — - Ai(a)i(k)) =0,
6 |vo1|3

and s > 0 denotes the Robin parameter.?

Except for the case of small x, in which the eigenvalues are close to the eigenvalues
of the Neumann problem, it does not seem easy to localize all the solutions of (5.24)
in general. Note that from (5.24), we deduce that

5.25 MY (0) = —(aR) (0) | vo1|? exp 7T—Zsignvm ,
" 3
where
1 7
5.26 af)(0) = —— ex <——si nuv ) 0.
(5.26) @) = iy oo~ s )

Nevertheless it is proven in [17] that the zeros of the function in (5.24) are simple
and that there is no Jordan block. So as can be deduced from the next lemma, any
eigenfunction satisfies [ ¢{'(7)? dr # 0. We consequently fix the normalization of ¢
by imposing

o0
(5.27) /¢§(7)2 dr=1.
0
4 In [17], we discussed the complex Airy operator with vg; = —1, see Eq. (3.25).
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For n > 1, the associated eigenfunction 1{ = ¢ reads
(5.28) P (1) = B Ai (aff(/@) + 7'|1)01|% exp<% signv01)> (r >0),

where cf? is the normalization constant given by (A.28).

5.2.1. Transmission case. In the transmission case, one gets, with ¢ =

(¥, %0 );

Lovy = Mg mR_, Loug = \[ug in Ry,
0-¢ (0,0) = 87-1/)8_(0', 0), 87-1/)8'(0', 0) ==k (1/)3'(0', 0) — g (o, O)) .

The existence of Al has been proved in [17]. In addition, the eigenvalue (of the
smallest real part) is simple (no Jordan block) for £ > 0 small. We can use the
explicit computations in [17] or the following abstract lemma by Aslayan-Davies for
a closed operator A [9]:

(5.29)

LEMMA 19. If f and f* are the normalized eigenvectors of A and A* associated

with the eigenvalues A and \ respectively, and if the the spectral projector P has rank
1, then {f, f*) #0 and

1
1Pl =7

The proof that P has rank 1 for the case V() = z; is given in [17] but only for k > 0.
In general, we make the assumption

AssUMPTION 20. AJ'(k) is simple (no Jordan block) .
Under this assumption, we have
—+o0

oo 0
(5.30) /7 YL ()2 dr = /7 Yy (1)2dr + Vi (1) dr £0.

0

The explicit form of the eigenfunctions ¥/7>(") (n > 1) can be obtained from the
analysis provided in [16, 17]:

GO () =~ SAT (a; (1)) Ai (@) () + 7 v |36,

(5.31) -
Y= (r) =L § Ai'(af (k) Ai (al_(/i) -7 v01|§(5> :
where ¢ is a normalization constant (to satisfy (5.35)), & = exp (Z sign vo1), and
. 2mi
(5.32) at (k) =00 (/| ’U01|%) exp (:I:%Z sign U01) )

where the AT+ (k) are the eigenvalues of the complex Airy operator —dd—; + ix on
the line with transmission condition at 0, with coefficient

k= I€/|’U01|%.

They are defined implicitly as complex-valued solutions (enumerated by the index
n=1,2,...) of the equation [16, 17]

(5.33) 2m A (23T (k) A (e 2 /BAT M (k) = —k.
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The eigenvalues A7>(") () are ordered according to their increasing real parts:

Re{ATW (i)} < Re{ATP(R)} < ...

Note that 1™ (0_) # ¢ (0, ). The associated eigenvalue is
(5.34) N () = AT ool ) [ oon

In what follows, (A\J (1), %¢) denotes an eigenpair (A7) (x), 1)) corresponding to
a particular choice of n > 1.

Summary at this stage. For # € {D, N, R, T}, we have constructed u# in the
form (5.3). At this step (;5# (o) remains “free” except that it should not be identically
0. We have chosen )\# as an eigenvalue of E# (assuming that it is simple, with no

Jordan block) and @[15# is the associated eigenfunction of E# , which belongs to S#
and permits, according to Lemma 19, to have the normalization

(5.35) Wi (r)2dr = 1.
R#

From now on, we do not mention (except for explicit computations) the reference
to Dirichlet, Neumann, Robin or Transmission condition when the construction is
independent of the considered case.

5.3. Term j = 1. The second equation (corresponding to j = 1) reads
(5.36) (¥ — o) u = M.

We omit sometimes the superscript # for simplicity.

The guess is that A\; = 0. To see if it is a necessary condition, one can take the scalar
product (in the 7 variable) with 1o (to be understood as the element in Ker(L§—\o)).
We take the convention that the scalar product is antilinear in the second argument.

This leads to
( / w%(r)dr> M 6o(@) =0,

the integral being on R* for Dirichlet, Neumann or Robin, and on R in the transmis-
sion case. From Eq. (5.35), we get then

AMo(o) =0,
and by the previous condition on ¢g (o)
(5.37) A1 =0.
Hence, coming back to (5.36), we choose
(5.38) uf (0,7) = ¢f ()9 (7)

where qﬂ‘;ﬁ remains free at this step.
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5.4. Term j = 2. The third condition (corresponding to j = 2) reads
(539) (E# — /\0) us + Lo ug = g ug .

To find a necessary condition, we take the scalar product (in the 7 variable) with .
In this way we get (having in mind (5.35))

(Laug , o) = A2 do(0) .

Computing the left hand side, we get

(=02 +ivag0?) do(0) = A2 do(0) .

From Assumption (4.13), we know that veg # 0. Hence we are dealing with an effec-
tive complex harmonic oscillator whose spectral analysis has been done in detail (see
Davies [11] or the book by Helffer [19]). The eigenvalues can be explicitly computed
(by analytic dilation) and there is no Jordan block. Moreover the system of corre-
sponding eigenfunctions is complete. This implies that (A2, ¢g) should be a spectral
pair for (—02 + i g 0?).

The eigenpairs of the quantum harmonic oscillator are well known:

_ i e Hy i (vho)

(k) _ _ (k)
(5.40) Ayt =72k =1), &y (0) Th/2F T (k= 1)

(k=1,2,...),

TSt

where v° = |vgg|2 exp(Z signvyg) (for s = 1,4,1), Hy(z) are Hermite polynomials,
and the prefactor ensures that

/ (bék) (0)?do =1.

The eigenvalue with the smallest real part corresponds to k = 1 for which

(5.41) o) = corep (2T )
while the corresponding eigenvalue is

(5.42) )\gl) = |v20|% exp (% sign UQ()) ,
and ¢y, ensures the normalization of ¢((Jl) (0):

(5.43) Cho = |v20|§ 77 exp <% sign vgo) .

We do not need actually the specific expression of gb# = ¢ and it is enough to know
that ¢ € S(R).

Coming back to the solution of (5.39), which simply reads

(5.44) (Lo —Ao)uz =0,
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we consequently look for u¥ (¢, 7) in the form

(5.45) uf (0,7) = 0¥ (o) v (1),

where ¢¥ (o) is free at this stage.

Summary at this stage. We note that the construction is conform with the
general form introduced in (5.3). At this stage, ()\#,w#) is a spectral pair for C# ,
N =0, ulf(0,7) = o7 (o) (1) (with ¢7 free), (\f,¢7) is a spectral pair for Ls
(actually independent of #).

5.5. Term j = 3. The fourth equation corresponds to j = 3 and reads
(5.46) (CQ — )\o)u:; + (52 - )\g)ul + L3ug = A3ug .

Taking the scalar product (in L2®Li := L?(R, x RY) for Dirichlet, Neumann and
Robin, and in L2®L§7£ = L?(R, x R7) x L2(R, x RY) for the transmission case) with
o and having in mind our normalizations of ¥y and ¢y, we obtain

(Lsug, wy ) = A3z,

so As is determined by

(5.47) As =iviy < / 0¢0(0)2d0> < / w#(r)mT) .

Note that whatever the parity of ¢o, @3 is even, so [ o¢g(c)?*do = 0. Hence,
(5.48) A3 =0.

We come back to (5.46), but now take the scalar product with 1 in the 7 variable.
So we get

(L2 = A2)ur + (L3 — As)ug , o) = 0.

Taking into account (4.13) and the form of ug and uy, this reads

(5.49) (Ly—Xo) 1 = —ivii 0 (/ wo(T)?dT) b0 -

The right hand side is in the image of the realization of (L3 — A2). There is a unique
¢1 solution of (5.49) satisfying

(5.50) /R¢1 (0)po(0)do =0.

REMARK 21. Note that ¢pop1 is odd.
We can now solve (5.46). We observe that

(L2 — Ao)ur + (L3 — Az)ug = ((L2 — A2)d1)vb0 + (L3 — X3)ug

According to what we have done already, (5.46) has the form

((Lo — Ao)us) (0,7) = g3(7) f3(0),
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where

93(1) = (7 = ¢c3) Yo(7)

is orthogonal to 1y, i.e.

03:/71/)0(7')2 dr,
and

fg(O') = z'vu Ugf)o(O’) .
REMARK 22. Note that ¢qf3 is odd.
We then write for j = 3 the expression (5.4), with N3 =1,

(5.51) uz(0,7) = ¢3(0)Yo(7) + ¢3,1(0)3,1(7),

where 13 1 is determined as the unique solution of the problem

(5.52) (LF = N ) s = g3,
which is orthogonal to v, and

(5.53) ps,1(0) = f3(0).

REMARK 23. Note that ¢o¢s,1 is odd.

Summary at this stage. We note that the construction is conform with the
general form introduced in (5.3)-(5.4). At this stage, ¢§& is introduced, )\fé =0 and
(;5# are determined but gb;# and gbg# remain free. Note that N3 = 1 in (5.4), ¢§1 is

determined in S(R) and 1/’??,& | is determined in S#.

5.6. Term j = 4. The fifth condition corresponds to j = 4 and reads
(5.54) (CQ — )\0)U4 + (52 - )\Q)UQ + (53 - )\3)U1 + Laug = M -

We follow the same procedure as in the preceding step. A4 is determined by integrating
(5.54) after multiplication by wug :

A= {(L3 — A3)u1 + Laug, To)

(5.55) =ivy ( [oon (a)%(a)da) ( / wo(T)ZdT)

+ c(O)/@lJé(T)wO(T)dT + 1 Vg2 /72¢0(T)2 dr.

¢ is determined by integrating (5.54) in the 7 variable over R¥ after multiplication
by 1y . We get

(5.56) (L2 — X2)d2 = (L3 — As)ux, o)z + (Laur, Yo)r2 — Aai= fa,
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where our choice of A4 implies the orthogonality of f; to ¢¢ in Lﬁ# .
There exists consequently a unique ¢ solution of (5.56) that is orthogonal to ¢ .

We then proceed like in the fourth step, observing that u4 should satisfy, for some
N4 Z 17

Ny
(5.57) (Lo —Ao)ua = Z Ja,0(0) gae(7)
=1

with fi in S(R), g4 in S# and orthogonal to g in Li. The expression in the right
hand side is deduced from our previous computations of ug, us and uz and A4 .
We then look for a solution u4 in the form

Ny

(5.58) us(0,7) = ¢4(0) Yo(r) + ) ba,e(0) ae(7)
=1

which is obtained by solving for each ¢

(5.50) (cf - M =guas [ dasr)wn(r)dr =0,
with the suitable boundary (or transmission) condition at 0 and taking

Gae = far-

Although not needed, we make explicit the computation of the right hand side in
(5.57). Using our choice of Ay and ¢, we obtain

— (LQ — /\Q)UQ — (ﬁg — )\3)11,1 — £4’LLO + /\4U0

= (= (L2 = A2)P2)v0 — ((L3 — A3) 190 — Ladotho + Aadorbo

= g1,1(0)(T — ¢3)to(T) + ga,2(0) (070 — catho) + ga,3(0) (7% — c5)tbo,
with ¢4 = [(0-%0)(T)¢o(T)d7 and ¢5 = [ 724o(7)dT .

Moreover the g4 are even with respect with o.
Hence we can take Ny = 3 and

g11(7) := (7 — e3)o(7)
(5.60) ga,2(T) = (Or%0 — catdo),
943(1) = (7% — ¢5)3o (7).

We do not provide explicit formula for the corresponding )4 ¢ .

Summary at this stage. At the end of this step we have determined the )\j7£
for j < 4, the ¢¥, and ¢], for 3 < j < 4 and the ¢ (0) for j < 2. Like in [21], this
construction can be continued to any order. This achieves the proof of Theorem 1.

5.7. Term j = 5 and vanishing of the odd terms. We first focus on the
sixth step corresponding to the computation of A5. The sixth condition corresponds
to 7 = 5 and reads

(5.61) (Lo — Ao)us + (L2 — Xo)uz + (L3 — A3)uz + (L4 — M)u1 + Lsug = Asug -
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A5 is determined by integrating (5.61) after multiplication by @o. By our preceding
constructions and (4.22), we see that

o — up(o) ((52 — )\g)u;), + (53 — )\3)U2 + (£4 — )\4) u1 + Ls UO) (U)

is odd. This immediately leads to A\s = 0.

With some extra work consisting in examining the symmetry properties with
respect to o and using Sec. 4.2.2, we obtain

PROPOSITION 24. In the formal expansion, A; = 0 if j is odd.

5.8. Four-terms asymptotics. Gathering (4.20), (5.12) and (5.55), the four-
terms asymptotics of approximate eigenvalues reads for n,k =1,2,...

ApPPH = /\f’("’k) = ivgo + h3 | vor|F pu¥ exp <%sign v01)
(5.62) _
+ h(2k — 1)|v90]? exp <%signv20) + h%)\f’(n) +O(h3),

where 2 = —a,, ply = —al,, uf = —al¥(k) (defined by (5.24)), and ul = —at (k)
(defined by (5.32)), while )\f’(n) is explicitly computed in Appendix A (see (A.23),
(A.27), (A.31), and (A.39) for Dirichlet, Neumann, Robin, and Transmission cases),
and the involved coeflicients v, of the potential V (s, p) are defined in (4.12).

REMARK 25. In the above construction, if we take ¢;¢ =0 for j > 3, we get an
eigenpair (/\pr’#, uzpp’#) with

P =l b +had
such that
(5.63) (Ah# _ )\ZPR#)UZPP,# _ O(h%).

To get in (5.63) the remainder O(hg), one should continue the construction for two
more steps.

REMARK 26. Note that the leading terms in the eigenvalue expansion do not con-
tain the curvature which appears only in Ay (see Eq. (A.27)) and is thus of order
hs.

6. Other scalings in the Robin or transmission problems. The scaling
(4.30) of the transmission parameter K with h was appropriate to keep the Robin
or transmission condition for the rescaled problem. In biophysical applications, the
transmission condition reads

(6.1) Ddyuy = Doyu_ =K (ug —u_),

where D is the bulk diffusion coefficient, while the transmission parameter K repre-
sents the permeability of a membrane which is set by the membrane properties and
thus does not necessarily scale with h. Similarly, in the Robin boundary condition,

(6.2) —Doyu_ =Ku_,
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which accounts for partial reflections on the boundary, IC represents partial reactivity
or surface relaxivity which are set by properties of the boundary.

We consider two practically relevant situations for the BT-operator
—DA+ ig 1

e When D — 0 with fixed g, one can identify h? = D and V(z) = g1 so that
the rescaled transmission condition in (4.29) gives KCh~3 which tends to 400
as h — 0 if IC is fixed. In this limit, the transmission condition is formally
reduced to the continuity condition at the boundary: wy(c,0) = u_(0,0),
together with the flux continuity in the first relation of (4.29). In other
words, the interface between two subdomains is removed. The construction
of the previous section seems difficult to control in this asymptotics and the
mathematical proof of the heuristics should follow other ways.

e When g — +oo with fixed D, one can divide the BT-operator and (6.1)
by g and then identify h? = D/g and V(z) = x1. In this situation, the
rescaled transmission condition in (4.29) gives a parameter k = (K/D)h3
which tends to 0 as h — 0. In this limit, the transmission condition is
reduced to two Neumann boundary conditions on both sides of the interface:
O-u4(0,0) = 0ru_(0,0) =0.

We now discuss how the eigenvalue asymptotic expansion obtained for rescaled
K can be modified for the second situation. The constructions of the previous section
can be adapted and controlled with respect to x for x small enough. As observed
along the construction, one can start with (5.62) and then expand the factor ui (k)
into Taylor series that results in the quasi-mode in the Robin or Transmission case:

THEOREM 27. With the notation of Theorem 1 except that in (1.4) we assume

W

(6.3) K=Rh3,

we have for # € {R, T}, n,k=1,2,...

/\#7(71,7@) = ivgo — h% | v01|%a:1 exp <%sign ’Uo1>
T

wlo

1 .
s ()\ivv(n) _ |v$|3 exp <%Signvm)> +O(h3),

n

where )\iv’(") is explicitly given in (A.27), and the involved coefficients v, of the
potential V (s, p) are defined in (4.12).

Here, we have used that )\f’(") (k) = )\iv’(") for k = 0 (see Remark 33). The coefficient
in front of & involves (ui*)(0) that was computed explicitly by differentiating the
relation determining pj* (k) with respect to x. For the Robin case, we used (5.26) to
get

(6.5) (HEY(0) = (@ (0) = =~ exp (- Fsign o )

al, [vo1 |3

with aZ(0) = al,.
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Similarly, differentiating (5.33) with respect to x and using (5.32), we got (see Ap-
pendix A.3)

O) = —(aT) :—71 ex —i—wsinv
66) G0 = (@) 0) =~ oy e (s )

with a;(0) = a,. The effect of Robin or transmission condition appears only in the
coefficient of h3.

In order to control the construction with respect to x, it is enough to get an
expression of the kernel of the regularized resolvent for z = )\# . Let us treat the
Robin case and assume vy = —1.

As proven in [17], the kernel of the resolvent is given by

G @,y 0) =Gy (2,53 0) + G0 (@, y 5,0 for (2,y) € RE,

where

_ ) 2mAi(ewg)Al(e T wy)  (z <),
(6.7) Go (x,952) = {27TAi(e_io‘wm)A1(e “wy) (x> y),
and

_R i’ Ai' (e N\) — kAi(e™N)
> hoA) = — : : ,
(6.8) G @y A) = O T i) = Al
x Ai(e™"(iz + N)) Ai(e " (iy + N)) .

The kernel Gy (x,y; ) is holomorphic in A and independent of . Setting x = 0, one
retrieves the resolvent for the Neumann case. Its poles are determined as (complex-
valued) solutions of the equation

(6.9) Rk, N) i= ie 7" AL (e 7" N) — kAi(eT*N) =0
For k = 0, we recover the equation determining the poles of the Neumann problem:
Y\ i=ie AT (e7N) = 0
We look at the first pole and observe that
(6:10)  (OafM)(0,AFD(0)) = (9afT)(0, AV ) = (F¥) (WD) £0.
This evidently remains true for x small enough:
(6.11) (D0 ) (s, AT (1)) £ 0.

As done in [17], we can compute the distribution kernel of the projector associated
with

Xo(k) = AW (k).

We get

R )= 7TiemAi/( e\ (k) — kAi(e!®*X\g(k))
(6.12) e,y m) = =2 (OrFF)(%, Ao (k)
x Ai(e™" (iz + Ao(k))) Ai(e™"(iy + Xo(r))) -
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This kernel is regular with respect to .
The distribution kernel of the regularized resolvent at Ag(x) is obtained as

G (2, y: 1, Mo(w)) = Gy (2,95 K, Ao (k)
+ Jim (G @i, N) = (o = NI (@ yim))

It remains to compute the second term of the right hand side. Writing G, ’R(x, Y; Ky A)
in the form
®(z,y; 5, )

—R .
gl (‘Ivya’{?A) - A — )\O(K/) )

we observe that ®(x,y; Kk, \) is regular in x, A and we get
gR,Teg(x7 YK, )‘O(Ii)) = g& (JI, YK, )‘0(5)) + 6)\(1)("E7 Y R, )‘O(Ii)) .

It is regular in x and we recover for k = 0 the regularized resolvent of the Neumann
problem at A = A\V>(1),

With this regularity with respect to x, we can control all the constructions for
j=0,...,4 (and actually any j) and in particular solve (5.52) for x small and simi-
larly ( 59) with a complete expansion in powers of k at the origin.

REMARK 28. Similarly, one can treat the transmission case.

7. WKB construction. In this section, we propose an alternative analysis
based on the WKB method. This construction is restricted to quasimodes with k = 1
in (5.40) but it gives a quasimode state that is closer to the eigenfunction than that
obtained by the earlier perturbative approach. Here we follow the constructions of
[21, 22] developed for a Robin problem.

We start from

(7.1) Ap = —h2a729? + h*a™3(95a) s — h20% — h2a™ ' (9,a) 9, +i V (s, p).
Here, instead of what was done in (4.14), we only dilate in the p variable:

2
3

p=h3T.

In the (s, 7) coordinates, we get

(7.2)  Ap = —h2a; 202 + h2a;, > (Dettn) O — K302 — h3a; 1 (8,a) O + i Vin(s, T)

with
Vi(s,7) = (s, %7'),
an(s,7) =1—7h %c(s),
an(s,7) = —Th5¢ (s),
(73) dpa = —c(s),

in(s,7)2 =1—2rh3c(s) + 72h3c(s)?,
an(s,7) 2 =1+ 2rhic(s) + 372h3c ()% + O(h?).
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1046 We consider the Taylor expansion of Vj,:
1047 (7.4) Vi(s,7) ~ Zvj(s)h%ﬂ ,

JEN
1048 with

1 .~
1049 (7.5) vi(s) = ﬁ(agV)(s, 0).
1050  We look for a trial state in the form

0(s,h

1051 (7.6) w0 = d(h)by (s, T) exp <— (Sf; )> )
1052 with
1053 (7.7) 0(s,h) = 60o(s) + h36:1(s),
1054 and
1055 (7.8) bn(s,T) ~ ij (S,T)h% .

JjEN
1056 Here d(h) is a normalizing constant such that, when coming back to the initial co-
1057 ordinates, the L? norm of uh#’u’kb is 1. In the initial coordinates, we should actually
1058 consider uf’“’kb(s, h3 p) multiplied by a suitable cut-off function in the neighborhood

1059 of the point 20 of QL.
1060 This gives an operator acting on by

./Zl\hﬂ = exp <@) ./zl\h exp (—@)

= —a; 2(hds — 0'(s, h))? + ha;, > (0san) (hds — 0 (s, h))
— h392 — h3a, H(8,a) Or + i Vi(s, 7).

1061 (7.9)

1062  We rewrite this operator in the form
1063 (7.10) Apg ~ ZAjh% ;
j=0
1064  with
Ao := ivg(s) — 0(s)?,
A1 = 0,
1065 (7.11) Ay = —(972_ + (in (S) — 2C(8)6‘6(8)2)T — 296(8)6‘/1 (S),
Ag = 26((5)0s ,
Ay = ()0 + (iv2(s) — c(5)20y(s)*) 72 + 4c(s)20) ()0, (s)T — 0 ().

1066 We recall that v{(0) =0, v1(0) #0.
1067 We look for a quasimode in the form

068 (7.12) NERY g (0) + b3S pht
jJEN
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The construction should be local in the s-variable near 0 and global in the 7 variable
in R#.

Expanding (A\hﬁ — Ap)bp in powers of h3 and looking at the coefficient in front
of hY, we get

(AO — ’L"U()(O))bo =0
as a necessary condition. Hence we choose 6y as a solution of
(7.13) i(vo(s) —v0(0)) — 0)(s)> =0,

which is usually called the (first) eikonal equation.
We take the solution such that

(714) Re 90(8) > 0, 90(0) = 0,
and we note that
(7.15) 0,(0) =0.

With this choice of 6y, we note that

(7.16) Ay = =02 + i(v1(s) — 2¢(s)[vo(s) — vo(0)])T — 260 (s)61 (s),
with

(7.17) 01(s) :==v1(s) — 2¢(s)[vo(s) — vo(0)]

being real.

As operator on Li, with the corresponding boundary or transmission condition # €
{D, N, R, T}, it satisfies

A =AY

The coefficient in front of A3 vanishes and we continue with imposing the cancellation
of the coefficient in front of 3 which reads

(Ao — 1v9(0))b2 + Aaby = pobo ,
or, taking account of our choice of 6y,
(7.18) —200(5)0,(s)bo(5,7) + (=02 + 91 (s)T)bo (s, T) — pobo(s, 7) = 0.
Considering this equation at s = 0, we get as a necessary condition
(7.19) (=02 + iv1(0)7) b (0, 7) = po bo(0, 7).

If we impose a choice such that by (0, 7) is not identically 0, we get that uo should be

an eigenvalue of (the suitable realization of) —d2 + iv1(0)7, i.e. C#. We take some
simple eigenvalue po and define po(s) as the eigenvalue of the operator

(7.20) — 0% 4 ity (s)T
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such that 1o(0) = po. If fo(s,7) denotes the corresponding eigenfunction normalized
as

(7.21) /fo(S,T)sz =1,

we can look for

(7.22) bo(s, ) = co(s)fo(s, 7).

We now come back to (7.18), which reads, assuming ¢o(s) # 0,
(7.23) —204(5)01(s) + (po(s) — po) = 0.

This equation can be seen as the second eikonal equation. It has a unique regular
solution #; if we add the condition

(7.24) 01(0)=0.

The first transport equation is obtained when looking at the coefficient in front
of h which reads

(Ao — ivo(0))bs + (A2 — po)b1 + Asbo = purbo

?;.25)

(=02 + i1 (s) T — po(s))b1(s,7) + 200(5)Dsbo (s, 7) + 0y (5)bo (s, T) — p1bo(s,7) = 0.
We assume
(7.26) bi(s,7) = c1(s)fo(s, 7) + bi(s,7), with /fQ(S,T)Z;l(S, T)dT =0.

Multiplying it by fo(s,7) and integrating with respect to 7, we get

(7.27) 26(5) [ 0ubo(s,7) s, 7)dr + 8 (5)ea(s) = paca(s).
which leads to

(7.28) 260 (s)ch (s) + 04 (s)o(s) = paco(s)

where we have used in the last line (7.21). Taking s = 0 and assuming ¢y (0) # 0, one
gets

(7.20) 0(0) = i1,

which is also sufficient for solving (7.28). We have determined at this stage co(s)
assuming for normalization

(7'30) CO(O) =1.

Coming back to (7.25), we have to solve, for each s in a neighborhood of 0

(7.31) (—83 + 101 ()T — po(8))bi(s, 7) = g1 (s, 7).,
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with g1 (s, 7) satisfying [ fo(s,7)g1(s,7)dT = 0.

At this stage, the function ¢; is free.

We continue, one step more, in order to see if the proposed approach is general.

The second transport equation is obtained when looking at the coefficient in front of
h%, which reads

(Ao — iv9(0))ba + (A2 — po)b2 + (Ag — p1)br + Agbo = pi2bo
or
(=02 + ity ()T — po(s))ba(s, T) + 204(5)Dsbi (s, T) + 04 (s)b1 (5, T)
(7.32) — pubi(s,7) — pabo(s, ) + (iv2(s)7% — 61(5)*)bo (s, 7) — 37%¢(s)?0(s)?
+471¢(8)20) ()0 (5)bo + ¢(5)0rbo = 0.
We look for by in the form

(7.33) ba(s,7) = ca(s) fo(s, 7) + ba(s,7), with /fQ(S,T)ZA)l(S, T)dr =0.

We then proceed as before. If we write
g2(s,7) = —26((s)0sb1 (s, T)
— 00 (5)b1(s,7) + p1bi(s,7) + pabo(s, 7)(s) + (05(s)? — dvar?)bo(s, T)
— 37%¢(5)26)(5)%bo + 47¢(5)20)(5)07 (5)bo + ¢(5)Drbo

the orthogonality condition reads
0= /QQ(S,T)fo(S,T) dr
= —20p(s)c (s) + (11 — b (s))ea(s) — 296(8)/8551(S,T)fo(sm)df
+ (Mz + 61 (s)* — ivg /TQfo(s,T)QdT> co(s)
+ / (=37%c(5)%05(5)%bo + 47¢(5)%0(5)87 (5)bo fo(s, 7)dT)

—I—/c(s)afbo fo(s,7)dr.

Observing that
/(—37’2c(5)296(s)2b0(s, T)+ 4TC(S)296(S)9/1 (8)bo(s,7) fo(s,T) + ¢(8)d-bo fo(s,T))dT

~ «(0) ( [ o-nv0.m)fut0.7 dT) 0(0),

for s = 0, this determines ps as a necessary condition at s = 0 which reads

(7.34) o = ivg(O)/TQfo(O,T)QdT —07(0)? — c(O)/&TfO(O,T)fO(O,T) dr .

Note that in the case when # € {D, N, R}, we get

/37-f0(0,T)f0(0,T) dr — %f0(0,0)2 .
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We can then determine ¢; if we add the condition ¢;(0) = 0.
Since go is orthogonal to f, we can find b,, while ¢o remains free for the next step.

Hence, we have obtained the following theorem

THEOREM 29. Under the assumptions of Theorem 1, if ,u# s a simple eigenvalue
of the realization “#” of the complex Airy operator —j—; + iz in Li , and [i1 18 the
eigenvalue of the Davies operator —j—; +iy? on L*(R) with the smallest real part,

#,wkb  #,wkb 4. wkb
Ah » Up, ) h

then there exists an approximate pair ( with u in the domain of

A#, such that (7.6), (7.7) and (7.8) are satisfied and
0
135 o () AF = A = O0) in 3(@). e ~ 1.

where
2 LT, ~ 1 LT,
(7.36) )\# = u# | vo1]? exp (2581gn ’UOl) , A2 = fur|veo|? exp (2151gnvzo> ,

with vy :== v - VV (20).
REMARK 30. In this approach, we understand more directly why no odd power of
hs appears for \p. Note that p1; = Aoj.

8. Examples. In this Section, we illustrate the above general results for the
potential V(x) = z; and some simple domains.

8.1. Disk. Let Q = {(x1,72) € R? : |z| < Ry} be the disk of radius Ry. In this
case, Q) = {(Ro,0),(—Rp,0)}. The local parameterization around the point (Ry,0)
reads in polar coordinates (r,6) as p = Ry — r, s = Rpb, so that

(8.1) V(x) = z1(s, p) = (Ro — p) cos(s/Ro),
¢(0) = 1/Ryp, and we get

1

— = =0.
2Ry’ V11 = Vo2

(8.2) voo = Rg, wvo1 = —1, w20 =—
Using Eqgs. (A.27), (A.23), (A.31) or (A.39) for )\f’(n), one can write explicitly the
four-term expansion for four types of boundary condition:

e Dirichlet case,

—im/4
D,(n,k . 2 - e 5
(8.3) AD(R) — iRy — h3ane /3+h@k—1)¢ﬂ%—%0m3y
e Neumann case
—im/4 —mi/6
N,(n,k . 2 —im (& 4 € 5
84)  ANOB _ iRy hide “+n@k—1)2Ro+h3ﬂ%w +O(h3).

e Robin case

—im/4
)\Rq(”ok) = iRy — hg R —im/3 h(2k — 1 e
h iRo — h3ay (k)e™"™" + I ) AT
(8.5) . v
(3
+h3 +O(h).

5
2Ro(k2 — all(k)e—7i/3)
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When £ = 0, af}(0) = a/,, and one retrieves the expansion (8.4) for Neumann case.
e Transmission case,
—im/4 4 e*iﬂ'/ﬁ

8.6) ADR) — iRy — h3at(k)e /3 4 h(2k — 1) +hs +Oh3).
(86) Ap ) = iRy — hiaf (s)e 2k =) s o)

When s = 0, one has a;f (0) = a], and thus retrieves the expansion (8.4) for Neumann
case.

We recall that the indices n = 1,2,... and k = 1,2, ... enumerate eigenvalues of
the operators E# and E;# that were used in the asymptotic expansion. The approxi-
mate eigenvalue with the smallest real part corresponds to n =k = 1.

The three-terms version of the Neumann expansion (8.4) was first derived by de
Swiet and Sen [35] (note that we consider the eigenvalues of the operator —h2?A + iz
while de Swiet and Sen looked at the complex conjugate operator).

REMARK 31. At the other point (—Ry,0), the parameterization is simply

V(x) = —(Ro — p) cos(s/Ro)

that alters the signs of the all involved coefficients vji,. As a consequence, the asymp-

totics is obtained as the complex conjugate of )\#’(n’k).

In the WKB approach, one needs to compute the functions 6y(s) and 6;(s) that
determine the asymptotic decay of the quasimode state in the tangential direction.
We only consider the Neumann boundary condition while the computation for other
cases is similar. From (7.5) and (7.17), we have for the potential in (8.1):

vo(s) = Rocos(s/Ry), v1(s) = — cos(s/Ro), 01(8) =2 — 3cos(s/Ryp).

In what follows, we consider s > 0 though the results will be the same for s < 0 due
to the symmetry. From Eqgs. (7.13, 7.14), we first obtain

(8.7) 6o(s) = / V/—iRo(1 — cos(s'/Ry)) ds' = e~ ™/4 (2R0)% (1 —cos(s/(2Ro))) -
0

For Neumann boundary condition, po = —aje™™"/3 (here v1(0) = —1) and the eigen-
value of the operator in (7.20) reads

po(s) = —ay |2 — 3COS(S/RQ)|% exp (%isign (2- 3COS(S/R0))) .

Since 91 (s) was assumed to be nonzero, we restrict the analysis to |s/Rg| < arccos(2/3)
for which 2 — 3 cosz does not vanish (and remains negative) so that

(8.8) po(s) = —a} (3 cos(s/Ro) — 2)§ exp (—%) :

From (7.23), one gets then

b —al e T3 [(3 cos(s’/Ro) — 2)3 — 1}
61(s) :/ - ds'
) 2e~m/4RZ /1 — cos(s'/Ro)
(8.9)
1 1 e (3cosz —2)F —1
— T4t 77ri/12R§ — — dr .
2|a1|e 0 / V1 —cosx .
0
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8.2. Annulus. For an annulus Q = {(z1,22) € R? : R; < |z| < Ry} between
two circles of radii Ry and Rg, there are four points in ,: (+R;1,0) and (£R,0).
In order to determine the candidate for an eigenvalue with the smallest real part (in
short the “first eigenvalue” ), one needs to compare the asymptotics of the quasimodes
associated with these points and identify those with the smallest real part. Of course,
this analysis depends on the imposed boundary conditions. We consider four combi-
nations: NN (Neumann condition on both circles), ND (Neumann condition on the
inner circle and Dirichlet on the outer circle), DN (Dirichlet condition on the inner
circle and Neumann on the outer circle), and DD (Dirichlet condition on both circles).
Since the leading contribution is proportional |ai| &~ 2.3381 for the Dirichlet case and
to |a}| =~ 1.0188 for the Neumann case, the asymptotics for the circle with Neumann
boundary condition always contributes to the first eigenvalue. In turn, when the same
boundary condition is imposed on the two circles, the first eigenvalue expansion cor-
responds to the outer circle of larger radius because the real part of the next-order
term (of order h) is always positive and scales as 1/y/Ry. As a consequence, the first
eigenvalue asymptotics is given by (8.4) with Ry = Ry for cases NN and DN, and
by (8.3) with Rp = Rs for the case DD. Only in the case ND, the first eigenvalue
asymptotics is determined by the points (+R;,0) on the inner circle. In this case, the
potential reads in local coordinates around (Ry,0) as V (s, p) = (R1 + p) cos(s/R1) so
that the only change with respect to the above results is vg; = 1 (instead of vg; = —1)
and ¢(0) = —1/R; (instead of ¢(0) = 1/R1) so that Eq. (8.4) becomes

) —im/4 eﬂ'i/G
8.10) AND:(R) — iR 4 BE | €73 4 n(2k — 1)E ni
( ) app iRy + h3ayle +h( ) 2R e 2|ay, | Ry *

REMARK 32. When the outer radius Ry of an annulus goes to infinity, the above
problem should progressively’ become an exterior problem in the complement of a
disk: Q@ = {(z1,72) € R? : |z| > R1}. Due to the local character of the asymptotic
analysis, the expansion (8.10) is independent of the outer radius Ro and holds even
for the unbounded case. This argument suggests the non-emptiness of the spectrum
for unbounded domains. This conjecture is confirmed by numerical results in Sec. 9.

8.3. Domain with transmission condition. Finally, we consider the union
of two subdomains, the disk Q_ = {(z1,22) € R? : |z| < Ry} and the annulus Q; =
{(z1,22) € R? : Ry < |z| < Ry} separated by a circle on which the transmission
boundary condition is imposed. A Dirichlet, Neumann or Robin boundary condition
can be imposed at the outer boundary (circle of radius Ry). As for the annulus, there
are four points in Q) : (£Ry,0) and (£R3,0). Here we focus only on the asymptotic
behavior at points (+R;,0) for the transmission boundary condition (the behavior
at the points (£Rg,0) was described in Sec. 8.1). We consider the case described in
Theorem 27 when the transmission parameter x scales with h according to (6.3). As
discussed in Sec. 6, this situation is relevant for diffusion MRI applications. The case
with fixed x can be treated similarly.

As stated in Theorem 27, the asymptotic expansion is obtained by starting from
the “basic” expansion (with k£ = 0) of either of two problems with Neumann boundary
condition corresponding to the two subdomains (2_ and €.

If we start from the expansion for the disk, one has V(z) = (Ry — p) cos(s/Ry), and

5We do not have a mathematical proof, the statement remains conjectural.
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the asymptotic expansion (6.4) at the point (R, 0) reads

) —mi/4
NPT = i Ry — hiale ™ 4+ h(2k - 1)
2R,
(8.11) i ,
e ™ 5
— 3 f——— ) 103,
s (” 2R1)+ (h*)

In turn, if we start from the expansion for the inner boundary of the annulus, one has
V(z) = (Ry1 + p) cos(s/Ry), and the asymptotic expansion (6.4) at the point (Ry,0)
reads

‘ —mi/4
)‘h#’(nﬁk) =iR — h%a;ewl/s +h (2k - 1)
2R,
(8.12) i/6 1
4™ A 5

These two expressions are different, in particular, their imaginary parts differ already
in the order h3. In turn, the real parts differ at the term of order h5 that contains
two contributions: from the curvature of the boundary, and from the transmission.
While the curvature changes its sign on both sides of the boundary, the contribution
due to the transmission remains the same. As a consequence, the real part of (8.12) is
larger than the real part of (8.11). One can thus expect the existence of two distinct
eigenstates living on both sides of the boundary, as confirmed numerically in the next
section. For k = 1, the eigenstate associated with the eigenvalue with the smallest
real part is mainly localized in the disk side of the boundary.

9. Numerical results. This section presents some numerical results to illustrate
our analysis. The claims of this section are supported by numerical evidence but
should not be considered as rigorous statements, in contrast to previous sections.

The numerical analysis will be limited to bounded domains, for which the BT-
operator has compact resolvent and hence discrete spectrum (see Sec. 2). In order
to compute numerically its eigenvalues and eigenfunctions, one needs to approximate
the BT-operator in a matrix form. For this purpose, one can either (i) discretize the
domain by a square lattice and replace the Laplace operator by finite differences (finite
difference method); (ii) discretize the domain by a mesh and use a weak formulation of
the eigenvalue problem (finite elements method); or (iii) project the BT-operator onto
an appropriate complete basis of functions. We choose the last option and project the
BT-operator onto the Laplacian eigenfunctions which for rotation-invariant domains
(such as disk, annuli, circular layers) are known explicitly [15]. In this basis, the
Laplace operator —A is represented by a diagonal matrix A. Moreover, the matrix
representation of the potential V(x) = x1 was computed analytically, i.e., the elements
of the corresponding matrix B are known explicitly [12, 13, 14]. As a consequence,
the computation is reduced to finding the Laplacian eigenvalues for these rotation-
invariant domains, constructing the matrices A and B through explicit formulas, and
then diagonalizing numerically the truncated matrix h? A+iB which is an approximate
representation of the BT-operator —h2A + iz;. This numerical procedure yields the

eigenvalues )\Elm) of the truncated matrix h2A + i3, while the associated eigenvectors
allow one to construct the eigenfunctions uglm). All eigenvalues are ordered according

to their increasing real parts:

(9.1) Re{A\("} <Re{AP} < ...
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x 2@ x Q
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8 T " = _1» Tee x o
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=< M 4= - 2@ R
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o é 14p x A8 o
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- - -asympt-3
0 . . . . ~16 ! . . .
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h1/3 hll3

F1G. 1. The rescaled eigenvalues )\21) and )\22) of the BT-operator in the unit disk with Neumann
boundary condition. Symbols (squares and crosses) show the numerical results of the diagonalization

of the matriz h?A+iB (truncated to the size 2803 x 2803), solid line presents the four-terms asymp-

N, (1,1)

totics (8.4) for X, while the dashed line shows its three-terms versions (without hs term).

Note that, for a bounded domain, the potential iz is a bounded perturbation of
the unbounded Laplace operator —h2A, if h # 0. To preserve this property after
truncation of the matrix h?A + i3, the truncation size should be chosen such that
R2pM) > 1, where p(*) is the largest element of the matrix A. Due to the Weyl’s
law, M ~ %M(M) so that the truncation size M should satisfy:
1€

h2M > -

(9.2) i

where |Q| is the surface area of Q. For larger domains, either larger truncation sizes
are needed (that can be computationally limiting), or h should be limited to larger
values. In practice, we use M around 3000 to access h up to 0.01. We have checked
that the truncation size does not affect the computed eigenvalues.

9.1. Eigenvalues. For large h, one can divide the BT operator by h%, —A +
iz1/h?, to get a small bounded perturbation of the Laplace operator. In particular, the
eigenvalues of the operator —h?A + iz, behave asymptotically as k2 (™), where p(™)
are the eigenvalues of the Laplace. In this Section, we focus on the more complicated
semi-classical limit A — 0 which is the main topic of the paper.

9.1.1. Disk. In order to check the accuracy of the asymptotic expansion of eigen-
values, we first consider the BT-operator in the unit disk: Q = {(z1,22) € R? : |z]| <

Ry}, with Ry = 1. We will present rescaled eigenvalues, (/\Elm) —iR)/h3, for which

the constant imaginary offset ¢R is subtracted and the difference /\Elm) — R is divided
by h3 in order to emphasize the asymptotic behavior. Note also that, according to
Remark 31, the asymptotic expansions for the approximate eigenvalues correspond-
ing to the points (—R,0) and (R,0) are the complex conjugates to each other. In
order to facilitate their comparison and check this property for numerically computed
eigenvalues, we will plot the absolute value of the imaginary part.

Figure 1 shows the first two eigenvalues )\S) and /\22). For h3 < 0.8, these eigen-
values turn out to be the complex conjugate to each other, as expected from their
asymptotic expansions (the difference )\g) — 5\22) being negligible within numerical
precision). In turn, the eigenvalues )\21) and )\22) become real and split for hs = 0.8.
The splitting is expected because these eigenvalues behave differently in the large
h limit. This numerical observation suggests the existence of branch points in the
spectrum (similar features were earlier reported for the complex Airy operator on the
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F1G. 2. The rescaled eigenvalues A§L3) and A§L4) of the BT-operator in the unit disk with Neumann
boundary condition. Symbols (squares and crosses) show the numerical results of the diagonalization
of the matriz h?A+iB (truncated to the size 2803 x 2803), solid line presents the four-terms asymp-

) N,(1,3 . ) . . ) 4
totics (8.4) for X, "(13) while the dashed line shows its three-terms versions (without h3 term).
25 T T T T -15 T
) 2 ) =
h x ° - h .
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T R

F1G. 3. The rescaled eigenvalues )\511) and )\](12) of the BT-operator in the unit disk with Dirichlet
boundary condition. Symbols (squares and crosses) show the numerical results of the diagonalization

of the matriz h2A + iB (truncated to the size 2731 x 2731), while solid line shows the four-terms

asymptotic expansion (8.3) for )\hD’(l’l)‘

one-dimensional interval with Neumann boundary condition, see [34]). For compari-
son, the four-terms asymptotics (8.4) for )\hN’(l’l) and its three-terms version (without
term hg) are shown by solid and dashed lines, respectively. These expansions start
to be applicable for hs < 0.7, while their accuracy increases as h decreases.

Figure 2 shows the next eigenvalues )\23) and )\24), the four-terms asymptotics

(8.4) for )\hN’(l’g) and its three-terms version. These eigenvalues are the complex con-
jugates to each other for h3 < 0.57 while become real and split for larger h. One
can see that the four-terms asymptotics is less accurate for these eigenvalues than for
those from Fig. 1. A small deviation can probably be attributed to higher-order terms
(it is worth noting that contributions from the hs and h5 terms can be comparable
for the considered values of h).

For comparison, Figure 3 shows the first rescaled eigenvalues )\21) and )\22) of the
BT-operator in the unit disk with Dirichlet boundary condition. As earlier for the
Neumann case, these eigenvalues are complex conjugate to each other for hs < 0.6
while become real and split for larger h. One can see that the asymptotics (8.3) for
)\f’(l’l) captures the behavior for the imaginary part very accurately. In turn, the
behavior of the real part is less accurate, probably due to higher-order corrections.
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F1G. 4. The rescaled eigenvalues )\21) and )\512) of the BT-operator in the unit disk with Robin

boundary condition (with & =1 and kK = /%h%) Symbols (squares and crosses) show the numerical

results of the diagonalization of the matriz h2A +iB (truncated to the size 2803 x 2803), while solid
and dashed lines show the four-terms asymptotic expansion (8.3) for )\g’(l’l) and its three-term

. . 4
version (without term h3 ).

Finally, Figure 4 illustrates the case with Robin boundary condition, with & =1
while k scaling as #h3. The four-term expansion (6.4) accurately captures their
asymptotic behavior.

9.1.2. Annulus. Due to its local character, the quasimodes construction is
expected to be applicable to the exterior problem, i.e., in the complement of a
disk of radius Ry, Q@ = {(z1,22) € R*> : |z| > R;}. Since we cannot numer-
ically solve this problem for unbounded domains, we consider a circular annulus
Q={xeR® : Ry < |z|] < Ry} with a fixed inner radius R; = 1 and then in-
crease the outer radius Ry. In the limit h — 0, the eigenfunctions are expected to
be localized around the four points (£R1,0), (R2,0) from the set 2, , with corre-
sponding asymptotic expansions for eigenvalues.

Figure 5 illustrates the discussion in Sec. 8.2 about different asymptotics of the
first eigenvalue )\S) for four combinations of Neumann/Dirichlet boundary conditions
on inner and outer circles. In particular, one observes the same asymptotic expansion
(8.4) with R = Ry for NN and DN cases because the first eigenvalue is determined
by the local behavior near the point (R2,0) which is independent of the boundary
condition on the inner circle as h — 0. The expansion (8.3) with R = Rs for the
Dirichlet condition appears only for the case DD. Finally, the case ND is described by
the local behavior at the inner circle by the expansion (8.10) with R = R;. In what
follows, we focus on this case in order to illustrate that the local behavior at the inner
boundary is not affected by the position of the outer circle as h — 0.

For the case ND, Fig. 6 shows the first rescaled eigenvalue )\S) that corresponds
to an eigenfunction which, for small h, is localized near the inner circle. As a con-
sequence, the asymptotic behavior of )\g) as h — 0 is expected to be independent
of the outer boundary. This is indeed confirmed because the numerical results for
three annuli with Ry = 1.5, Ry = 2 and R3 = 3 are indistinguishable for h5 smaller
than 0.5. For comparison, we also plot the four-terms asymptotics (8.10) that we
derived for the exterior of the disk of radius R; = 1. One can see that the inclusion
of the term h3 improves the quality of the expansion (as compared to its reduced
three-terms version without h3 term).
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F1G. 5. The rescaled eigenvalue )\;ll) of the BT-operator in the annulus with four combinations of
Neumann/Dirichlet boundary conditions at the inner and outer circles of radis R1 =1 and Ry =2
NN (squares), ND (triangles), DN (circles), and DD (diamonds), obtained by the diagonalization
of the truncated matriz h2A + iB. The solid line presents the expansion (8.3) with R = Ry for
Dirichlet condition, the dashed line shows the expansion (8.4) with R = Ry for Neumann condition,
and the dash-dotted line shows the expansion (8.10) with R = Ry for Neumann condition.
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Fic. 6. The rescaled eigenvalue )\;ll) of the BT-operator in the annulus with Neumann boundary
condition at the inner circle of radius R1 = 1 and Dirichlet boundary condition at the outer circle
of radius Ra, with Ry = 1.5 (circles), Ra = 2 (squares) and Rz = 3 (triangles), obtained by the
diagonalization of the matriz h2A + iB (truncated to sizes 1531 x 1531 for Ry = 1.5, 2334 x 2334
for Ra =2, and 2391 x 2391 for Ro = 3). Solid line presents the four-terms expansion (8.10) for

4
)\hND'(l’l), while dashed line shows its reduced three-terms version (without h3 term).

9.1.3. Domain with transmission condition. Finally, we consider the BT-
operator in the union of two subdomains, the disk Q_ = {(z1,22) € R? : |z| < R}
and the annulus Qy = {(z1,72) € R? : R; < |z| < Ra} separated by the circle of
radius R; on which the transmission boundary condition is imposed. We impose the
Dirichlet boundary condition at the outer boundary of the domain (at the circle of
radius Rz) to ensure that first eigenfunctions are localized near points (+R;,0) with
transmission boundary condition.

Figure 7 shows the rescaled eigenvalues )\21) and )\22) of the BT-operator with a

fixed # = 1 and & scaling as #h3. As in earlier examples, the first two eigenvalues are
complex conjugate to each other for small h but they split at larger h. One can see

that the asymptotic relation (8.11) with n = k = 1 accurately describes the behavior
of the these eigenvalues for small h.

Figure 8 shows the first rescaled eigenvalue )\21) for several values of & (with &

scaling as /%h%). In the special case & = 0, the two subdomains are separated from
each other by Neumann boundary condition, and the spectrum of the BT operator
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Fi1G. 7. The rescaled eigenvalues )\21) and )\512) of the BT-operator in the union of the disk
and annulus with transmission condition at the inner boundary of radius R1 =1 (with & = 1) and
Dirichlet condition at the outer boundary of radius Ry = 2. Symbols (squares and crosses) show the
numerical results of the diagonalization of the matriz h>A +iBB (truncated to the size 3197 x 3197),

solid line presents the four-terms expansion (8.11) for )\Z'(l’l), while dashed line shows its reduced

4
three-terms version (without h3 term).
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F1G. 8. The rescaled eigenvalue )\](11) of the BT-operator in the union of the disk and annulus
with transmission condition at the inner boundary of radius R1 = 1 (with several values of &: 0,
0.5, 1, 2) and Dirichlet condition at the outer boundary of radius Ry = 2. Symbols (circles, squares,
triangles) show the numerical results of the diagonalization of the truncated matriz h?A + B3, solid
lines present the four-terms expansion (8.11) for )\5’(1'1)‘

is obtained from its spectra for each subdomain. As a consequence, we plot in this
case the first rescaled eigenvalue for the BT operator in the unit disk with Neumann
boundary condition (as in Fig. 1). One can see that the expansion (8.11) accurately
captures the asymptotic behavior. We recall that the transmission parameter & ap-
pears only in the fourth term of order h3. Note also that this term vanishes in the
case £ = 1/2 as two contributions in (8.11) compensate each other.

9.2. Eigenfunctions. For the annulus with Neumann boundary condition at
the inner circle of radius Ry = 1 and Dirichlet boundary condition at the outer circle
of radius Ry = 2, Fig. 9(top) shows two eigenfunctions of the BT operator with
h = 0.1 (corresponding to h# a 0.4642). One can already recognize the localization

of the first eigenfunction ug) at the inner boundary, while the eigenfunction uglg) tends
to localize near the outer boundary. Their pairs uf) and ugf) (not shown) exhibit

the same behavior near the opposite points (—R;1,0) and (—Rs, 0), respectively. Since
h = 0.1 is not small enough, the localization becomes less and less marked for other
eigenfunctions which progressively spread over the whole annulus (not shown). For

comparison, we also plot in Fig. 9(bottom) the eigenfunctions uzl) and ugg) for a

thicker annulus of outer radius R2 = 3. One can see that these eigenfunctions look
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2 2 -2

2 2 2

F1G. 9. Real (left) and imaginary (right) parts of the eigenfunctions ugll) (top) and uf') (bottom,)
at h = 0.1 for the annulus with Neumann boundary condition at the inner circle of radius R1 = 1
and Dirichlet boundary condition at the outer circle of radius Ra = 2 (four plots above horizontal
line) or Ro = 3 (four plots below horizontal line). Numerical computation is based on the truncated
matriz representation of sizes 2334 x 2334 and 2391 x 2391, respectively.
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very similar to that of the annulus with Ry = 2.

For smaller h = 0.01 (corresponding to hs ~ 0.2154), the localization of eigen-
functions is much more pronounced. Figure 10 shows four eigenfunctions for the
annulus of radii Ry = 1 (Neumann condition) and Re = 2 (Dirichlet condition). One

can see that the eigenfunctions ug), uf’), and ug) are localized near the inner circle

while uf) is localized near the outer circle. When the outer circle is moved away,
the former eigenfunctions remain almost unchanged, suggesting that they would exist
even in the limiting domain with Ry = o0, i.e., in the complement of the unit disk.
In turn, the eigenfunctions that are localized near the outer boundary (such as ugf))
will be eliminated. In spite of this numerical evidence, the existence of eigenfunctions
of the BT operator for unbounded domains remains conjectural.

Figure 11 shows the eigenfunctions ug) and ugf) at h = 0.01 for the union of the
disk and annulus with transmission condition at the inner boundary of radius R; = 1
(with # =1 and k = f%h%) and Dirichlet condition at the outer boundary of radius
Ry = 2. Both eigenfunctions are localized near the inner boundary. Moreover, a
careful inspection of this figure shows that ug) is mainly supported by the disk and
vanishes rapidly on the other side of the inner circle (i.e., in the annulus side), while
ugf) exhibits the opposite (i.e., it is localized in the annulus). This is a new feature of
localization as compared to the one-dimensional case studied in [16, 17] because the
curvature has the opposite signs on two sides of the boundary.

Finally, we check the accuracy of the WKB approximation of the first eigenfunc-

tion ug) for the unit disk with Neumann boundary condition. To make the illustration

easier, we plot in Figure 12 the absolute value of ug) at h = 0.01, normalized by its
maximum, along the boundary (on the circle of radius Ry = 1), near the localization
point s = 0. One can see that the WKB approximation, exp(—(0o(s) + h361(s))/h),
obtained with y(s) and 6 (s) given by (8.7) and (8.9), accurately captures the be-
havior over the range of s between —0.3 and 0.3. Note that its reduced version,
exp(—60o(s)/h), is also accurate.

10. Application to diffusion NMR. In this section, we briefly discuss (with
no pretention to mathematical rigor) a possible application of the proposed spectral
analysis of the Bloch-Torrey operator to diffusion NMR [12]. In this field, the BT-
operator governs the evolution of the transverse nuclear magnetization which satisfies
the Bloch-Torrey equation

(10.1) %m(x,t) = [DA —iygz1|m(z,t),

subject to the uniform initial condition m(xz,0) = 1. Here D is the diffusion coefficient,
g the magnetic field gradient, v the gyromagnetic ratio, and the gradient is considered
to be constant in time. For a bounded domain, the long-time asymptotic behavior of
the solution is determined by the first eigenvalue A(*) of the BT-operator (with the
smallest real part):

(10.2) m(z,t) ~ CulM () exp(—wt) (t = o0),
where
(10.3) w=9g)",  h*=D/(yg).
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Fi1G. 10. Real (left) and imaginary (right) parts of the eigenfunctions ugll) (top), uf’), ugls) and

ug) (bottom) at h = 0.01 for the annulus with Neumann boundary condition on the inner circle of
radius R1 = 1 and Dirichlet boundary condition on the outer circle of radius Ra = 2 (numerical
computation based on the truncated matriz representation of size 2334 x 2334).
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Fic. 11. Real (left) and imaginary (right) parts of the eigenfunctions ugl) (top) and uf') (bot-

tom) at h = 0.01 for the union of the disk and annulus with a transmission boundary condition (with
2

% =1 and k = kh3 ) at the inner circle of radius R1 = 1 and Dirichlet boundary condition at the

outer circle of radius R2 = 2 (numerical computation based on the truncated matriz representation

of size 3197 x 3197).
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Fi1G. 12. The absolute value of the first eigenfunction u;ll)(r7 s) (solid line) at h = 0.01 and
r = 1 for the unit disk with Neumann boundary condition, near the boundary point s = 0. For

. 1 . . . . .
convenience, ug )(7", s) is normalized by its mazimum at s = 0. For comparison, the absolute value

of the WKB approzimation, exp(—(0o(s) + h%01 (s))/h) and of its reduced version, exp(—6o(s)/h),
are shown by dashed and dash-dotted lines, respectively.

1453 Admitting® that the formal asymptotic expansion (5.42) with n = k = 1 is the
1454  asymptotics of the eigenvalue AS) with the smallest real part, we obtain in the limit

6This has not be proven mathematically.
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of large g

. 1 2 2 I,
w = iyguoo + D3 (79)§/i§’&|?101|§ exp (§SIgH Um)
(10.4) )
1 1 1 o, 2 1 1
+ D> (v9)? |v20|? exp <Z$gnv20) + D (vg) NP + 0(g8),

where the coeflicients v, are defined by the local parameterization V(z) = x1 of the
boundary near a point from . The real part of w determines the decay rate of the
transverse magnetization and the related macroscopic signal.

The leading term of order (vg)% was predicted for impermeable one-dimensional
domains (with Neumann boundary condition) by Stoller et al. [34] and experimen-
tally confirmed by Hiirlimann et al. [27]. The next-order correction was obtained by
de Swiet and Sen [35] for an impermeable disk. In the present paper, we general-
ized these results to arbitrary planar domains with smooth boundary and to various
boundary conditions (Neumann, Dirichlet, Robin, transmission) and provided a gen-
eral technique for getting higher-order corrections (in particular, we derived the last
term). Moreover, we argued (without rigorous proof) that these asymptotic relations
should also hold for unbounded domains.

Appendix A. Explicit computation of \;.

A.1. Evaluation of the integral with ¢;. In order to compute A4 from (5.55),
we first evaluate the integral

(A1) 1= [ 06:(0)60(0)do
We recall that ¢4 (o) satisfies

(A.2) (L2 = A2) 1 = c110 ¢,
with

(A3) C11 = —1 V11 /7'1/)8%(7')2d7'.

As a solution of (A.2), we search for some eigenpair {Aa, ¢o} = {)\gk), ¢((Jk)}, with
some fixed & > 1, where /\ék) and (bék) are the eigenvalues and eigenfunctions of

the quantum harmonic oscillator given explicitly in (5.40). Since ¢((Jk) are expressed
through the Hermite polynomials Hy, one can use their recurrence relation, Hy1(z) =
20 Hy(z) — 2kHp—1(x), to express

(k+1) — (k1)
(A4) mg@:@% tvhold

(27)?
It is therefore natural to search for the solution of (A.2) in the form
(A5) 61(0) = Cr 5™ V(o) + Cr 6" V(o).

The coefficients C and Cy are determined by substituting this expression into (A.2):
(£2 _ )\2) ¢1 _ Ol (Agk-i-l) _ /\ék))(bék-l-l) + CQ()\gk_l) _ )\gk)) (()k—l)

(A.6) . VEF 4 V=1V
11 1
(27)>

)
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1487 from which Cy = ¢11vk/(27)2 and Cy = —c11vVk — 1/(27)2, where we used )\gk) =
1485 y(2k — 1), with v = |vgo|2 exp (Ztsignvag). We get then

(k k—
(A7) o) = i (VR ) - V=T ).
1490  Substituting this expression into (A.1), one gets
C11 V11

1491 (A8 = =

(A8) n= = [rufrrar,
1492 independently of n. We conclude from (5.55) that

v2
1193 (A.9) A= — vl /8 [ (7)) + v
4’020

1194 where
1495 (A.10) I¥ = /7’1##(7’)2 dr, ¥ = /7'2 i (1) dr .
1496 A.2. Evaluation of the integrals with @[15# . In order to compute these inte-
1497 grals, we consider the function ¥(z) = Ai(«a + Sz) that satisfies the Airy equation
1105 (A.11) (=02 + Bz + f2a)¥(z) = 0.

1499 Multiplying this equation by ¥'(x), ¥(z), 2¥'(z), 2¥(x), or 2V¥’(z) and integrating
1500 from O to infinity, one gets the following five relations:

1.
1501 - / U (2)V' (z) dz + /(ﬁ?’x + 82a) ¥ (2)V' (z) dx = 0,
0 0
1502 which leads to the determination of fo U(x)?dz by the formula
1503 (A.12) U (0)* — g2a¥(0)? — B° /\1/
0
2.
1504 —/\I/”(:E)\I/(ZE) x+/(63x+ﬁ2 YO (z)?dz = 0.
0 0
1505 Here we remark that
1506 /\IJ”(:E)\IJ(:E) dx = U'(0)¥(0) — /\Il’(x)2 dx
0 0
1507 and get
1508 (A.13) —\1/’(0)\1/(0)+/\1ﬂ(x) x+/(ﬂ3x+ﬂ2 )¥(z)*dz =0
0 0
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)

o1

3.
/\If”( v'( x+/63x+ﬁ2 VU(x)Wdz=0 =
0 0
1 o0 1 o0
(A.14) - (2832 + B%a)¥(z)%dz = 0.
el
4.
/\IJ”( Yz (x) x+/(ﬁ3x+ﬁ2 Yo (z)?de =0 =
0 0
/\I/'(x)(x‘ll( ) dx + /(63x+[32a)x‘11(x)2d33 =0 =
0 0
(A.15) "(z)2dz — =U(0)? + [ (B%z + B2a)z¥(z)?dr = 0.
[reiereeguor [
5.
—/‘IJ"(:E)332‘IJ/( ) x+/([33x+ﬂ2 V22U (2)W'de =0 =
0 0
(A.16) dr + [ (B°z + B2a)2*¥(z)V'dx = 0.
[weres
So we get a linear system of five equations satisfied by [ ¥?dz, [2V2dz, [2?V%dzx,
J ¥ (z)*dz and [ 2¥’(z)?dz. Solving this system, we obtain
[ ¥ @rds = 5w )2 ~ s w(o)?
0
) _ I ~ ol
Ji 2 1 / 2 i 2
/;E\IJ (x)dx = 35 (—\IJ (0)¥(0) — 2ap /\IJ (x)dx)
0 0
(A18) _ Ai(a)Ai' (o) + 204[2;5 a)]? — 2a4[Ai(w)) 7
i 292 1 2 2 Ji 2
/x U (z)dx = ﬁ([\IJ(O)] —4ap /CE N4 (x)dx)
0 0
2 (A19) _ [Ai()]? + %oz(Ai(a)Ai/(Oz) + 2a[Ai’ ()]? — 202 [Ai(oz)]z)
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1528  where we assume that the parameter 3 is such that |arg(8)| < 7/3 so that ¥(+o0) =
1529 W'(+00) = 0 (otherwise the integrals could diverge). These relations allow one to
1530 compute the normalization constant ¢’ of quasimodes and the contribution )\f to the
1531 eigenvalue. We consider successively Dirichlet, Neumann, Robin, and Transmission
1532 cases.

1533 Dirichlet case. The function {’(r) from (5.19) corresponds to & = a,, and
1531 B = |vo1|5 exp (Zsign vor) so that Ai(a) = 0. The normalization constant cZ in

1535 (5.18) is then
1536 (A.20) ()=

537 Using (A.17), one gets

&S] %,
1538 (A.21) P = /T[ P (m)Pdr = —i,
36
0
1539 (A.22) 12 = [ 2pp ) = 2
53 . o = [ Yy (T 7—1562.
0
1540 Using (5.42) and (A.8), we obtain
262 ¢(0) 8a2
1541 )\Dv(") — U110y _ L D 0 2 - n
4 ngzoﬁ2 5 [¥g (0)]° + dvoz 1532
;2 1 2 8
1542 (A.23) = 5 m’? - <— m4——002),
| vo1|3 exp (Lsign vo1) \9 v20 15
1543 where we used 9§’ (0) = 0.
1544 Neumann case. The function 1’ () from (5.18) corresponds to o = a/, and
1545 B = |vo1| exp (“Zsign vo1) so that Ai’(a) = 0. The normalization constant ¢} in

1546 (5.18) is then

- M-z _ AT —afAi(@)? _ aj[Ai(ay)]?
1547 (A24) ( n) = 3 = 3 .

1548 Using (A.17), one gets

oo 2 ,
15490 (A.25) N = /T[ N(D)Pdr = — Un ,
36
0
T 8(al)® — 3
1550 (A.26 IV = [ 2@l (1)]?d n
- (A26) 2 O/T[om]f o
1551 from which
(A.27)
1552 AN : (— (a7,)* i + 1 c(0) vor + Mvoz)
' * | vo1]3 exp (Zsign vo1) 18 weo = 2ay, 15a/,
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Robin case. The function () from (5.28) corresponds to 8 = |vg |56 and
o = af(k) so that Ai'(e) = & Ai(a), with # = k/(6 |ve1|3) and § = exp (2 sign vo1) -
The normalization constant ¢ in (5.28) is then
—o_ [Aiag ()P . K2+ M\
(a28) (el = SR [~ ali(] = il (e

where we used (5.23) for A\E.
Using (A.17), one gets

R [ e B 2R%ali(n) — 20alt(s)]?
Ii" = O/T[% (T dr = 36[A2 — ak (k)]
2AE K
(4.29) - 31«;21 EEIGCESY R
7 1ol (k)[R R2al (k) — 2[al(k)]?
121%:/7_2[ (}J%(T)]QdT: Lt 5 )Lﬁ;;—gé(fi)] 2l () ]
0
(A.30) _ 1 8P 4rA

5(k2+A\F) 1503  15ivy (K2 + YOR

Using (5.42) and (A.8), we obtain

. W2, IR12 (0 )
AR _ el ngjﬂ(o)]? + ivg2 I3}
4vog 2
2 [[R]z c(0) dvos
A.31 = i - el
(A.31) o PR VR

REMARK 33. It is clear from the computation that )\f’(n) belongs to C™ in a
neighborhood of 0. In particular, we recover

(A.32) AR () = AN

Transmission case. In order to compute the above integrals for the transmission
case, we note that (5.33) can be written as

(A.33) Ai'(aF) AT (a]) = r

" _>27T|001|% ’

while the Wronskian for Airy functions yields another relation:

1

—5-

(A.34) SAT (a,; )Ai(a}) + 0Ai'(a))Ai(a,) =

where § = exp (%! sign vo1), and af = af (k) are given by (5.32).
From (5.31), we then obtain

.
(A.35) (1)~ = L‘s
27F|’U01|§

<5Ai’(a;)Ai(a;) - 5Ai’(a;)Ai(a;)) :
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Using (A.17), we get

1= [ o= Lol (22

- 3|’U()1|% 47T2|U01|%

(a;r)254 TA: — . —+ ./ + . —
+ ——(6Ai'(a;,)Ai(a)) — 6AY (a;))Al(ay,))
T
j 2a;
A.36 L L R
( ) (C'n,) 127‘,21}01 35|’001|§
I T2 +54
IT:/ 2T 2d — (Cn) ( K@y, .
2 Ty (T)7dT SRR CTE:

— 00

a+ 3 _ _
_ W&? (5A¥'(a;;)Ai(a) — 5Ai’(aI)Ai(%)))

Kat ot 8laf]? -3

A.37 = (c)? .
( ) ( ) 157T2|’U()1|% 150:;’{52|001|%

n

Finally, we compute the coefficient in front of ¢(0) in (A.9):

(439 1= [0l = g o) ~ e o) = e (EdEn ).

an

We conclude that

2 IT 2
(A.39) ALM - et P ¢(0)
4o

| vo1 | exp (2 sign vo1)

. T
=+ 1 V02 IQ .
2at

REMARK 34. It is clear from the computation that )\4T’(n)(f<a) belongs to C* in a
neighborhood of 0. In particular, we recover

(A.40) ALM () = AN

A.3. Evaluation of the derivative (ul)/(0). The asymptotic relation (6.4)
involves the derivative of 7 (k) with respect to x at x = 0. In this subsection, we
provide its explicit computation for the transmission case. According to (5.32), we
have

1 2wt .
(A.41) ul (k) = —ait (k) = =AT(k/[vo1|3) exp (% SlgHU01> ,

where AL satisfies (5.33).
The derivative with respect to x at k = 0 reads

0 1 21

(A42)  (uD)(0) = (—u%)) — (T (0) —— exp (— s1gnvm) |
8/1 k=0 |’U01 | 3 3

In turn, (AZ)’(0) can be obtained by differentiating (5.33) with respect to

27TLZ)I(P ) [e‘io‘ An(0) A’ (e7**AT(0)) Ai(e" AT (0))
(A.43) ol )

1 ¢ AT(0) Al (€27 (0)) Ai(emg(o))] TR
Vo1|3
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where we used the Airy equation: Ai”(z) = zAi(z), and a shortcut notation o = 27/3.
At k = 0, (5.33) admits two solutions, A\'(0) = e'®a/, and AT (0) = e~'*a/,, that
correspond to vp1 < 0 and vg1 > 0, respectively.

When vp; < 0, the first term in (A.43) vanishes (as Ai’(e**A\1(0)) = 0), while
the second term can be expressed by using the Wronskian,

(A.44) e A (e 2)Ai(e2) — e AT (" 2)Ai(e " 2) = 2L VzeC.
T
We get then

(A (0) = NT0)

al e’
In turn, when vg; > 0, the second term in (A.43) vanishes, while the first term yields

') = 3707 = arem

Combining these relations, we obtain

1 e
(A.15) (WTY(0) = ———— exp <—— signvm) .
ay, [vor | 6
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