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1. Introduction. The transmission boundary condition which is considered in this article appears in various exchange problems such as molecular diffusion across semi-permeable membranes [START_REF] Tanner | Transient diffusion in a system partitioned by permeable barriers. Application to NMR measurements with a pulsed field gradient[END_REF][START_REF] Powles | Exact analytic solutions for diffusion impeded by an infinite array of partially permeable barriers[END_REF][START_REF] Novikov | Modeling of Self-Diffusion and Relaxation Time NMR in Multi-Compartment Systems[END_REF], heat transfer in composite materials [START_REF] Carslaw | Conduction of heat in solids[END_REF][START_REF] Gilkey | Heat Content Asymptotics with Transmittal and Transmission Boundary Conditions[END_REF][START_REF] Bardos | Short-time heat diffusion in compact domains with discontinuous transmission boundary conditions[END_REF], or transverse magnetization evolution in nuclear magnetic resonance (NMR) experiments [START_REF] Grebenkov | Pulsed-gradient spin-echo monitoring of restricted diffusion in multilayered structures[END_REF]. In the simplest setting of the latter case, one considers the local transverse magnetization G(x, y ; t) produced by the nuclei that started from a fixed initial point y and diffused in a constant magnetic field gradient g up to time t. This magnetization is also called the propagator or the Green function of the Bloch-Torrey equation [START_REF] Torrey | Bloch equations with diffusion terms[END_REF]: . . . + ∂ 2 /∂x 2 d the Laplace operator in R d , γ the gyromagnetic ratio, and x 1 the coordinate in a prescribed direction. From an experimental point of view, the local transverse magnetization is too weak to be detected but the macroscopic signal produced by all the nuclei in a sample can be measured. In other words, one can access the double integral of G(x, y ; t) ρ(y) over the starting and arrival points y and x, where ρ(y) is the initial density of the nuclei in the sample. The microstructure of the sample, which can eventually be introduced through boundary conditions to

(1.1), affects the motion of the nuclei, the magnetization G(x, y ; t), and the resulting macroscopic signal. Measuring the signal at various times t and magnetic field gradients g, one aims at inferring structural properties of the sample [START_REF] Grebenkov | NMR Survey of Reflected Brownian Motion[END_REF]. Although this non-invasive experimental technique has found numerous applications in material sciences and medicine, mathematical aspects of this formidable inverse problem remain poorly understood. Even the forward problem of relating a given microstructure to the macroscopic signal is challenging because of the non-selfadjoint character of the Bloch-Torrey operator D∆ -iγgx 1 in (1.1). In particular, the spectral properties of this operator were rigorously established only on the line R (no boundary condition) and on the half-axis R + with Dirichlet or Neumann boundary conditions (see Sec. 3).

Throughout this paper, we focus on the one-dimensional situation (d = 1), in which the operator

D 2 x + ix = - d 2 dx 2 + ix
is called the complex Airy operator and appears in many contexts: mathematical physics, fluid dynamics, time dependent Ginzburg-Landau problems and also as an interesting toy model in spectral theory (see [START_REF] Almog | The stability of the normal state of superconductors in the presence of electric currents[END_REF]). We will consider a suitable extension A + 1 of this differential operator and its associated evolution operator e -tA +1 . The Green function G(x, y ; t) is the distribution kernel of e -tA + 1 . A separate article will address this operator in higher dimensions [START_REF] Grebenkov | On spectral properties of the Bloch-Torrey operator in two dimensions[END_REF].

For the problem on the line R, an intriguing property is that this non self-adjoint operator, which has compact resolvent, has empty spectrum (see Section 3.1). However, the situation is completely different on the half-line R + . The eigenvalue problem

(D 2 x + ix)u = λu,
for a spectral pair (u, λ) with u ∈ H 2 (R + ) and xu ∈ L 2 (R + ) has been thoroughly analyzed for both Dirichlet (u(0) = 0) and Neumann (u (0) = 0) boundary conditions. The spectrum consists of an infinite sequence of eigenvalues of multiplicity one explicitly related to the zeros of the Airy function (see [START_REF] Stoller | Transverse spin relaxation in inhomogeneous magnetic fields[END_REF][START_REF] Helffer | Spectral theory and its applications[END_REF]). The space generated by the eigenfunctions is dense in L 2 (R + ) (completeness property) but there is no Riesz basis of eigenfunctions. 1 Finally, the decay of the associated semi-group has been analyzed in detail. The physical consequences of these spectral properties for NMR experiments have been first revealed by Stoller, Happer and Dyson [START_REF] Stoller | Transverse spin relaxation in inhomogeneous magnetic fields[END_REF] and then thoroughly discussed in [START_REF] De Swiet | Decay of nuclear magnetization by bounded diffusion in a constant field gradient[END_REF][START_REF] Grebenkov | NMR Survey of Reflected Brownian Motion[END_REF][START_REF] Grebenkov | Exploring diffusion across permeable barriers at high gradients. II. Localization regime[END_REF].

In this article, we consider another problem for the complex Airy operator on the line but with a transmission condition at 0 which reads [START_REF] Grebenkov | Exploring diffusion across permeable barriers at high gradients. II. Localization regime[END_REF]:

(1.3) u (0 + ) = u (0 -) , u (0) = κ u(0 + ) -u(0 -) ,
where κ ≥ 0 is a real parameter. In physical terms, the transmission condition accounts for the diffusive exchange between two media R -and R + across the barrier at 0, while κ is defined as the ratio between the barrier permeability and the bulk diffusion coefficient. This situation is particularly relevant for biological samples and applications [START_REF] Grebenkov | NMR Survey of Reflected Brownian Motion[END_REF][START_REF] Grebenkov | Exploring diffusion across permeable barriers at high gradients. I. Narrow pulse approximation[END_REF][START_REF] Grebenkov | Exploring diffusion across permeable barriers at high gradients. II. Localization regime[END_REF]. The case κ = 0 corresponds to two independent Neumann problems on R -and R + for the complex Airy operator. When κ tends to +∞, the analysis of the complex Airy operator with transmission, we first recall in Section 2 the spectral properties of the one-dimensional Laplacian with the transmission condition, and summarize in Section 3 the known properties of the complex Airy operator.

New properties are also established concerning the Robin boundary condition and the behavior of the resolvent for real λ going to +∞. In Section 4 we will show that the complex Airy operator A + 1 = D 2 x + ix on the line R with a transmission property (1.3) is well defined by an appropriate sesquilinear form and an extension of the Lax-Milgram theorem. Section 5 focuses on the exponential decay of the associated semi-group. In Section 6, we present explicit formulas for the integral kernel of the resolvent and investigate its poles. In Section 7, the resolvent estimates as |Im λ| → 0 are discussed. Finally, the proof of completeness is reported in Section 8. In five Appendices, we recall the basic properties of Airy functions (Appendix A), determine the asymptotic behavior of the resolvent as λ → +∞ for extensions of the complex Airy operator on the line (Appendix B) and in the semi-axis (Appendix C), give the statement of the needed Phragmen-Lindelöf theorem (Appendix D) and finally describe the numerical method for computing the eigenvalues (Appendix E).

We summarize our main results in the following:

Theorem 1. The semigroup exp(-tA + 1 ) is contracting. The operator A + 1 has a discrete spectrum {λ n (κ)}. The eigenvalues λ n (κ) are determined as (complex-valued) solutions of the equation (1.4) 2πAi (e 2πi/3 λ)Ai (e -2πi/3 λ) + κ = 0,

where Ai (z) is the derivative of the Airy function.

For all κ ≥ 0, there exists N such that, for all n ≥ N , there exists a unique eigenvalue of A + 1 in the ball B(λ ± n , 2κ|λ ± n | -1 ), where λ ± n = e ±2πi/3 a n , and a n are the zeros of Ai (z).

Finally, for any κ ≥ 0 the space generated by the generalized eigenfunctions of the complex Airy operator with transmission is dense in L 2 (R -) × L 2 (R + ).

Remark 2. Numerical computations suggest that all the spectral projections have rank one (no Jordan block) but we shall only prove in Proposition 36 that there are at most a finite number of eigenvalues with nontrivial Jordan blocks. It will be shown in [START_REF] Almog | Spectral analysis of a complex Schrödinger operator in the semiclassical limit: Robin and Transmission cases[END_REF] that the eigenvalues are actually simple. Hence one can replace "generalized eigenfunctions" by "eigenfunctions" in the Theorem 1.

2. The free Laplacian with a semi-permeable barrier. As an enlighting exercise, let us consider in this section the case of the free one-dimensional Laplacian d 2 dx 2 on R \ {0} with the transmission condition (1.3) at x = 0. We work in the Hilbert space

H := L 2 -× L 2 + ,
where L 2 -:= L 2 (R -) and L 2 + := L 2 (R + ) .

An element u ∈ L 2 -× L 2 + will be denoted by u = (u -, u + ) and we shall use the notation H s -= H s (R -) , H s + = H s (R + ) for s ≥ 0 .
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So (1.3) reads

(2.1) u + (0) = u -(0) , u + (0) = κ u + (0) -u -(0) .

In order to define appropriately the corresponding operator, we start by considering a sesquilinear form defined on the domain

V = H 1 -× H 1 + .
The space V is endowed with the Hilbert norm • V defined for all u = (u -, u + ) in V by

u 2 V = u - 2 H 1 - + u + 2 H 1 + .
We then define a Hermitian sesquilinear form a ν acting on V × V by the formula

a ν (u, v) = 0 -∞ u -(x)v -(x) + ν u -(x)v -(x) dx + +∞ 0 u + (x)v + (x) + ν u + (x)v + (x) dx + κ u + (0) -u -(0) v + (0) -v -(0) , (2.2)
for all pairs u = (u -, u + ) and v = (v -, v + ) in V . For z ∈ C, z denotes the complex conjugate of z. The parameter ν ≥ 0 will be determined later to ensure the coercivity of a ν . Lemma 3. The sesquilinear form a ν is continuous on V .

Proof

We want to show that, for any ν ≥ 0 , there exists a positive constant c such that, for

all (u, v) ∈ V × V , (2.3) |a ν (u, v)| ≤ c u V v V .
We have, for some c 0 > 0 ,

0 -∞ u -(x)v -(x) + ν u -(x)v -(x) dx + +∞ 0 u + (x)v + (x) + ν u + (x)v + (x) dx ≤ c 0 u V v V .
On the other hand,

(2.4) |u + (0)| 2 = - +∞ 0 (u + ū+ ) (x) dx ≤ 2 u L 2 u L 2 ,
and similarly for |u

-(0)| 2 , |v + (0)| 2 and |v -(0)| 2 . Thus there exists c 1 > 0 such that, for all (u, v) ∈ V × V , κ u -(0) -u + (0) v -(0) -v + (0) ≤ c 1 u V v V ,
and (2.3) follows with c = c 0 + c 1 .

The coercivity of the sesquilinear form a ν for ν large enough is proved in the following lemma. It allows us to define a closed operator associated with a ν by using the Lax-Milgram theorem.
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Lemma 4. There exist ν 0 > 0 and α > 0 such that, for all ν ≥ ν 0 ,

(2.5) ∀u ∈ V , a ν (u, u) ≥ α u 2 V .

Proof

The proof is elementary for κ ≥ 0. For completeness, we provide below the proof for the case κ < 0 (in which an additional difficulty occurs), but we will keep considering the physically relevant case κ ≥ 0 throughout the paper.

Using the estimate (2.4) as well as the Young inequality

∀e, f, δ > 0 , ef ≤ 1 2 δe 2 + δ -1 f 2 ,
we get that, for all ε > 0 , there exists C(ε) > 0 such that, for all u ∈ V ,

(2.6) u -(0) -u + (0) 2 ≤ ε 0 -∞ |u -(x)| 2 dx + +∞ 0 |u + (x)| 2 dx + C(ε) u 2 L 2 .
Thus for all u ∈ V we have

a ν (u, u) ≥ (1 -|κ|ε) 0 -∞ |u -(x)| 2 dx + +∞ 0 |u + (x)| 2 dx + ν -|κ|C(ε) u 2 L 2 . (2.7) Choosing ε < |κ| -1 and ν > |κ|C(ε) , we get (2.5).
The sesquilinear form a ν being symmetric, continuous and coercive in the sense of (2.5) on V × V , we can use the Lax-Milgram theorem [START_REF] Helffer | Spectral theory and its applications[END_REF] to define a closed, densely defined selfadjoint operator S ν associated with a ν . Then we set T 0 = S ν -ν . By construction, the domain of S ν and T 0 is

D(T 0 ) = u ∈ V : v → a ν (u, v) can be extended continuously on L 2 -× L 2 + , (2.8)
and the operator T 0 satisfies, for all (u, v) ∈ D(T 0 ) × V ,

a ν (u, v) = T 0 u, v + ν u, v .
Now we look for an explicit description of the domain (2.8). The antilinear form a(u, •) can be extended continuously on L 2 -× L 2 + if and only if there exists

w u = (w - u , w + u ) ∈ L 2 -× L 2 + such that ∀v ∈ V , a ν (u, v) = w u , v .
According to the expression (2.2), we have necessarily

w u = -u -+ ν u -, -u + + ν u + ∈ L 2 -× L 2 + ,
where u -and u + are a priori defined in the sense of distributions respectively in D (R -) and D (R + ). Moreover (u -, u + ) has to satisfy conditions (1.3). Consequently we have

D(T 0 ) = u = (u -, u + ) ∈ H 1 -× H 1 + : (u -, u + ) ∈ L 2 -× L 2 +
and u satisfies conditions (1.3) .

This manuscript is for review purposes only.

Finally we have introduced a closed, densely defined selfadjoint operator T 0 acting by

T 0 u = -u
on (-∞, 0) ∪ (0, +∞) , with domain

D(T 0 ) = u ∈ H 2 -× H 2 + : u satisfies conditions (1.3) .
Note that at the end T 0 is independent of the ν chosen for its construction.

We observe also that because of the transmission conditions (1.3), the operator T 0 might not be positive when κ < 0, hence there can be a negative spectrum, as can be seen in the following statement.

Proposition 5. For all κ ∈ R , the essential spectrum of T 0 is

(2.9) σ ess (T 0 ) = [0, +∞) .
Moreover, if κ ≥ 0 the operator T 0 has empty discrete spectrum and

(2.10) σ(T 0 ) = σ ess (T 0 ) = [0, +∞) .
On the other hand, if κ < 0 there exists a unique negative eigenvalue -4κ 2 , which is simple, and

(2.11) σ(T 0 ) = -4κ 2 ∪ [0, +∞) .

Proof

Let us first prove that [0, +∞) ⊂ σ ess (T 0 ) . This can be achieved by a standard singular sequence construction.

Let (a j ) j∈N be a positive increasing sequence such that, for all j ∈ N , a j+1 -

a j > 2j + 1 . Let χ j ∈ C ∞ 0 (R) (j ∈ N) such that Supp χ j ⊂ (a j -j, a j + j) , ||χ j || L 2 + = 1 and sup |χ (p) j | ≤ C j p , p = 1, 2 ,
for some C independent of j. Then, for all r ≥ 0 , the sequence u r j (x) = 0, χ j (x)e irx is a singular sequence for T 0 corresponding to z = r 2 in the sense of [START_REF] Edmunds | Spectral theory and differential operators[END_REF]Definition IX.1.2]. Hence according to [START_REF] Edmunds | Spectral theory and differential operators[END_REF]Theorem IX.1.3], we have [0, +∞) ⊂ σ ess (T 0 ) . Now let us prove that (T 0 -µ) is invertible for all µ ∈ (-∞, 0) if κ ≥ 0 , and for

all µ ∈ (-∞, 0) \ {-4κ 2 } if κ < 0 . Let µ < 0 and f = (f -, f + ) ∈ L 2 -× L 2 + .
We are going to determine explicitly the solutions u = (u -, u + ) to the equation (2.12)

T 0 u = µ u + f .

Any solution of the equation

-u ± = µ u ± + f ± has the form (2.13) u ± (x) = 1 2 √ -µ x 0 f ± (y) e - √ -µ (x-y) -e √ -µ (x-y) dy + A ± e √ -µ x + B ± e - √ -µ x ,
for some A ± , B ± ∈ R .

We shall now determine A + , A -, B + and B -such that (u -, u + ) belongs to the domain D(T 0 ) . The conditions (1.3) yield

A + -B + = A --B -, √ -µ A + -B + = -κ A -+ B --A + -B + .
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Moreover, the decay conditions at ±∞ imposed by u ± ∈ H 2 ± lead to the following values for A + and B -:

(2.14)

A + = 1 2 √ -µ +∞ 0 f + (y)e - √ -µ y dy , B -= 1 2 √ -µ 0 -∞ f -(y)e √ -µ y dy .
The remaining constants A -and B + have to satisfy the system (2.15)

A -+ B + = A + + B -, -κA -+ √ -µ + κ B + = √ -µ -κ A + + κB -.
We then notice that the equation (2.12) has a unique solution u = (u -, u + ) if and

only if κ ≥ 0 or µ = -4κ 2 .
Finally in the case κ < 0 and µ = -4κ 2 , the homogeneous equation associated with

(2.12) (i.e with f ≡ 0) has a one-dimensional space of solutions, namely

u(x) = -Ke -2κx , Ke 2κx
with K ∈ R . Consequently if κ < 0 , the eigenvalue µ = -4κ 2 is simple, and the desired statement is proved.

The expression (2.14) along with the system (2.15) yield the values of A -and

B + when µ / ∈ σ(T 0 ) : A -= 2κ 2 √ -µ √ -µ + 2κ +∞ 0 f + (y)e - √ -µ y dy + 1 2 √ -µ + 2κ 0 -∞ f -(y)e
√ -µ y dy and

B + = 1 2 √ -µ + 2κ +∞ 0 f + (y)e - √ -µy dy + 2κ 2 √ -µ √ -µ + 2κ 0 -∞ f -(y)e √ -µ y dy .
Using (2.13), we are then able to obtain the expression of the integral kernel of (T 0µ) -1 . More precisely we have, for all f = (f

-, f + ) ∈ L 2 -× L 2 + , (T 0 -µ) -1 = R -- µ R -+ µ R +- µ R ++ µ , where for ε, σ ∈ {-, +} the operator R ε σ µ : R σ → R ε is an integral operator whose kernel (still denoted R ε σ µ ) is given for all (x, y) ∈ R ε × R σ by (2.16) R ε,σ µ (x, y) = 1 2 √ -µ e - √ -µ |x-y| + εσ 1 2 √ -µ + 2κ e - √ -µ(|x|+|y|) .
Noticing that the first term in the right-hand side of (2.16) is the integral kernel of the Laplacian on R , and that the second term is the kernel of a rank one operator,
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we finally get the following expression of (T 0 -µ) -1 as a rank one perturbation of the Laplacian:

(T 0 -µ) -1 = (-∆ -µ) -1 + 1 2 √ -µ + 2κ • , µ -( µ ) --• , µ + ( µ ) - -• , µ -( µ ) + • , µ + ( µ ) + ,
where µ (x) = e - √ -µ |x| and • , • ± denotes the L 2 scalar product on R ± .

Here the operator (-∆ -µ) -1 denotes the operator acting on L 2 -× L 2 + like the resolvent of the Laplacian on L 2 (R):

(-∆ -µ) -1 (u -, u + ) := (-∆ -µ) -1 (u -1 (-∞,0) + u + 1 (0,+∞) ) , composed with the map L 2 (R) v → (v |R-, v |R+ ) ∈ L 2 -× L 2 + .
3. Reminder on the complex Airy operator. Here we recall relatively basic facts coming from [START_REF] Martinet | Sur les propriétés spectrales d'opérateurs non-autoadjoints provenant de la mécanique des fluides[END_REF][START_REF] Almog | The stability of the normal state of superconductors in the presence of electric currents[END_REF][START_REF] Bordeaux-Montrieux | Estimation de résolvante et construction de quasimode près du bord du pseudospectre[END_REF][START_REF] Helffer | Spectral theory and its applications[END_REF][START_REF] Helffer | On pseudo-spectral problems related to a time dependent model in superconductivity with electric current[END_REF][START_REF] Henry | Etude de l'opérateur de Airy complexe[END_REF][START_REF] Henry | Spectral instability for the complex Airy operator and even non self-adjoint anharmonic oscillators[END_REF] and discuss new questions concerning estimates on the resolvent and the Robin boundary condition. Complements will also be given in Appendices A, B and C.

3.1. The complex Airy operator on the line. The complex Airy operator on the line can be defined as the closed extension A + of the differential operator

A + 0 := D 2 x + i x on C ∞ 0 (R). We observe that A + = (A - 0 ) * with A - 0 := D 2 x -i x and
that its domain is

D(A + ) = {u ∈ H 2 (R) , x u ∈ L 2 (R)} .
In particular, A + has a compact resolvent. It is also easy to see that -A + is the generator of a semi-group S t of contraction, (3.1) S t = exp(-tA + ) .

Hence the results of the theory of semi-groups can be applied (see for example [START_REF] Davies | One-Parameter Semi-groups[END_REF]).

In particular, we have, for Re λ < 0 ,

(3.2) ||(A + -λ) -1 || ≤ 1 |Re λ| .
A very special property of this operator is that, for any a ∈ R,

(3.3) T a A + = (A + -ia) T a ,
where T a is the translation operator: (T a u)(x) = u(x -a) .

As an immediate consequence, we obtain that the spectrum is empty and that the resolvent of A + ,

G + 0 (λ) = (A + -λ) -1 ,
which is defined for any λ ∈ C, satisfies

(3.4) ||(A + -λ) -1 || = ||(A + -Re λ) -1 || .
The most interesting property is the control of the resolvent for Re λ ≥ 0.
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Proposition 6 (W. Bordeaux-Montrieux [START_REF] Bordeaux-Montrieux | Estimation de résolvante et construction de quasimode près du bord du pseudospectre[END_REF]).

As Re λ → +∞, we have

(3.5) ||G + 0 (λ)|| ∼ π 2 (Re λ) -1 4 exp 4 3 (Re λ) 3 2 
, where f (λ) ∼ g(λ) means that the ratio f (λ)/g(λ) tends to 1 in the limit λ → +∞.

This improves a previous result (see Appendix B) by J. Martinet [START_REF] Martinet | Sur les propriétés spectrales d'opérateurs non-autoadjoints provenant de la mécanique des fluides[END_REF] (see also in [START_REF] Helffer | Spectral theory and its applications[END_REF][START_REF] Helffer | On pseudo-spectral problems related to a time dependent model in superconductivity with electric current[END_REF]) who also proved2 Proposition 7.

(3.6)

G + 0 (λ) HS = G + 0 (Re λ) HS , and 
(3.7) G + 0 (λ) HS ∼ π 2 (Re λ) -1 4 exp 4 3 (Re λ) 3 2
as Re λ → +∞ , where • HS is the Hilbert-Schmidt norm. This is consistent with the well-known translation invariance properties of the operator A + , see [START_REF] Helffer | Spectral theory and its applications[END_REF]. The comparison between the HS-norm and the norm in L(L 2 (R)) immediately implies that Proposition 7 gives the upper bound in Proposition 6.

3.2.

The complex Airy operator on the half-line: Dirichlet case. It is not difficult to define the Dirichlet realization A ±,D of D 2

x ± ix on R + (the analysis on the negative semi-axis is similar). One can use for example the Lax-Milgram theorem and take as form domain

V D := {u ∈ H 1 0 (R + ) , x 1 2 u ∈ L 2 + } .
It can also be shown that the domain is

D D := {u ∈ V D , u ∈ H 2 + } .
This implies Proposition 8. The resolvent G ±,D (λ) := (A ±,D -λ) -1 is in the Schatten class C p for any p > 3 2 (see [START_REF] Dunford | Linear operators. Part 2: Spectral theory, self adjoint operators in Hilbert space[END_REF] for definition), where A ±,D is the Dirichlet realization of D 2

x ± ix, as emphasized by the superscript D.

More precisely we provide the distribution kernel G -,D (x, y ; λ) of the resolvent for the complex Airy operator D 2

x -ix on the positive semi-axis with Dirichlet boundary condition at the origin (the results for G +,D (x, y ; λ) are similar). Matching the boundary conditions, one gets

(3.8) G -,D (x, y ; λ) =            2π 
Ai(e -iα wy)

Ai(e -iα w0) Ai(e iα w x )Ai(e -iα w 0 ) -Ai(e -iα w x )Ai(e iα w 0 ) (0 < x < y) ,

2π Ai(e -iα wx)

Ai(e -iα w0) Ai(e iα w y )Ai(e -iα w 0 ) -Ai(e -iα w y )Ai(e iα w 0 ) (x > y) ,

where Ai(z) is the Airy function,

w x = ix + λ, and 
α = 2π/3 .
The above expression can also be written as

(3.9) G -,D (x, y ; λ) = G - 0 (x, y ; λ) + G -,D 1 (x, y ; λ),
where G - 0 (x, y ; λ) is the resolvent for the complex Airy operator D 2

x -ix on the whole line,

(3.10) G - 0 (x, y ; λ) =
2πAi(e iα w x )Ai(e -iα w y ) (x < y), 2πAi(e -iα w x )Ai(e iα w y ) (x > y), and

(3.11) G -,D 1 (x, y ; λ) = -2π Ai(e iα λ)
Ai(e -iα λ) Ai e -iα (ix + λ) Ai e -iα (iy + λ) .

The resolvent is compact. The poles of the resolvent are determined by the zeros of Ai(e -iα λ), i.e., λ n = e iα a n , where the a n are zeros of the Airy function: Ai(a n ) = 0 .

The eigenvalues have multiplicity 1 (no Jordan block). See Appendix A.

As a consequence of the analysis of the numerical range of the operator, we have Proposition 9.

(3.12)

||G ±,D (λ)|| ≤ 1 |Re λ| , if Re λ < 0 ;
and

(3.13) ||G ±,D (λ)|| ≤ 1 |Im λ| , if ∓ Im λ > 0 .
This proposition together with the Phragmen-Lindelöf principle (Theorem 54) and Proposition 8 implies (see [START_REF] Agmon | Elliptic boundary value problems[END_REF] or [START_REF] Dunford | Linear operators. Part 2: Spectral theory, self adjoint operators in Hilbert space[END_REF])

Proposition 10. The space generated by the eigenfunctions of the Dirichlet re-

alization A ±,D of D 2 x ± ix is dense in L 2 + .
It is proven in [START_REF] Henry | Etude de l'opérateur de Airy complexe[END_REF] that there is no Riesz basis of eigenfunctions.

At the boundary of the numerical range of the operator, it is interesting to analyze the behavior of the resolvent. Numerical computations lead to the observation that

(3.14) lim λ→+∞ ||G ±,D (λ)|| L(L 2 + ) = 0 .
As a new result, we will prove Proposition 11. When λ tends to +∞, we have

(3.15) ||G ±,D (λ)|| HS ≈ λ -1 4 (log λ) 1 2 .
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V N = {u ∈ H 1 + , x 1 2 u ∈ L 2 + }.
We recall that the Neumann condition appears when writing the domain of the operator A ±,N .

As in the Dirichlet case (Proposition 8), this implies Proposition 12. The resolvent G ±,N (λ) := (A ±,N -λ) -1 is in the Schatten class

C p for any p > 3 2 .
More explicitly, the resolvent of A -,N is obtained as

G -,N (x, y ; λ) = G - 0 (x, y ; λ) + G -,N 1 (x, y ; λ) for (x, y) ∈ R 2 + ,
where G - 0 (x, y ; λ) is given by (3.10) and G -,N 1 (x, y ; λ) is

(3.16) G -,N 1 (x, y ; λ) = -2π e iα
Ai (e iα λ) e -iα Ai (e -iα λ)

Ai e -iα (ix + λ) Ai e -iα (iy + λ) .

The poles of the resolvent are determined by zeros of Ai (e -iα λ), i.e., λ n = e iα a n , where a n are zeros of the derivative of the Airy function: Ai (a n ) = 0. The eigenvalues have multiplicity 1 (no Jordan block). See Appendix A.

As a consequence of the analysis of the numerical range of the operator, we have Proposition 13.

(3.17)

||G ±,N (λ)|| ≤ 1 |Re λ| , if Re λ < 0 ;
and

(3.18) ||G ±,N (λ)|| ≤ 1 |Im λ| , if ∓ Im λ > 0 .
This proposition together with Proposition 12 and the Phragmen-Lindelöf principle implies the completeness of the eigenfunctions:

Proposition 14. The space generated by the eigenfunctions of the Neumann re-

alization A ±,N of D 2 x ± ix is dense in L 2 + .
At the boundary of the numerical range of the operator, we have Proposition 15. When λ tends to +∞, we have

(3.19) ||G ±,N (λ)|| HS ≈ λ -1 4 (log λ) 1 2 .

Proof

Using the Wronskian (A.3) for Airy functions, we have

(3.20) G -,D (x, y ; λ) -G -,N (x, y ; λ) = -ie iα Ai(e -iα w x )Ai(e -iα w y )
Ai(e -iα λ)Ai (e -iα λ) .

Hence

||G -,D (x, y ; λ) -G -,N (x, y ; λ)|| 2 HS = ( +∞ 0 |Ai(e -iα w x )| 2 dx) 2 |Ai(e -iα λ)| 2 |Ai (e -iα λ)| 2 .
We will show in (8.10) that there exists C > 0 such that

+∞ 0 |Ai(e -iα w x )| 2 dx ≤ Cλ -1 2 exp 4 3 λ 3 2
.

On the other hand, using (A.5) and (A.6), we obtain, for

λ ≥ λ 0 |Ai(e -iα λ)Ai (e -iα λ)| ≥ 1 4π exp 4 3 λ 3 2 
(this argument will also be used in the proof of (8.7)). We have consequently obtained that there exist C > 0 and λ 0 > 0 such that, for λ ≥ λ 0 ,

(3.21) ||G -,D (λ) -G -,N (λ)|| HS ≤ C |λ| -1 4 .
The proof of the proposition follows from Proposition 11.

3.4.

The complex Airy operator on the half-line: Robin case. For completeness, we provide new results for the complex Airy operator on the half-line with the Robin boundary condition that naturally extends both Dirichlet and Neumann cases:

(3.22) ∂ ∂x G -,R (x, y ; λ, κ) -κ G -,R (x, y ; λ, κ) x=0 = 0 ,
with a positive parameter κ. The operator is associated with the sesquilinear form defined on

H 1 + × H 1 + by (3.23) a -,R (u, v) = +∞ 0 u (x)v (x) dx -i +∞ 0 xu(x)v(x) dx + κ u(0)v(0) .
The distribution kernel of the resolvent is obtained as

G -,R (x, y ; λ) = G - 0 (x, y ; λ) + G -,R 1 (x, y ; λ, κ) for (x, y) ∈ R 2 + ,
where

G -,R 1 (x, y ; λ, κ) = -2π ie iα Ai (e iα λ) -κAi(e iα λ) ie -iα Ai (e -iα λ) -κAi(e -iα λ) × Ai e -iα (ix + λ) Ai e -iα (iy + λ) . (3.24)
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Setting κ = 0, one retrieves (3.16) for the Neumann case, while the limit κ → +∞ yields (3.11) for the Dirichlet case, as expected. As previously, the resolvent is compact and actually in the Schatten class C p for any p > 3 2 (see Proposition 8). Its poles are determined as (complex-valued) solutions of the equation

(3.25) f R (κ, λ) := ie -iα Ai (e -iα λ) -κAi(e -iα λ) = 0 .
Except for the case of small κ, in which the eigenvalues might be localized close to the eigenvalues of the Neumann problem (see Section 4 for an analogous case), it does not seem easy to localize all the solutions of (3.25) in general. Nevertheless one can prove that the zeros of f R (κ, •) are simple. If indeed λ is a common zero of f R and (f R ) , then either λ + κ 2 = 0, or e -iα λ is a common zero of Ai and Ai . The second option is excluded by the properties of the Airy function, whereas the first option is excluded for κ ≥ 0 because the spectrum is contained in the positive half-plane.

As a consequence of the analysis of the numerical range of the operator, we have

Proposition 16. (3.26) ||G ±,R (λ, κ)|| ≤ 1 |Re λ| , if Re λ < 0 ;
and

(3.27) ||G ±,R (λ, κ)|| ≤ 1 |Im λ| , if ∓ Im λ > 0 .
This proposition together with the Phragmen-Lindelöf principle (Theorem 54) and the fact that the resolvent is in the Schatten class C p , for any p > 3 2 , implies Proposition 17. For any κ ≥ 0, the space generated by the eigenfunctions of the Robin realization

A ±,R of D 2 x ± ix is dense in L 2 + .
At the boundary of the numerical range of the operator, it is interesting to analyze the behavior of the resolvent. Equivalently to Propositions 11 or 15, we have Proposition 18. When λ tends to +∞, we have

(3.28) ||G ±,R (λ, κ)|| HS ≈ λ -1 4 (log λ) 1 2 .

Proof

The proof is obtained by using Proposition 15 and computing, using (A.3),

||G -,N (λ) -G -,R (κ, λ)|| 2 HS = +∞ 0 |Ai(e -iα w x )| 2 dx 2 × κ 2π 1 |ie -iα Ai (e -iα λ) -κAi(e -iα λ)| 2 |Ai (e -iα λ)| 2 .
As in the proof of Proposition 15, we show that for any κ 0 > 0, there exist C > 0 and

λ 0 such that, for λ ≥ λ 0 and κ ∈ [0, κ 0 ], ||G -,N (λ) -G -,R (λ, κ)|| HS ≤ C|κ|λ -3 4 .
4. The complex Airy operator on the line with a semi-permeable barrier: definition and properties. In comparison with Section 2, we now replace the differential operator

-d 2 dx 2 by A + 1 = -d 2 dx 2 + ix but keep the same transmission
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condition. To give a precise mathematical definition of the associated closed operator, we consider the sesquilinear form a ν defined for u = (u -, u + ) and v = (v -, v + ) by

a ν (u, v) = 0 -∞ u -(x)v -(x) + i xu -(x)v -(x) + ν u -(x)v -(x) dx + +∞ 0 u + (x)v + (x) + i xu + (x)v + (x) + ν u + (x)v + (x) dx +κ u + (0) -u -(0) v + (0) -v -(0) , (4.1)
where the form domain V is

V := u = (u -, u + ) ∈ H 1 -× H 1 + : |x| 1 2 u ∈ L 2 -× L 2 + .
The space V is endowed with the Hilbert norm

u V := u - 2 H 1 - + u + 2 H 1 + + |x| 1 2 u 2 L 2 1 2 .
We first observe Lemma 19. For any ν ≥ 0, the sesquilinear form a ν is continuous on V .

Proof

The proof is similar to that of Lemma 3, the additional term

i 0 -∞ x u -(x) v-(x) dx + +∞ 0 x u + (x) v+ (x) dx being obviously bounded by u V v V .
Let us notice that, if u and v belong to H 2 -× H 2 + and satisfy the boundary conditions (1.3), then an integration by parts yields

a ν (u, v) = 0 -∞ -u -(x) + ixu -(x) + ν u -(x) v-(x) dx + +∞ 0 -u + (x) + ixu + (x) + ν u + (x) v+ (x) dx + u + (0) + κ(u -(0) -u + (0)) v -(0) -v + (0) = - d 2 dx 2 + ix + ν u, v L 2 -×L 2 + .
Hence the operator associated with the form a ν , once defined appropriately, will act as

-d 2 dx 2 + ix + ν on C ∞ 0 (R \ {0}) .
As the imaginary part of the potential ix changes sign, it is not straightforward to determine whether the sesquilinear form a ν is coercive, i.e., whether there exists ν 0 such that for ν ≥ ν 0 the following estimate holds:

(4.2) ∃α > 0 , ∀u ∈ V , |a ν (u, u)| ≥ α u 2 V .
Let us show that it is indeed not true. Consider for instance the sequence

u n (x) = (χ(x + n), χ(x -n)) , n ≥ 1 ,
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where χ ∈ C ∞ 0 (-1, 1) is an even function such that χ

(x) = 1 for x ∈ [-1/2, 1/2] .
Then u n L 2 (-∞,0) and u n L 2 (0,+∞) are bounded, and

R x |u n (x)| 2 dx = 0 , since x → x|u n (x)| 2 is odd, whereas |x| 1 2 u n L 2 -→ +∞ as n → +∞ . Consequently |a ν (u n , u n )| u n 2 V -→ 0 as n → +∞ ,
and (4.2) does not hold.

Due to the lack of coercivity, the standard version of the Lax-Milgram theorem does not apply. We shall instead use the following generalization introduced in [START_REF] Almog | On the spectrum of non-selfadjoint Schrödinger operators with compact resolvent[END_REF].

Theorem 20. Let V ⊂ H be two Hilbert spaces such that V is continuously embedded in H and V is dense in H . Let a be a continuous sesquilinear form on V × V , and assume that there exist α > 0 and two bounded linear operators Φ 1 and Φ 2 on V such that, for all u ∈ V ,

(4.3) |a(u, u)| + |a(u, Φ 1 u)| ≥ α u 2 V , |a(u, u)| + |a(Φ 2 u, u)| ≥ α u 2 V .
Assume further that Φ 1 extends to a bounded linear operator on H .

Then there exists a closed, densely-defined operator S on H with domain

D(S) = u ∈ V : v → a(u, v) can be extended continuously on H , such that, for all u ∈ D(S) and v ∈ V , a(u, v) = Su, v H .
Now we want to find two operators Φ 1 and Φ 2 on V such that the estimates (4.3)

hold for the form a ν defined by (4.1).

First we have, as in (2.7),

Re a ν (u, u) ≥ (1 -|κ|ε) 0 -∞ |u -(x)| 2 dx + +∞ 0 |u + (x)| 2 dx + ν -|κ|C(ε) u 2 L 2 .
Thus by choosing ε and ν appropriately we get, for some

α 1 > 0 , (4.4) |a ν (u, u)| ≥ α 1 0 -∞ |u -(x)| 2 dx + +∞ 0 |u + (x)| 2 dx + u 2 L 2
.

It remains to estimate the term |x| 1 2 u L 2 appearing in the norm u V . For this purpose, we introduce the operator

ρ : (u -, u + ) -→ (-u -, u + ) ,
which corresponds to the multiplication operator by the function sign x .

It is clear that ρ maps H onto H and V onto V. Then we have

(4.5) Im a ν (u, ρu) = |x| 1 2 u 2 L 2 .
Thus using (4.4), there exists α 0 such that, for all u ∈ V ,

|a ν (u, u)| + |a ν (u, ρu)| ≥ α u 2 V .
Similarly, for all u ∈ V ,

|a ν (u, u)| + |a ν (ρu, u)| ≥ α u 2 V .
In other words, the estimate (4.3) holds, with Φ 1 = Φ 2 = ρ . Hence the assumptions of Theorem 20 are satisfied, and we can define a closed operator A + 1 := S -ν, which is given by the identity

∀u ∈ D(A + 1 ) , ∀v ∈ V , a ν (u, v) = A + 1 u + νu, v L 2 -×L 2 +
on the domain

D(A + 1 ) = D(S) = u ∈ V : v → a ν (u, v) can be extended continuously on L 2 -× L 2 + .
Now we shall determine explicitly the domain

D(A + 1 ) . Let u ∈ V . The map v → a ν (u, v) can be extended continuously on L 2 -× L 2 + if
and only if there exists some

w u = (w - u , w + u ) ∈ L 2 -× L 2 + such that, for all v ∈ V , a ν (u, v) = w u , v L 2 .
Then due to the definition of a ν (u, v) , we have necessarily

w - u = -u -+ ixu -+ νu -and w + u = -u + + ixu + + νu +
in the sense of distributions respectively in R -and R + , and u satisfies the conditions (1.3). Consequently, the domain of A + 1 can be rewritten as

D(A + 1 ) = u ∈ V : (-u -+ ixu -, -u + + ixu + ) ∈ L 2 -× L 2 +
and u satisfies conditions (1.3) .

We now prove that D(A + 1 ) = D where

D = u ∈ V : (u -, u + ) ∈ H 2 -× H 2 + , (xu -, xu + ) ∈ L 2 -× L 2 +
and u satisfies conditions (1.3) .

It remains to check that this implies (u

-, u + ) ∈ H 2 -× H 2 + .
The only problem is at +∞. Let u + be as above and let χ be a nonnegative function equal to 1 on [1, +∞) and with support in ( 1 2 , +∞). It is clear that the natural extension by 0 of χu + to R belongs to L 2 (R) and satisfies

- d 2 dx 2 + ix (χu + ) ∈ L 2 (R) .
One can apply for χu + a standard result for the domain of the accretive maximal extension of the complex Airy operator on R (see for example [START_REF] Helffer | Spectral theory and its applications[END_REF]).

Finally, let us notice that the continuous embedding

V → L 2 (R; |x|dx) ∩ H 1 -× H 1 +
implies that A + 1 has a compact resolvent; hence its spectrum is discrete.

Moreover, from the characterization of the domain and its inclusion in D, we deduce the stronger This manuscript is for review purposes only.

Proposition 21. There exists λ 0 (λ 0 = 0 for κ > 0) such that (A + 1 -λ 0 ) -1 belongs to the Schatten class C p for any p > 3 2 .

Note that if it is true for some λ 0 it is true for any λ in the resolvent set.

Remark 22. The adjoint of A + 1 is the operator associated by the same construction with D 2 x -ix. A - 1 + λ being injective, this implies by a general criterion [START_REF] Helffer | Spectral theory and its applications[END_REF] that A + 1 + λ is maximal accretive, hence generates a contraction semigroup.

The following statement summarizes the previous discussion.

Proposition 23. The operator A + 1 acting as

u → A + 1 u = - d 2 dx 2 u -+ ixu -, - d 2 dx 2 u + + ixu +
on the domain

D(A + 1 ) = u ∈ H 2 -× H 2 + : xu ∈ L 2 -× L 2 + and u satisfies conditions (1.3) (4.6)
is a closed operator with compact resolvent.

There exists some positive λ such that the operator A + 1 + λ is maximal accretive.

Remark 24. We have

(4.7) ΓA + 1 = A - 1 Γ ,
where Γ denotes the complex conjugation:

Γ(u -, u + ) = (ū -, ū+ ) .
This implies that the distribution kernel of the resolvent satisfies:

(4.8) G(x, y ; λ) = G(y, x; λ) ,
for any λ in the resolvent set.

Remark 25 (PT-Symmetry). If (λ, u) is an eigenpair, then ( λ, ū(-x)) is also an

eigenpair. Let indeed v(x) = ū(-x). This means v -(x) = ū+ (-x) and v + (x) = ū-(-x).
Hence we get that v satisfies (2.1) if u satisfies the same condition:

v -(0) = -ū + (0) = κ(ū -(0) -ū+ (0)) = +κ (v + (0) -v -(0)) .
Similarly one can verify that

- d 2 dx 2 + ix v + (x) = - d 2 dx 2 -ix u -(-x) = - d 2 dx 2 + ix u -(-x) = λ v + (x) .
5. Exponential decay of the associated semi-group. In order to control the decay of the associated semi-group, we follow what has been done for the Neumann or Dirichlet realization of the complex Airy operator on the half-line (see for example [START_REF] Helffer | Spectral theory and its applications[END_REF] or [START_REF] Henry | Etude de l'opérateur de Airy complexe[END_REF][START_REF] Henry | Spectral instability for the complex Airy operator and even non self-adjoint anharmonic oscillators[END_REF]).

Theorem 26. Assume κ > 0, then for any ω < inf{Re σ(A + 1 )}, there exists M ω such that, for all t ≥ 0,

|| exp(-tA + 1 )|| L(L 2 -×L 2 + ) ≤ M ω exp(-ωt) ,
where σ(A + 1 ) is the spectrum of A + 1 .

To apply the quantitative Gearhart-Prüss theorem (see [START_REF] Helffer | Spectral theory and its applications[END_REF]) to the operator A + 1 , we should prove that sup Re z≤ω

(A + 1 -z) -1 ≤ C ω , for all ω < inf Re σ(A + 1 ) := ω 1 .
First we have by accretivity (remember that κ > 0), for Re λ < 0 , (5.1)

||(A + 1 -λ) -1 || ≤ 1 |Re λ| .
So it remains to analyze the resolvent in the set

0 ≤ Re λ ≤ ω 1 -, |Im λ| ≥ C > 0 ,
where C > 0 is sufficiently large. Let us prove the following lemma.

Lemma 27. For any α > 0, there exist C α > 0 and D α > 0 such that for any

λ ∈ {ω ∈ C : Re ω ∈ [-α, +α] and |Im ω| > D α } , (5.2) ||(A ± 1 -λ) -1 || ≤ C α .

Proof

Without loss of generality, we treat the case when Im λ > 0 . As in [START_REF] Beauchard | Degenerate parabolic operators of Kolmogorov type with a geometric control condition[END_REF], the main idea of the proof is to approximate (A + 1 -λ) -1 by a sum of two operators: one of them is a good approximation when applied to functions supported near the transmission point, while the other one takes care of functions whose support lies far away from this point.

The first operator Ǎ is associated with the sesquilinear form ǎ defined for u = (u -, u

+ ) and v = (v -, v + ) by ǎ(u, v) = 0 -Im λ/2 u -(x)v -(x) + i xu -(x)v -(x) + λ u -(x)v -(x) dx + Im λ/2 0 u + (x)v + (x) + i xu + (x)v + (x) + λ u + (x)v + (x) dx + κ u + (0) -u -(0) v + (0) -v -(0) , (5.3)
where u and v belong to the following space:

H 1 0 (S λ , C) := H 1 (S - λ ) × H 1 (S + λ ) ∩ {u -(-Im λ/2) = 0 , u + (Im λ/2) = 0} ,
with S - λ := (-Im λ/2, 0) and S + λ := (0, +Im λ/2).

The domain D( Ǎ) of Ǎ is the set of u ∈ H 2 (S - λ ) × H 2 (S + λ ) such that u -(-Im λ/2) = 0 , u + (Im λ/2) = 0 and u satisfies conditions (1.3). Denote the resolvent of Ǎ by R 1 (λ) in L(L 2 (S - λ , C) × L 2 (S + λ , C)) and observe also that R 1 (λ) ∈ L(L 2 (S - λ , C) × L 2 (S + λ , C), H 1 0 (S λ , C)).
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We easily obtain (looking at the imaginary part of the sesquilinear form) that

(5.4) R 1 (λ) ≤ 2 Im λ . Furthermore, we have, for u = R 1 (λ) f (with u = (u -, u + ), f = (f -, f + )) D x R 1 (λ)f 2 = D x u 2 ≤ (A + 1 -λ)u u + Re λ u 2 ≤ f R 1 (λ)f + |α| R 1 (λ)f 2 ≤ 2 |Im λ| + 4|α| |Im λ| 2 f 2 .
Hence there exists C 0 (α) such that, for Im λ ≥ 1 and Re λ ∈ [-α, +α],

(5.5)

D x R 1 (λ) ≤ C 0 (α) |Im λ| -1 2 .
Far from the transmission point 0 , we approximate by the resolvent G + 0 of the complex Airy operator A + on the line. Denote this resolvent by R 2 (λ) when considered as

an operator in L(L 2 -× L 2 + ). We recall from Section 3 that the norm R 2 (λ) is independent of Im λ. Since R 2 (λ) is an entire function of λ, we easily obtain a uniform bound on R 2 (λ) for Re λ ∈ [-α, +α]. Hence, (5.6) R 2 (λ) ≤ C 1 (α) .
As for the proof of (5.5), we then show (5.7)

D x R 2 (λ) ≤ C(α) .
We now use a partition of unity in the x variable in order to construct an approximate inverse R app (λ) for A + 1 -λ. We shall then prove that the difference between the approximation and the exact resolvent is well controlled as Im λ → +∞. For this purpose, we define the following triple (φ -, ψ, φ

+ ) of cutoff functions in C ∞ (R, [0, 1]) satisfying φ -(t) = 1 on (-∞, -1/2] , φ -(t) = 0 on [-1/4, +∞) ψ(t) = 1 on [-1/4, 1/4] , ψ(t) = 0 on (-∞, -1/2] ∪ [1/2, +∞) , φ + (t) = 1 on [1/2, +∞) , φ + (t) = 0 on (-∞, 1/4], φ -(t) 2 + ψ(t) 2 + φ + (t) 2 = 1 on R ,
and then set

φ ±,λ (x) = φ ± x Im λ , ψ λ (x) = ψ x Im λ .
The approximate inverse R app (λ) is then constructed as

(5.8) R app (λ) = φ -,λ R 2 (λ)φ -,λ + ψ λ R 1 (λ)ψ λ + φ +,λ R 2 (λ)φ +,λ ,
where φ ±,λ and ψ λ denote the operators of multiplication by the functions φ ±,λ and

ψ λ . Note that ψ λ maps L 2 -× L 2 + into L 2 (S - λ ) × L 2 (S + λ ).
In addition,

ψ λ : D( Ǎ) → D(A + 1 ), φ λ : D(A + ) → D(A + 1 ) ,
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where we have defined φ λ (u -, u + ) as (φ -,λ u -, φ +,λ u + ).

From (5.4) and (5.6) we get, for sufficiently large Im λ,

(5.9) R app (λ) ≤ C 3 (α).

Note that (5.10)

|φ λ (x)| + |ψ λ (x)| ≤ C |Im λ| , |φ λ (x)| + |ψ λ (x)| ≤ C |Im λ| 2 .

Next, we apply

A + 1 -λ to R app to obtain that (5.11) (A + 1 -λ)R app (λ) = I + [A + 1 , ψ λ ]R 1 (λ)ψ λ + [A + 1 , φ λ ]R 2 (λ)φ λ ,
where I is the identity operator on L 2 -× L 2 + , and

[A + 1 , φ λ ] := A + 1 φ λ -φ λ A + 1 = [D 2 x , φ λ ] = - 2i Im λ φ x Im λ D x - 1 (Im λ) 2 φ x Im λ . (5.12) A similar relation holds for [A + 1 , ψ λ ].
Here we have used (5.8), and the fact that

(A + 1 -λ)R 1 (λ)ψ λ u = ψ λ u , (A + 1 -λ)R 2 (λ)φ λ u = φ λ u , ∀u ∈ L 2 -× L 2 + .
Using (5.4), (5.5), (5.7), and (5.12) we then easily obtain, for sufficiently large Im λ,

(5.13) [A + 1 , ψ λ ] R 1 (λ) + [A + 1 , φ λ ] R 2 (λ) ≤ C 4 (α) |Im λ| .
Hence, if |Im λ| is large enough then

I + [A + 1 , ψ λ ]R 1 (λ)ψ λ + [A + 1 , φ λ ]R 2 (λ)φ λ is in- vertible in L(L 2 -× L 2 + ), and
(5.14)

I + [A + 1 , ψ λ ]R 1 (λ)ψ λ + [A + 1 , φ λ ]R 2 (λ)φ λ -1 ≤ C 5 (α) .
Finally, since

(A + 1 -λ) -1 = R app (λ) • I + [A + 1 , ψ λ ]R 1 (λ)ψ λ + [A + 1 , φ λ ]R 2 (λ)φ λ -1 ,
we have

(A + 1 -λ) -1 ≤ R app (λ) I + [A + 1 , ψ λ ]R 1 (λ)ψ λ + [A + 1 , φ λ ]R 2 (λ)φ λ -1 .
Using (5.9) and (5.14) we conclude that (5.2) is true. This manuscript is for review purposes only.
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6. Integral kernel of the resolvent and its poles. Here we revisit some of the computations of [START_REF] Grebenkov | Exploring diffusion across permeable barriers at high gradients. II. Localization regime[END_REF]23] with the aim to complete some formal proofs. We are looking for the distribution kernel G -(x, y; λ) of the resolvent (A - 1 -λ) -1 which satisfies in the sense of distribution

(6.1) -λ -ix - ∂ 2 ∂x 2 G -(x, y ; λ) = δ(x -y),
as well as the boundary conditions

∂ ∂x G -(x, y ; λ) x=0 + = ∂ ∂x G -(x, y ; λ) x=0 - = κ G -(0 + , y; λ) -G -(0 -, y; λ) . (6.2) 
Sometimes, we will write G -(x, y ; λ, κ), in order to stress the dependence on κ.

Note that one can easily come back to the kernel of the resolvent of A + 1 by using

(6.3) G + (x, y ; λ) = G -(y, x; λ) .
Using (4.8), we also get (6.4)

G + (x, y ; λ) = G -(x, y ; λ) .
We search for the solution G -(x, y ; λ) in three subdomains: the negative semi-axis (-∞, 0), the interval (0, y), and the positive semi-axis (y, +∞) (here we assumed that y > 0; the opposite case is similar). For each subdomain, the solution is a linear combination of two Airy functions:

(6.5) G -(x, y ; λ) =     
A -Ai(e -iα w x ) + B -Ai(e iα w x ) (x < 0) , A + Ai(e -iα w x ) + B + Ai(e iα w x ) (0 < x < y) , C + Ai(e -iα w x ) + D + Ai(e iα w x ) (x > y) , with six unknown coefficients (which are functions of y > 0). We recall that α = 2π 3

and

w x = ix + λ .
The boundary conditions (6.2) read as

B -ie iα Ai (e iα w 0 ) = A + ie -iα Ai (e -iα w 0 ) + B + ie iα Ai (e iα w 0 ) = κ A + Ai(e -iα w 0 ) + B + Ai(e iα w 0 ) -B -Ai(e iα w 0 ) , (6.6) 
where w 0 = λ and we set A -= 0 and D + = 0 to ensure the decay of G -(x, y ; λ) as

x → -∞ and as x → +∞ , respectively.

We now look at the condition at x = y in order to have (6.1) satisfied in the distribution sense. We write the continuity condition,

A + Ai(e -iα w y ) + B + Ai(e iα w y ) = C + Ai(e -iα w y ) ,
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and the discontinuity jump of the derivative, A + ie -iα Ai (e -iα w y ) + B + ie iα Ai (e iα w y ) = C + ie -iα Ai (e -iα w y ) + 1 .

This can be considered as a linear system for A + and B + . Using the Wronskian (A.3), one expresses A + and B + in terms of C + : (6.7) A + = C + -2πAi(e iα w y ) , B + = 2πAi(e -iα w y ) .

We can rewrite (6.6) in the form (6.8)

B -= e -2iα
Ai (e -iα w 0 ) Ai (e iα w 0 )

A + + B + ,
and

A + ie -iα Ai (e -iα w 0 ) + B + ie iα Ai (e iα w 0 ) = κ A + Ai(e -iα w 0 ) -e -2iα
Ai(e iα w 0 ) Ai (e -iα w 0 ) Ai (e iα w 0 ) . (6.9)

Using again the Wronskian (A.3), we obtain

A + Ai (e -iα w 0 ) + B + e 2iα Ai (e iα w 0 ) = -κA + 1 2πAi (e iα w 0 ) , that is A + (f (λ) + κ) + B + (2π)e 2iα
Ai (e iα w 0 ) 2 = 0 , where (6.10) f (λ) := 2πAi (e -iα λ)Ai (e iα λ) .

So we now get (6.11)

A + = - 1 f (λ) + κ (2π) 2 e 2iα
Ai (e iα w 0 ) 2 Ai(e -iα w y ) , (6.12)

B -= 2πAi(e -iα w y ) -2π f (λ) f (λ) + κ
Ai(e -iα w y ) , and (6.13)

C + = 2πAi(e iα w y ) -4π 2 e 2iα [Ai (e iα λ)] 2 f (λ) + κ
Ai(e -iα w y ) .

Combining these expressions, one finally gets

(6.14) G -(x, y ; λ, κ) = G - 0 (x, y ; λ) + G 1 (x, y ; λ, κ) ,
where G - 0 (x, y ; λ) is the distribution kernel of the resolvent of the operator A * 0 := -d 2 dx 2 -ix on the line (given by Eq. (3.10)), whereas G 1 (x, y ; λ, κ) is given by the following expressions

(6.15) G 1 (x, y ; λ, κ) =        -4π 2 e 2iα [Ai (e iα λ)] 2 f (λ) + κ Ai(e -iα w x )Ai(e -iα w y ) , (x > 0) , -2π f (λ) f (λ) + κ
Ai(e iα w x )Ai(e -iα w y ) ,

(x < 0) ,
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for y > 0, and

(6.16) G 1 (x, y ; λ, κ) =        -2π f (λ) f (λ) + κ
Ai(e -iα w x )Ai(e iα w y ) , (x > 0) ,

-4π 2 e -2iα [Ai (e -iα λ)] 2 f (λ) + κ
Ai(e iα w x )Ai(e iα w y ) , (x < 0) , for y < 0. Hence the poles are determined by the equation (6.17)

f (λ) = -κ ,
with f defined in (6.10).

Remark 29. For κ = 0, one recovers the conjugated pairs associated with the zeros a n of Ai . We have indeed as poles

(6.18) λ + n = e iα a n , λ - n = e -iα a n ,
where a n is the n-th zero (starting from the right) of Ai . Note that a n < 0 so that Re λ ± n > 0, as expected.

In this case, the restriction of G 1 (x, y ; λ, 0) to R 2 + is the kernel of the resolvent of the Neumann problem in R + .

We also know that the eigenvalues for the Neumann problem are simple. Hence by the local inversion theorem we get the existence of a solution close to each λ ± n for κ small enough (possibly depending on n) if we show that f (λ ± n ) = 0. For λ + n , we have, using the Wronskian relation (A.3) and Ai (e

-iα λ + n ) = 0 , f (λ + n ) = 2π e -iα Ai (e -iα λ + n )Ai (e iα λ + n ) = 2πe -2iα λ + n Ai(e -iα λ + n )Ai (e iα λ + n ) = -iλ + n . (6.19) 
Similar computations hold for λ - n . We recall that

λ + n = λ - n .
The above argument shows that f (λ n ) = 0, with λ n = λ + n or λ n = λ - n . Hence by the holomorphic inversion theorem we get that, for any n ∈ N * (with

N * = N * \ {0}),
and any , there exists h n ( ) such that for |κ| ≤ h n ( ), we have a unique solution λ n (κ) of (6.17) such that |λ n (κ) -λ n | ≤ .

We would like to have a control of h n ( ) with respect to n. What we should do is inspired by the Taylor expansion given in [23] (Formula (33)) of λ ± n (κ) for fixed n :

(6.20) λ ± n (κ) = λ ± n + e ±i π 6 1 a n κ + O n (κ 2 ) . Since |λ n | behaves as n 2 3 (see Appendix A), the guess is that λ ± n+1 (κ) -λ ± n (κ) behaves as n -1 3 .
To justify this guess, one needs to control the derivative in a suitable neighborhood of λ n .

Proposition 30. There exist η > 0 and h ∞ > 0, such that, for all n ∈ N * , for any κ such that |κ| ≤ h ∞ there exists a unique solution of (6.17) in B(λ n , η|λ n | -1 )

with λ n = λ ± n .

Proof of the proposition

Using the previous arguments, it is enough to establish the proposition for n large enough. Hence it remains to establish a local inversion theorem uniform with respect to n for n ≥ N . For this purpose, we consider the holomorphic function

B(0, η) t → φ n (t) = f (λ n + tλ -1 n ) .
To have a local inversion theorem uniform with respect to n, we need to control |φ n (t)| from below.

Lemma 31. For any η > 0, there exists N such that, ∀n ≥ N , (6.21)

|φ n (t)| ≥ 1 2
, ∀t ∈ B(0, η) .

Proof of the lemma

We have

φ n (t) = λ -1 n f (λ n + tλ -1 n ) , and 
φ n (0) = -i .
Hence it remains to control φ n (t) -φ n (0) in B(0, η). We treat the case λ n = λ + n .

We recall that f (λ) = 2πe -iα Ai (e -iα λ)Ai (e iα λ) + 2πe iα Ai (e -iα λ)Ai (e iα λ)

= 2πλ e -2iα Ai(e -iα λ)Ai (e iα λ) + e 2iα Ai (e -iα λ)Ai(e iα λ)

= -iλ + 4πλe 2iα Ai (e -iα λ)Ai(e iα λ). The last term in (6.22) tends to zero. It remains to control Ai (e -iα λ)Ai(e iα λ) in B(λ n , η|λ n | -1 ) and to show that this expression tends to zero as n → +∞.

We have

Ai (e

-iα λ) = e -iα (λ -λ n )Ai (e -iα λ) = e -2iα (λ -λ n ) λ Ai(e -iα λ) , with λ ∈ B(λ n , η|λ n | -1 ).
Hence it remains to show that the product |Ai(e -iα λ)Ai(e iα λ)| for λ and λ in B(λ n , η|λ n | -1 ) tends to 0. For this purpose, we will use the known expansion (ii) For the factor |Ai(e iα λ)|, we use (A.5) to observe that exp -2 3 (e iα λ)

3 2 = exp -i 2 3 (-a n ) 3 2 (1 + O((-a n ) -2 )) ,
and we get, for any

λ ∈ B(λ n , η|λ n | -1 ) (6.24) |Ai(e iα λ)| ≤ C |a n | -1 4 .
This completes the proof of the lemma and of the proposition.

Actually, we have proved on the way the more precise Proposition 32. For all η > 0 and 0 ≤ κ < η 2 , there exists N such that, for all n ≥ N , there exists a unique solution of (6.17) in B(λ n , η |λ n | -1 ).

Figure 1 illustrates Proposition 30. Solving Eq. (6.17) numerically, we find the first 100 zeros λ n (κ) with Im λ n (κ) > 0. According to Proposition 30, these zeros are within distance 1/|λ n | from the zeros λ n = λ n (0) = e iα a n which are given explicitly through the zeros a n . Moreover, the second order term in (6.20) that was computed in [23], suggests that the rescaled distance (6.25)

δ n (κ) = |λ n (κ) -λ n ||λ n |/κ, behaves as (6.26) δ n (κ) = 1 -cκn -1 3 + o(n -1 3 ),
with a nonzero constant c. Remark 33. The local inversion theorem with control with respect to n permits to have the asymptotic behavior of the λ n (κ) uniformly for κ small:

(6.27) λ ± n (κ) = λ ± n + e ±i π 6 1 a n κ + 1 a n O(κ 2
) .

An improvement of (6.27) (as formulated by (6.26)) results from a good estimate on

φ n (t). Observing that |φ n (t)| ≤ C|a n | -1 2
in the ball B(0, η), we obtain

(6.28) λ ± n (κ) = λ ± n + e ±i π 6 1 a n κ + 1 |a n | 3 2 O(κ 2 ) .
If one needs finer estimates, one can compute φ n (0) and estimate φ n , and so on.

It would also be interesting to analyze the case κ → +∞. The limiting problem in this case is the realization of the complex Airy operator on the line which has empty spectrum. See [23] for a preliminary non rigorous analysis.

In the remaining part of this section, we describe the distribution kernel of the projector Π ± n associated with λ ± n (κ). n (κ) of (6.17). At the top, the rescaled distance δn(κ) from (6.25) between λ + n (κ) and λ + n = λ + n (0). At the bottom, the asymptotic behavior of this distance.

Proposition 34. There exists κ 0 > 0 such that, for any κ ∈ [0, κ 0 ] and any n ∈ N * , the rank of Π ± n is equal to one. Moreover, if ψ ± n is an eigenfunction, then

(6.29) +∞ -∞ ψ ± n (x) 2 dx = 0 .

Proof

To write the projector Π ± n associated with an eigenvalue λ ± n we integrate the resolvent along a small contour γ ± n around λ ± n :

(6.30)

Π ± n = 1 2iπ γ ± n (A ± 1 -λ) -1 dλ .
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If we consider the associated kernels, we get, using (6.14) and the fact that G - 0 is holomorphic in λ:

(6.31) Π ± n (x, y ; κ) = 1 2iπ γ ± n G 1 (x, y ; λ, κ) dλ .
The projector is given by the following expression (with w ±,n

x = ix + λ ± n ) for y > 0 (6.32) Π ± n (x, y ; κ) =      -4π 2 e 2iα [Ai (e iα λ ± n )] 2 f (λ ± n )
Ai(e -iα w ±,n x )Ai(e -iα w ±,n y ) (x > 0) ,

2π κ f (λ ± n )
Ai(e iα w ±,n x )Ai(e -iα w ±,n y ) (x < 0) , and for y < 0 (6.33)

Π ± n (x, y ; κ) =      2π κ f (λ ± n ) Ai(e -iα w ±,n x )Ai(e iα w ±,n y ) (x > 0) , -4π 2 e -2iα [Ai (e -iα λ ± n )] 2 f (λ ± n )
Ai(e iα w ±,n x )Ai(e iα w ±,n y ) (x < 0) .

Here we recall that we have established that for |κ| small enough f (λ ± n ) = 0. It remains to show that the rank of Π ± n is one that will yield an expression for the eigenfunction. It is clear from (6.32) and (6.33) that the rank of Π ± n is at most two and that every function in the range of Π ± n has the form (c -Ai(e iα w ±,n x ) , c + Ai(e -iα w ±,n x )) , where c -, c + ∈ R . It remains to establish the existence of a relation between c -and c + . This is directly obtained by using the first part of the transmission condition. If κ = 0, the functions in the range of Π ± n have the form c n Ai (e -iα λ ± n )Ai(e iα w ±,n x ), e 2iα Ai (e iα λ ± n )Ai(e -iα w ±,n x ) , with c n ∈ C. Inequality (6.29) results from an abstract lemma in [START_REF] Aslanyan | Spectral instability for some Schrödinger operators[END_REF] once we have proved that the rank of the projector is one. We have indeed (6.34)

||Π ± n || = 1 | +∞ -∞ ψ ± n (x) 2 dx| .
More generally, what we have proven can be formulated in this way:

Proposition 35. If f (λ) + κ = 0 and f (λ) = 0 , then the associated projector has rank 1 (no Jordan block).

The condition of κ being small in Proposition 34 is only used for proving the property f (λ) = 0. For the case of the Dirichlet or Neumann realization of the complex Airy operator in R + , we refer to Section 3. The nonemptiness was obtained directly by using the properties of the Airy function. Note that our numerical solutions did not reveal projectors of rank higher than 1. We conjecture that the rank of these projectors is 1 for any 0 ≤ κ < +∞ but we could only prove the weaker Proposition 36. For any κ ≥ 0, there is at most a finite number of eigenvalues with nontrivial Jordan blocks.

Proof

We start from f (λ) := 2π Ai (e iα λ) Ai (e -iα λ) ,
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and get by derivation (6.35) 1 2π f (λ) = e iα Ai (e iα λ)Ai (e -iα λ) + e -iα Ai (e iα λ)Ai (e -iα λ) .

What we have to prove is that f (λ) is different from 0 for a large solution λ of f (λ) = -κ. We know already that Re λ ≥ 0. We note that f (0) > 0. Hence 0 is not a pole for κ ≥ 0. More generally f is real and strictly positive on the real axis. Hence f (λ) + κ > 0 on the real axis.

We can assume that Im λ > 0 (the other case can be treated similarly). Suppose that f (λ) = -κ and that f (λ) = 0 .

We have -e iα Ai (e iα λ)Ai(e -iα λ) = e -iα Ai (e -iα λ)Ai(e iα λ) = i 4π .

and get

κ = - ie iα 2 
Ai (e iα λ)

Ai(e iα λ)

= ie -iα 2 
Ai (e -iα λ)

Ai(e -iα λ) .

Using the last equality and the asymptotics (A.5), (A.6) for Ai and Ai , we get as |λ| → +∞ satisfying the previous condition

κ ∼ 1 2 |λ| 1 2 ,
which cannot be true for λ large. This completes the proof of the proposition.

7.

Resolvent estimates as |Im λ| → +∞. The resolvent estimates have been already proved in Section 5 and were used in the analysis of the decay of the associated semigroup. We propose here another approach which leads to more precise results.

We keep in mind (6.14) and the discussion in Section 5.

For λ = λ 0 + iη , we have

G - 0 ( • , • ; λ) L 2 (R 2 ) = G - 0 ( • , • ; λ 0 ) L 2 (R 2 ) .
Hence the Hilbert-Schmidt norm of the resolvent (A + -λ) -1 does not depend on the imaginary part of λ .

As a consequence, to recover Lemma 27 by this approach, it only remains to check the following lemma Lemma 37. For any λ 0 , there exist C > 0 and η 0 > 0 such that

(7.1) sup |η|>η0 G 1 (• , •; λ 0 + iη) L 2 (R 2 ) ≤ C .
This manuscript is for review purposes only. n (κ) found by solving numerically Eq. (6.17) that corresponds to the original problem on R. The presented picture corresponds to a zoom (eliminating numerical artefacts) in a computation done for a large interval [-L, +L] with the transmission condition at the origin and Dirichlet boundary conditions at ±L. The pseudospectrum was computed for L 3 = 10 4 by projecting the complex Airy operator onto the orthogonal basis of eigenfunctions of the corresponding Laplace operator and then diagonalizing the obtained truncated matrix representation (see Appendix E for details). We only keep a few lines of pseudospectra for the clarity of the picture. As predicted by the theory, the vertical lines are related to the pseudospectrum of the free complex Airy operator on the line.

The proof is included in the proof of the following improvement which is the main result of this section and is confirmed by the numerical computations. One indeed observes that the lines of the pseudospectrum are asymptotically vertical as Im λ → ±∞ when Re λ > 0 , see Figure 2.
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> 0, lim η→±∞ G 1 (• , •; λ 0 + iη) L 2 (R 2 ) = 0 .
Moreover, this convergence is uniform for λ 0 in a compact set.

Proof

We have e iα λ = e iα λ 0 -e iπ/6 η and e -iα λ = e -iα λ 0 + e -iπ/6 η .

Then according to (A.6), one can easily check that the term Ai (e ±iα λ) decays exponentially as η → ∓∞ and grows exponentially as η → ±∞ . On the other hand, the term Ai (e iα λ) decays exponentially as η → ±∞ .

More precisely, we have

(7.2) |Ai (e iα (λ 0 + iη))| 2 ∼ |c| 2 η 1 2 exp 2 √ 2 3 η 3 2
, as η → +∞ ;

∼ |c| 2 (-η) 1 2 exp -2 √ 2 3 η 3 2 , as η → -∞ ; |Ai (e -iα (λ 0 + iη))| 2 ∼ |c| 2 η 1 2 exp -2 √ 2 3 η 3 2
, as η → +∞ ;

∼ |c| 2 (-η) 1 2 exp 2 √ 2 3 η 3 2
, as η → -∞ .

As a consequence, the function f (λ), which was defined in (6.10) by

f (λ) := 2πAi (e -iα λ)Ai (e iα λ) ,
has the following asymptotic behavior as η → ∓∞ :

(7.3) f (λ 0 + iη) = 2π|c| 2 |η| 1 2 1 + o(1) .
We treat the case η > 0 (the other case can be deduced by considering the complex conjugate).

Coming back to the two formulas giving G 1 in (6.15) and (6.16) and starting with the first one, we have to analyze the

L 2 norm over R + × R + of (x, y) → -4π 2 e 2iα [Ai (e iα λ)] 2 f (λ) + κ
Ai(e -iα w x )Ai(e -iα w y ) .

This norm N 1 is given by

N 1 := 4π 2 |Ai (e iα λ)| 2 |f (λ) + κ| -1 ||Ai(e -iα w x )|| 2 L 2 (R+) .
Hence we have to estimate +∞ 0

|Ai(e -iα w x )| 2 dx. We observe that e -iα w x = e -i π 6 (x + η) + e -iα λ 0 , and that the argument of e -iα w x is very close to -π 6 as η → +∞ (uniformly for

x > 0). This is rather simple for η > 0 because x and η have the same sign. We can use the asymptotics (A.5) (with z = e -iα w x ) in order to get (7.4)

+∞ 0 |Ai(e -iα w x )| 2 dx ≤ C (|η| 2 + 1) -1 2 exp - 2 √ 2 3 |η| 3 2
.
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Here we have used that, for β > 0, +∞ η exp -βy

3 2 dy = 2 3β exp -βη 3 2 (1 + O(|η| -1 2 )) .
The control of |Ai (e iα (λ 0 + iη))| 2 given in (7.2) and ( 7.3) finally yields (7.5)

N 1 (|η| 2 + 1) -1 2 .
By the notation , we mean that there exists a constant C such that

N 1 ≤ C(|η| 2 + 1) -1 2 .
For the L 2 -norm of the second term (see (6.16)),

N 2 := -2π f (λ) f (λ) + κ
Ai(e iα w x )Ai(e -iα w y )

L 2 (R - x ×R + y )
, we observe that

N 2 ||Ai(e iα w x )|| L 2 (R-) ||Ai(e -iα w x )|| L 2 (R+) ,
and having in mind (7.4), we have only to bound 0 -∞ |Ai(e iα w x )| 2 dx . We can no more use the asymptotic for the Airy function as (x + η) is small. We have indeed

e iα w x = -e i π 6 (x + η) + e iα λ 0 .
We rewrite the integral as the sum The integral in the middle of the r.h.s. is bounded. The first one is also bounded according to the behavior of the Airy function. So the dominant term is the third one

0 -η+C |Ai(e iα w x )| 2 dx = η C |Ai(-e i π 6 x + e iα λ 0 )| 2 dx ≤ C(|η| 2 + 1) 1 4 exp + 2 √ 2 3 |η| 3 2
.

Combining with (7.4), the L 2 -norm of the second term decays as η → +∞:

(7.6) N 2 (|η| 2 + 1) -1 8 .
This achieves the proof of the proposition, the uniformity for λ 0 in a compact being controlled at each step of the proof. This manuscript is for review purposes only.

8.1. Reduction to the case κ = 0. We first reduce the analysis to the case κ = 0 by comparison of the two kernels. We have indeed

G -(x, y ; λ, κ) -G -(x, y ; λ, 0) = G 1 (x, y ; λ, κ) -G 1 (x, y ; λ, 0) = -κ(f (λ) + κ) -1 G 1 (x, y ; λ, 0) , (8.1)
where G -(x, y ; λ, κ) denotes the kernel of the resolvent for the transmission problem associated to κ ≥ 0 and D 2

x -ix.

We will also use the alternative equivalent relation:

(8.2) G -(x, y ; λ, κ) = G -(x, y ; λ, 0)f (λ) (f (λ) + κ) -1 + κ(f (λ) + κ) -1 G - 0 (x, y ; λ, 0) .
Remark 39. This formula gives another way for proving that the operator with kernel G ± (x, y ; λ, κ) is in a suitable Schatten class (see Proposition 21). It is indeed enough to have the result for κ = 0, that is to treat the Neumann case on the half line.

Another application of this formula is

Proposition 40. There exists M > 0 such that for all λ > 0 ,

(8.3) (A ± 1 -λ) -1 HS ≤ M (1 + λ) -1 4 (log λ) 1 2 .

Proof

Proposition 40 is a consequence of Proposition 15, and Formula (8.1).

Remark 41. Similar estimates are obtained in the case without boundary (typically for a model like the Davies operator D 2 x + ix 2 ) by Dencker-Sjöstrand-Zworski [START_REF] Dencker | Pseudospectra of (pseudo) differential operators[END_REF] or more recently by Sjöstrand [START_REF] Sjöstrand | Resolvent estimates for non-selfadjoint operators via semigroups[END_REF].

8.2. Estimate for f (λ). We recall that f (λ) was defined in (6.10) by f (λ) := 2πAi (e -iα λ)Ai (e iα λ) .

Recalling the asymptotic expansions (A.6) and (A.8) of Ai , it is immediate to get Lemma 42. The function λ → f (λ) is an entire function of type 3 2 , i.e. there exists D > 0 such that

(8.4) |f (λ)| ≤ D exp D|λ| 3 2
, ∀λ ∈ C .

Focusing now on the main purpose of this section, we get from (A.6) that for any

> 0 there exists λ 1 > 0 such that, for λ ≥ λ 1 , (8.5) |Ai (e iα λ)| 2 = |Ai (e -iα λ)| 2 ≥ 1 - 4π λ 1 2 exp 4 3 λ 3 2 
.

Here we have also used that (8.6) Ai(z) = Ai(z) and Ai (z) = Ai (z) (note that Ai(x) is real for x real). Thus there exists C 1 > 0 such that, for λ ≥ 1,

(8.7) 1 |f (λ)| ≤ C 1 λ 1 2 exp - 4 3 λ 3 2
.
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|Ai (e iα λ)| 2 |f (λ)| = 1 2π , it is enough to estimate (8.8) +∞ 0 |Ai(e -iα (ix + λ))| 2 dx = I 0 (λ) = 0 -∞ |Ai(e iα (ix + λ))| 2 dx .
It is enough to observe from (3.10), (8.6) and the comparison of the domain of inte-

gration in R 2 , that (8.9) 2I 0 (λ) 2 ≤ ||G - 0 (• , • ; λ)|| 2 .
Applying (3.7), we get (8.10)

I 0 (λ) λ -1 4 exp 4 3 λ 3 2
.

Hence, coming back to (8.1), we have obtained Proposition 43. There exist κ 0 , C and λ 0 > 0 such that, for all κ ∈ [0, κ 0 ], for all λ ≥ λ 0 ,

||G -(• , • ; λ, κ) -G -(• , • ; λ, 0)|| L 2 (R 2 ) ≤ Cκ |λ| -3 4 . (8.11) 
Hence we are reduced to the case κ = 0 which can be decoupled (see Remark 29) Proposition 44. For all κ 0 , there exist C and λ 0 > 0 such that, for all κ ∈ [0, κ 0 ], for all real λ ≥ λ 0 , one has

(8.12) ||G -(• , • ; λ, κ) -(f (λ)(f (λ) + κ) -1 )G -(• , • ; λ, 0)|| L 2 (R 2 ) ≤ Cκ |λ| -3 4 .

This immediately implies

Proposition 45. For any g = (g -, g

+ ), h = (h -, h + ) in L 2 -× L 2 + , we have (8.13) | G -(λ, κ)g , h -(f (λ)(f (λ) + κ) -1 ) G -(λ, 0)g , h | ≤ C(g, h)κ |λ| -3 4 ,
where •, • denotes the scalar product in the Hilbert space L 2 -× L 2 + .

We now adapt the proof of the completeness from [START_REF] Agmon | Elliptic boundary value problems[END_REF].

If we denote by E the closed space generated by the generalized eigenfunctions of A - 1 , the proof of [START_REF] Agmon | Elliptic boundary value problems[END_REF] in the presentation of [START_REF] Henry | Etude de l'opérateur de Airy complexe[END_REF] consists in introducing

F (λ) = G -(λ, κ)g , h ,
where

(8.14) h ∈ E ⊥ and g ∈ L 2 -× L 2 + .
As a consequence of the assumption on h, one observes that F (λ) is an entire function and the problem is to show that F is identically 0. The completeness is obtained if we prove this statement for any g and h satisfying the condition (8.14).

Outside the numerical range of A - 1 , i.e. in the negative half-plane, it is immediate to see that F (λ) tends to zero as Re λ → -∞. If we show that |F (λ)| ≤ C(1 + |λ|) M for some M > 0 in the whole complex plane, we will get by Liouville's theorem that F is a polynomial and, with the control in the left half-plane, we should get that F is identically 0.

Hence it remains to control F (λ) in a neighborhood of the positive half-plane {λ ∈

C , Re λ ≥ 0}.
As in [START_REF] Agmon | Elliptic boundary value problems[END_REF], we apply Phragmen-Lindelöf principle (see Appendix D). The natural idea (suggested by the numerical picture) is to control the resolvent on the positive real axis. We first recall some additional material present in Chapter 16 in [START_REF] Agmon | Elliptic boundary value problems[END_REF].

Theorem 46. Let φ(λ) be an entire complex-valued function of finite order ρ (and φ(λ) is not identically equal to 0). Then for any > 0 there exists an infinite increasing sequence (r k ) k∈N in R + and tending to +∞ such that

min |λ|=r k |φ(λ)| > exp(-r ρ+ k ) .
For this theorem (Theorem 6.2 in [START_REF] Agmon | Elliptic boundary value problems[END_REF]), S. Agmon refers to the book of E.C. Titchmarsh [START_REF] Titchmarsh | The theory of functions[END_REF] (p. 273).

This theorem is used for proving an inequality of the type ρ with ρ = 2 in the Hilbert-Schmidt case. We avoid an abstract lemma [START_REF] Agmon | Elliptic boundary value problems[END_REF] (Lemma 16.3) but follow the scheme of its proof for controlling directly the Hilbert-Schmidt norm of the resolvent along an increasing sequence of circles.

Proposition 47. For > 0, there exists an infinite increasing sequence (r k ) k∈N in R + tending to +∞ such that

max |λ|=r k ||G ± (• , • ; λ, κ)|| HS ≤ exp r 3 2 + k . Proof We start from (8.15) G -(x, y ; λ, κ) = G -(x, y ; λ, 0)f (λ) (f (λ)+κ) -1 +κ(f (λ)+κ) -1 G - 0 (x, y ; λ, 0) .
We apply Theorem 46 with φ(λ) = f (λ) + κ. It is proven in Lemma 42 that f is of type 3 2 . Hence we get for > 0 (arbitrary small) the existence of a sequence

r 1 < r 2 < • • • < r k < • • • such that max |λ|=r k 1 f (λ) + κ ≤ exp r 3 2 + k .
In view of (8.15), it remains to control the Hilbert-Schmidt norm of

G -(x, y ; λ, 0)f (λ) + κ G - 0 (x, y ; λ, 0) .
Hence the remaining needed estimates only concern the case κ = 0. The estimate on the Hilbert-Schmidt norm of G - 0 is recalled in (3.7). It remains to get an estimate for the entire function G -(x, y ; λ, 0)f (λ).
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Because κ = 0 , this is reduced to the Neumann problem on the half-line for the complex Airy operator D 2 x -ix. For y > 0 and x > 0 , f (λ) G N 1 (x, y ; λ) is given by the following expression

(8.16) f (λ) G N 1 (x, y ; λ) = -4π 2 [e 2iα
Ai (e iα λ)] 2 Ai(e -iα w x )Ai(e -iα w y ) .

We only need the estimate for λ in a sector containing R + × R + . This is done in [START_REF] Henry | Etude de l'opérateur de Airy complexe[END_REF] but we will give a direct proof below. In the other region, we can first control the resolvent in L(L 2 ) and then use the resolvent identity

G ±,N (λ) -G ±,N (λ 0 ) = (λ -λ 0 )G ±,N (λ)G ±,N (λ 0 ) .
This shows that in order to control the Hilbert-Schmidt norm of G ±,N (λ) for any λ, it is enough to control the Hilbert-Schmidt norm of G ±,N (λ 0 ) for some λ 0 , as well as the L(L 2 ) norm of G ±,N (λ), the latter being easier to estimate.

More directly the control of the Hilbert-Schmidt norm is reduced to the existence of a constant C > 0 such that

+∞ 0 |Ai(e -iα (ix + λ))| 2 dx ≤ C exp(C|λ| 3 
2 ) .

In this case, we have to control the resolvent in a neighborhood of the sector Im λ ≤ 0 , Re λ ≥ 0, which corresponds to the numerical range of the operator. As x → +∞, the dominant term in the argument of the Airy function is e i(-α+ π

2 ) x = e -i π 6 x. As expected we arrive in a zone of the complex plane where the Airy function is exponentially decreasing. It remains to estimate for which x we enter in this zone. We claim that there exists C > 0 such that if x ≥ C|λ| and |λ| ≥ 1, then

|Ai(e -iα (ix + λ))| ≤ C exp(-C(x + |λ|) 3 2 ) .
In the remaining zone, we obtain an upper bound of the integral by O exp(C|λ| 3 2 ) .

We will then use the Phragmen-Lindelöf principle (Theorem 54). For this purpose, it remains to control the resolvent on the positive real line. It is enough to prove the theorem for g + = (0, g + ) and g -= (g -, 0). In other words, it is enough to consider F + (resp. F -) associated with g + (resp. g -).

Let us treat the case of F + and use Formula (8.2) and Proposition 45:

(8.17) | G -(λ, κ)g + , h -(f (λ)(f (λ) + κ) -1 ) G -(λ, 0)g + , h + | ≤ C(g, h)κ |λ| -3 4 .
This estimate is true on the positive real axis. It remains to control the term | G -(λ, 0)g + , h |. Along this positive real axis, we have by Proposition 15 the decay of F + (λ). Using Phragmen-Lindelöf principle completes the proof.

Note that for F -(λ), we have to use the symmetric (with respect to the real axis) curve in Im λ > 0.

In summary, we have obtained the following Proposition 48. For any κ ≥ 0, the space generated by the generalized eigenfunctions of the complex Airy operator on the line with transmission is dense in

L 2 -× L 2 + . (ii) For | arg z| < 2 3 π , Ai(-z) = 1 √ π z -1 4 sin 2 3 z 3 2 + π 4 (1 + O(|z| -3 2 ) (A.7) - 5 72 
2 3 z 3 2 -1 cos 2 3 z 3 2 + π 4 (1 + O(|z| -3 2 ) Ai (-z) = - 1 √ π z 1 4 cos 2 3 z 3 2 + π 4 (1 + O(|z| -3 2 )) (A.8) + 7 72 2 3 z 3 2 -1 sin 2 3 z 3 2 + π 4 (1 + O(|z| -3 2 ))
(moreover O is for any > 0, uniform in the sector {| arg z| ≤ 2π 3 -}).

Appendix B. Analysis of the resolvent of A + on the line for λ > 0 (after [START_REF] Martinet | Sur les propriétés spectrales d'opérateurs non-autoadjoints provenant de la mécanique des fluides[END_REF]).

On the line R, A + is the closure of the operator A + 0 defined on C ∞ 0 (R) by

A + 0 = D 2 x + ix.
A detailed description of its properties can be found in [START_REF] Helffer | Spectral theory and its applications[END_REF]. In this appendix, we give the asymptotic control of the resolvent (A + -λ) -1 as λ → +∞.

We successively discuss the control in L(L 2 (R)) and in the Hilbert-Schmidt space C 2 (L 2 (R)). These two spaces are equipped with their canonical norms.

B.1. Control in L(L 2 (R)).
Here we follow an idea present in the book of E. B.

Davies [START_REF] Davies | Linear operators and their spectra[END_REF] and used in J. Martinet's PHD [START_REF] Martinet | Sur les propriétés spectrales d'opérateurs non-autoadjoints provenant de la mécanique des fluides[END_REF] (see also [START_REF] Helffer | Spectral theory and its applications[END_REF]).

Proposition 49.

For all λ > λ 0 ,

(A + -λ) -1 L(L 2 (R)) ≤ √ 2π λ -1 4 exp 4 3 λ 3 2 1 + o(1) . (B.1)

Proof

The proof is obtained by considering A + in the Fourier space, i.e.

(B.2)

A + = ξ 2 -d dξ .

The associated semi-group T t := exp(-A + t) is given by

T t u(ξ) = exp -ξ 2 t -ξt 2 - t 3 3 u(ξ -t) , ∀ u ∈ S(R) . (B.3)
T t appears as the composition of a multiplication by exp(-ξ 2 t -ξt 2 -t 3

3 ) and a translation by t. Computing sup ξ {exp(-ξ 2 t -ξt 2 -t 3 3 )} leads to

T t L(L 2 (R)) ≤ exp - t 3 12 . (B.4)
It is then easy to get an upper bound for the resolvent. For λ > 0, we have

(A + -λ) -1 L(L 2 (R)) = ( A + -λ) -1 L(L 2 (R)) (B.5) ≤ +∞ 0 exp(tλ) T t L(L 2 (R)) dt ≤ +∞ 0 exp tλ - t 3 12 dt .
The right hand side can be estimated by using the Laplace integral method. Setting t = λ This completes the proof of the proposition. We note that this upper bound is not optimal in comparison with Bordeaux-Montrieux's formula (3.5). 

B.2. Control in

( A + -λ) -1 2 HS = (A + -λ) -1 2 HS .
We have then an explicit description of the resolvent by

( A + -λ) -1 u(ξ) = ξ -∞ u(η) exp 1 3 (η 3 -ξ 3 ) + λ(ξ -η) dη .
Hence, we have to compute

( A + -λ) -1 2 HS = η<ξ exp 2 3 (η 3 -ξ 3 ) + 2λ(ξ -η) dηdξ .
After the change of variable (ξ 1 , η 1 ) = (λ -1 2 ξ, λ -1 2 η), we get

( A + -λ) -1 2 HS = λ η1<ξ1 exp λ 3 2 2 3 (η 3 1 -ξ 3 1 ) + 2(ξ 1 -η 1 ) dξ 1 dη 1 . With (B.9) h = λ -3 2 ,
we can write

(B.10) ( A + -λ) -1 2 HS = h -2 3 Φ(h),
where

(B.11) Φ(h) = y<x exp 2 h [φ(x) -φ(y)] dxdy , with φ(x) = x - x 3 3 . (B.12)
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I 1 (h) = I 2 (h) ,
and that

I 3 (h) = I 4 (h) 2 , with I 4 (h) = R + exp 2 h φ(x) dx .
Hence, it remains to estimate, as h → 0, the integrals I 1 (h) and I 4 (h).

B.2.1. Control of I 1 (h).

The function φ(x) is positive on (0, √ 3) and negative decreasing on ( √ 3, +∞), with φ(0) = φ( √ 3) = 0. It admits a unique non-degenerate maximum at x = 1 with

φ(1) = 2 3 .
We first observe the trivial estimates exp -

2 h φ(y) ≤ 1 , ∀ y ∈ [0, √ 3] ,
and

exp 2 h φ(x) ≤ 1 , ∀ x ∈ [ √ 3, +∞[ .
We will also have to estimate, for x ≥ √ 3,

J(h, x) := x √ 3 exp - 2 h φ(y) dy .
For this purpose, we integrate by parts, observing that exp -

2 h φ(y) = - h 2 1 φ (y) d dy exp - 2 h φ(y) .
We get

J(h, x) = - h 2 1 φ (x) exp - 2 h φ(x) - h 2 1 φ ( √ 3) + h 2 x √ 3 1 φ (y) exp - 2 h φ(y) dy .
This implies

J(h, x) ≤ h 2 1 x 2 -1 exp - 2 h φ(x) - h 2 1 φ ( √ 3) + ChJ(h, x) ,
and finally, for h small enough and another constant C > 0

(B.14) J(h, x) ≤ h 2 1 + Ch x 2 -1 exp - 2 h φ(x) + Ch , ∀x ∈ [ √ 3, +∞) .
Similarly, one can show that (B.15)

+∞ √ 3 exp 2 h φ(x) dx ≤ h 4 .
With these estimates, we can bound I 1 (h) from above in the following way

I 1 (h) = √ 3 0 exp 2 h φ(x) x 0 exp - 2 h φ(y) dy dx + +∞ √ 3 exp 2 h φ(x) √ 3 0 exp - 2 h φ(y) dy dx + +∞ √ 3 exp 2 h φ(x) J(h, x) ≤ √ 3 0 exp 2 h φ(x) √ 3 0 exp - 2 h φ(y) dy dx +( √ 3 + Ch) +∞ √ 3 exp 2 h φ(x) dx +(1 + Ch) h 2 +∞ √ 3 1 x 2 -1 dx ≤ 3 sup [0, √ 3] exp 2 h φ(x) + ( √ 3 + Ch)h 4 +(1 + Ch) h 2 +∞ √ 3 1 x 2 -1 dx ≤ 3 exp 4 3h + √ 3h(1 + Ch) 4 + h 2 (1 + Ch) +∞ √ 3 1 x 2 -1 dx .
Hence we have shown the existence of Ĉ > 0 and h 0 > 0 such that, for h ∈ (0, h 0 ), (B. [START_REF] Dunford | Linear operators. Part 2: Spectral theory, self adjoint operators in Hilbert space[END_REF])

I 1 (h) ≤ Ĉ exp 4 3h .
Consequently, I 1 (h) and I 2 (h) appear as remainder terms.
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(C.1) ||G -,D (λ)|| HS ∼ √ 3 2 √ 2 λ -1 4 (log λ)
C.3. More facts on Airy expansions. As a consequence of (A.5), we can write for λ > 0 and x > 0

(C.6) |Ai(e -iα (ix + λ))| = exp -2 3 λ 3 2 u(x/λ) 2 √ π(λ 2 + x 2 ) 1 8 1 + O(λ -3 2 ) , where 
u(s) = -(1 + s 2 ) 3 4 cos 3 2 tan -1 (s) = √ 1 + s 2 + 1 ( √ 1 + s 2 -2) √ 2 . (C.7)
We note indeed that |e -iα (ix + λ)| = √ x 2 + λ 2 ≥ λ ≥ λ 0 and that we have a control of the argument arg(e -iα (ix + λ)) ∈ [-2π 3 , -π 6 ] which permits to apply (A.5).

Similarly, we obtain 2 ) .

(C.8) |Ai(ix + λ)| = exp 2 3 λ 3 2 u(x/λ) 2 √ π(λ 2 + x 2 ) 1 8 1 + O(λ - 3 
We note indeed that |ix + λ| = √ x 2 + λ 2 and arg((ix + λ)) ∈ [0, + π 2 ] so that one can then again apply (A.5). In particular the function |Ai(ix + λ)| grows superexponentially as x → +∞. The control of the next order term (as given in (A.5)) implies that there exist C > 0 and 0 > 0, such that, for any ∈ (0, 0 ], any λ > ε -2 3 and any x ≥ 0, one has

(C.9) (1-C ) exp -2 3 λ 3 2 u(x/λ) 2 √ π (λ 2 + x 2 ) 1 8 ≤ |Ai(e -iα (ix+λ))| ≤ (1+C ) exp -2 3 λ 3 2 u(x/λ) 2 √ π (λ 2 + x 2 ) 1 8 and (C.10) (1 -C ) exp 2 3 λ 3 2 u(x/λ) 2 √ π (λ 2 + x 2 ) 1 8 ≤ |Ai(ix + λ)| ≤ (1 + C ) exp 2 3 λ 3 2 u(x/λ) 2 √ π (λ 2 + x 2 ) 1 8 
, where the function u is explicitly defined in Eq. (C.7).

Basic properties of u.

Note that

(C.11) u (s) = 3 2 √ 2 s 1 + √ 1 + s 2 ≥ 0 (s ≥ 0),
and u has the following expansion at the origin

(C.12) u(s) = -1 + 3 8 s 2 + O(s 4 ) .
For large s, one has

(C.13) u(s) ∼ s 3 2 √ 2 , u (s) ∼ 3s 1 2 2 √ 2 .
One concludes that the function u is monotonously increasing on [0, +∞) with u(0) = -1 and lim s→+∞ u(s) = +∞ .

This manuscript is for review purposes only. 

(C.14) Q(x, λ) ≤ 1 + 1 Q 1 (x, λ) + (1 + )Q 2 (x, λ) , with Q 1 (x, λ) := |Ai(e -iα (ix + λ))| 2 |Ai(λ)| 2 |Ai(e -iα λ)| 2 x 0 |Ai(e -iα (iy + λ))| 2 dy and Q 2 (x, λ) := |Ai(e -iα (ix + λ))| 2 x 0 |Ai(iy + λ)| 2 dy .
We then write

Q 1 (x, λ) ≤ |Ai(e -iα (ix + λ))| 2 |Ai(λ)| 2 |Ai(e -iα λ)| 2 +∞ 0 |Ai(e -iα (iy + λ))| 2 dy and integrating over x +∞ 0 Q 1 (x, λ)dx ≤ I 0 (λ) 2 |Ai(λ)| 2 |Ai(e -iα λ)| 2 ,
where I 0 (λ) is given by (8.8).

Using (8.10) and (A.5), we obtain

(C.15) +∞ 0 Q 1 (x, λ)dx ≤ Cλ -1 2 .
Hence at this stage, we have proven the existence of C > 0, 0 > 0 and λ 0 such that for any ∈ (0, 0 ] and any λ ≥ λ 0

(C.16) ||G -,D || 2 HS ≤ (1 + )   8π 2 ∞ 0 Q 2 (x; λ)dx   + Cλ -1 2 -1 .
It remains to estimate (C.17

) +∞ 0 Q 2 (x, λ)dx = +∞ 0 dx x 0 |Ai(e -iα (ix + λ))Ai(iy + λ)| 2 dy .
Using the estimates (C.6) and (C.8), we obtain Lemma 51. There exist C and 0 , such that, for any ∈ (0, 0 ), for λ > -2 3 , the integral of Q 2 (x; λ) can be bounded as

(C.18) 1 2 (1 -C ) I(λ) ≤ 8π 2 +∞ 0 Q 2 (x, λ)dx ≤ 1 2 (1 + C ) I(λ) ,
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where

(C.19) I(λ) = ∞ 0 dx exp -4 3 λ 3 2 u(x/λ) (λ 2 + x 2 ) 1 4 x 0 dy exp 4 3 λ 3 2 u(y/λ) (λ 2 + y 2 ) 1 4
.

Control of I(λ).

It remains to control I(λ) as λ → +∞ . Using a change of variables, we get (C.20)

I(λ) = λ ∞ 0 dx exp -4 3 λ 3 2 u(x) (1 + x 2 ) 1 4 x 0 dy exp 4 3 λ 3 2 u(y) (1 + y 2 ) 1 4 . Hence, introducing (C.21) t = 4 3 λ 3 2 ,
we reduce the analysis to Î(t) defined for t ≥ t 0 by

(C.22) Î(t) := ∞ 0 dx 1 (1 + x 2 ) 1 4
x 0 dy exp t(u(y) -u(x))

(1 + y 2 ) 1 4 
, with (C.23)

I(λ) = λ I 4 3 λ 3 2 
.

The following analysis is close to that of the asymptotic behavior of a Laplace integral.

Asymptotic upper bound of Î(t).

Although u(y) ≤ u(x) in the domain of integration in Eq. (C.22), a direct use of this upper bound will lead to an upper bound by +∞.

Let us start by a heuristic discussion. The maximum of u(y) -u(x) should be on x = y. For x -y small, we have u(y) -u(x) ∼ (y -x)u (x). This suggests a concentration near x = y = 0, whereas a contribution for large x is of smaller order.

More rigorously, we write (C.24)

I(t) = I 1 (t, ) + I 2 (t, , ξ) + I 3 (t, ),
with, for 0 < < ξ,

I 1 (t, ) = 0 dx 1 (1 + x 2 ) 1 4
x 0 dy exp t(u(y) -u(x))

(1 + y 2 ) 1 4 , I 2 (t, , ξ) = ξ dx 1 (1 + x 2 ) 1 4
x 0 dy exp t(u(y) -u(x))

(1 + y 2 ) 1 4 , I 3 (t, ξ) = +∞ ξ dx 1 (1 + x 2 ) 1 4
x 0 dy exp t(u(y) -u(x))

(1 + y 2 ) 1 4 
.

(C.25)
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We now observe that u(s) has the form u(s) = v(s 2 ) where v > 0 , so that

(C.26) ∀x, y s.t. 0 ≤ y ≤ x ≤ τ 0 , sup τ ∈[0,τ0] v (τ ) (x 2 -y 2 ) ≥ u(x) -u(y) ≥ inf τ ∈[0,τ0] v (τ ) (x 2 -y 2 ) .
Analysis of I 1 (t, ).

Using the right hand side of inequality (C.26) with τ 0 = , we show the existence of constants C and 0 > 0, such that, ∀ ∈ (0, 0 )

(C.27) (1 -C )J (1 + C ) 3 8 t ≤ I 1 (t, ) ≤ (1 + C )J (1 -C ) 3 8 t , with J (σ) := 0 dx x 0 exp σ(y 2 -x 2 ) dy ,
which has now to be estimated for large σ.

For 1 √ σ ≤ , we write

J (σ) = J 1 (σ) + J 2 (σ) , with J 1 (σ) := 1 √ σ 0 dx x 0 exp σ(y 2 -x 2 ) dy , J 2 (σ) := 1 √ σ dx x 0 exp σ(y 2 -x 2 ) dy .
Using the trivial estimate

x 0 exp σ(y 2 -x 2 ) dy ≤ x, we get (C.28) J 1 (σ) ≤ 1 2 σ
.

We have now to analyze J 2 (σ).

The formula giving J 2 (σ) can be expressed by using the Dawson function (cf [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF], p. We get indeed

J 2 (σ) = 1 σ σ 1 2 -1 2 D(s)ds .
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By taking small enough to use the asymptotics of D(•) , we get

J 2 (σ) = 1 2σ   σ 1 2 -1 2 1 s ds + σ 1 2 -1 2 δ(s) s ds   = 1 4 log σ σ + C σ (log + O(1)) .
(C.30)

Hence we have shown the existence of constants C > 0 and 0 such that if t ≥ C -3

and ∈ (0, 0 ), then

(C.31) I 1 (t, ) ≤ 2 3 log t t + C log t t + 1 1 t .
Analysis of I 3 (t, ξ)

We start from

I 3 (t, ξ) = +∞ ξ dx 1 (1 + x 2 ) 1 4
x 0 dy exp t(u(y) -u(x))

(1 + y 2 ) 1 4 
.

Having in mind the properties of u, we can choose ξ large enough in order to have for some c ξ > 0 the property that for x ≥ ξ and x 2 ≤ y ≤ x,

(C.32) u(x) ≥ c ξ x 3 2 u(x) -u(x/2) ≥ c ξ x 3 2 , u(x) -u(y) ≥ c ξ x 1 2 (x -y) .
This determines our choice of ξ. Using these inequalities, we rewrite I 3 (t, ξ) as the sum

I 3 (t, ξ) = I 31 (t) + I 32 (t) , with I 31 (t) = +∞ ξ dx 1 (1 + x 2 ) 1 4
x 2 0 dy exp t(u(y) -u(x))

(1 + y 2 ) 1 4 , I 32 (t) = +∞ ξ dx 1 (1 + x 2 ) 1 4 x x 2 dy exp t(u(y) -u(x)) (1 + y 2 ) 1 4
.
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(1 + y 2 ) 1 4 
.

We first observe that This manuscript is for review purposes only. with a positive parameter κ.

Since the interval [-L, L] is bounded, the spectrum of the above differential operator is discrete. To compute its eigenvalues, one can either discretize the second derivative, or represent this operator in an appropriate basis in the form of an infinitedimensional matrix. Following [START_REF] Grebenkov | Exploring diffusion across permeable barriers at high gradients. I. Narrow pulse approximation[END_REF], we choose the second option and use the basis formed by the eigenfunctions of the Laplace operator -d 2 dx 2 with the above boundary conditions. Once the matrix representation is found, it can be truncated to compute the eigenvalues numerically. Finally, one considers the limit L → +∞ to remove the auxiliary boundary conditions at x = ±L.

There are two sets of Laplacian eigenfunctions in this domain: 

β n = 1 + 2κL α 2 n + 4κ 2 L 2 -1 2 .
The solutions α n of Eq. (E.4) lie in the intervals (πn + π/2, πn + π), with n ∈ N .

In what follows, we use the double index (n, j) to distinguish symmetric and antisymmetric eigenfunctions and to enumerate eigenvalues, eigenfunctions, as well as the elements of governing matrices and vectors. We introduce two (infinite-dimensional) matrices Λ and B to represent the Laplace operator and the position operator in the Laplacian eigenbasis:

(E.6) Λ n,j;n ,j = δ n,n δ j,j µ n,j , and (E.7) B n,j;n ,j = L -L dx v n,j (x) x v n ,j (x) .

The symmetry of eigenfunctions v n,j implies B n,1;n ,1 = B n,2;n ,2 = 0, while B n,1;n ,2 = B n ,2;n,1 The convergence of the eigenvalues λ n,L computed by diagonalization of the matrix Λ + iB truncated to the size 100×100. Due to the reflection symmetry of the interval, all eigenvalues appear in complex conjugate pairs: λ 2n,L = λ2n-1,L . The last line presents the poles of the resolvent of the complex Airy operator A + 1 obtained by solving numerically the equation (6.17). The intermediate column shows the eigenvalue λ 3,L coming from the auxiliary boundary conditions at x = ±L (as a consequence, it does not depend on the transmission coefficient κ). Since the imaginary part of these eigenvalues diverges as L → +∞, they can be easily identified and discarded.

The infinite-dimensional matrix Λ+iB represents the complex Airy operator A +,D 1,L on the interval [-L, L] in the Laplacian eigenbasis. As a consequence, the eigenvalues and eigenfunctions can be numerically obtained by truncating and diagonalizing this matrix. The obtained eigenvalues are ordered according to their increasing real part: Re λ 1,L ≤ Re λ 2,L ≤ . . . Table 1 illustrates the rapid convergence of these eigenvalues to the eigenvalues of the complex Airy operator A + 1 on the whole line with transmission, as L increases. The same matrix representation was used for plotting the pseudospectrum of A + 1 (Fig. 2).

  , y ; t) = (D∆ -iγgx 1 ) G(x, y ; t) , with the initial condition (1.2) G(x, y ; t = 0) = δ(x -y), where δ(x) is the Dirac distribution, D the intrinsic diffusion coefficient, ∆ = ∂ 2 /∂x 2 1 +

Remark 28 .

 28 One could alternatively use more directly the expression of the kernel G + (x, y ; λ) of (A + 1 -λ) -1 in terms of Ai and Ai , together with the asymptotic expansions of the Airy function, see Appendix A and the discussion at the beginning of Section 7.

  φ n (t) -φ n (0) = 4πλλ -1 n e 2iα Ai (e -iα λ)Ai(e iα λ) -itλ -2 n , with λ = λ n + tλ -1 n .

±i 2 3 z 3 2 = exp ±i 2 3 ( 4 ∀

 234 for the Airy function (recalled in Appendix A) in the balls B(e -iα λ n , η|λ n | -1 ) and B(e iα λ n , η|λ n | -1 ). (i) For the factor |Ai(e -iα λ)|, we need the expansion of Ai(z) for z in a neighborhood of a n of size C|λ n | -1 . Using the asymptotic relation (A.7), we observe that exp -a n ) Hence we get |Ai(e -i αλ)| ≤ C |a n | -1 λ ∈ B(λ n , η|λ n | -1 ) .

Figure 1 (

 1 top) shows that the distance δ n (κ) remains below 1 for three values of κ: 0.1, 1, and 10. The expected asymptotic behavior given in (6.26) is confirmed by Figure 1(bottom), from which the constant c is estimated to be around 0.31.

Fig. 1 .

 1 Fig.1. Illustration of Proposition 30 by the numerical computation of the first 100 zeros λ + n (κ) of (6.17). At the top, the rescaled distance δn(κ) from (6.25) between λ + n (κ) and λ + n = λ + n (0). At the bottom, the asymptotic behavior of this distance.

  Using the equation satisfied by the Airy function, we get (6.36) 1 2πλ f (λ) = e -iα Ai(e iα λ)Ai (e -iα λ) + e iα Ai (e iα λ)Ai(e -iα λ) , and by the Wronskian relation (A.3): (6.37) e -iα Ai (e -iα λ)Ai(e iα λ) -e iα Ai (e iα λ)Ai(e -iα λ) = i 2π .

Fig. 2 .

 2 Fig.2. Numerically computed pseudospectrum in the complex plane of the complex Airy operator with Neumann boundary conditions (top) and with the transmission boundary condition at the origin with κ = 1 (bottom). The red points show the poles λ ± n (κ) found by solving numerically Eq. (6.17) that corresponds to the original problem on R. The presented picture corresponds to a zoom (eliminating numerical artefacts) in a computation done for a large interval [-L, +L] with the transmission condition at the origin and Dirichlet boundary conditions at ±L. The pseudospectrum was computed for L 3 = 10 4 by projecting the complex Airy operator onto the orthogonal basis of eigenfunctions of the corresponding Laplace operator and then diagonalizing the obtained truncated matrix representation (see Appendix E for details). We only keep a few lines of pseudospectra for the clarity of the picture. As predicted by the theory, the vertical lines are related to the pseudospectrum of the free complex Airy operator on the line.
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  iα w x )| 2 dx + 0 -η+C |Ai(e iα w x )| 2 dx .

8 .

 8 Proof of the completeness. We have already recalled or established in Section 3 (Propositions 10, 14, and 17) the results for the Dirichlet, Neumann or Robin realization of the complex Airy operator in R + . The aim of this section is to establish the same result in the case with transmission. The new difficulty is that the operator is no longer sectorial.

  in two Neumann problems on R -and R + . Using (8.2) and the estimates established for G - 0 (• , • ; λ, 0) (which depends only on Re λ) (see (3.7) or (3.5)), we have

6 )

 6 We observe that φ(s) = s -s3 12 admits a global non-degenerate maximum on [0, +∞) at s = 2 with φ(2) = 4 3 and φ (2) = -1. The Laplace integral method gives the following equivalence as λ → +∞ :

  Hilbert-Schmidt norm. In this part, we give a proof of Proposition 7. As in the previous subsection, we use the Fourier representation and analyze A + . Note that (B.8)

  THE COMPLEX AIRY OPERATOR ON THE LINE WITH A SEMI-PERMEABLE BARRIER 39Φ(h) can now be split in three terms Φ(h) = I 1 (h) + I 2 (h) + I 3 (h) , x) -φ(y)] dxdy .

C. 2 .R 2 + 2 ∞ 0 Q0

 2220 The Hilbert-Schmidt norm of the resolvent for real λ . The Hilbert-Schmidt norm of the resolvent can be written as(C.2) ||G -,D || 2 HS = |G -,D (x, y ; λ)| 2 dxdy = 8π (x; λ)dx,whereQ(x; λ) = |Ai(e -iα (ix + λ))| 2 |Ai(e -iα λ)| 2 × × xAi(e iα (iy + λ))Ai(e -iα λ) -Ai(e -iα (iy + λ))Ai(e iα λ) 2 dy. (C.3) Using the identity (A.4), we observe that Ai(e iα (iy + λ))Ai(e -iα λ) -Ai(e -iα (iy + λ))Ai(e iα λ) = e -iα Ai(e -iα (iy + λ))Ai(λ) -Ai(iy + λ)Ai(e -iα λ) . (C.4) Hence we get (C.5) Q(x; λ) = |Ai(e -iα (ix + λ))| 2 x 0 Ai(e -iα (iy + λ)) Ai(λ) Ai(e -iα λ) -Ai(iy + λ) 2 dy .

Figure 3

 3 Figure 3 illustrates that, for large λ, both equations (C.6) and (C.8) are very accurate approximations for |Ai(e -iα (ix + λ))| and |Ai(ix + λ)|, respectively.

  δ(s)) ,where the function δ(s) satisfies δ(s) = O(s -1 ) .

I 2 exp c ξ t(y 2 - 3 8 λ - 1 2-1 2 . 3 8 λ -1 2 ( 1 +C. 5 .Q 1 Q 2

 22312321512 (t, , ξ) ≤ ξ dx x 0 dy exp t(u(y) -u(x)) ≤ ξ dx x 0 dy exp c ξ t(y 2 -x 2 ) , This manuscript is for review purposes only. x 2 ) dy ≤ x 0 exp c ξ tx(y -x) dy = 1 c ξ tx 1 -exp(-c ξ tx 2 ) ≤ 1 c ξ tx , we get (C.36) I 2 (t, , ξ) ≤ 1 c ξ t (log ξ -log ) . Putting together (C.24), (C.31), (C.35) and (C.36), we have shown the existence of C > 0 and 0 such that if t ≥ C -3 and ∈ (0, 0 )Coming back to (C.23) and using (C.16), we show the existence of C > 0 and 0 suchthat if λ ≥ C -2 , then ||G -,D (λ)|| 2 HS ≤ log λ + C λ -1 2 log λ + 1 λ Taking = (log λ) -1 2 ,we obtainLemma 52. There exist C > 0 and λ 0 such that for λ ≥ λ 0||G -,D (λ)|| 2 HS ≤ C (log λ) -12 ) log λ . Lower bound. Once the upper bounds are established, the proof of the lower bound is easy. We start from the simple lower bound (for any > 0)(C.38) Q(x, λ) ≥ -1 Q 1 (x, λ) + (1 -)Q 2 (x, λ) , (x, λ) dx .Taking = (log λ) -1 2 and using the upper bound (C.15), it remains to find a lower bound for +∞ 0 (x, λ)dx, which can be worked out in the same way as for the upper bound. We can use (C.18), (C.27), (C.30) and (C.40) I(t) ≥ I 1 (t, ) This gives the proof of Lemma 53. There exist C > 0 and λ 0 such that for λ ≥ λ 0 ||G -,D (λ)|| 2 HS ≥ 3 8 λ -1 2 (1 -C (log λ) -1 2 ) log λ .
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Fig. 3 . 2 dx 2 +

 322 Fig. 3. (Top) Asymptotic behavior of |Ai(e -iα (ix + λ))| (left) and |Ai(ix + λ)| (right) for large λ. (Bottom) The ratio between these functions and their asymptotics given by (C.6) and (C.8).

  (i) symmetric eigenfunctions (E.2) v n,1 (x) = 1/L cos(π(n + 1/2)x/L), µ n,1 = π 2 (n + 1/2) 2 /L 2 ,enumerated by the index n ∈ N.(ii) antisymmetric eigenfunctions(E.3) v n,2 (x) = +(β n / √ L) sin(α n (1 -x/L)) (x > 0), -(β n / √ L) sin(α n (1 + x/L)) (x < 0), with µ n,2 = α 2 n /L 2 ,where α n (n = 0, 1, 2, . . .) satisfy the equation (E.4) α n ctan(α n ) = -2κL , while the normalization constant β n is (E.5)

  THE COMPLEX AIRY OPERATOR ON THE LINE WITH A SEMI-PERMEABLE BARRIER 33 8.3. Estimate of the L 2 norm of G 1 (• , • ; λ, 0). Having in mind (6.15)-(6.16)

  THE COMPLEX AIRY OPERATOR ON THE LINE WITH A SEMI-PERMEABLE BARRIER 41B.2.2. Asymptotic of I 4 (h). Here, using the properties of φ, we get by the The aim of this appendix is to give the proof of Proposition 11. Although it is not used in our main text, it is interesting to get the main asymptotic for the Hilbert-Schmidt norm of the resolvent in Proposition 11.

	standard Laplace integral method				
	(B.17)	I 4 (h) ∼ π/2	√	h exp	4 3h	.
	Hence, putting altogether the estimates, we get, as h → 0,
	(B.18)	Φ(h) ∼	πh 2	exp	8 3h
	Coming back to (B.8), (B.9) and (B.10), this achieves the proof of Proposition 7.
	Appendix C. Analysis of the resolvent for the Dirichlet realization in
	the half-line.					
	C.1. Main statement.				

  THE COMPLEX AIRY OPERATOR ON THE LINE WITH A SEMI-PERMEABLE BARRIER 43C.4. Upper bound. We start from the simple upper bound (for any > 0)

  THE COMPLEX AIRY OPERATOR ON THE LINE WITH A SEMI-PERMEABLE BARRIER 47Using the monotonicity of u, we obtain the upper boundI 31 (t) ≤Hence, there exists ξ > 0 such that as t → +∞ , (C.33)I 31 (t) = O exp(ξ t) .The last term to control is I 32 (t). Using (C.32) and(1 + y 2 ) -1 4 ≤ (1 + (x/2)2 ) -Hence putting together (C.33) and (C.34) we have, for this choice of ξ, the existence of Ĉξ > 0 and t ξ > 0 such that (C.35) ∀t ≥ t ξ , I 3 (t) ≤ Ĉξ /t . Analysis of I 2 (t, , ξ).

														x
				ξ	+∞	dx		1 (1 + x 2 )	4 1	0	2	dy exp t(u(y) -u(x))
			≤	1 2	ξ	+∞		x	1 2 exp t(u(x/2) -u(x)) dx
			≤	1 2	ξ	+∞		x	1 2 exp -c ξ t x	3 2	dx
			≤	1 3	ξ	+∞ 2 3		exp -c ξ ts ds
			≤	1 3c ξ t		exp -c ξ ξ	3 2 t .
														1 4 ≤	√	2 (4 + x 2 ) -1 4 ≤	√	2 (1 + x 2 ) -1 4
	for x/2 ≤ y ≤ x, we get										
	I 32 (t) ≤	√	2	ξ	+∞	dx	1 (1 + x 2 )	2 1	x	x	dy exp(t(u(y) -u(x))
														2
	(C.34)	≤	√	2	ξ	+∞	dx	1 (1 + x 2 )	2 1	x	x	dy exp -c ξ tx	1 2 (x -y)
		≤	√ c ξ t 2		ξ	+∞	x -3 2 dx =	2 √ 2 √ ξc ξ t 2	.
	We recall that												
	I 2 (t, , ξ) =			ξ	dx	1 (1 + x 2 )	1 4

Table 1

 1 This manuscript is for review purposes only.THE COMPLEX AIRY OPERATOR ON THE LINE WITH A SEMI-PERMEABLE BARRIER 51

		L	λ 1,L	λ 3,L	λ 5,L
		4 0.5161 -0.8918i 1.2938 -2.1938i 3.7675 -1.9790i
	κ = 0	6 0.5094 -0.8823i 1.1755 -3.9759i 1.6066 -2.7134i 8 0.5094 -0.8823i 1.1691 -5.9752i 1.6233 -2.8122i
		10 0.5094 -0.8823i 1.1691 -7.9751i 1.6241 -2.8130i
		∞ 0.5094 -0.8823i		1.6241 -2.8130i
		4 1.0516 -1.0591i 1.3441 -2.0460i 4.1035 -1.7639i
	κ = 1	6 1.0032 -1.0364i 1.1725 -3.9739i 1.7783 -2.7043i 8 1.0029 -1.0363i 1.1691 -5.9751i 1.8364 -2.8672i
		10 1.0029 -1.0363i 1.1691 -7.9751i 1.8390 -2.8685i
		∞ 1.0029 -1.0363i		1.8390 -2.8685i

= -2Lβ n sin(α n )(α 2 n + π 2 (n + 1/2) 2 ) -(-1) n (2n + 1)πα n (α 2 n -π 2 (n + 1/2) 2 ) 2 . (E.8)

We recall that a collection of vectors (x k ) in a Hilbert space H is called Riesz basis if it is an image of an orthonormal basis in H under some isomorphism.

The coefficient was wrong in[START_REF] Martinet | Sur les propriétés spectrales d'opérateurs non-autoadjoints provenant de la mécanique des fluides[END_REF] and is corrected here, see Appendix B.This manuscript is for review purposes only.
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(1 + O(1/|a n | 2 )) = O(1) .

Appendices.

Appendix A. Basic properties of the Airy function.

In this Appendix, we summarize the basic properties of the Airy function Ai(z) and its derivative Ai (z) that we used (see [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF] for details).

We recall that the Airy function is the unique solution of (D 2

x + x)u = 0 on the line such that u(x) tends to 0 as x → +∞ and

This Airy function extends into a holomorphic function in C .

The Airy function is positive decreasing on R + but has an infinite number of zeros in R -. We denote by a n (n ∈ N) the decreasing sequence of zeros of Ai. Similarly we denote by a n the sequence of zeros of Ai . They have the following asymptotics (see for example [START_REF] Abramowitz | Handbook of Mathematical Functions[END_REF]), as n → +∞,

, and

.

The functions Ai(e iα z) and Ai(e -iα z) (with α = 2π/3) are two independent solutions of the differential equation

Their Wronskian reads

Note that these two functions are related to Ai(z) by the identity

The Airy function and its derivative satisfy different asymptotic expansions depending on their argument:
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Appendix D. Phragmen-Lindelöf theorem.

The Phragmen-Lindelöf Theorem (see Theorem 16.1 in [START_REF] Agmon | Elliptic boundary value problems[END_REF]) reads Theorem 54. (Phragmen-Lindelöf ) Let us assume that there exist two rays 

(ii) There exist an increasing sequence (r k ) tending to +∞, and C such that

with β < α.

Then we have

for all λ between the two rays R 1 and R 2 .

Appendix E. Numerical computation of eigenvalues.

In order to compute numerically the eigenvalues of the realization A +,D 1,L of the complex Airy operator A + 0 := D 2 x +ix = -d 2 dx 2 +ix on the real line with a transmission condition, we impose auxiliary Dirichlet boundary conditions at x = ±L, i.e., we
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