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Shape optimization of a moving bottom underwater generating solitary waves ruled by a forced KdV equation

In the context of surng competitions, some people investigated a new type of wavemakers working thanks to a translating bottom underwater. The forced Korteweg-de Vries equation is chosen to model this phenomenon. The shape of a bottom b : x → b(x) that would create the highest wave elevation u b : (x, t) → u b (x, t) has to be found. This article studies theoretically and numerically the following shape optimization problem: the maximization of the total energy u b 2 L 2 (0,T ;L 2 (R,R)) of the wave elevation over the set of non-negative square-integrable bottoms b ∈ L 2 (R, [0, +∞[), whose supports are included in a xed compact set, and whose L 2 -norms are uniformly bounded by a given positive constant.

After a short description of the problem and a presentation of its context, the mathematical choices made to solve it are justied. Then, the existence of a maximizer saturating the L 2 -constraint is established. Finally, the shape gradient of the functional is derived, the optimization algorithm is described, and the pertinence of the numerical results is analysed.

Introduction

The generation of water-waves is a very complex phenomenon and the articial reproduction of such processes has many interesting practical applications for the engineering industry. For example, the elaboration of wavemakers for laboratory experiments started at least in the late 1960s [30,43]. In the context of surf competitions, people are interested in generating a solitary wave because:

• its shape u : (x, t) → u(x, t) = a sech 2 [ 1 2 a 3 (x -a 3 t)] is very stable and can travel over very large distances without changing its initial state;

• its propagating velocity is directly related to its amplitude so the solitary wave is ruled by only one parameter, its height denoted by a;

• if two of these waves collide, they will never merge and seem not to interact with each other, although the linear principle does not hold true in this case due to the non-linearities.

As reported in [64], such a Great Wave of Translation can be generated by dropping accelerated water in a correctly designed pool, and some further analysis [11,12,42,55] show that its prole is a solution of the well-known Korteweg-de Vries (KdV) equation

∂ t u + u∂ x u + ∂ xxx u = 0.
In this paper, we consider a slightly dierent mechanism, which has been recently used to develop a now-patent prototype of wavemaker [66]. The operating principle consists in translating a moving bottom underwater to produce periodically the save convenient wave upstream the forcing disturbance [75]. In physics, similar processes are called auto-resonance phenomena [32,33,34]. This problem has also been tremendously studied in the context of tsunamis created by earthquake [13,24,28,38,50] or submarine landslide [3,51,73,74]. Although horizontal components can be introduced [27,49,67,68,69], most of the contributions comes from the vertical ones. Hence, these studies completely dier from ours, which only involves the horizontal translation of a bottom. Moreover, the translating bottom is assumed to move steadily in shallow water, at a constant speed close from the critical velocity c 0 := √ gh 0 , where h 0 > 0 is the depth of the pool, and g > 0 the acceleration due to gravity. Hence, we can reasonably justify the long-wave assumption due to shallow water [22,72] but weakly dispersive and non-linear eects should be considered since experiments display the successive propagation of solitary waves ahead the moving disturbance.

As shown by Wu in [75], the forced Korteweg-de Vries (fKdV) equation models very well this unidirectional phenomenon. Indeed, a broad agreement is found between experimental data and numerical solutions, as accurate as the Boussinesq, the Euler, or the viscous Navier-Stokes equations [15,45,79]. Moreover, its large range of validity and its simplicity allow a mathematical analysis that captures all the basic mechanisms underlying the wavemaker operating principle.

In this article, we investigate theoretically and numerically how the shape of a moving bottom underwater can aect the energy of the wave generated. We are mainly interested in the following shape optimization problem:

sup b∈B F (b) . (1) 
The set B of all admissible bottoms is dened as:

B := b ∈ L 2 (R, R) | supp b ⊆ [-K, K] , b 0, and b L 2 (R,R) := R b(x) 2 dx M , (2) 
where K > 0 and M > 0 are xed. The energy functional F : b ∈ B → F (b) ∈ R is given by:

F (b) := u b 2 L 2 (0,T ;L 2 (R,R)) = T 0 R u b (x, t) 2 dxdt, (3) 
where T > 0 is xed, and where u b : (x, t) ∈ R × [0, +∞[ → u b (x, t) ∈ R denotes the free-surface elevation ruled by the following fKdV equation with zero initial data

     ∂u b ∂t (x, t) + u b (x, t) ∂u b ∂x (x, t) + ∂ 3 u b ∂x 3 (x, t) = - db dx (x) ∈ H -1 (R, R) x ∈ R, t 0 u b (x, 0) = 0 x ∈ R. (4) 
The variable t refers to time while x denotes the horizontal space variable expressed in the bottom frame i.e. x := ξ -c 0 t, where ξ is the horizontal spatial coordinate of the unidirectional model.

As usual, the partial derivatives of (4) are understood in a distributional sense. Moreover, the second member of the evolution equation does not depend on time. This fundamental hypothesis ensures that (4) has a scaling property (Lemma 1.4), enabling [71] to get a priori estimates as in the KdV case [20], and overcoming the absence of conservation laws in H s , s < 0. Combined with a result of local well-posedness [7,8,10,40], it yields to the existence of a unique global solution to the initial-value problem (4) for low-regular bottoms (b :

H σ → u b ∈ C 0 t (H σ+2 x ), σ -1 2 [71]
), whereas much stronger regularity is often required for other wave models. In particular, (3) is a well-dened application from L 2 (R, R) into R (Proposition 2.1).

Consequently, the class of admissible bottoms (2) seems rather natural. Indeed, non-negative bottoms with compact support must be considered for manufacturing reasons. Moreover, we impose the support to lie in a xed compact set. This hypothesis is essential to obtain the continuity of the functional (3) with respect to the L 2 -weak topology (Proposition 2.5). Furthermore, without an L 2 -constraint, (1) becomes an ill-posed problem in the sense that the supremum is not achieved, even with smooth bottoms (Proposition 1.5), and there are good evidence to think that it is not even nite. The proofs are again based on the scaling argument of Lemma 1.4, which is allowed because the norm of the bottom topography is not bounded. That is why (2) includes a uniform L 2 -bound, which also provides the required compactness property (Lemma 2.4).

A similar formulation to (1) was studied by Nersisyan,Dutykh,and Zuazua in [48], where the bottom velocity is not necessarily constant. Hence, they optimize the trajectory t → x 0 (t) and the shape x → b(x) of the underwater wavemaker subject to some practical constraints. The optimal bottom topography h : (x, t) → -h 0 + b[x -x 0 (t)] generates a free-surface elevation (x, t) → u(x, t) that minimizes a cost function through a Benjamin-Bona-Mohany (BBM) equation [4] of the form

∂ t u + 1 2 ∂ x u + 3 2 u∂ x u -1 2 ∂ x (hu) -1 6 ∂ xxt u = -1 4 ∂ xtt h + 1 2 ∂ t h with zero initial data.
Both BBM and fKdV models can be deduced from Boussinesq-type systems [6,52,75] and the approach adopted in [48] is closer to the controllability community, for which a wide literature is available on the BBM [1,46,54,59,80], KdV [16,17,21,36,37,44,53,56,57,58,61,62,63,77], or Boussinesq equations [78]. At rst glance, the fKdV model may seem reductive compared to the BBM one since it only considers the specic case of constant velocity (x 0 (t) = c 0 t in [48]).

However, problem (1) is still interesting for engineering applications and it has appeared to be much more challenging mathematically for several reasons: (i) theoretically, the existence of a maximizer to (1) becomes a dicult problem for low-regular bottoms, which is less straightforward than the case of smoother ones [48, Theorem 2];

(ii) numerically, the fKdV equation is known to be quite unstable so its regularized version is often preferred for computations [75, above (58)], or the model is modied [48, below (2.5)].

In this paper, we aim to show that the viewpoint of shape optimization allows to successfully investigate (i)-(ii), using techniques from calculus of variations and shape dierentiability. Our rst main contribution is to obtain the existence of an optimal bottom saturating the L 2 -constraint.

Theorem 1.1. Let T > 0, M > 0, and K > 0. Then, the shape optimization problem (1) is well posed in the following sense:

∃b opt ∈ B, F b opt = max b∈B F (b) ,
where the set of admissible bottoms B and the energy functional F : b ∈ B → F (b) ∈ R are dened respectively by ( 2) and (3). Moreover, any maximizer b opt of (1) has to satisfy b opt L 2 (R,R) = M . The L 2 -weak topology seems a rather natural setting since F : L 2 (R, R) → R is a well-dened application (Proposition 2.1). For this topology, the compactness of B is relatively straightforward (Lemma 2.4) whereas the continuity of F : B → R is not, an issue related to the continuity of the non-linear map

N : b ∈ L 2 (R, R) → u b ∈ C 0 t (0, T ; H 2 x (R, R)).
The usual strategy rstly consists in obtaining an explicit a priori C 0 t (H 2 x )-estimates of u b with respect to b L 2 (R,R) , which requires a certain amount of work (Corollary 2.3). Indeed, although smooth bottoms can only be considered by standard approximating arguments, one has to improve the C 0 t (L 2 x )-estimate of Tsugawa [71] by adapting the KdV-conservation laws to (4), a procedure which is possible because the forcing term does not depend on time (Proposition 2.2). Then, one should expect to deduce some continuity from this estimation and classical compactness arguments such as the Aubin-Lions-Simon Lemma [65]. However, it does not apply directly here since the embedding H 2 (R, R) ⊂ H 1 (R, R) is not compact. By dealing directly with (4), we can nevertheless recover the continuity of N : L 2 → C 0 t (H 1 x ) for the L 2 -strong topology (Proposition 2.6). Finally, using the fact that the bottom supports are all contained in a xed compact set [-K, K], with given K > 0, we also obtain the continuity of

N : {b ∈ L 2 , supp b ⊆ [-K, K]} → C 0 t (L 2 x )
for the L 2 -weak topology (Proposition 2.5). We believe the arguments used in the proofs of Propositions 2.1, 2.2, 2.5 and 2.6 are original contributions. Therefore, Theorem 1.1 holds true, the saturation of the L 2 -constraint essentially following from the scaling property of Lemma 1.4. The map

N : B → C 0 t (H 1 x ) is also 1 4 -Hölder continuous while N : B → C 0 t (L 2 
x ) and F : B → R are 1 2 -Hölder continuous (Corollary 2.7). Then, our second main contribution is concerned with the description of an ecient numerical algorithm that can provide an optimal shape. A striking feature is that the numerical simulations strongly suggest the uniqueness of a global maximizer to (1), which is represented in Figure 1.

Concerning the numerical discretization of the fKdV equation, we derive a Crank-Nicholson nite-dierence scheme, whereas the BBM equation was computed in [48] thanks to sophisticated nite-volume methods [5,18,25,26]. More precisely, we follow the general procedure described by Furihata [35], which is known to be very stable since it conserves some physical properties: the mass and the Hamiltonian. We consider a linearized version whose performances are compared to some other well-known schemes [31,70,76] constrained by a severe stability condition ∆t = O(∆x 3 ). The results are displayed in Figure 3. Our scheme is as precise as its rivals in their stable regime, but slower. However, it has the great advantage to be unconditionally stable so we can reduce drastically the computational time while keeping the same order of precision. We also prove its consistency (Proposition 3.1) and state its stability (Proposition 3.2), whose numerical dissipation and dispersion properties have already been studied in [23]. We mention that we correct a wrong expression made in the Von Neumann analysis of [23, ( 48)-( 50)] (Remark 3.3). 
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Figure 1: Numerical prole obtained for the optimal bottom of (1), by starting from a cosine shape. For all the simulations, we have always preferred the physical version of the fKdV equation ( 4), which is 75, (17)]. The program is implemented with Matlab and performed on a standard laptop. Here, the computational time is 9 minutes for the following parameters:

(2/c 0 )∂ t u + (3/h 0 )u∂ x u + (h 2 0 /3)∂ xxx u + ∂ x b = 0 [
h 0 = 1, g = 9.81, c 0 = √ gh 0 , M 2 = 0.03, supp b ⊆ [-3, 1]
, ∆x = 0.05, L = 50, ∆t = 0.1, T = 30, κ = 30 000, γ = 0.00025, and ι = γ10 -5 (see below for notation).

Concerning the optimization algorithm, we could just reduce the discretization of (1) to the maximization of a cost function depending on many unknown points subject to some non-linear constraints. However, each evaluation of (3) requires to solve (4), which is time consuming, and some random line searches often lead to instability since the physical problem is not enough taken into account. Hence, people often proceed to some regularization techniques and/or lower the number of unknowns to few points, from which the shape is interpolated as in [48]. Here, we aim to use the tools of shape analysis to eciently solve (1) and recover a precise numerical shape.

First, given b ∈ L 2 (R, R), we obtain the Fréchet dierentiability of h ∈ H 1 (R, R) → F (b+h) ∈ R at the origin (Proposition 2.9), which gives us access to the optimal perturbation that locally increases the functional (3). This latter is denoted ∂ b F and called the shape gradient of F at b. Moreover, it can be explicitly expressed thanks to an adjoint formulation of (4) (Proposition 2.8). Such a formula for ∂ b F is very advantageous since we can now set up a gradient method that respects the geometrical physics of the problem. However, in order to evaluate ∂ b F , two partial dierential equations must be solved at each iteration of the optimization process. This procedure is quite costly so we introduce a lter that kills the wavetrains reaching the boundaries of the computational domain [-L, L], where L > 0 can thus be seriously reduced.

The inuence of the lter is illustrated in Figure 4. Although it severely alters the numerical solution of ( 4 

b, λ) ∈ B × R → F (b) + λ(M 2 -b 2 L 2 (R,R)
) and the theory of duality establishes that:

sup b∈B F (b) = inf λ 0 sup b∈L 2 (R,[0,+∞[) supp b⊆[-K,K] L(b, λ).
Hence, given κ > 0 and γ > 0 small, the algorithm reads b new = (P R) . Such an iterative process is known to be highly oscillatory around the saddle point, a feature illustrated in Figure 5. The convergence of our algorithm is thus ruled by γ and κ whose tuning has been very dicult to implement. The program ends when are satised the constraints and the stop criteria b new -b old L 2 (R,R) < ι, where ι > 0 is chosen small. Finally, we can now justify numerically the legitimate interrogation about the choice of the L 2 -setting to study (1). Indeed, theoretically speaking, it would have been much easier to consider admissible bottoms b ∈ H

+ • P K )[b old + γ∂ b L(b old , λ old )] followed by λ new = P + [λ old -κ∂ λ L(b new , λ old )], where one can check that ∂ b L(b, λ) = ∂ b F -2λb and ∂ λ L(b, λ) = M 2 -b 2 L 2 (R,
1 0 (]-K, K[, [0, +∞[) satisfying b H 1 (R,R) M .
However, in this case, our numerical approach furnishes an irregular perturbation

∂ b L(b, λ) = ∂ b F -2λ(b-∂ xx b) ∈ H -1 (R, R).
The computation immediately diverges, yielding to errors and oscillations, and even theoretically, the well-posedness of ( 4) is only proved at least for bottoms in H -1 2 , although it is actually not known whether this exponent is optimal [71, Remark 1.2]. In any case, the KdV well-posedness in H s is only true for s -3 4 [41], the critical exponent s = -3 4 being optimal [19,47]. Hence, there is few hope to get a stable program. In comparison, the great advantage of the L 2 -setting is that our shape gradient remains a square integrable map so our numerical algorithm is stable with respect to the class of admissible bottoms. Moreover, the optimal bottom given in Figure 1 is not H 1 -regular since it displays a discontinuity on its right side, and as shown Figure 7, this feature does not come from the support restrictions. At last, as shown in Figure 6, the simulations suggest there is only one critical point. We deduce from Theorem 1.1 that it is the maximizer of (1).

The paper is organized as follows. In the remaining part of the introduction, the mathematical form of (1) is rst justied: a fKdV equation as a model (Section 1.1), a linear functional instead of a more physical one (Section 1.2), and a L 2 -constraint to achieve the supremum (Section 1.3). Then, Section 2 is devoted to the theoretical study of (1). The global well-posedness of (4) is given in Section 2.1, ensuring in particular that (3) is a well-dened functional. In Section 2.2, we establish a priori estimates in order to get the existence of a maximizer to (1) in Section 2.3. In Section 2.4, other properties of (3) are highlighted such as its Hölder continuity and Fréchet dierentiability, giving us access to the shape gradient of (3) via the adjoint formulation of (4). Finally, Section 3 is concerned with the numerical analysis of (1). In Section 3.1, the numerical scheme used for computing (4) is presented and choices made to solve it are justied. In Section 3.2, the adjoint formulation of (4) is discretized in order to evaluate the shape gradient of (3), whose expression is incorporated in an optimization algorithm of Usawa-type. The results obtained are described and their pertinence analysed in Section 3.3. We conclude this article by giving some perspectives for future works in Section 4.

1.1

A wavemaker mechanism based on a fKdV equation

We recall that the operating principle consists in generating solitary waves periodically, upstream a translating bottom underwater. In a h 0 -deep pool under a g-gravity eld, the forcing disturbance (ξ, t) → h(ξ -U t) must move steadily in shallow water at a constant speed U close from the critical velocity c 0 := √ gh 0 . In [75], Wu carries out a theoretical study of this resonance phenomenon by deriving a fKdV model. We briey recall how. Considering a two-dimensional inviscid uid having a constant density ρ, one can establish the well-known Euler equations ruling the uid motion:

   div (u) = 0 and ∂ t u + (u ∇) (u) + 1 ρ ∇p = 0 for z ∈ [-h 0 + h, η], ξ ∈ R, t 0 p = ρgη and u z = ∂ t η + u ξ ∂ ξ η on z = η u z = ∂ t h + u ξ ∂ ξ h on z = -h 0 + h,
where u : (ξ, z, t) → (u ξ , u z )(ξ, z, t) denotes the uid velocity, p : (ξ, z, t) → p(ξ, z, t) the pressure, η : (ξ, t) → η(ξ, t) the free-surface elevation, and h : (ξ, t) → h(ξ, t) the bottom topography. First, the variables are adimensionalized as follows: ξ * := ξ/λ, z * := z/h 0 , t * := c 0 t/λ, p * := p/(ρga), u * := (h 0 u ξ , λu z )/(ac 0 ), η * := η/a, and h * = h/d, where λ is the typical wavelength, a the freesurface amplitude, and d the bottom amplitude. Four adimensionalized parameters now appear in the previous equations: ε := (h 0 /λ) 2 , α := a/h 0 , δ := d/h 0 , and F r := U/c 0 . Then, assuming the bottom topography has the specic form (ξ * , t * ) → h * (ξ * -F r t * ), the horizontal (adimensionalized) spatial coordinate of the bottom frame x * = ξ * -F r t * is considered. We also seek for solutions in the far-eld of the time domain by introducing the new variable τ * := εt * . Finally, we scale the parameters in the following way: α = O(ε), δ = O(ε 2 ), and F r = 1+O(ε). Under the shallow-water assumption ε << 1, an asymptotic expansion of all the functions is done. Solving the zero-and rst-order approximations of the previous system, one can obtain that the free-surface elevation η : (x, t) → η(x, t) satises a fKdV equation [75, (17)] whose dimensional form is:

2 c 0 ∂η ∂t (x, t) -2 U c 0 -1 ∂η ∂x (x, t) + 3 h 0 η(x, t) ∂η ∂x (x, t) + h 2 0 3 ∂ 3 η ∂x 3 (x, t) + dh dx (x) = 0, (5) 
where t 0 is the time variable, and where x ∈ R is the horizontal space variable expressed in the bottom frame i.e. we have x := ξ -U t. This unidirectional model has been retained for the wavemaker because, as shown in [15,45,79], a broad agreement is found between the experimental data with a large range of validity (0.9 < F r < 1.1 and 0 < δ < 0.15).

Throughout this article, we will always assume that U = c 0 . This hypothesis is quite important here because it justies that without loss of generality, we can always consider (4) instead of its physical counterpart (5) for the theoretical study of the shape optimization problem (1), the crucial point being that the forcing term remains independent of time whether we use (4) or (5).

Lemma 1.2. Let h 0 > 0 and c 0 > 0. We assume that U = c 0 . We set x := 1 h0 3 3 5 x and t := c0 2h0 3 4 5 t. We also consider u(x, t) := 1 h0 3 4 5 η(x, t) and b(x) := 1 h0 3 3 5 h(x). Then u : (x, t) → u(x, t) is a solution of (4) if and only if η : (x, t) → η(x, t) satises (5) with zero initial data.

1.2

Some considerations to get a suitable functional First, the free-surface elevation generated by the fKdV equation ( 5) with zero initial data possesses a generic behaviour illustrated in Figure 2 and detailed in [75]. It is characterized by ve regions:

a h 0 -deep undisturbed uid on ] -∞, x 0 ] [x 2 , +∞[, a cnoidal wavetrain downstream on [x 0 , x 1 ],
an almost constant depressed water surface of depth h 0 -h 1 behind the disturbance on [x 1 , -K], and solitary waves generated periodically upstream on [K, x 2 ]. 

Horizontal spatial coordinate in the bottom frame Vertical spatial coordinate

Free-surface elevation at the final time Profile of the solitary wave generated Bottom topography of a cosine shape The numerical simulation is implemented on Matlab for a cosine-shaped bottom. The prole of the solitary wave generated is also compared to the analytical one associated with h = 0 in (5), whose expression is explicitly given by η 0 (x, t) = a sech 2 [ 3a/4h 3 0 (x -x 0 -ac0 2h0 t)].

h 0 h 0 h 1 x 0 x 1 x 2 -K K
Hence, (5) models the periodic formation of a solitary wave whose only degree of freedom, its amplitude a b , depends on the bottom topography b : x → b(x). Therefore, an ecient wavemaker is the one generating the highest wave, and whose shape solves the optimization problem:

sup b 0 supp b⊆[-K,K] a b = sup b 0 supp b⊆[-K,K] max x∈R u b (x, T ), (6) 
where the time T > 0 is long enough to allow the generation of a solitary wave, and where u b is a solution of ( 5) with (h, η) = (b, u b ), and a zero initial condition. In addition, for manufacturing reasons, we impose the bottom to be non-negative and zero outside a xed compact set [-K, K] with given K > 0. Let us now recall some arguments of [75, Section 4]. First, after a time T 0 where the rst soliton is generated, the period T s of a soliton generation can be estimated [75, (34)] in order to choose the nal time T in (8):

T s = 64h 0 c 0 h 0 3a 3 2 . ( 7 
)
We deduce from (7) that higher is the amplitude a and less time will be necessary to produce it, which is not intuitive. Moreover, for non-negative bottoms, it is experimentally observed that T s > T 0 [75, Figure 1]. As a consequence, any T > T s (b) is thus appropriate in ( 6), where T s (b) is evaluated with (7) for one non-negative square-integrable bottom b whose support lies in [-K, K].

Indeed, if we have a b a b opt , then we get from (7) T s (b) T s (b opt ) so the solitary wave associated with a bottom close enough from the optimal one is generated before the nal time T > T s (b opt ).

Then, we claim that problem (6) has the same qualitative behaviour than the following smooth unconstrained version of problem (1):

sup b∈C ∞ c (R,[0,+∞[) supp b⊆[-K,K] T 0 R u b (x, t) 2 dxdt. (8) 
Indeed, the resistance due to some unsteady waves is associated to a drag coecient experienced by the bottom D w (t) := R b(x)∂ x u(x, t)dx. Its average value on the period T s can also be estimated D w = a 3 /(4h 0 ) [75, (35)]. Averaging the L 2 -conservation law R (5) × udx, we deduce that:

∀t > 0, u (•, t) 2 L 2 (R,R) = c 0 t 0 D w (s)ds. (9) 
Furthermore, the numerical simulations show that the function t → u(•, t) 2 L 2 (R,R) is almost linear, which can thus be approximated by the linear map t → D w t. Consequently, we obtain:

T 0 R u (x, t) 2 dxdt ∼ c 0 D w T 2 2 = c 0 a 3 T 2 8h 0 .
Finally, the last relation implies that problems ( 6) and ( 8) have the same qualitative behaviour. However, formulation (8) will be retained because of the linearity of the integrals. Indeed, the numerical algorithm of Section 3 is a gradient method which is based on the shape derivative of the functional (3) that cannot be evaluated for problem (6).

1.3

The necessity of a L 2 -constraint to achieve the supremum

We now show that in fact, problem ( 8) is ill-posed in the sense that the supremum is not achieved.

There are also good evidence to think that it is not even nite. The proofs are based on a scaling argument, which is mainly allowed because the norm of the bottom topography is not bounded. That is why the set B of admissible bottoms dened in (2) includes a uniform L 2 -bound. First, we recall the well-posedness of (5) for smooth bottoms, adapting Bona and Smith's results

[7]. Lemma 1.3. Let T > 0, U > 0, c 0 > 0, and h 0 > 0. Consider b ∈ H ∞ (R, R) := ∩ s 0 H s (R, R).
Then, there exists a unique u ∈ C ∞ (0, T ; H ∞ (R, R)) solving ( 5) with (h, η) = (b, u) and u(•, 0) = 0.

Proof. First, as in Lemma 1.2, scale the variables and functions to transform (5) into [7, (3.24)].

Then, check that the hypothesis of [7, Proposition 15] are satised so Lemma 1.3 holds true.

Then, the scaling property of (4), already mentioned in [71] can be checked by direct calculation. In Lemma 1.4, we deduce u θ = u b θ from the uniqueness of a solution ensured by Lemma 1.

3. Lemma 1.4. Let u : (x, t) ∈ R × [0, +∞[ → u(x, t) ∈ R and b : x ∈ R → b(x) ∈ R be two smooth
functions satisfying (4). For any θ ∈ R, we introduce the maps u θ : (x, t) → θ 2 u(θx, θ 3 t) and b θ : x → θ 4 b(θx). Then, u θ and b θ also satisfy (4) and we have u θ = u b θ .

Proposition 1.5. Let K > 0, T > 0, U = c 0 > 0, and h 0 > 0. Then, the optimization problem (8) has no global maximizer. If in addition, there exists a smooth non-negative map b : x → b(x) whose support is included in [-K, K] and such that its associated smooth solution u b given in Lemma 1.3 satises +∞ 0 R u b (x, t) 2 dxdt = +∞, then the supremum of ( 8) is not nite. Proof. By contradiction, if there exists a maximizer b to (8), then from Lemma 1.3, we can consider its associated smooth solution u b . Introducing the bottoms (b θ ) of Lemma 1.4, one can check they are admissible for (8). Moreover, we deduce from Lemma 1.4 thatF

(b θ ) = θ 3 T 0 R u b (x, t) 2 dxdt.
Using the optimality of b, we obtain 2 The existence of a maximizer to the problem In this section, we are mainly interested in establishing some useful theoretical results in order to prove that Theorem 1.1 holds true i.e. that the supremum of ( 1) is achieved. First, in Section 2.1, we adapt Tsugawa's results in [71] to our case, yielding to the time global well-posedness of (4). We also establish a useful quantitative estimate, ensuring in particular that ( 3) is a well-dened map from

F (b θ ) = F (b) for any θ > 1 so u b = 0 on [T, θ 3 T ].
L 2 (R, R) into R.
Then, in Section 2.2, we give some explicit a priori estimates, which are used in Section 2.3 to prove Theorem 1.1. The compactness of ( 2) is quite straightforward while the continuity of (3) requires some eorts. Finally, in Section 2.4, other properties of (3) are highlighted such as its 1 2 -Hölder continuity and its Fréchet dierentiability, giving us access to the shape gradient of (3) via the adjoint formulation of (4). 

∂ t u + u∂ x u + ∂ xxx u = f (x) ∈ H σ (R, R) with σ -3 2 and u(•, 0) ∈ H s (R, R), s ∈] -3 4 , σ + 3].

It is actually not known whether the condition σ

-3 2 is optimal or not [71, Remark 1.2], whereas the critical exponent s = -3 4 seems to be optimal. Indeed, Christ, Colliander, and Tao proved in [19] that the KdV solution operator fails to be uniformly continuous for any s ∈ [-1, -3 4 [, a necessary condition to the validity of the iteration method. Moreover, the usual bilinear estimate fails to be true for s < -3 4 (see e.g. [47]) but Kishimoto established in [41] the global well-posedness of the KdV equation at the critical regularity exponent s = -3 4 . Let us now relate [71, Theorem 1.2] with (4). In our case, we have u 0 ≡ 0 and σ = -1. Therefore, we obtain the existence of a global solution to problem (4) for any T > 0 and any b ∈ L 2 (R, R). Moreover, such as a global solution is uniquely determined, ensuring that the functional

F : b → F (b) given by (3) is a correctly dened application from L 2 (R, R) into R. Proposition 2.1. Let T > 0 and b ∈ L 2 (R, R). Then, the initial-value problem (4) is well posed in the sense that it has a unique global solution u b ∈ C 0 (0, T ; H 2 (R, R)). Moreover, for any other b ∈ L 2 (R, R), its associated solution u b ∈ C 0 (0, T ; H 2 (R, R)) satises the quantitative estimate: sup t∈[0,T ] u b(•, t) -u b (•, t) 2 L 2 (R,R) 4CT e CT b -b L 2 (R,R) ,
where we have set

C := max( u b C 0 (0,T ;H 2 (R,R)) , u b C 0 (0,T ;H 2 (R,R)) ).
In particular, the energy functional

F : b → F (b) given by (3) is a correctly dened application from L 2 (R, R) into R.
Proof. Let T > 0 and b ∈ L 2 (R, R). Applying [71, Theorem 1.2] with σ = -1, u 0 ≡ 0, and f = -db dx , we deduce that there exists a map u b ∈ C 0 (0, T ; H 2 (R, R)) satisfying the initial-value problem (4). Considering another bottom b ∈ L 2 (R, R) with an associated solution u b ∈ C 0 (0, T ; H 2 (R, R)), we introduce the quantities δb = b -b and δu = u b -u b . One can check that they satisfy the following initial-value problem:

       ∂ (δu) ∂t (x, t) + ∂ ∂x δu 2 2 + u b δu + ∂ 2 (δu) ∂x 2 (x, t) = - d (δb) dx (x) ∈ H -1 (R, R) x ∈ R, t ∈ [0, T ] δu(x, 0) = 0 x ∈ R.
(10) We emphasize the fact that the partial derivatives in (10) have to be handled with care since they are understood in a distributional sense. However, we can still apply the integration-by-parts formula [60,Lemma 7.3 (7.15)] by considering the Gelfand triple

H 1 (R, R) ⊂ L 2 (R, R) ⊂ H -1 (R, R) and δu ∈ {w ∈ L 2 (0, T ; H 1 (R, R)), ∂ t w ∈ L 2 (0, T ; H -1 (R, R))}. For any t ∈ [0, T ], we get from (10): δu (•, t) 2 L 2 (R,R) = δu(•, 0) L 2 (R,R) + 2 t 0 ∂ t (δu) | δu H -1 (R,R),H 1 (R,R) (•, s)ds = 2 t 0 - ∂ ∂x δu 2 2 + u b δu + ∂ 2 (δu) ∂x 2 + δb | δu H -1 (R,R),H 1 (R,R) (•, s) ds = 2 t 0 δu 2 2 + u b δu + ∂ 2 (δu) ∂x 2 + δb | ∂(δu) ∂x H -1 (R,R),H 1 (R,R) (•, s) ds = 2 t 0 R δb(x) ∂(δu) ∂x (x, s) dxds - t 0 R δu(x, s) 2 ∂u b ∂x (x, s) dxds 2T δb L 2 (R,R) ∂ x (u b ) C 0 (0,T ;L 2 (R,R)) + ∂ x u b C 0 (0,T ;L 2 (R,R)) + t 0 δu (•, s) 2 L 2 (R,R) ∂ x (u b ) (•, s) H 1 (R,R) ds.
Introducing the (nite

) constant C := max( u b C 0 (0,T ;H 2 (R,R)) , u b C 0 (0,T ;H 2 (R,R))
), we obtain:

∀t ∈ [0, T ], δu (•, t) 2 L 2 (R,R) 4CT δb L 2 (R,R) + C t 0 δu (•, s) 2 L 2 (R,R) ds. Since t ∈ [0, T ] → δu(•, t) L 2 (R,R)
∈ R is a continuous function, we can apply Grönwall's Lemma [2, Theorem 1.1] and we have:

∀t ∈ [0, T ], u b (•, t) -u b (•, t) 2 L 2 (R,R) 4CT e Ct b -b L 2 (R,R) .
In particular, we deduce that the map b

∈ L 2 (R, R) → u b ∈ C 0 (0, T ; H 2 (R, R)) is well dened i.e.
the initial-value problem (4) has a unique global solution. To conclude the proof, the inequality of Proposition 2.1 holds true and the energy functional

F : b → F (b) given by (3) is a correctly dened application from L 2 (R, R) into R.

2.2

Some explicit a priori estimates

In [71, Proposition 3.1], Tsugawa establishes a priori C 0 t (L 2 x )-estimates for low regularity forcing terms. He splits the solution into an high-frequency part and a low-frequency one. These two are then estimated thanks to the scaling argument presented in Lemma 1.4. In our case, u 0 ≡ 0 and σ = -1 so [71, Proposition 3.1] holds true. This inequality is fundamental for obtaining explicit a priori estimates of the solution given in Proposition 2.1. First, we consider regular bottoms and their associated smooth solutions given in Lemma 1.3. In this situation, we can combine the conversion laws of the fKdV equation ( 4) with [71, Proposition 3.1] to get some good a priori estimates. Then, using an approximating argument, we can treat the non-regular case.

Proposition 2.2. Let T > 0 . We consider any b ∈ H ∞ (R, R) := ∩ s 0 H s (R, R). Then, the initial-value problem (4) has a unique global solution u b ∈ C ∞ (0, T ; H ∞ (R, R)) and the following estimations hold true:

         sup t∈[0,T ] u b (•, t) L 2 (R,R) P 0 T, b L 2 (R,R) , sup t∈[0,T ] ∂ x u b (•, t) L 2 (R,R) P 1 T, b L 2 (R,R) , sup t∈[0,T ] ∂ xx u b (•, t) L 2 (R,R) e T 1+ 1 3 b 2 L 2 (R,R) P 2 T, b L 2 (R,R) ,
where P 0 , P 1 , and P 2 are three well-dened polynomials with non-negative coecients that do not depend on b, T , and u b .

Proof. Let T > 0 and b ∈ H ∞ (R, R) := ∩ s 0 H s (R, R).
Combining Lemmas 1.2 and 1.3, we get the existence of a unique smooth solution 4). We distinguish two cases. First, we assume that T > 1. Since b ∈ L 2 (R, R), we can apply [71, Proposition 3.1] with u 0 ≡ 0, σ = -1, and f = -db dx in order to get:

u b ∈ C ∞ (0, T ; H ∞ (R, R)) satisfying (
sup t∈[0,T ] u b (•, t) L 2 (R,R) C 1 + T 3 ∂ x b 3 H -1 (R,R) ,
where C > 0 is a constant which does not depend on T , u b and b. Then, assuming that T 1, we can again apply [71, Proposition 3.1] with nal time equal to two in order to obtain:

sup t∈[0,T ] u b (•, t) L 2 (R,R) sup t∈[0,2] u b (•, t) L 2 (R,R) 8C 1 + ∂ x b 3 H -1 (R,R) .
Gathering these two last estimations and the fact that

∂ x b H -1 (R,R) b L 2 (R,R)
, we nd that in both cases:

sup t∈[0,T ] u b (•, t) L 2 (R,R) 8C 1 + max 1, T 3 b 3 L 2 (R,R) 8C 1 + b 3 L 2 (R,R) + T 3 b 3 L 2 (R,R) .
Consequently, the rst inequality of Proposition 2.2 holds true with P 0 (x, y) := 8C(1 + y 3 + x 3 y 3 ).

We now exploit the Hamiltonian structure of equation ( 4), adapting the conservation laws of the KdV equation presented in [39, below (1.1)]. We have:

∀t ∈ [0, T ], H(t) := R ∂u b ∂x (x, t) 2 - u b (x, t) 3 3 -2b(x)u b (x, t) dx = 0. (11) 
Indeed, denoting

I := ∂ xx u b + 1 2 u 2 b + b, equation (4) becomes u t = -∂ x I. We can next derive the expression (11) and get dH dt (t) = - R 2u t I = [I 2 ] +∞ -∞ = 0, which means that H(t) = H(0) = 0 for any t ∈ [0, T ].
Therefore, we deduce from (11) that we have successively for any t ∈ [0, T ]:

∂ x u b (•, t) 2 L 2 (R,R) 1 3 u b (•, t) L ∞ (R,R) u b (•, t) 2 L 2 (R,R) + 2 b L 2 (R,R) u b (•, t) L 2 (R,R) ∂ x u b (•, t) 2 L 2 (R,R) 1 6 u b (•, t) 2 L ∞ (R,R) + u b (•, t) 4 L 2 (R,R) + b 2 L 2 (R,R) + u b (•, t) 2 L 2 (R,R) 5 6 ∂ x u b (•, t) 2 L 2 (R,R) 7 6 u b (•, t) 2 L 2 (R,R) + 1 6 u b (•, t) 4 L 2 (R,R) + b 2 L 2 (R,R) ∂ x u b (•, t) L 2 (R,R) 7 5 u b (•, t) L 2 (R,R) + u b (•, t) 2 L 2 (R,R) + b L 2 (R,R) .
Indeed, we have successively used the Cauchy-Schwarz inequality, the identity 2xy x 2 + y 2 valid for any x, y 0, the interpolation inequality g 2

L ∞ (R,R) 2 g L 2 (R,R) ∂ x g L 2 (R,R) g 2 H 1 (R,R)
valid for any g ∈ H 1 (R, R), and √ x + y √ x+ √ y valid for any x, y 0. Hence, we deduce that the second inequality of Proposition 2.2 also holds true by setting P 1 (x, y) := 2[y + P 0 (x, y) + P 2 0 (x, y)]. Finally, the same method is used to evaluate P 2 . For this purpose, we rst check that we have for any t ∈ [0, T ]:

d dt R (∂ xx u b ) 2 + 2b∂ xx u b - 5 3 u b (∂ x u b ) 2 + 2 3 bu 2 b + 5 36 u 4 b (x, t)dx = R 2 3 bI∂ x u b (x, t)dx. ( 12 
)
We now check that (12) holds true. Let G : t ∈ [0, T ] → G(t) ∈ R refer to the left-member of (12). Then, we have successively for any t ∈ [0, T ]:

G(t) = R 2∂ xxt u b (∂ xx u b + b) - 10 3 u b ∂ x u b ∂ xt u b - 5 3 ∂ t u b (∂ x u b ) 2 + 4 3 bu b ∂ t u b + 5 9 u 3 b ∂ t u b = R 2∂ xt u b [-∂ xxx u b -b x ] =∂tu b +u b ∂xu b - 10 3 u b ∂ x u b ∂ xt u b - 5 3 ∂ t u b (∂ x u b ) 2 + 4 3 bu b ∂ t u b + 5 9 u 3 b ∂ t u b = R ∂ x (∂ t u b ) 2 - 4 3 u b ∂ x u b ∂ xt u b - 5 3 ∂ t u b (∂ x u b ) 2 + 4 3 bu b ∂ t u b + 5 9 u 3 b ∂ t u b = R 4 3 u b ∂ t u b =-Ix ∂ xx u b + u 2 b 2 + b :=I - 1 3 ∂ t u b =-Ix (∂ x u b ) 2 - 1 9 u 3 b ∂ t u b =-Ix = R 2 3 ∂ x u b I 2 - 2 3 I∂ x u b ∂ xx u b - 1 3 u 2 b ∂ x u b I = R 2 3 ∂ x u b I I -∂ xx u b - u 2 b 2 =b .
Therefore, the relation ( 12) holds true for any t ∈ [0, T ]. Integrating equality ( 12) on [0, t] for any t ∈ [0, T ], the same kind of manipulations we did below (11) yields for any t ∈ [0, T ] to:

∂ xx u b (•, t) 2 L 2 (R,R) 2 1 + b 2 L 2 (R,R) 3 t 0 ∂ xx u b (•, s) 2 L 2 (R,R) ds + P 01 T, b L 2 (R,R) ,
where we have set

P 01 (x, y) := 2x y 2 1 + P 1 (x, y) 2 3 + P 0 (x, y) 2 4 P 0 (x, y) 2 + P 1 (x, y) 2 + 2 2y 2 + 5P 1 (x, y) 6 P 0 (x, y) 2 + 2P 1 (x, y) 2 + y 3 2P 0 (x, y) 2 + P 1 (x, y) 2 + 5P 0 (x, y) 2 36 P 0 (x, y) 2 + P 1 (x, y) 2 .
Consequently, we can apply Grönwall's Lemma [2, Theorem 1.1] in order to obtain:

∀t ∈ [0, T ], ∂ xx u b (•, t) 2 L 2 (R,R) P 01 T, b L 2 (R,R) e 2t 1+ 1 3 b 2 L 2 (R,R) ,
from which we deduce that

sup t∈[0,T ] ∂ xx u b (•, t) L 2 (R,R) 1 + P 01 T, b L 2 (R,R) e T 1+ 1 3 b 2 L 2 (R,R) .
Setting P 2 (x, y) := 1 + P 01 (x, y), we get that the third inequality of Proposition 2.2 also holds true, concluding the proof.

We emphasize here the fact that the conservation laws (11)(12) hold true because we have assumed that b and thus u b are suciently smooth to dierentiate under the integral sign and to invert the order of the partial derivatives. Since we cannot proceed similarly in the L 2 -case, we use an approximating argument instead, keeping in mind the quantitative estimate of Proposition 2.1.

Corollary 2.3. Let T > 0 and b ∈ L 2 (R, R). Then, the unique solution

u b ∈ C 0 (0, T ; H 2 (R, R))
given in Proposition 2.1 satises the following inequality:

u b C 0 (0,T ;H 2 (R,R)) P 0 T, b L 2 (R,R) + P 1 T, b L 2 (R,R) + e T 1+ 1 3 b 2 L 2 (R,R) P 2 T, b L 2 (R,R) ,
where P 0 , P 1 , and P 2 are the three polynomials introduced in Proposition 2.2.

Proof. Let T > 0 and b ∈ L 2 (R, R). First, from Proposition 2.1, there exists a unique solution u b ∈ C 0 (0, T ; H 2 (R, R)) satisfying (4). Moreover, by density, there exists a sequence (b n ) n∈N of smooth maps with compact support strongly converging to b for the L 2 -norm [14, Corollary 4.23]. Applying Proposition 2.2, there exists a sequence (u bn ) n∈N of associated smooth maps satisfying (4) and the a priori estimates for any n ∈ N. Then, we deduce from the quantitative estimate of Proposition 2.1 the strong convergence of (u bn ) n∈N to u b in C 0 (0, T ; L 2 (R, R)). In particular, we can correctly let n → +∞ in the rst inequality of Proposition 2.2 applied to (u bn , b n ) in order to get

u b C 0 (0,T ;L 2 (R,R)) P 0 T, b L 2 (R,R) . Finally, let t ∈ [0, T ]. Since (b n ) n∈N is converging, it is a bounded sequence, from which we deduce that (∂ x u bn (•, t)) n∈N is uniformly bounded in H 1 (R, R), which is reexive [14, Proposition 8.1].
Consequently [14, Theorem 3.18], there exists a subsequence that weakly converges to a certain map in H 1 (R, R), which has to be ∂ x u b (•, t) by considering the convergence in the sense of distributions. We emphasize the fact that here the subsequence depends on the time variable so it is denoted by (∂ x u b n(t) ) n∈N . Considering the lower-semicontinuity of the norm with respect to the weak convergence [14, Proposition 3.5 (iii)], we obtain for any t ∈ [0, T ]:

∂ x u b (•, t) H 1 (R,R) lim inf n∈N ∂ x u b n(t) (•, t) H 1 (R,R) P 1 T, b L 2 (R,R) + P 2 T, b L 2 (R,R) e T 1+ 1 3 b 2 L 2 (R,R) .
Hence, the expected inequality of Corollary 2.3 holds true with (b, u b ), concluding the proof.

2.3

Proof of the existence in Theorem 1.1

In this section, we aim to prove Theorem 1.1 i.e. the existence of an optimal bottom. For this purpose, we have to introduce a suitable topology on the set of admissible bottoms that ensures:

• the compactness of any maximizing sequence associated with the supremum in (1);

• the fact that the set of admissible bottoms (2) is closed;

• the (upper-semi)continuity of the energy functional (3).

From Proposition 2.1, the functional (3) is a well-dened map from L 2 (R, R) into R. Hence, the L 2 -weak topology seems a rather natural setting and we easily get the compactness of B.

Lemma 2.4. Let K > 0 and M > 0. Then, the set of admissible bottoms (2) is sequentially compact for the weak topology of L 2 (R, R).

Proof. Let K > 0 and M > 0. We consider a sequence (b n ) n∈N of admissible bottoms. Since (b n ) n∈N is bounded by M , we deduce from [14, Theorem 4.10] and [14, Theorem 3.18] that there exists b ∈ L 2 (R, R) and a subsequence (b n ) n∈N that is weakly converging to b in L 2 (R, R). Hence, it remains to show that b is an admissible bottom. First, from the lower-semicontinuity of the norm with respect to the weak topology [14, proposition 3.5 (iii)], we immediately get:

b L 2 (R,R) lim inf n∈N b n L 2 (R,R) M.
Then, since b ∈ L 2 (R, R), almost every point is a Lebesgue point [29, Section 1.7.1] so we obtain for almost every x ∈ R:

b(x) = lim r→0 + 1 2r x+r x-r b(x)dx = lim r→0 + 1 2r lim n→+∞ R 1 [x-r,x+r] (y)b n (y)dy 0.
Therefore, b is non-negative (almost everywhere). Finally, for any k > K, we can use again the weak-convergence property to get: However, the continuity of the functional (3) is not a clear issue. Indeed, we are now dealing with the weak convergence of bottoms and the results of Section 2.2 such as the quantitative estimate Proposition 2.1 are useless since they were involving the strong topology of L 2 (R, R). Moreover, we recall that we cannot directly apply here some usual compactness arguments such as the Aubin-Lions-Simon Lemma [65, Section 8 Corollary 4] because the embedding H 2 (R, R) ⊂ H 1 (R, R) is not compact. Nevertheless, we can recover some continuity by using the fact the supports of the admissible bottoms (2) are all contained in a xed compact set.

-K -k b(y)dy + k K b(y)dy = lim n→+∞ R 1 [-k,-K] (y)b n (y)dy + R 1 [K,k] ( 
Proposition 2.5.

Let T > 0, K > 0 and b ∈ L 2 (R, R) whose support is included in [-K, K].
We consider any sequence (b n ) n∈N of square-integrable maps with supports all included in [-K, K] that is weakly converging to b in L 2 (R, R). Then, the sequence (u bn ) n∈N strongly converges to u b in C 0 (0, T ; L 2 (R, R)), where u b and u bn are the unique maps of C 0 (0, T ; H 2 (R, R)) associated with b and b n in Proposition 2.1 for any n ∈ N.

Proof. The proof is very similar to the one of Proposition 2.1. Let T > 0, K > 0 and b ∈ L 2 (R, R) whose support is included in [-K, K]. Applying Proposition 2.1, there exists a unique solution u b ∈ C 0 (0, T ; H 2 (R, R)) satisfying the initial-value problem (4). We consider any sequence (b n ) n∈N of square-integrable maps with supports all included in [-K, K] that is weakly converging to the map b in L 2 (R, R). In particular, such a sequence is bounded [14, Proposition 3.5 (iii)]. Applying Proposition 2.1 and Corollary 2.3, there exists a sequence (u bn ) n∈N of associated maps in C 0 (0, T ; H 2 (R, R)) satisfying ( 4) and the a priori estimate, from which we deduce that u b and (u bn ) n∈N are uniformly bounded in C 0 (0, T ; H 2 (R, R)) by a positive constant. First, consider the compact embeddings

H 2 (] -K, K[, R) ⊂ H 1 (] -K, K[, R) ⊂ H -1 (] -K, K[, R) [14, Theorem 8.8]
and apply the Aubin-Lions-Simon Lemma [65, Section 8 Corollary 4] to obtain that the following embedding is compact:

W := w ∈ L ∞ 0, T ; H 2 (]-K, K[ , R) , ∂ t w ∈ L ∞ 0, T ; H -1 (]-K, K[ , R) → C 0 0, T ; H 1 (]-K, K[ , R) .
From the foregoing and (4), we known that u bn L ∞ (0,T ;H

2 (]-K,K[,R)) + ∂ t u bn L ∞ (0,T ;H -1 (]-K,K[,R))
is uniformly bounded i.e. (u bn ) n∈N is uniformly bounded in W . We deduce that there exists u K ∈ C 0 (0, T ; H 1 (] -K, K[, R)) and a subsequence (u b n ) n∈N that is strongly converging to u K in C 0 (0, T ; H 1 (] -K, K[, R)). Then, let n ∈ N. We introduce the quantities δb = b n -b and δu = u b n -u b . One can check that they satisfy the initial-value problem (10). We emphasize the fact that the partial derivatives in (10) have to be handled with care since they are understood in a distributional sense. However, we can still apply the integration-by-parts formula given in [60,Lemma 7.3 (7.15)] by considering the Gelfand triple

H 1 (R, R) ⊂ L 2 (R, R) ⊂ H -1 (R, R) and δu ∈ {w ∈ L 2 (0, T ; H 1 (R, R)), ∂ t w ∈ L 2 (0, T ; H -1 (R, R))}.
Following the same calculations than we did in the proof of Proposition 2.1, we get for any t ∈ [0, T ]:

δu (•, t) 2 L 2 (R,R) = 2 t 0 R δb(x) ∂(δu) ∂x (x, s) dxds - t 0 R δu(x, s) 2 ∂u b ∂x (x, s) dxds.
Finally, we use the Cauchy-Schwarz inequality and the fact that all the supports of the considered bottoms are included in [-K, K] in order to get for any t ∈ [0, T ]:

u b n (•, t) -u b (•, t) 2 L 2 (R,R) 2 T 0 K -K (b n (x) -b(x)) ∂u b n ∂x (x, s) - ∂u b ∂x (x, s) dx ds + u b C 0 (0,T ;H 2 (R,R)) t 0 u b n (•, s) -u b (•, s) 2 L 2 (R,R) ds. Since t ∈ [0, T ] → δu(•, t) L 2 (R,R)
∈ R is a continuous function, we can apply Grönwall's Lemma [2, Theorem 1.1] and we obtain:

u b n -u b 2 C 0 (0,T ;L 2 (R,R)) 2C T 0 K -K (b n (x) -b(x)) ∂u b n ∂x (x, s) - ∂u b ∂x (x, s) dx ds,
where we have set C := e T u b C 0 (0,T ;H 2 (R,R)) . Hence, it remains to prove that the right-member of the above inequality converges to zero as n → +∞. For this purpose, we introduce the integrand

R n : t → K -K δb(x)∂ x (δu)(x, t)dx. Since b n converges weakly to b in L 2 (] -K, K[, R) and u b n converges strongly to u K in C 0 (0, T ; H 1 (]-K, K[, R
)), we get for any t ∈ [0, T ] that R n (t) converges to zero. Moreover, using the a priori estimate of Corollary 2.3, R n (t) is uniformly bounded by a positive constant. Hence, from the Dominated Convergence Theorem [14, Theorem 4.2], we deduce that T 0 |R n (t)|dt converges to zero as n → +∞. To conclude the proof of Proposition 2.5, the right-member of the last inequality converges to zero thus (u b n ) n∈N strongly converges to u b in C 0 (0, T ; L 2 (R, R)). We have also proved the uniqueness of the limit for any other converging subsequence. Since (u bn ) n∈N is uniformly bounded, the whole sequence converges to u b .

Proof of Theorem 1.1. Let T > 0, M > 0, and K > 0. We consider the set of admissible bottoms B and the energy functional F : b ∈ B → F (b) ∈ R respectively dened by ( 2) and (3). Note that Proposition 2.1 ensures that F is well dened from L 2 (R, R) into R. First, there exists a maximizing sequence (b n ) n∈N of elements in B such that F (b n ) converges to sup b∈B F (b). Then, Lemma 2.4 ensures the existence of b ∈ B such that a subsequence (b n ) n∈N weakly converges to b in L 2 (R, R). Finally, we apply Proposition 2.5 to get the convergence of (u b n ) n∈N to u b strongly in C 0 (0, T ; L 2 (R, R)). We deduce that:

|F (b n ) -F (b)| T u b n -u b C 0 (0,T ;L 2 (R,R)) sup k∈N u b k C 0 (0,T ;L 2 (R,R)) + u b C 0 (0,T ;L 2 (R,R)) .
(13) Therefore, F (b n ) converges to F (b) and sup b∈B F ( b). From the uniqueness of the limit, we deduce that F (b) = sup b∈B F ( b) with b ∈ B so the supremum is a maximum and problem (1) has a global maximizer. To conclude the proof of Theorem 1.1, it remains to prove that any global maximizer of (1) saturates the L 2 -constraint, which is proved as in Proposition 1.5. Indeed, if it not the case, 

then choose θ ∈]1, (M/ b opt L 2 (R,R) ) 2 

2.4

Some other useful properties associated with the problem

In this section, two properties associated with the shape optimization problem (1) are highlighted.

The rst one guarantees that the energy functional F : B → R given in (3) is 1 2 -Hölder continuous, while the second one concerns the Fréchet dierentiability of F with respect to H 1 -perturbations. In particular, we obtain an explicit expression for the shape gradient of F by introducing the adjoint formulation of the initial-value problem (4).

The 1 2 -Hölder continuity of the functional

In Section 2.3, for any real K > 0, we have established the continuity of the non-linear map

N : b ∈ { b ∈ L 2 (R, R), supp b ⊆ [-K, K]} → u b ∈ C 0 (0, T ; L 2 (R, R))
for the L 2 -weak topology.

Here, we rst establish that N :

L 2 (R, R) → C 0 (0, T ; H 1 (R, R)) is continuous for the L 2 -strong topology.
Then, by restricting N and F to any ball of L 2 (R, R), we get their Hölder continuity.

Proposition 2.6. Let T > 0 and b ∈ L 2 (R, R). We consider any sequence (b n ) n∈N of maps in L 2 (R, R) that is strongly converging to b for the L 2 -norm. Then, the sequence (u bn ) n∈N of their associated solutions given in Proposition 2.1 strongly converges to

u b in C 0 (0, T ; H 1 (R, R)), where u b ∈ C 0 (0, T ; H 2 (R, R))
is the unique solution of Proposition 2.1 associated with b.

Proof. Let T > 0 and b ∈ L 2 (R, R). From Proposition 2.1, we can consider the unique solution u b ∈ C 0 (0, T ; H 2 (R, R)) satisfying (4). First, we treat the smooth case. Let (b n ) n∈N be a sequence of maps in H ∞ (R, R) that is strongly converging to b for the L 2 -norm. In particular, this sequence is uniformly bounded in L 2 (R, R). Applying Proposition 2.2, there exists a sequence (u bn ) n∈N of associated smooth maps satisfying (4) and the a priori estimates, from which we deduce that (u bn ) n∈N is uniformly bounded in C 0 (0, T ; H 2 (R, R)) by a constant denoted C > 0. Then, applying Proposition 2.1 with b and b = b n for any n ∈ N, we obtain that (u bn ) n∈N strongly converges to u b in C 0 (0, T ; L 2 (R, R)). We now prove that in fact the convergence occurs in C 0 (0, T ; Using the conservative structure of ( 4) and ( 10) by writing ∂ t (u bm ) = -∂ x I and ∂ t (δu) = -∂ x J, where we set I := ∂ xx u bm + 1 2 (u bm ) 2 + b m and J := ∂ xx (δu) + 1 2 (δu) 2 + δb + u bm δu, we have:

H 1 (R, R)). Let (m, n) ∈ N × N.
d dt R δu 3 6 + u bm δu 2 2 - 1 2 ∂ (δu) ∂x 2 + δbδu (x, t) dx = 2 ∂ t (δu) J = -∂x(J 2 ) = 0 + 1 2 ∂ t (b m )δu 2 = -Iδu∂x(δu) = - R δu ∂ (δu) ∂x ∂ 2 u bm ∂x 2 + u 2 bm 2 + b m (x, t) dx.
Proceeding as below (10) (but here the functions are regular), we obtain:

∀t ∈ [0, T ], ∂ x u bn (•, t) -∂ x u bm (•, t) 2 L 2 (R,R) 5C 3 u bn (•, t) -u bm (•, t) 2 L 2 (R,R) + 4C b n -b m L 2 (R,R) + 2T C C + C 2 2 + sup k∈N b k L 2 (R,R) u bn (•, t) -u bm (•, t) L 2 (R,R) .
(14) Hence, from the foregoing, we deduce that t ∈

[0, T ] → ∂ x (u bn )(•, t) ∈ L 2 (R, R) is a uniform Cauchy sequence.
From the completeness of L 2 (R, R) [14, Theorem 4.8], it is thus strongly converging to a certain map in C 0 (0, T ; L 2 (R, R)), which has to be ∂ x u b by considering the convergence in the sense of distributions. Finally, we treat the non-regular case by approximations. Let ε > 0 and (b n ) n∈N be any sequence of maps in L 2 (R, R) that is strongly converging to b. By a density argument [14, Corollary 4.23], for any n ∈ N, there exists a sequence (b k n ) k∈N of smooth maps with compact support that is strongly converging to b n in L 2 (R, R). From the foregoing, we deduce that there exists

k n ∈ N such that u b kn n -u bn C 0 (0,T ;H 1 (R,R)) < ε. Moreover, one can check that (b kn n ) n∈N strongly converges to b in L 2 (R, R).
Again, from the foregoing, there exists N ∈ N such that for any integer n N , we have u b kn n -u b C 0 (0,T ;H 1 (R,R)) < ε. We deduce that:

∀n N, u bn -u b C 0 (0,T ;H 1 (R,R)) u bn -u b kn n C 0 (0,T ;H 1 (R,R)) + u b kn n -u b C 0 (0,T ;H 1 (R,R)) < 2ε.
To conclude the proof of Proposition 2.6, (u bn ) n∈N converges to u b in C 0 (0, T ; H 1 (R, R)).

Corollary 2.7. Let M > 0 and T > 0. We set

B M := {b ∈ L 2 (R, R), b L 2 (R,R) M }.
Then, there exists a constant C(T, M ) > 0 depending only on T and M such that:

∀(b, b) ∈ B M ×B M ,        max u b -u b C 0 (0,T ;L 2 (R,R)) , |F (b) -F ( b)| C(T, M ) b -b L 2 (R,R) u b -u b C 0 (0,T ;H 1 (R,R)) C(T, M ) 4 b -b L 2 (R,R) .
In particular, the energy functional F : B → R given in ( 3) is 1 2 -Hölder continuous. Proof. Let M > 0, T > 0, and B M as in the statement. First, combining the a priori estimates of Corollary 2.3 with the fact that (b, b) ∈ B M × B M , we deduce that the constant C > 0 appearing in the quantitative estimate of Proposition 2.1 can be bounded by one that only depends on T and M . Hence, the non-linear map

N : b ∈ B M → u b ∈ C 0 (0, T ; L 2 (R, R)) is 1
2 -Hölder continuous. Then, similarly arguments applied to (13) with b and b n = b also yields to the same result for the map F : B M → R. Finally, there exists two sequences (b n ) n∈N and ( bn ) n∈N of smooth maps with compact support respectively converging to b and b strongly in L 2 (R, R) [14, Corollary 4.23]. Using Proposition 2.6, the associated smooth maps (u bn ) n∈N and (u bn ) n∈N respectively converges to u b and u b in C 0 (0, T ; H 1 (R, R)). We can now proceed as in the proof of Proposition 2.6 so (14) holds true with b n and b m = bn . By letting n → +∞ in this inequality, we deduce from the foregoing that N

: b ∈ B M → u b ∈ C 0 (0, T ; H 1 (R, R)) is 1
4 -Hölder continuous, concluding the proof.

The Fréchet dierentiability of the functional

First, we prove the existence of a unique solution to the adjoint formulation of the initial-value problem (4), which is then used to explicitly evaluate the Fréchet derivative of the functional (3) with respect to H 1 -perturbations, giving us access to the shape gradient of (3).

Proposition 2.8. Let T > 0 and b ∈ L 2 (R, R). The unique solution u b ∈ C 0 (0, T ; H 2 (R, R)) of Proposition 2.1 satisfying (4) is considered. Then, the following nal-value problem (understood as a distributional equality) is well-posed:

     ∂v ∂t (x, t) + u b (x, t) ∂v ∂x (x, t) + ∂ 3 v ∂x 3 (x, t) + 2u b (x, t) = 0 x ∈ R, t ∈ [0, T ] v(x, T ) = 0 x ∈ R, (15) 
in the sense that it has a unique global solution v b ∈ C 0 (0, T ; H 2 (R, R)).

Proof. Formerly speaking, if we consider the solution v : (x, t) → v(x, t) of ( 15 

[ R×R (1 + |τ -ξ 3 |) 2b (1 + |ξ|) 2s |ĝ(ξ, τ )| 2 dξdτ ] 1/2
, where ĝ : (ξ, τ ) → ĝ(ξ, τ ) denotes the two-dimensional Fourier transform of g : (x, t) → g(x, t). Therefore, we rst specify a bit the existence results for (4) in terms of Y s,b . We combine the estimate of Corollary 2.3 and the local existence result of [71, Proposition 2.1] with σ = -1, f = -∂ x b, u 0 ≡ 0, s = σ + 3 = 2, and b = ε + 1 2 , where ε > 0 is chosen small enough. The standard theory [8, Proposition 5.1] establishes that (4) has a unique global solution u b ∈ C 0 (0, T ; H 2 (R, R)) which is the restriction of a map U b ∈ Y 2,ε+1/2 . Then, we introduce the variables x * = -x, t * = T -t, and we set 

U * b (x * , t * ) := U b (-x, T -t). We still have U * b ∈ Y 2,ε+1/2 [8, Lemma 2.3] but we also get ∂ x * U * b ∈ Y 1,ε-1/2 [
= ε + 1 2 so there exists W * b ∈ Y 1,ε+1/2 such that ∂ t * (W * b ) + ∂ x * (U * b W * b ) + ∂ x * x * x * (W * b ) = 2∂ x * (U * b ) and W * b (•, 0) = 0.
Finally, it remains to get back to (15). For this purpose, we consider the following initial-value problem: 

     ∂v * ∂t * (x * , t * ) + ∂ 3 v * ∂x * 3 (x * , t * ) = u * b (x * , t * ) [2 -w * b (x * , t * )] x * ∈ R, t * ∈ [0, T ] v * (x * , 0) = 0 x * ∈ R, (16) 
∂ t * [w * b -∂ x * v * b ] + ∂ x * x * x * [w * b -∂ x * v * b ] = 0.
This equation can be solved analytically in terms of the one-dimensional spatial Fourier transform operator F. We obtain: 16) and getting back to the original variables x = -x * and t = T -t * , we deduce that v b (x, t) := v * b (-x * , T -t * ) satises the nal-value problem (15), which thus have a global solution in C 0 (0, T ; H 2 (R, R)). At last, we prove that such a global solution is unique. We use the arguments of Proposition 2.1. Consider two solutions v 1 and v 2 of C 0 (0, T ; H 2 (R, R)) solving ( 15) and introduce the quantity δv := v 1 -v 2 . From the linearity of equation ( 15), one can check that δv satises ∂ t (δv) + u b ∂ x (δv) + ∂ xxx (δv) = 0 and δv(•, T ) = 0. The previous partial derivatives are understood in a distributional sense but we can still apply the integration-by-parts formula [60,Lemma 7.3 (7.15)] with the Gelfand triple

∀t * ∈ [0, T ], w * b (•, t * ) - ∂v * b ∂x * (•, t * ) = F -1 e iξ 3 t * F w * b (•, 0) - ∂v * b ∂x * (•, 0) = 0. Replacing w * b by ∂ x * v * b in (
H 1 (R, R) ⊂ L 2 (R, R) ⊂ H -1 (R, R) and δv ∈ {w ∈ L 2 (0, T ; H 1 (R, R)), ∂ t w ∈ L 2 (0, T ; H -1 (R, R))}.
Proceeding as below (10), we get:

∀t ∈ [0, T ], δv(•, t) 2 L 2 (R,R) = δv(•, T ) 2 L 2 (R,R) = 0 - T t R ∂u b ∂x (x, s)δv(x, s) 2 dxds.
Consequently, we obtain:

∀t ∈ [0, T ], δv(•, t) 2 L 2 (R,R) ∂ x u b C 0 (0,T ;H 1 (R,R)) T t δv(•, s) 2 L 2 (R,R)) ds.
It follows from the continuity of the map t ∈

[0, T ] → δv(•, t) L 2 (R,R) ∈ R and Grönwall's Lemma [2, Theorem 1.1] that δv ≡ 0 on [0, T ] × R i.e. v 1 = v 2 .
To conclude the proof of Proposition 2.8, there exists a unique global solution v b ∈ C 0 (0, T ; H 2 (R, R)) satisfying ( 15).

Proposition 2.9. Let T > 0 and F : L 2 (R, R) → R be well-dened by (3) (cf. Proposition 2.1).

Then, for any b ∈ L 2 (R, R) and any h ∈ H 1 (R, R), the following expansion holds true:

F (b + h) = F (b) + R h(x) T 0 ∂v b ∂x (x, t) dx + O ∂ x h 2 L 2 (R,R) ,
where v b ∈ C 0 (0, T ; H 2 (R, R)) is the unique global solution of (15) introduced in Proposition 2.8.

In particular, the associated map

F b : h ∈ H 1 (R, R) → F (b + h) ∈ R
is Fréchet dierentiable at the origin i.e. F is shape dierentiable at any bottom b ∈ L 2 (R, R). Its shape gradient is given by:

∂ b F : x ∈ R -→ ∂ b F (x) := T 0 ∂v b ∂x (x, t)dt, (17) 
which is a well-dened function of H 1 (R, R).

Proof. Let T > 0, b ∈ L 2 (R, R), and h ∈ H 1 (R, R). First, we establish a quantitative estimate similar to the one given in Proposition 2.1, using here the fact that h has a stronger regularity. From Proposition 2.1, there exists two associated global solutions u b and u b+h in C 0 (0, T ; H 2 (R, R)) such that (b, u b ) and (b + h, u b+h ) satisfy ( 4). Introducing again the quantities δu := u b+h -u b and δb := (b + h) -b = h, one can check that (δb, δu) satises ( 10), which has to be understood in a distributional sense. Still, we can apply the integration-by-parts formula [60,Lemma 7.3 (7.15)] by considering the Gelfand triple

H 1 (R, R) ⊂ L 2 (R, R) ⊂ H -1 (R, R) combined with the fact that δu ∈ {w ∈ L 2 (0, T ; H 1 (R, R)), ∂ t w ∈ L 2 (0, T ; H -1 (R, R))}.
Proceeding as below (10), we get:

∀t ∈ [0, T ], δu(•, t) 2 L 2 (R,R) = - t 0 R ∂u b ∂x (x, s)δu(x, s) 2 dxds -2 t 0 R ∂(δb) ∂x (x, s)δu(x, s)dxds.
Note that the last relation holds true only because we have assumed δb = h ∈ H 1 (R, R). Using the Cauchy-Schwarz inequality, we obtain:

∀t ∈ [0, T ], δu(•, t) 2 L 2 (R,R) 1 + ∂ x u b C 0 (0,T ;H 1 (R,R)) t 0 δu(•, s) 2 L 2 (R,R) ds + T ∂ x h 2 L 2 (R,R) .
Consequently, we can apply Grönwall's Lemma [2, Theorem 1.1] to the continuous energy map t ∈ [0, T ] → δu(•, t) L 2 (R,R) ∈ R and it comes:

u b+h -u b C 0 (0,T ;L 2 (R,R)) ∂ x h L 2 (R,R) √ T e T 2 (1+ ∂xu b C 0 (0,T ;H 1 (R,R)) ) . ( 18 
)
Then, from Proposition 2.8, there exists a unique global solution v b ∈ C 0 (0, T ; H 2 (R, R)) satisfying the nal-value problem (15). Hence, we can correctly compute again the integration-by-parts formula [60,Lemma 7.3 (7.15)] by considering the Gelfand triple

H 1 (R, R) ⊂ L 2 (R, R) ⊂ H -1 (R, R) and the fact that (δu, v b ) ∈ {w ∈ L 2 (0, T ; H 1 (R, R)), ∂ t w ∈ L 2 (0, T ; H -1 (R, R))} 2 .
We have:

0 = R δu(x, T ) v b (x, T ) = 0 dx - R δu(x, 0) = 0 v b (x, 0)dx = T 0 ∂ t (δu) | v b H -1 (R,R),H 1 (R,R) (•, t) dt + T 0 ∂ t v b | δu H -1 (R,R),H 1 (R,R) (•, t) dt = T 0 - ∂ ∂x δu 2 2 + u b δu + ∂ 2 (δu) ∂x 2 + δb | v b H -1 (R,R),H 1 (R,R) (•, t) dt + T 0 -u b ∂v b ∂x + ∂ 3 v b ∂x 3 + 2u b | δu H -1 (R,R),H 1 (R,R) (•, t) dt = T 0 δu 2 2 + u b δu + ∂ 2 (δu) ∂x 2 + δb | ∂v b ∂x H -1 (R,R),H 1 (R,R) (•, t) dt - T 0 u b ∂v b ∂x + 2u b | δu H -1 (R,R),H 1 (R,R) (•, t) dt + T 0 ∂ 2 v b ∂x 2 | ∂ (δu) ∂x H -1 (R,R),H 1 (R,R) (•, t) dt = T 0 R ∂ ∂x ∂ (δu) ∂x ∂v b ∂x + δu 2 2 ∂v b ∂x + δb ∂v b ∂x -2u b δu (x, t)dxdt.
Therefore, we have established that:

2 T 0 R u b δu(x, t)dxdt = T 0 R δu(x, t) 2 2 ∂v b ∂x (x, t)dxdt + T 0 R δb(x) ∂v b ∂x (x, t)dxdt.
Recalling that δb = h and introducing the map (3), we deduce from the above relation that:

R F (h) := F (b+h)-F (b)- R h(x) T 0 ∂v b ∂x (x, t)dt dx = T 0 R δu(x, t) 2 1 + 1 2 ∂v b ∂x (x, t) dxdt.
Consequently, using the fact that v b ∈ C 0 (0, T ; H 2 (R, R)), we deduce that:

|R F (h)| T δu 2 C 0 (0,T ;L 2 (R,R)) 1 + 1 2 ∂ x v b C 0 (0,T ;H 1 (R,R)) ,
and using the estimate ( 18), we get

R F (h) = O( ∂ x h 2 L 2 (R,R) ): |R F (h)| T ∂ x h 2 L 2 (R,R) T 2 e T (1+ ∂xu b C 0 (0,T ;H 1 (R,R)) ) 1 + 1 2 ∂ x v b C 0 (0,T ;H 1 (R,R)) . Since h ∈ H 1 (R, R) → R h(x)[ T 0 ∂ x v b (x, t)dt]dx ∈ R is a continuous linear form, the uniqueness of the dierential ensures that the functional F b : h ∈ H 1 (R, R) → F (b + h) ∈ R
is Fréchet dierentiable at the origin i.e. F is shape dierentiable at any bottom b ∈ L 2 (R, R) and its shape gradient is well dened by (17). To conclude the proof of Proposition 2.9, one can check that in fact, we have

∂ b F ∈ H 1 (R, R) since v b ∈ C 0 (0, T ; H 2 (R, R)).
To conclude Section 2, note that higher regularity is required on the perturbations h in order to get the shape dierentiability of (3), otherwise we just have:

∀(b, h) ∈ L 2 (R, R) × L 2 (R, R), F (b + h) = F (b) + R h(x)∂ b F (x)dx + O( h L 2 (R,R) ),
which can be proved by combining the quantitative estimate of Proposition 2.1 with the arguments given in the proof of Proposition 2.9. In shape optimization, this is a known fact: the existence of a shape gradient usually require more regularity than the one directly deduced from the problem. However, a careful study of the optimality conditions might imply that the maximizer is more regular than expected. Improving the regularity of a maximizer is usually a very dicult question. Numerically, as shown in Figure 1, the simulations indicate a discontinuity on the right side of the optimal bottom so there are good reasons to think the optimal bottom is not H 1 -regular.

3 The numerical approach of the problem

In this section, we present the algorithm used to numerically solve the optimization problem (1). We recall we still assume U = c 0 := √ gh 0 , where h 0 > 0 is the pool depth, g > 0 the gravitational acceleration, and U > 0 the speed of the translating bottom. Although this hypothesis was crucially used in Section 2 for the theoretical study of (1), it is more for consistency that we make it here. Moreover, we aim to stay closer from the physical model. Henceforth, we will always consider (5) with zero initial data instead of (4). From Lemma 1.2, they are equivalent (if U = c 0 ). We recall that 0 < d h0 < 0.15 (and 0.9 < U c0 < 1.1) is a reliable range of practical validity for (5), where d > 0 is the bottom height. We also refer to (7) for estimating the generation period of solitary waves. First, the numerical scheme of ( 5) is presented in Section 3.1. We compare it to some other schemes in Section 3.1.1. The choices made for the discretization are justied in Section 3.1.2, especially concerning the conservation of mass and Hamiltonian structure of (5). In Section 3.1.3, we describe the introduction of a lter that kills the right-going waves, reducing the numerical domain and thus the computational time. In Section 3.1.4, we study the validity of the numerical scheme, establishing its consistency and its unconditional (linear) stability.

Then, in Section 3.2, we describe the shape optimization algorithm that numerically solves (1). In Section 3.2.1, the adjoint formulation of ( 1) is discretized to evaluate the shape gradient (17) of the functional (3). We also discuss the inuence of the lter on the solution of (5), on its adjoint formulation, and on the shape gradient (17). In Section 3.2.2, the Lagrangian associated with (1) is introduced, and the Usawa-type procedure is explained in Section 3.2.3. Finally, the results obtained and their pertinence are analysed in Section 3.3.

Computation of the fKdV equation

Our goal is to develop a numerical scheme allowing a fast resolution of equation ( 1) because it will be incorporated in the loop of the optimization algorithm. Furthermore, its accuracy must ensure a precise simulation of the long-time behaviour and its simplicity the straightforwardness of it.

Diculties encountered with the discretization

A naive discretization of equation ( 5) with nite dierences will perform badly because some physical properties are hardly conserved, the third-order derivative introduces numerical dispersion, and the forcing term breaks some symmetries. Moreover, spectral methods often assume that the function is periodic and do not get rid of some restricting stability conditions.

In [76], Zabusky and Kruskal develop a leap-frog scheme with nite dierences in order to conserve the mass but also the energy up to second order. In [31], Fornberg and Whitham present a clever leap-frog scheme using the discrete Fourier transform. In [70], Trefethen uses the method of integrating factors combined with a fourth-order Runge-Kutta method. However, all these methods are subject to a drastic stability condition of the form ∆t = O(∆x 3 ).

In [35], Furihata suggests an implicit nite-dierence scheme which conserves the mass and the Hamiltonian of the KdV equation. Such schemes are known to be very stable because they consider the physical properties of the equation. This method is adapted to discretize equation ( 5), then simplied in order to obtain an ecient algorithm whose performances are sum up in Figure 3.

In Figure 3, we have considered an exact solution

u th : (x, t) → a sech 2 [ 3a/4h 3 0 (x -ac0 2h0 t)] satisfying (2/c 0 )∂ t u+(3/h 0 )u∂ x u+(h 2 0 /3)∂ xxx u = 0. This KdV equation is solved on [-L, L[×[0, T ]
with periodic boundary conditions and u th (•, 0) as initial condition. Then, the numerical solution is compared to the analytical one, which is a periodic version of u th . We have re-implemented the ecient methods given in [31,70,76], whose performances are compared to our algorithm. Although it seems much slower, it is as precise as its competitors in their stable regime but we can drastically reduce the computational time. Indeed, its non-dissipative property is a great advantage compared to its rivals, constrained by a stability condition ∆t = O(∆x 3 ). Moreover, it tries to conserve the physical properties of the KdV equation such as the mass and the Hamiltonian. The computational time of the dierent methods is specied in the legend. This simulation is performed on a standard laptop with Matlab and for the following parameters: h 0 = 1, g = 9.81, c 0 = √ gh 0 , a = 0.2, ∆x = 0.1, L = 15, ∆t = 0.00025, and T = 100.

Discretization of the fKdV equation

Considering a small space step ∆x > 0 and a small time step ∆t > 0, the domain is discretized: R × [0, T ] ≈ (x i , t n ) (i,n)∈Z× 0,N with x i = i∆x, t n = n∆t, and N ∆t = T . In the numerical scheme, U n i approximates u n i := u(x i , t n ). Then, consider (5) with η = u, h = b, and U = c 0 . The equation reads

2 c0 ∂ t u = ∂ x (δ u G), where δ u G = -3 2h0 u 2 - h 2 0 3 ∂ xx u and thus G(∂ x u, u) = -1 2h0 u 3 + h 2 0 6 (∂ x u) 2
. This is discretized according to the general procedure described by Furihata in [35, Section 5.1]. The two operators δ

+ i (•) = 1 ∆x [(•) i+1 -(•) i )] and δ - i (•) = 1 ∆x [(•) i -(•) i-1 )] are introduced. Using the same notation, we have G d (U ) i := -1 2h0 U 3 i + h 2 0 12 [δ + i U i ) 2 + (δ - i U i ) 2 and thus:            δG d δ(U, V ) i := - U 2 i + U i V i + V 2 i 2h 0 - h 2 0 6 δ + i δ - i (U i + V i ) -B i 2 c 0 U n+1 i -U n i ∆t = 1 2∆x δG d δ(U n+1 , U n ) i+1 - δG d δ(U n+1 , U n ) i-1
.

The interesting feature of the above discretization is given by [35, Theorems 1-2 Section 4.2]. More precisely, the previous numerical scheme is a set of non-linear equations whose solutions

(U n i ) (i,n)∈Z× 0,N satises for any n ∈ 0, N : i∈Z G d (U n ) i ∆x = R [G(u x , u)](x, t n )dx = 0 and i∈Z U i n ∆x = R u(x, t n )dx = 0. (19) 
In other words, such a scheme conserves the mass and the Hamiltonian structure of equation ( 5). This implicit scheme is now linearized in order to reduce the execution time. The approximation

(u n+1 i ) 2 + (u i n ) 2 = 2u n+1 i u n i + O(∆t 2 ) is valid for any i ∈ Z and u(x i , •) ∈ C 2 (R, R).
Hence, we obtain the linear system to solve:

2 c 0 U n+1 i -U n i ∆t = - h 2 0 6 U n+1 i+2 -2U n+1 i+1 + 2U n+1 i-1 -U n+1 i-2 2∆x 3 + U n i+2 -2U n i+1 + 2U n i-1 -U n i-2 2∆x 3 - 3 2h 0 U n i+1 U n+1 i+1 -U n i-1 U n+1 i-1 2∆x - B i+1 -B i-1 2∆x (20) 
The numerical scheme (20) is the one used in Figure 3. It is the one retained because it combines a fast and precise resolution with the preservation of the physical quantities associated with (5).

Transparent boundary conditions

As equation (5) can only be solved numerically on a nite domain, a constant L > 0 is chosen large enough to observe the generic behaviour of u(•, T ) on the interval [-L, L] illustrated in Figure 2: a cnoidal-like wavetrain downstream and a solitary wave upstream. Note that in our situation, we cannot impose periodic boundary conditions otherwise the right-going waves would pollute the generation of our solitary waves. Therefore, we need to ensure that the computational domain is wide enough to prevent the simulated waves from reaching the boundaries. Hence, L > 0 is chosen large enough and we introduce I ∈ N such that I∆x = L. In this case, we have U n+1 i = U n i = 0 for any i / ∈ -I, I so (20) becomes a matrix system of 2I + 1 equations, which reads

A n U n+1 = B n .
Instead of increasing the execution time with the choice of a large L that would depend on T , a smooth lter f is applied on the approximated map at each time step. This procedure kills the right-going waves on [-L, -L + ∆L], with ∆L ∈]0, L[ the interval size on which the lter acts:

       U n+1 i = f (x i )[(A n ) -1 B n ] i f (x) = 1 2 1 + cos π ∆L -(L + x) ∆L 1 [-L,-L+∆L] (x) + 1 ]-L+∆L,L] (x).
This procedure ensures a smooth decreasing of U n+1 to zero on [-L, -L+∆L] and it does not aect the approximation of u(•, t n+1 ) on [-L + ∆L, L] as shown in Figure 4. Moreover, it allows a small numerical domain, greatly reducing the execution time. Finally, concerning the left-going solitary waves, we can use their explicit expressions given in Figure 2 and the estimation of their generation period (7) in order to tune the nal time T and prevent them from reaching the boundary.

Validation of the numerical scheme

The numerical scheme ( 20) is a discretization of (5) according to nite dierences in space and a Crank-Nicholson method in time, linearizing the system. Its numerical stability on the KdV case is studied by Djidjeli,Price,Ywizell,and Wang in [23]. First, we ensure the consistency of (20).

Proposition 3.1. The discretization (20) takes the form L ∆x,∆t u = 0 and it approximates the equation ( 5) written as ∂ t u + Lu = 0. If we assume ∆t = O(∆x), then ( 20) is consistent and rst-order accurate:

∀u ∈ C 4 (R × [0, +∞[, R), ∂ t u + Lu = 0 =⇒ ∂ t u + Lu = L ∆x,∆t u + O(∆x).
Moreover, it we assume ∆t = O(∆x

2 ), then ( 20) is consistent and second-order accurate:

∀u ∈ C 5 (R × [0, +∞[, R), ∂ t u + Lu = 0 =⇒ ∂ t u + Lu = L ∆x,∆t u + O(∆x 2 ).
Proof. Introducing the shift operators s

± x [(•)(x, t)] := (•)(x ± ∆x, t), we dene δ 1 x := 1 2∆x (s + x -s - x ), δ 2 x := 1 ∆x 2 (s + x -2 + s - x ), and δ 3 x := δ 1 x δ 2 x . Choosing u ∈ C 4 (R×]0, +∞], R) such that ∂ t u + Lu = 0, its Taylor expansion gives s ± x u = u ± ∆x∂ x u + ∆x 2 2 ∂ xx u ± ∆x 3 6 ∂ xxx u + O(∆x 4 ), from which we get ∂ x u = δ 1 x u + O(∆x 2 ) and ∂ xx u = δ 2 x u + O(∆x 2
). These two are combined to obtain another estimation ∂ xxx u = δ 3

x u + O(∆x). Therefore, we have an approximation of L:

Lu = 3c 0 2h 0 u∂ x u + c 0 h 2 0 6 δ 3 x u + c 0 2 δ 1 x b + O(∆x). (21) 
Introducing the time operators s + t [(•)(x, t)] := (•)(x, t+∆t) and δ + t := 1 ∆t (s + t -1), the same type of arguments gives

s + t u = u+∆t∂ t u+ ∆t 2 2 ∂ tt u+O(∆t 3 ) and u = s + t u-∆ts + t ∂ t u+ ∆t 2 2 s + t ∂ tt u+O(∆t 3 ), from which we get ∂ t u = 2δ + t u -s + t ∂ t u -∆t 2 2 δ + t ∂ tt u + O(∆t 2 ) = 2δ + t u + s + t Lu -∆t 2 2 ∂ ttt u + O(∆t 2 ). Hence, we deduce that ∂ t u = 2δ + t u + s + t Lu + O(∆t 2
). Then, we assume that ∆t = O(∆x) and we have

(1 + s + t )u∂ x u = δ 1 x [ s + t +1 2 u 2 ] + O(∆x 2 ) = δ 1 x [us + t u + O(∆t 2 )] + O(∆x 2 ) = δ 1 x (us + t u) + O(∆x). We deduce the expected estimation ∂ t u + Lu = L ∆x,∆t u + O(∆x) with: L ∆x,∆t u := 2δ + t u + 3c 0 2h 0 δ 1 x (us + t u) + (1 + s + t ) c 0 h 2 0 6 δ 3 x u + c 0 δ 1 x b.
Finally, if we assume that u ∈ C 5 (R×]0, +∞[, R), then we get ∂ xxx u = δ 3 x u+O(∆x 2 ) and ( 21) holds true with O(∆x) replaced by O(∆x 2 ). Moreover, if we assume that ∂ t u+Lu = 0 and ∆t = O(∆x 3 2 ), the non-linear term gives

(1 + s + t )u∂ x u = δ 1 x [ s + t +1 2 u 2 ] + O(∆x 2 ) = δ 1 x (us + t u) + O(∆x 2
). We deduce ∂ t u + Lu = L ∆x,∆t u + O(∆x 2 ), concluding the proof of Proposition 3.1. Proposition 3.2. We consider (20) with b = 0, which discretizes (5) with h = 0 and U = c 0 .

We set β = 3c0 2h0 u C 0 ([-L,L]×[0,T ],R) , µ = c0 6 h 2 0 , and s = ∆t ∆x . Then, the Von Neumann stability analysis provides an amplication factor g : [-π, π] → C of the form g(ξ) := 1-iA(ξ) 1+iA(ξ) , where

A(ξ) := s(sin ξ)[ β 2 + µ ∆x 2 (cos ξ -1)].
In particular, we have |g| = 1 ensuring the non-dissipative feature of the method: the scheme is unconditionally stable. Moreover, the numerical dispersion Ψ = arg(g) = -arctan( 2A 1-A 2 ) is compared to the analytical one whose expression is given by

Ψ ref (ξ) := -sβξ + sµ ∆x 2 ξ 3 . We obtain Ψ(ξ) = Ψ ref (ξ) + E Ψ (ξ) + O(ξ 7 )
where:

E Ψ (ξ) = sβ 6 1 + s 2 β 2 2 ξ 3 - s 5 β 5 80 + s 3 β 3 24 + sβ 120 + s 3 β 2 µ 4∆x 2 + sµ 4∆x 2 ξ 5 .
Remark 3.3. We refer to [23, (38)(51)] for details on the proof. Note that in [23, (50)], the given expression of E Ψ seems to be incorrect. Indeed,in [23,(48)], a mistake was made in the Taylor expansion of Ψ: it is written arctan(

-2A 1-A 2 ) = -2A[1 -1 3 A 2 -3A 4 ] + O(ξ 7 ) and the correct expression is arctan( -2A 1-A 2 ) = -2A[1 -1 3 A 2 + 1 5 A 4 ] + O(ξ 7 ).

Description of the optimization algorithm

First, in Section 3.2.1, we explain how the shape gradient (17) of the functional (3) is computed. Then, in Section 3.2.2, the L 2 -constrained optimization problem (1) is replaced by an innite sequence of unconstrained ones thanks to the introduction of a Lagrange multiplier. Finally, in Section 3.2.3, the Usawa-type method is presented, combining a projected gradient method for the primal and another projected gradient method for the dual.

Computation of the shape gradient of the functional

The techniques used to obtain (15) in Proposition 2.9 can be easily adapted to get the adjoint formulation of ( 5) with (h, η) = (b, u), associated to the shape optimization problem (1). Formerly speaking, the calculations gives (2/c 0 )∂ t v-2(U/c 0 -1)∂ x v+(3/h 0 )u∂ x v+(h 2 0 /3)∂ xxx v+2u(x, t) = 0 on R × [0, T ] and v(•, T ) = 0. Then, the discretization is performed in the same way than (20) was obtained from (5). Recalling that we assumed U = c 0 , we thus have:

2 c 0 V n+1 i -V n i ∆t = - h 2 0 6 V n+1 i+2 -2V n+1 i+1 + 2V n+1 i-1 -V n+1 i-2 2∆x 3 + V n i+2 -2V n i+1 + 2V n i-1 -V n i-2 2∆x 3 - 3U n+1 i 2h 0 V n+1 i+1 -V n+1 i-1 2∆x - 3U n i 2h 0 V n i+1 -V n i-1 2∆x -U n+1 i + U n i . ( 22 
)
As time is now reversed, the system now gets the matrix form A n+1 V n = B n+1 . Using the trick of Section 3.1.3, a lter f is applied at each time step to ensure a smooth decreasing of V n to zero on [-L, -L + ∆L] and [L -∆L, L], where ∆L ∈]0, L[ is the interval size on which the lter acts. We thus have:

   V i n = f (x i )[(A n+1 ) -1 B n+1 ] i f (x) := f (x) -1 [L-∆L,L] (x) + 1 2 1 + cos π ∆L + (x -L) ∆L 1 [L-∆L,L] (x).
However, as illustrated in Figure 5, the lter f severely alters the numerical solution of ( 22) on the whole computational domain [-L, L], whereas the lter f was only interfering on the interval [-L, -L + ∆L] where it acts. Fortunately, the eects of the lter are negligible on the computation of the shape gradient ( 17 Finally, note that the adjoint equation is a linearization of (5). In particular, similar results as those presented in (19) and Propositions 3.13.2 can be obtained for (22). To conclude, at each step of the optimization algorithm, (20) and ( 22) must be solved to compute (17) whose integral is approximated according to the classical Simson's rule. 

3.3

Results obtained with the algorithm First, on the upper part of Figure 6, we display various initial shapes, which are used to compute the optimal bottom. On the lower part, we quantify the fact that the maximizer does not seem to depend on these starting shapes. Indeed, by taking as reference the optimal bottom b ref opt coming from the cosine shape, we plot the distance between b ref opt and the optimal bottoms obtained from the other initial shapes. Hence, we observe the convergence of various initial bottoms to a unique optimal shape, which strongly suggests the uniqueness of a critical point to (1). We deduce from Theorem 1.1 that the common shape given on the upper part of Figure 6 is the maximizer of (1).

Then, we study the inuence of the constraint supp b ⊆ [K -, K + ] on the discontinuities that appear on both sides of the optimal bottom. On the left-upper part of Figure 7, we set K + = 1 and display the computation of the optimal bottoms for K -∈ {-3.5, -2.5, -1.5, -0.5}, while on the right-upper part, we set K + = 1.5 and consider the cases K -∈ {-3, -2, -1, 0}. The right discontinuity appears in all the optimal shapes but not at the same height, while the left jump seems to depend on the support restriction. Moreover, the shapes in the cases K + = 1 and K + = 1.5 looks very similar. We quantify this observation on the lower part of Figure 7. A translation of the optimal bottom b opt 1.5 satisfying supp b opt 1.5 ⊆ [K -, 1.5] is performed so that the point for which b opt 1.5 is maximum becomes the one associated with the optimal bottom b opt 1

satisfying supp b opt 1 ⊆ [K -, 1].
We computed the distance between this translated shape x → b opt 1.5 (x -x max ) and x → b opt 1 (x). The oscillating behaviour of the algorithm, and especially its diculty to converge, indicates that the soliton height is highly sensitive to the amplitude of the bottom topography. It conrms what has already noticed about the fKdV model in [79]. However, when the shape of the optimal bottom is compared to the highest admissible cube, the dierence observed between the two heights of the solitary waves is not very signicant. It highlights the weakness of an inviscid model: the viscous eects are crudely approximated and thus the shape inuence becomes physically negligible. Indeed, most of the dependency between the shape and the wave elevation comes from the adherence of the water on the bottom, a phenomenon which is not considered in an inviscid model. Nevertheless, the algorithm furnishes an aerodynamical shape. 

(x-x max )| [-0.5,1] vs [0,1.5] [-1.5,1] vs [-1,1.5] [-2.5,1] vs [-2,1.5] [-3.5,1] vs [-3,1.5]
Figure 7: Analysis of the inuence of the support restriction. The shape optimization algorithm is performed on a standard laptop with Matlab. Here, each optimal shape has been computed in 4 minutes for 90 iterations with the following parameters: h 0 = 1, g = 9.81, c 0 = √ gh 0 , M 2 = 0.03, ∆x = 0.05, L = 50, ∆L = 20, ∆t = 0.1, T = 30, κ = 30000, γ = 0.00025, and ι = γ10 -3 .

Conclusion

Problem (1) has been studied theoretically and numerically. The existence of a maximizer has been proved whereas the simulations suggest its uniqueness. As mentionned in [79], a strong inuence of the bottom amplitude is observed while the shape plays a weaker role in the process of the soliton generation. Many questions can be considered to pursue this study: the proof of uniqueness, some models involving more general admissible sets combining larger supports or H 1 -bounds, the super critical case U > c 0 to enhance the eciency of the wavemaker, a comparison between the maximizers obtained with the fKdV model, the Navier Stokes equations, and real experiments. 

  ) locally and the adjoint globally, its eects are not signicant for the computation of ∂ b F , which is the quantity of interest. More precisely, ∂ b F or its ltered version ∂ b F filter are almost proportional i.e. ∂ b F filter = (1 + γ filter )∂ b F , where γ filter is small. Consequently, ∂ b F and ∂ b F filter can be used indierently in the optimization algorithm since the new bottom is evaluated by b + γ∂ b F filter = b + γ(1 + γ filter )∂ b F , where γ > 0 is small. Then, we have to incorporate the constraints (2) in the process. The non-negativity and support restrictions are quite easy to handle since the respective projectors on the associated L 2 -subspaces are explicitly given by P + (b) = max(0, b) and P K (b) = b on [-K, K] otherwise zero. Concerning the L 2 -constraint, we set up an Usawa-type procedure via a Lagrange multiplier. More precisely, we introduce the Lagrangian L : (

Figure 2 :

 2 Figure 2: Illustration of the generic behaviour for the fKdV equation (5) with zero initial data.The numerical simulation is implemented on Matlab for a cosine-shaped bottom. The prole of the solitary wave generated is also compared to the analytical one associated with h = 0 in (5), whose expression is explicitly given by η 0 (x, t) = a sech 2 [ 3a/4h 3 0 (x -x 0 -ac0 2h0 t)].

  From (5), we get ∂ x b = 0 thus u b = 0 also on [0, T ]. We ends with F (b) = 0, contradicting the optimality of b. To conclude, if b is now an admissible bottom satisfying +∞ 0 R u 2 b = +∞, then similar arguments still hold true for b and we can let θ → +∞ in the above estimation yielding to F (b θ ) → +∞.

  Global well-posedness of the fKdV equation In order to prove the time local well-posedness of the KdV equation in H s (R, R) for any s > -3 4 , Bourgain introduced in [10] a Fourier-restriction norm whose bilinear estimate, rened by Kenig, Ponce, and Vega in [40], allows to apply the Contraction Mapping Principle [14, Theorem 5.7]. Combined with a L 2 -conservation law, they get the time global well-posedness in H s (R, R), s 0. In [8], these results are adapted by Bona and Zhang to the fKdV case. Although the KdV equation has no conservation law for s < 0, the time global well-posedness in H s (R, R) for any s > -3 4 is proved in [20] by Colliander, Keel, Stalani, Takaoka, and Tao, who introduce a regularizing Fourier multiplier. This tool is used by Tsugawa in [71, Theorem 1.2] to treat the fKdV equation

  y)b n (y)dy = 0. Combined with the non-negativity of b, it yields to b = 0 on ] -k, K[∪]k, K[ for any k > K, which exactly means that supp b ⊆ [-K, K]. To conclude the proof of Lemma 2.4, b belongs to the set of admissible bottoms (2), which is thus sequentially compact for the weak topology of L 2 (R, R).
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  ] and the bottom b opt θ of Lemma 1.4 is admissible. We have F (b opt θ ) F (b) and the optimality of b opt yields to u b opt = 0 on [T, θ 3 T ]. Considering (4), we obtain ∂ x b = 0 so u b opt = 0 also on [0, T ] and F (b opt ) = 0, which is a contradiction.

  We set δu := u bn -u bm and δb := b n -b m and establish that (u b k ) k∈N is a uniform Cauchy sequence by relating ∂ x (δu) to δb and δu. Since both (b n , u bn ) and (b m , u bm ) satisfy (4), we get that (δu, δb) is a smooth solution to (10) (where we have replaced u b by u bm ).

  ), then the equation satised by ∂ x v is studied in [8, Theorem 2.6]. However, the setting is the space Y s,b introduced by Bourgain in [10]. For any (s, b) ∈ R × R, Y s,b is dened as the completion of the space of tempered test functions with respect to the norm g Y s,b :=

  where u * b ∈ C 0 (0, T ; H 2 (R, R)) and w * b ∈ C 0 (0, T ; H 1 (R, R)) are the respective [0, T ]-restrictions of the maps U * b and W * b [8, Lemma 2.3]. Consequently, we have u * b (2 -w * b ) ∈ W 1,1 (0, T ; H -1 (R, R)) and the standard semi-group theory [8, Section 1 III] shows that (16) has a unique global solution v * b ∈ C 0 (0, T ; H 2 (R, R)). From the equations satised by w * b and v * b , we deduce that we have

Figure 3 :

 3 Figure 3: Comparison of the scheme performances for the periodic KdV equation on [-L, L[×[0, T ].The computational time of the dierent methods is specied in the legend. This simulation is performed on a standard laptop with Matlab and for the following parameters: h 0 = 1, g = 9.81, c 0 = √ gh 0 , a = 0.2, ∆x = 0.1, L = 15, ∆t = 0.00025, and T = 100.

  ), which is the interesting quantity. Moreover, the shape gradient ∂ b F or its ltered version ∂ b F filter are almost proportional i.e. ∂ b F filter = (1 + γ filter )∂ b F , where γ filter is small. Consequently, ∂ b F and ∂ b F filter can be used indierently in the optimization algorithm since the new bottom is evaluated by b + γ∂ b F filter = b + γ(1 + γ filter )∂ b F , where γ > 0 is small.

  Figure 4: Illustration of the eects due to the lters. It is implemented in Matlab with the following parameters: h 0 = 1, g = 9.81, c 0 = √ gh 0 , ∆x = 0.05, L = 50, ∆L = 20, ∆t = 0.1, and T = 30.

Figure 5 :

 5 Figure 5: Illustration of the algorithm convergence performed on a standard laptop with Matlab. The computational time is 20 minutes for the parameters: h 0 = 1, g = 9.81, c 0 = √ gh 0 , M 2 = 0.03, supp b ⊆ [-1, 1], ∆x = 0.05, L = 50, ∆t = 0.1, T = 30, κ = 30 000, γ = 0.0005, and ι = γ10 -3 .

Figure 6 :

 6 Figure6: The shape optimization algorithm is performed for various initial bottoms on a standard laptop with Matlab. Here, each optimal shape has been computed in 4 minutes for 90 iterations with the following parameters:h 0 = 1, g = 9.81, c 0 = √ gh 0 , M 2 = 0.03, supp b ⊆ [-1, 1], ∆x = 0.05, L = 50, ∆L = 20, ∆t = 0.1, T = 30, κ = 30000, γ = 0.00025, and ι = γ10 -3 .
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Introduction of a Lagrange multiplier

First, the Lagrangian L : (b, λ) ∈ L 2 (R, R)×[0, +∞[ → L(b, λ) ∈ R associated with (1) is introduced and dened by L(b, λ) := F (b) + λ(M 2 -b L 2 (R,R) ). We refer to [9] for further details on the topics concerning optimization. In our case, the theory of duality establishes that if the following optimization problem can be solved:

then problem (1) is given by solving inf λ 0 G(λ) = sup b∈B F (b). The method of Usawa is based on this observation and combines:

(i) a gradient method for the primal problem ( 23), in which the shape gradient of the Lagrangian is needed and given by

(ii) a projected gradient method for the dual problem inf λ 0 G(λ), using the explicit expression of the projector on [0, +∞[ which is given by P + (•) := max(0, •).

However, in our situation, the primal problem (23) still contains the constraint of non-negativity of the bottom and the fact that its support has to be contained in [-K, K]. Therefore, we have to replace in (i) a gradient descent by a projected gradient method. The algorithm thus reads:

, where γ, κ > 0 are parameters to tune, and where 1 [-K,K] equals one on [-K, K] otherwise zero.

Description of the Usawa-type algorithm

We rstly describe the general behaviour expected from the algorithm and illustrated in Figure 5.

The bottom b initially satises the L 2 -constraint so λ = 0 which means L(b, λ) = F (b). Hence, the initial deformation is only ruled by the functional. Then, it is expected from the algorithm to increase the bottom height because the wave elevation is very sensitive to it. However, after some iterations, the bottom will not satisfy the L 2 -constraint and thus λ > 0. The L 2 -constraint begins to act in the deformation process in order to bring back the bottom into the admissible set.

Consequently, oscillations of the functional are expected around a saddle point corresponding to an equilibrium between the will of the functional and the will of the constraints. The convergence of the algorithm mainly depends on how quickly the L 2 -constraint intervenes in the optimization process. It is ruled by the parameters γ > 0 and κ > 0 whose tuning has been dicult to set up. In Figure 5, an example starting from a cosine-shaped bottom is analysed. The convergence of the algorithm is ensured if the parameter κ is able to reduce progressively the oscillations observed on the evolution of all the characteristic parameters such as the functional, the Lagrange multiplier, and the amplitude of the solitary wave. We now describe the dierent stages of the algorithm.

Initialization The initial Lagrange multiplier is zero while we choose an initial bottom that numerically satises the constraints. Various ones were implemented and given in Figure 6.

Re-initialization

The new bottom depends on a xed parameter γ > 0. A typical value is γ = 10 -4 . We recall that the gradient method is the optimal local direction for steepest descent. Hence, it is valid for small values of γ since Taylor expansion around zero are involved. Moreover, if γ is too important, the bottom b k+1 will always leave the admissible set or violate the physical limit of the fKdV model.

The new Lagrange multiplier is

The choice of κ > 0 remains the hardest part since it rules the convergence. Indeed, a too small κ means a delay in the process of penalization of the functional whereas a high value makes the constraints immediately signicant. In both cases, high oscillations will be observed. A typical value is κ = 30 000.

Stop criteria

The stop criteria ι > 0 is chosen small and corresponds to the tolerance allowed on the precision of variables. A typical value is ι = γ10 -4 . The algorithm stops when the constraints are satised and b
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