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ABSTRACT

Matrotrophy, the continuous extra-vitelline supply of nutrients from the parent to the progeny during gestation, is one
of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification.
The most elaborate form of matrotrophy—placentotrophy—is well known for its broad occurrence among vertebrates,
but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting.
In the first comprehensive analysis of matrotrophy across the animal kingdom, we report that regardless of the degree
of expression, it is established or inferred in at least 21 of 34 animal phyla, significantly exceeding previous accounts
and changing the old paradigm that these phenomena are infrequent among invertebrates. In 10 phyla, matrotrophy is
represented by only one or a few species, whereas in 11 it is either not uncommon or widespread and even pervasive.
Among invertebrate phyla, Platyhelminthes, Arthropoda and Bryozoa dominate, with 162, 83 and 53 partly or wholly
matrotrophic families, respectively. In comparison, Chordata has more than 220 families that include or consist entirely
of matrotrophic species. We analysed the distribution of reproductive patterns among and within invertebrate phyla
using recently published molecular phylogenies: matrotrophy has seemingly evolved at least 140 times in all major
superclades: Parazoa and Eumetazoa, Radiata and Bilateria, Protostomia and Deuterostomia, Lophotrochozoa and
Ecdysozoa. In Cycliophora and some Digenea, it may have evolved twice in the same life cycle. The provisioning
of developing young is associated with almost all known types of incubation chambers, with matrotrophic viviparity
more widespread (20 phyla) than brooding (10 phyla). In nine phyla, both matrotrophic incubation types are present.
Matrotrophy is expressed in five nutritive modes, of which histotrophy and placentotrophy are most prevalent. Oophagy,
embryophagy and histophagy are rarer, plausibly evolving through heterochronous development of the embryonic
mouthparts and digestive system. During gestation, matrotrophic modes can shift, intergrade, and be performed
simultaneously. Invertebrate matrotrophic adaptations are less complex structurally than in chordates, but they are
more diverse, being formed either by a parent, embryo, or both. In a broad and still preliminary sense, there are
indications of trends or grades of evolutionarily increasing complexity of nutritive structures: formation of (i) local zones
of enhanced nutritional transport (placental analogues), including specialized parent–offspring cell complexes and
various appendages increasing the entire secreting and absorbing surfaces as well as the contact surface between embryo
and parent, (ii) compartmentalization of the common incubatory space into more compact and ‘isolated’ chambers with
presumably more effective nutritional relationships, and (iii) internal secretory (‘milk’) glands. Some placental analogues
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in onychophorans and arthropods mimic the simplest placental variants in vertebrates, comprising striking examples of
convergent evolution acting at all levels—positional, structural and physiological.

Key words: matrotrophy, viviparity, brooding, placenta, invertebrates, convergent evolution.
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I. INTRODUCTION

Modes of reproduction and the timing and manner of
nutrient provisioning to developing embryos are life-history
traits that profoundly affect survival and evolutionary fitness
(Marshall, Allen & Crean, 2008; Pollux et al., 2009; Lodé,
2012). For most sexual animals, fertilized eggs develop and
hatch in the external environment. But this pattern is far
from universal; developing progeny may also be retained
inside or on the parent. In a number of clades, conventional
theories of evolutionary transitions to the retention of
progeny implicate enhanced survival of incubated young
(Avise, 2013). Retention, and thus close contact between
the tissues of the parent and developing embryo, may have
become associated with exchange of gases and water. While
many incubating species make use of egg yolk alone as
the source of nourishment for embryo development (termed
lecithotrophy), in some others incubation of the progeny
led to the evolution of matrotrophy. Matrotrophy is the
more or less continuous parental extra-vitelline provision of
nutrients during gestation. In fact, physiological relationships
between the parent and developing offspring—embryo,
larva or juvenile—imply a bidirectional transfer of nutrients
and metabolic wastes, although waste removal is much
less studied, and has seldom been mentioned in animals
(Moosbrugger et al., 2012). Matrotrophy is also sometimes
referred to as extraembryonic nutrition (EEN), although the
latter term is narrower (see Section II). Under either term, this

phenomenon is very familiar to us in a particular and most
complex form, placentotrophy, in which nutrition is provided
via a placenta. Other expressions of matrotrophy include
embryonic absorption or ingestion of nutrient secretions
in uterine or other incubatory spaces, and consumption
of maternal tissues, eggs or sibling embryos (Wourms, 1981;
Wourms, Grove & Lombardi, 1988; Blackburn, 1999c, 2014;
Avise, 2013; see Sections II, IV.4 and IV.5 for definitions
and details).

Matrotrophy is typically associated with
viviparity—development of the embryo within the
reproductive system, body cavity, or parental tissues,
resulting in live birth. The multiple origins of matrotrophy
and viviparity surely rank among the grandest examples of
evolutionary convergence and are often correlated with tax-
onomic diversification (Angelini & Ghiara, 1984; Blackburn,
1992, 2005, 2014; Reynolds, Goodwin & Freckleton, 2002;
Crespi & Semeniuk, 2004; Von Rintelen & Glaubrecht,
2005; Elliot & Crespi, 2009). Yet despite the affirmed eco-
logical and evolutionary importance of gestational mode, the
terminology of embryonic incubation varies among authors
and disciplinary specialties, and definitions run the gamut
from restrictive to broadly permissive (Blackburn, 1992;
Wake, 1992; Lodé, 2012; Avise, 2013). Here, for heuristic
purposes we separate viviparity (as defined above) from
brooding, which we distinguish as embryonic incubation
on the body surface, inside its infoldings, invaginations, or
gastric system (Trumbo, 2012; see Section II). Our focus is
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on the broad range of matrotrophy, with placentotrophy as
an essential part.

Most theories of the adaptive significance of and
impediments to matrotrophy stem from work on vertebrates,
which constitutes the overwhelming majority of studies
(reviewed in Blackburn, 2005, 2014). However, too narrow
a range of nature’s diversity may be insufficient to
realize the phenomena to be explained—the genetics,
physiology, ecology, and evolution of matrotrophy among
animals. Here we report the results of the first extensive
literature analyses, augmented by our own anatomical and
ultrastructural studies, which reveal an astonishingly wide
distribution of matrotrophy and placentation throughout
Animalia, in contrast to a more traditional view that
these phenomena are infrequent among invertebrates (see,
for instance, Hogarth, 1976; Clutton-Brock, 1991; Avise,
2013). Actually, prominent increases in embryo size during
incubation were recorded in a number of invertebrates
and invertebrate chordates in the late 19th and early 20th
centuries. Nutritional roles were ascribed to some temporary
structures (termed placentas, placental or trophic/nutritive
membranes or pseudoplacentas) developing around and/or
by embryos, and modes and sources of nutrition for embryos
were suggested in sponges (Dendy, 1888; Gatenby, 1920),
turbellarians (Bresslau, 1904), digeneans (Lynch, 1933),
molluscs (Leydig, 1855; Stepanoff, 1865; Ziegler, 1885;
Poyarkoff, 1910; Gilmore, 1917), polychaetes (Goodrich,
1900), bryozoans (Braem, 1890, 1897; Harmer, 1902, 1926),
kamptozoans (Nickerson, 1901), crustaceans (Weismann,
1877), onychophorans (Sedgwick, 1885; Sclater, 1888),
insects (Heymons, 1912; Hardenberg, 1929), nematodes
(Maupas, 1900), echinoderms (Mortensen, 1894, 1920;
Clark, 1898, 1901; Vaney, 1925) and salps (Huxley, 1851;
Brooks, 1893) (see online Appendix S1 for additional
references). Most of these reports were overlooked or
forgotten; two rare exceptions published later are the
monographs of Hagan (1951) and Manton (1949) on insects
and Onychophora. Their work, and some early information
on salps, is commonly mentioned in textbooks.

Our analysis, based on an extensive literature com-
pilation and our own research studies, reveals that
matrotrophy is recorded or inferred (based on indirect
evidence) in more than half of all animal phyla (at least 21
of 34), many with placenta-like structures (Fig. 1, Table 1,
see online Appendix S1). Ten phyla are represented only
by a few or several matrotrophic species, whereas in 11
others EEN is either pervasive or widespread, or at least
not uncommon. Here, we attempt to integrate patterns
across Animalia, focusing on four aspects of invertebrate
matrotrophy among and within phyla: (i) distribution of the
morphological sites of EEN, (ii) distribution of matrotrophic
modes and mechanisms, (iii) indications of broad trends in
the evolution of structural complexity of nutritional organs,
and (iv) independent evolutionary origins of matrotrophy.
Our results deliver a significantly revised portrait of the
occurrence of matrotrophy and placentation that should help

to guide further studies of their phylogenetic, genetic, and
developmental origins, constraints, and adaptive significance.

II. MAKING SENSE OF TERMINOLOGY

The term ‘matrotrophy’ was coined by Wourms (1981,
p. 473), who classified reproductive patterns in fishes as
‘either lecithotrophic, i.e. exclusively yolk dependent, or
matrotrophic, i.e. in receipt of a continuous supply of maternal
nutrients during gestation’ [our italics]. The term was thus
restricted to provisioning of an embryo.

Etymologically, matrotrophy (feeding by a mother)
suggests a wider operational application. Following
Blackburn (1992, 2000, 2014), this term could be applied to
any type of maternal or paternal nutrient provisioning lasting
until the stage when the offspring (embryo and post-embryo)
attains nutritional independence (fends for itself), i.e. not
only pre-paritive (prenatal) parental feeding, but also
post-paritive and post-gestational, including matrophagy
(consumption of the mother’s tissues) in some arthropods,
lactation in mammals, feeding by transformed parental
epithelia (dermaphagy) in some fishes and amphibians
(also considered as matrophagy), crop milk in some
birds, ‘royal jelly’ in honey bees, and nutrition by any
type of food collected and prepared by a parent for
consumption by its young (including post-paritive feeding
in some insects, many birds and most mammals during
the post-lactation period). Matrotrophy sensu lato can thus
apply to all early developmental stages—embryos, larvae
and juveniles. The term ‘extraembryonic nutrition’ should
strictly refer to the earliest stage of development, in
contradistinction to ‘postembryonic nutrition’, though we
traditionally (conventionally) use EEN for both these cases in
our paper. The term ‘fetal nutrition’ (Wourms, 1977), used
predominantly for vertebrates, would be a compromise.

Pre- and post-paritive nutrient provisioning can be direct
and indirect. Direct provisioning refers to nourishment
provided continuously from the parent to the young
during part of or the entire duration of incubation
and/or guarding. Indirect provisioning denotes that the
entire amount of extra-vitelline nutrient required for the
development of any particular offspring is supplied only once
by the parent—even in the case of incubation, the parent
is not subsequently involved in providing nourishment.
For example, some gastropod molluscs, polychaetes and
free-living flatworms supply the developing offspring with
nutritive eggs or albumen in free-laid or incubated
egg-capsules (sibling cannibalism can also occur in some
cases). Some insects collect paralysed prey (or deposit egg[s]
inside the host animal) or fresh or decomposed plant materials
for this purpose.

Matrotrophy sensu stricto can be defined as continuous
(i.e. direct), parental, extra-vitelline nutrient supply during
gestation (incubation of the young), whether viviparous or
brooding (and, thus, pre- and post-paritive). In most cases it
is pre-paritive and associated with viviparity. We delineate
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Fig. 1. Distribution and inferred origins of matrotrophy across the animal kingdom. In each phylum, numbers on the dendogram
(left) show the conservatively estimated number of independent origins of extraembryonic nutrition (EEN). Numbers on the
bars (right) and bar lengths reflect the number of families that are either wholly matrotrophic or include species with EEN.
Numbers in parentheses show the approximate number of families within phyla [based on the World Register of Marine
Species, Animal Biodiversity (Zootaxa) database, and several other databases (such as World Porifera database, www.bryozoa.net,
www.onychophora.com, etc.; some numbers were obtained from experts)] including/consisting of matrotrophic species. The scale
is truncated for Chordata and Platyhelminthes. The cladogram is based on Dunn et al. (2008, 2014), Hejnol et al. (2009), Edgecombe
et al. (2011) and Philippe et al. (2011).

viviparity as an incubational mode, with embryonic devel-
opment occuring within the reproductive system (ovary or
sexual duct), body cavity (coelom, pseudocoel or haemocoel)
or parental tissues or tissue-like layers (parenchyma, mesohyl,
mesoglea), resulting in live birth. During brooding, progeny
are released as zygotes, embryos or post-embryos but are
incubated on the parental body surface, inside its infoldings
(including mantle and atrial cavities) or invaginations (either
non-specialized or transformed as brood chambers) or
in the gastric system (mouth, stomach and its outpock-
etings). Thus, in viviparity, the development of young is
pre-paritive, whereas in brooding it is post-paritive. In
both instances, not only embryonic, but also postembryonic
stages can be incubated, and either extra- or postembryonic
nourishment (or both) can occur.

Since the term ‘embryo’ strictly applies to the
pre-paritive/prehatched developmental phase, and not later
stages that may be immature and dependent on matrotrophy

for survival, we likewise use the inclusive terms ‘young’ and
‘offspring’ to refer to embryonic and later stages (for analysis
of terminology applied to vertebrates, see Blackburn, 2014).
Regardless of the incubation site, the incubation period can
be considered as ‘gestation’. The term ‘pregnancy’ is more
commonly used for viviparous vertebrates (but see Avise,
2013). In the case of brooding, the term ‘larval/juvenile
release’ (instead of ‘birth’) is preferable for describing the
moment when the offspring leaves the parent.

The situation in marsupial mammals is instructive in this
respect. Whereas prenatal development occurs in utero, being
supported by placentation, the post-paritive period continues
in the marsupium and is accompanied by lactation. Thus,
during gestation viviparity is followed by brooding in this
case, and both incubational modes are matrotrophic.

On these views, viviparity and brooding are not
synonymous. Yet the terms are often confused in describing
internal incubation prior to the expulsion of live young from
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Table 1. Distribution of matrotrophy within higher taxa of Animalia. Phyla and classes in left column are arranged in order of
decreasing numbers of families that include matrotrophic species. Wholly matrotrophic groups are shown in red. *, taxon with
underestimated number of matrotrophic species, see discussion in text. Data on invertebrates and salpids summarized here are based
on Appendix S1

Phylum
Class/order

Number of
matrotrophic

species

Number of families
(entirely matrotrophic or

including matrotrophic species)

Site of matrotrophic
incubation (viviparity

versus brooding)

Chordata
Mammalia 5750 157 Viviparous, oviparous
Chondrichthyes 351* 24* Viviparous
Osteichthyes 110 15 Viviparous, 4 brooders, guarding
Reptilia * 13* Viviparous
Amphibia 38 9 Viviparous, 3 brooders
Ascidiacea 6 2 Brooding, 1 viviparous sp.
Thaliacea/Salpida 48 1 Viviparity followed by brooding

>6000 ∼221 Predominantly viviparous

Platyhelminthes
Digenea ∼18000 ∼150 Viviparous
Cestoda 17 8 Viviparous
Monogenea ∼450 2 Viviparous
‘Turbellaria’ 8 2 Viviparous

Total:∼18475 ∼162 Viviparous

Arthropoda
Arachnida/Pseudoscorpionida 3385 25 Brooding
Arachnida/Scorpionida 1753 14 Viviparous
Arachnida/Acari 2 2 Viviparous
Insecta/Diptera ∼809 9 Viviparous
Insecta/Strepsiptera ∼600 8 Viviparous
Insecta/Dermaptera 13 3 Viviparous
Insecta/Coleoptera 15 3 Viviparous
Insecta/Hemiptera ∼5033 2 Viviparous
Insecta/Psocoptera 4 1 Viviparous
Insecta/Blattoidea 1 1 Viviparous
Crustacea/Isopoda 13 9 Brooding, 2 viviparous spp.
Crustacea/Gymnomera 37 3 Brooding
Crustacea/Anomopoda 19 1 Brooding
Crustacea/Ctenopoda 1 1 Brooding
Crustacea/Decapoda 1 1 Brooding

Total:∼11686 83 Viviparous versus brooding ∼1/1

Bryozoa
Stenolaemata/Cyclostomata 626 23 Viviparous
Gymnolaemata/Cheilostomata ∼122 18 Brooding, 5 viviparous spp.
Gymnolaemata/Ctenostomata 9 7 Brooding
Phylactolaemata 87 6 Brooding

Total:∼844 53 3/4 are viviparous, 1/4 are brooding

Porifera*
Demospongiae 24 17 Viviparous
Calcarea 6 6 Viviparous (shift to brooding in 2 spp.)
Homoscleromorpha 3 1 Viviparous
Hexactinellida 1 1 Viviparous

Total: 34 25 Predominantly viviparous

Nematoda*
Chromadorea 33 18 Viviparous
Enoplea 3 3 Viviparous

Total: 36 21 Viviparous

Echinodermata
Holothurioidea 32 7 14 viviparous, 18 brooding spp.
Asteroidea 10 5 6 viviparous, 4 brooding spp.
Ophiuroidea 8 3 1 viviparous, 7 brooding spp.
Echinoidea 7 3 Brooding
Crinoidea 2 2 1 viviparous, 1 brooding spp.

Total: 59 20 22 viviparous, 37 brooding spp.
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Table 1. Continued

Phylum
Class/order

Number of
matrotrophic

species

Number of families
(entirely matrotrophic or

including matrotrophic species)

Site of matrotrophic
incubation (viviparity

versus brooding)

Mollusca
Gastropoda 23 8 18 viviparous, 5 brooding spp.
Bivalvia* 42 5 Brooding

Total: 65 13 Predominantly brooding

Annelida
Polychaeta 19 7 Viviparous
Clitellata 3 1 Brooding

Total: 22 8 Predominantly viviparous

Nemertea 14 5 Viviparous

Cnidaria
Scyphozoa 2 2 1 viviparous, 1 brooding spp.
Hydrozoa 1 1 Viviparous
Anthozoa 2 1 2 viviparous

Total: 5 4 4 viviparous, 1 brooding spp.

Dicyemida ∼107 3 Viviparous

Acanthocephala
Eoacanthocephala 3 1 Viviparous
Palaeacanthocephala 1 1 Viviparous
Archiacanthocephala 1 1 Viviparous

Total: 5 3 Viviparous

Onychophora 86 2 Viviparous

Orthonectida 24 2 Viviparous

Kamptozoa 5 2 Brooding

Acoelomorpha 2 2 Viviparous

Cycliophora 2 1 Brooding & viviparous

Rotifera
Monogononta 1 1 Viviparous

Gastrotricha 1 1 Viviparous

Loricifera 1 1 Viviparous

the parent body. Examples of such descriptions are ‘the site
of brooding in viviparous forms’ (Hendler, 1975, p. 692, in
Ophiuroidea), or a ‘brooding nemertine’ with intra-ovarian
incubation (Norenburg, 1986, p. 275). In this paper we also
intentionally avoid the confusing term ‘ovoviviparous’ (for
discussion see Wourms, 1981; Blackburn, 1992, 1994a, 2000,
2014; Frick, 1998).

It also should be mentioned that matrotrophy is often
characterized as a ‘post-fertilization’ event in verte-
brates (Blackburn, 2014; Pollux et al., 2014). However,
because parthenogenesis is widespread in invertebrates,
including matrotrophic taxa (for example, aphid insects,
digenean parthenitae, and the only known viviparous gas-
trotrich), we exclude ‘post-fertilization’ from our definition.

We distinguish five matrotrophic modes (‘patterns of
matrotrophy’ in Blackburn, 2014): (i) oophagy, ingestion of
sibling ova or products of their resorption; (ii) embryophagy
(=adelphophagy), sibling cannibalism; (iii) histotrophy,
absorption (and sometimes phagocytosis, see Section IV.5) of

nutrients directly from the surrounding fluid of the parental
body cavity, incubation chamber or tissues by the offspring
external cell layer; (iv) histophagy, ingestion of secretions
from parental tissues or glands, feeding on floating cells and
cell debris, or eating maternal tissues or organs, most often
epithelium (sometimes hypertrophied) of parental sexual
ducts, skin or brood chamber, but also the entire uterus, fat
body, intestine, etc. (this last variant is termed ‘matrophagy’,
and considered as a separate mode by Blackburn, 2014);
and (v) placentotrophy, EEN involving any form of placenta,
defined as ‘any intimate apposition or fusion of the fetal
organs to the maternal tissues for physiological exchange’
(Mossman, 1937, p. 156; see also Wourms, 1981; Blackburn,
Evans & Vitt, 1985; Blackburn, 1992, 1999a, 2000, 2014).

Schindler & de Vries (1988) described ovarian matrotro-
phy in teleost fishes as aplacental, despite the apposition
of embryonic and ovarian epithelia (but lacking specialized
nutritional structures). ‘Aplacental’ may be better applied
to all types of EEN lacking contact/apposition of parental

Biological Reviews 91 (2016) 673–711 © 2015 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Invertebrate matrotrophy and placentation 679

and fetal tissues. Because many researchers have considered
a ‘placenta’ applicable only to eutherian mammals,
alternatives such as ‘pseudoplacenta’ (Roonwal, 1939, cited
by Hagan, 1951) and ‘placental analogue’ (Wourms, 1977,
p. 381; Blackburn, 1999c; Ostrovsky, 2013a,b) have often
been used for nutritive structures in other vertebrates and in
invertebrates. The reasoning is that the allantoic mammalian
placenta consists of specialized maternal and fetal interdig-
itating tissues forming a complex organ. In most instances,
however, placentation is structurally much simpler, and
specialized nutritive tissues/organs may or may not be
present. Following Mossman (1937) we interpret the close
apposition between epithelia/tissues of parent and offspring,
with nutrient transport, as sufficient to describe such contact
as placental. Thus, here we define a ‘placental analogue’ as
any local zone of enhanced nutritional transport, whether
simple apposition of non-specialized epithelia or specialized
parental–embryonic tissue/cell complexes, as well as
nutritive structures formed exclusively by the parent or the
embryo and increasing the entire secreting and absorbing
surfaces as well as the contact surface area between them.

III. MATERIALS AND METHODS

There is some uncertainty among authors regarding the
number of the currently recognized metazoan phyla (Dunn
et al., 2008, 2014; Hejnol et al., 2009; Edgecombe et al.,
2011). Here, we accept 34 phyla, including Xenoturbellida,
Acoelomorpha, Acanthocephala and Rotifera as separate
entities.

Our analysis is based on a combination of original research
(Bryozoa), personal communications from taxonomic experts
(20 other phyla) and data from the literature (all
phyla) that demonstrate or strongly infer instances of
matrotrophy. Direct evidence of nutrient transport from
a parent to developing offspring explicitly included oophagy,
embryophagy, histophagy, experimental in situ transfer of
metabolites with radiolabelled markers, increase in dry
mass of the fully developed embryo/post-embryo over that
of the ovulated egg, and ultrastructural evidence of exo-
and endocytosis. Indirect evidence was taken to include
the appearance of temporary nutrient transfer structures
(apparent or inferred) during the incubation period in the
parent, embryo or both, histochemical data on the content
of the parental tissues/cells during gestation, increase in
embryo size (linear or volumetric, including experimentally
induced), mass loss and destruction of the parent’s tissues
when ‘sacrificed’ for nourishment, the mating of progeny
inside the parent, and certain other characters in a few
difficult cases (e.g. changes in size, shape and distributional
pattern of yolk granules in the early embryo in comparison
with the ovulated egg; see Ostrovsky, 2013b).

Closer consideration exposes constraints in applying some
of these evidential criteria to invertebrates. Chemical com-
position and dry mass as used in some vertebrate studies
(reviewed in Blackburn, 1994b, 2014) are seldom used in

invertebrate research, since eggs and embryos are often quite
small. Examples include two onychophorans, two insects, two
isopod crustaceans, and several echinoderms (Pandian, 1972;
Stay & Coop, 1973; Denlinger & Ma, 1974; Lawlor, 1976;
Turner & Rutherford, 1976; Turner & Dearborn, 1979;
Lawrence, McClintock & Guille, 1984; Schatt, 1988; Havel,
Wilson & Hebert, 1989; de Eguileor et al., 1994; Frick, 1998;
Bosch & Slattery, 1999; Sunnucks et al., 2000). Also relatively
rare are experiments with radiolabelling and diet manipula-
tion (Burton, 1962; Nollen, 1968; King & Lumsden, 1969;
Blackman, 1974; Gilbert, 1974; Gremigni & Domenici, 1976;
Calloway, 1982; Tompa, 1984; Toolson, 1985; Silverman,
Kays & Dietz, 1987; Hoese & Janssen, 1989; Frick, 1998;
McIntyre et al., 2009) and ultrastructural studies (Rogers,
Ellis & Denham, 1976; Domenici & Gremigni, 1977; Ellis
et al., 1978; Walker & Campiglia, 1988; Cable & Tinsley,
1991; Campiglia & Walker, 1995; Schwartz & Dimock,
2001; Korneva, 2005; Sewell et al., 2006; Moosbrugger et al.,
2012; Korneva et al., 2014), which is why, in addition to
the prominent increase in embryo size (linear, volumetric,
or both), many authors have used specialized temporary
structures in both parent and offspring during incubation as
evidence of EEN (e.g. Hagan, 1948, 1951; Mukai, Terakado
& Reed, 1997; Farley, 2001; see also discussion for verte-
brates in Blackburn, 2014). It also should be mentioned that
developing embryos of aquatic invertebrates may increase in
volume (and wet mass) owing to water uptake, regardless of
whether or not matrotrophy is present (discussed in Ostro-
vsky, 2013a,b). Taking these reservations into account, we
selected those examples from the literature and our own data
where cumulative evidence (dimensional, developmental,
morphological and cytological) strongly pointed to the pres-
ence of EEN regardless of the degree of matrotrophic input.

We concur with Blackburn’s (2014, p. 3) view, that
‘Matrotrophy and lecithotrophy represent extremes of
a continuum’. Embryos in many species rely on both
yolk and EEN (see also Blackburn, 1993; Dulvy, 1998;
Lombardi, 1998). In the vertebrate literature, the term
‘substantial matrotrophy’ is used when extra-vitelline sources
account for most of the nutrients during development. The
contrary balance, with predominantly lecithotrophic and
restricted matrotrophic provisioning, is frequently termed
‘incipient matrotrophy’ (Blackburn, 1992, 2014). Most or all
viviparous vertebrates have at least some degree of EEN,
and many of them are predominantly lecithotrophic (D. G.
Blackburn, personal communication 2014). This continuum
is also characteristic of invertebrates. Yet only recently
have researchers working on invertebrates attempted to
differentiate species with varying degrees of matrotrophy
versus lecithotrophy using dimensional (embryonic increase
in volume), morphological (degree of hypertrophy of nutritive
cells) and cytological (oocyte type) criteria (e.g. Ostrovsky,
Gordon & Lidgard, 2009; Ostrovsky, 2013a,b).

We extracted data on invertebrate matrotrophy from
more than 580 published papers and monographs (see
online Appendix S1). A large data matrix was compiled
for matrotrophic species from more than 200 invertebrate
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families. It includes taxon names, egg versus larval/juvenile
size and embryonic size increase (where known), site
of incubation, parental as well as embryonic structures
involved in nutrient transfer (when inferred/described), and
corresponding references. We also compiled comparative
data on the distribution of matrotrophy in vertebrates.
For certain taxa, extrapolations were made based on the
general uniformity of the incubation method. For example,
we regarded as matrotrophic the entire group of parasitic
digenean flatworms, based on consistency among studies
that show embryos invariably grow while floating in the
pseudocoel fluid of the parental parthenogenetic generations.

To estimate the number of independent origins of
matrotrophy among and within invertebrate phyla we anal-
ysed (i) the taxonomic distribution of the major reproductive
patterns (oviparity versus non-matrotrophic and matrotrophic
incubation) using recently published molecular phylogenies,
and compared distribution patterns of (ii) incubation sites and
(iii) matrotrophic modes. Since data are lacking for many
invertebrate groups, our view is that these estimates should be
considered exceptionally conservative. We also considered
the possible reasons why matrotrophy is absent in some phyla.

IV. RESULTS AND DISCUSSION

(1) Distribution of matrotrophy across Animalia

Matrotrophy is established or inferred in 20 of 33 invertebrate
phyla, but its occurrence within a phylum varies greatly
(Fig. 1). To facilitate analysis, we cluster the invertebrate
phyla with EEN into three groups using a somewhat arbitrary
criterion: those with 1–5 matrotrophic species; those in which
EEN is more widespread (more than 10 but not much more
than 50 species); and those in which matrotrophy is extensive
(from one hundred to thousands of species) or universal
(regardless of phylum size) (Table 1; see online Appendix S1
for taxa and references).

The first group comprises seven phyla. Rotifera,
Gastrotricha and Loricifera have only a single known
matrotrophic species each. There may also be a matrotrophic
species in Ctenophora. Acoelomorpha contains 2 species with
EEN (from 2 families). Five matrotrophic species have been
recorded in 3 phyla: Acanthocephala (from 3 families in 3
classes), Kamptozoa (2 families in 2 orders) and Cnidaria (2
scyphozoan families, a hydrozoan family and an anthozoan
family).

The second group comprises 6 phyla. Nemertea includes
14 known matrotrophic species (from 5 families) and
Annelida has 22 species (7 families of Polychaeta, 1 family
of Clitellata). In Porifera, matrotrophy is suggested in at
least 34 species (25 families) from all 4 classes: Calcarea (6
species, 6 families), Demospongiae (24 species, 17 families),
Homoscleromorpha (3 species, 1 family) and Hexactinellida
(1 species). In Nematoda, matrotrophy is indicated in
36 species, in classes Enoplea (3 species, 3 families) and
Chromadorea (33 species, 18 families). In Echinodermata,

there are 59 species (20 families) with EEN recorded/inferred
across all 5 extant classes: Ophiuroidea (8 species, 3 families),
Asteroidea (10 species, 5 families), Holothuroidea (32 species,
7 families), Echinoidea (7 species, 3 families) and Crinoidea
(2 species, 2 families). Matrotrophy is recorded or inferred in
65 species (13 families) of Mollusca—at least 42 species (5
families) of bivalves and 23 species (8 families) of gastropods.
It is likely that the numbers of matrotrophic sponges,
nematodes and bivalve molluscs are underestimated. For
instance, all species in such bivalve genera as Musculium,
Pisidium and Sphaerium for which reproduction has been
studied show signs of EEN, thus making it very probable that
these taxa are entirely matrotrophic.

The third group also comprises 7 phyla. Platyhelminthes
leads with approximately 18475 matrotrophic species: 8
turbellarians (2 neorhabdocoel families), 17 Cestoda (8
families), ∼450 Monogenea (2 families) and all ∼18000
species of Digenea (∼150 families). Arthropoda contains the
second-largest matrotrophic representation, with ∼11686
species (83 families). In class Arachnida, all Scorpionida
and Pseudoscorpionida (∼5138 species, 39 families) have
extraembryonic nutrition, and there are 2 matrotrophic
species (2 families) of mites. Among insects EEN is present
in all Strepsiptera (∼600 species, 8 families), more than 800
species of Diptera (9 families) and more than 5030 species
of Hemiptera (2 families), plus 33 species from 8 families
in 4 other orders (Dermaptera, Blattoidea, Psocoptera and
Coleoptera). Crustacean taxa with matrotrophy include all
Gymnomera (37 species, 3 families), 19 species (1 family)
of Anomopoda and a ctenopod species (class Branchiopoda)
as well as 13 species (9 families) of Isopoda and 1 species
of Decapoda (class Malacostraca). Similar to the above
example, the number of matrotrophs—parasitic flatworms
and insects—is clearly underestimated.

In the phylum Onychophora, there is evidence for EEN
in 86 species (in both families). This number may actually
approach 100 species, but the lack of data from genera
that include matrotrophs prevents more precise estimation.
There are 3 small, wholly matrotrophic phyla—Dicyemida
(107 species, 3 families), Orthonectida (24 species, 2 families)
and Cycliophora (2 species, 1 family).

Finally, the wholly colonial lophotrochozoan phylum
Bryozoa ranks third among invertebrates for matrotrophy.
Workers have only recently discovered the wide extent
of matrotrophy in this phylum (Reed, 1991; Levin &
Bridges, 1995; Ostrovsky et al., 2009). Updating our previous
estimate, at least 844 species in 53 families of bryozoans
are matrotrophs, and more occurrences are likely as
our anatomical and ultrastructural studies to date cover
only 30% of the ∼180 gymnolaemate families (Ostrovsky,
2013a,b, suggested >1000 matrotrophic species). Moreover,
compared with all aquatic invertebrates, bryozoans have the
widest within-phylum taxonomic distribution of placental
analogues, unusually diverse incubational structures, and
numerous instances of incipient matrotrophy (Ostrovsky,
2009, 2013a,b; Ostrovsky et al., 2009).
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A comparison with Chordata provides a context for
the total estimate of invertebrate species with EEN
(Table 1). Among urochordates, matrotrophy occurs in
Thaliacea (all 48 species of Salpida) and Ascidiacea
(6 species, 2 families). Mammals, including monotremes
(altogether 5750 species in 157 families; Wilson &
Reeder, 2011), are all matrotrophs (Blackburn, 2005).
Estimating numbers of matrotrophic species among fishes,
amphibians and reptiles is difficult due to insufficient
data on reproduction for many species. According
to Lombardi (1998) there are 513 matrotrophic species
of sharks and rays belonging to 40 families, whereas
the estimate of Dulvy (1998) is more modest; we
counted 351 species in 24 families in his list (see also
Dulvy & Reynolds, 1997). Based on egg size, embryonic
linear/volume/mass increase, development of trophic
structures as well as egg/sibling consumption by developing
juveniles, matrotrophy was recorded/inferred in 15 families
of Osteichthyes. Thirteen families include viviparous species,
whereas the Syngnathidae includes ‘patrotrophic’ brooders,
and the discus fishes (Symphysodon) are guarders (Wourms,
1981; Trexler, 1985; Blüm, 1986; Wourms et al., 1988;
Schindler & Hamlett, 1993; Lombardi, 1996, 1998;
Carcupino et al., 2002; Reznick, Meredith & Collette, 2007;
Pollux et al., 2009; Marsh-Matthews, Deaton & Brooks, 2010;
Pires, Arendt & Reznick, 2010; Marsh-Matthews, 2011; Pires
et al., 2011; Blackburn, 2014, and references therein). In total,
EEN was recorded/inferred in at least 110 teleost species.
Modes of matrotrophy recorded in fishes include oophagy,
embryophagy, histotrophy, histophagy and placentotrophy.

The general picture of matrotrophic distribution in
Amphibia is far less complete. EEN was recorded/inferred
in 38 species of 9 families. Rhinoderma and two skin-feeding
caeciliids are brooders whereas the other matrotrophic forms
are viviparous (Wake, 1977, 1980, 1982, 1993; Blüm, 1986;
Goicoechea, Garrido & Jorquera, 1986; Greven, 1998;
Lombardi, 1998; Wake & Dickie, 1998; Jared, Navas &
Toledo, 1999; Dopazo & Korenblum, 2000; Kupfer et al.,
2006; Buckley et al., 2007; Gower et al., 2008; Wilkinson
et al., 2008, 2011; Blackburn, 2014, and references therein).
All matrotrophic modes have been recorded in amphibians
except for placentotrophy, although one species may utilize it.

Among reptiles, matrotrophy occurs only by placentation
and has been documented only among squamates. The
presence of a placenta, however, does not necessarily
imply substantial matrotrophy, since this organ ancestrally
functions in gas exchange and provision of calcium, sodium,
and small amounts of organic nutrients (Blackburn, 1992;
Thompson & Speake, 2006; Stewart, 2013). Most viviparous
squamates for which information on placentas is available
are chiefly lecithotrophic with incipient matrotrophy
(Stewart, 1992; Blackburn, 1999b, 2014; Villagrán, Méndez
de la Cruz & Stewart, 2005). Even in these, ultrastructural
evidence of cellular specializations for nutrient transfer has
been shown in a number of lizards and snakes (reviewed
in Blackburn, 2014). Recently Blackburn (2014) suggested
that incipient placentotrophy is universal among viviparous

squamates (while stressing that only species with substantial
nutrient provisioning are classified as matrotrophic in the
vertebrate literature; D.G. Blackburn, personal communica-
tion 2014). Since matrotrophy is correlated with viviparity,
which occurs in about 20% of squamates (Blackburn,
1999c, 2014), all these species can be considered as having
EEN. Based on Pincheira-Donoso et al. (2013) there are
9193 squamate species; about 1800 species may thus be
matrotrophic. Morphological and experimental evidence on
placentation has been recorded for species in 13 squamate
families (Weekes, 1935; Bauchot, 1965; Blackburn, Vitt
& Beuchat, 1984; Blackburn, 1985, 1993, 1994b, 1998,
1999b, 2005, 2014; Blackburn et al., 1985; Blüm, 1986;
Stewart & Blackburn, 1988; Stewart, 1992, 1993, 2013;
Lombardi, 1998; Stewart & Thompson, 1998, 2000, 2009;
Thompson, Stewart & Speake, 2000; Blackburn & Vitt,
2002; Jerez & Ramírez-Pinilla, 2003; Villagrán et al., 2005;
Ramírez-Pinilla, 2006; Thompson & Speake, 2006; Vieira,
de Perez & Ramírez-Pinilla, 2007; Leal & Ramírez-Pinilla,
2008; Blackburn & Flemming, 2009; Stewart & Ecay,
2010, and references therein). Among these, substantial
placentotrophy evolved in all six subclades of a single lizard
family, Scincidae (Blackburn, 2014).

Because of these uncertainties, we caution that for
Chordata, our estimates of the number of matrotrophic
species and families should be considered only as preliminary
ones: above 6000 species (reptiles excepted) and 220 families.

(2) Brief overview of matrotrophy in invertebrates

Patterns of invertebrate matrotrophic reproduction are
extraordinarily diverse with respect to sites, modes,
mechanisms and structures providing extraembryonic
nutrition. Each of these aspects is analysed on a comparative
basis in the sections that follow. Before presenting this
analysis we give brief, phylum-by-phylum descriptions of
EEN, focusing on typical examples and exceptions. The full
range of taxonomic and structural diversity of matrotrophic
adaptations (including in invertebrate chordates) is described
and references are given in Appendix S1. Superscript
numbers in Appendix S1 identify papers that provide
histochemical and/or ultrastructural and experimental
evidence for matrotrophy (e.g. autoradiographic labelling,
calcium transfer, diet manipulation, dry mass and organic
mass analysis, estimation of energetic content). Some
potentially matrotrophic species are also included.

(a) Non-Bilateria and Acoelomorpha

The vast majority of Porifera are larviparous, releasing
young as larvae. Their embryos are incubated in mesohyl,
surrounded by a specialized cellular capsule (sometimes
termed a ‘follicle’ or ‘epilarval trophocyte epithelium’) of
varied origin. Matrotrophy is suggested in more than
30 species from all 4 classes based on a variety of
evidence: dimensional (prominent embryonic increase in
size), developmental (macromere enlargement, migration of
maternal cells to the embryonic cavity and their degeneration
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and phagocytosis) and ultrastructural (presence of the same
type of inclusions in contacting larval and maternal cells).

In contrast to sponges, most Cnidaria are oviparous,
releasing young as eggs. Embryonic incubation is known
in some Anthozoa, Scyphozoa and Hydrozoa. A marked
increase in embryo size occurs during intraovarian
incubation in the scyphozoan Chrysaora hysoscella. In this
species larvae develop inside the ovary. In Stygiomedusa
gigantea, the asexually developed ‘‘larvae’’ transform into
scyphistomas that grow inside special protrusions of the
stomach wall, also surrounded by a special capsule (‘chorion’).
In the hydrozoan medusa Crossota millsae, early embryonic
development occurs in the ovary, whereas growing juvenile
medusae burst out of it and are suspended beneath the
maternal subumbrella for some time. EEN is also suggested
in two Acropora corals in which larvae develop within an
envelope of mesoglea and gastrodermis. As the embryos
increase in size, they fill the coelenteron of the parent,
with mesenteries firmly adhering to mesenterial envelopes
surrounding the large planulae.

Substantial embryonic enlargement occurs in the
platyctenean ctenophore Lyrocteis imperatoris. In this species the
growing larvae develop inside an expansion of the ovarian
diverticulum, but more evidence is required to confirm
matrotrophy.

Finally, phylum Acoelomorpha contains two species in
which embryo enlargement occurs in a so-called ‘‘embryonic
vesicle’’ inside the parenchyma.

(b) Lophotrochozoa

Among viviparous Platyhelminthes, embryonic development
occurs predominantly in the uterus. Ultrastructural and
experimental evidence has shown transfer of parentally
derived substances to the embryos in a number of turbellar-
ians, monogeneans, cestodes and digeneans. In gyrodactylid
monogeneans, two daughter generations are enclosed inside
one another, and both form inside the parent as in Russian
dolls. Nutrient transfer occurs across each of the series
of interfaces between the parent and older embryo in its
uterus, and the older embryo with the younger embryo.
In addition to having intrauterine matrotrophy in the
sexual generation, parthenogenetic generations of Digenea
nourish their progeny in the body cavity (pseudocoel). In
turbellarians of the genus Paravortex, embryos develop inside
the parenchyma. It is suggested that the transfer of soluble
and particulate nutrients from the parental gut occurs via the
wall of the embryonic capsule. Oophagy is also suggested in
one turbellarian species.

In the gastrotrich Urodasys viviparus, one very large
embryo (half the size of the adult) grows in utero; a similar
situation is also recorded in the rotifer Asplanchna sieboldi, in
which embryonic enlargement was induced experimentally.
Embryonic enlargement occurs during incubation in some
Acanthocephala and Kamptozoa, in which progeny develop
in the pseudocoel and brood pouch, respectively. In
several viviparous Nemertea, juveniles increase in size while
developing inside either the ovary or gonoduct. Relatively

little is known about the nutritive modes in these cases,
but histotrophy (Acanthocephala, Nemertea), histophagy
(Kamptozoa) and placentotrophy (Gastrotricha, Rotifera and
Kamptozoa) can be inferred cautiously.

In some viviparous polychaete annelids, embryonic growth
occurs in the main coelom or coelomic pouches, resulting in
the formation of segmented setigerous larvae. While nutritive
mechanisms are unclear, both histotrophy and histophagy
are probably involved. In leeches, juveniles are incubated
either inside the brood pouch (Marsupiobdella africana) or
directly on the parental body surface (Glossiphonia complanata,

Helobdella stagnalis). Nutrient transfer across epithelia of the
parent’s ventral side and juvenile posterior sucker has
been shown experimentally in Glossiphonia and suggested
by histochemical data in Helobdella.

Extraembryonic nutrition has been demonstrated or
inferred in a variety of incubating bivalve and gastropod
Mollusca. In brooding Bivalvia, embryos develop in the
gills, sometimes surrounded by special brood sacs that are
outgrowths of the gill filaments. Transfer of substances
to the growing progeny has been demonstrated by both
ultrastructural and experimental studies in a few species.
Matrotrophic gastropods incubate their growing young
either inside a subhaemocoelic brood pouch, in the oviduct,
or in utero. Oophagy as well as histotrophy are suggested in
different cases. In some species, a round sac (podocyst)
develops around the embryo, presumably acting as a
placenta. Massive transport of calcium from the parent to
the podocyst has been shown experimentally in one species.

The vast majority of species in phylum Bryozoa incubate
their young. Placentotrophy is suggested for the entire
class Phylactolaemata and extant species of class Stenolae-
mata (order Cyclostomata), which exhibit brooding and
intracoelomic viviparity, respectively. Among cyclostomes,
EEN supports polyembryony—the production of multiple
embryos from a single small egg inside an expansive
incubatory gonozooid. Both matrotrophic brooding and
viviparity are known in class Gymnolaemata, which is
characterized by a wide structural diversity of incubatory
chambers and varying degrees of embryonic enlargement
and placental development.

In the unique, complex cycliophoran life cycle, EEN
occurs in different generations in the course of asexual and
sexual reproduction. In the former instance, embryos grow
inside a feeding stage within the fluid-filled cavity of the
brood chamber. During sexual reproduction, a chordoid
larva develops inside a female, surrounded and nourished
by its degenerating tissues.

The phyla Dicyemida and Orthonectida provide
two exceptional matrotrophic examples. In the former,
embryogenesis occurs intracellularly inside the axial cell
of nematogen and rhombogen stages of the complex life
cycle. In orthonectids, development of the sexual phase is
accompanied by prominent embryonic growth inside the
plasmodium. The nutritive mechanism is unknown in both
cases, but diffusion and active transmembrane transport are
presumably involved.

Biological Reviews 91 (2016) 673–711 © 2015 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Invertebrate matrotrophy and placentation 683

(c) Ecdysozoa

In viviparous Nematoda, larval development occurs in the
uterus, and larval growth is extensive in many matrotrophic
species. In some instances, development proceeds so far that
sexual maturation and copulation occur inside the mother.
The internal organs of the pregnant female are used as a
food source in at least three species whose larvae continue to
grow in the maternal pseudocoel. Oophagy is also inferred
for some nematodes.

Arthropods demonstrate the greatest range of any phyla in
their incubatory and matrotrophic diversity. Matrotrophic
viviparity is obligatory in Scorpionida (in utero) and the insect
order Strepsiptera (inside the haemocoel), and is moderately
frequent or widespread in six other insect orders (in the
ovary, uterus or haemocoel). Haemocoelous viviparity
accompanied by EEN is also known in two mites. By
contrast, all Pseudoscorpionida are matrotrophic brooders
that incubate their young inside a ‘silk’ brood sac formed
around the sexual opening. Offspring consume nutritive
fluid produced by the mother’s ovary using an embryonic
pumping organ. Among Crustacea, brooders include some
branchiopods, most matrotrophic isopods and a decapod,
which incubate their progeny inside a marsupium on either
dorsal or ventral side of the body. Isopoda also includes two
viviparous species that incubate their young in the uterus
and show a marked increase in embryo size. Scorpions and
some insects possess various placenta-like structures, and
intrauterine ‘milk glands’ evolved in these groups. These
glands become fully functional when the mouthparts are
formed in the embryo. In arthropods, apart from embryonic
increase in linear size and development of specialized
structures (of the parent and the embryo), EEN is also
evidenced by histological data, dry-mass increase (in two
isopods and two insects) and transfer of radioactive tracers
from parent to embryo during gestation (in a scorpion).

About a half of all known Onychophora are matrotrophic,
employing incubation in the uterus. In matrotrophic
Peripatidae, the major nutritive role is ascribed to the
modified uterine wall forming a placental analogue. In
this family (with one known exception) the embryo is
attached to the uterine wall by a hollow ‘umbilical
cord’ or ‘stalk.’ Placenta-like structures and stalk are
absent in the matrotrophic Peripatopsidae, some of which
possess a so-called ‘trophic vesicle’ that is a swollen sac
of extraembryonic ectoderm presumably contributing to
nutrient uptake.

In the matrotrophic loriciferan Urnaloricus gadi, embryonic
development occurs in the pseudocoel. Embryos that develop
into Higgins larvae reabsorb all the tissue of their maternal
stage, the ghost-larva.

(d ) Deuterostomia

In Echinodermata, evidence of extraembryonic nutrition
is present in all five extant classes. Sites of embryonic
incubation vary within and among classes and include
ovary/ovotestes, coelom, and a variety of external marsupia.

The main evidence for EEN is a substantial increase in
embryo size; additional evidence has also been derived from
experimental data on dry and organic mass increase and
from autoradiographic labelling. Nutritive modes include
oo-, embryo- and histophagy, and presumably, histotrophy.
For example, transepidermal absorption is inferred to exist
in the early stages of development of a holothurian based on
autoradiographic experiments.

(3) Sites of matrotrophy – distribution across phyla

Of the 34 metazoan phyla, only 6 appear to
lack any discernable form of embryonic incubation.
Sipuncula, Nematomorpha, Tardigrada, Gnathostomulida,
Kinorhyncha and Xenoturbellida consist exclusively of
egg-laying/spawning species. In Placozoa, embryo(s) begins
development inside the mother (i.e. lecithotrophic viviparity),
which later degenerates and releases the embryo (Eitel et al.,
2011). Five other phyla, while including both oviparous
and incubating species (either lecithotrophic–viviparous like
Priapulida, or lecithotrophic–brooding like Chaetognatha,
Phoronida, Hemichordata, and Brachiopoda), show no
evidence of matrotrophy.

Embryonic incubation has been recorded in three species
of Ctenophora, the vast majority of which are oviparous. As
mentioned above, matrotrophy potentially may occur in one
viviparous ctenophore.

The remaining 21 phyla include matrotrophic species,
either viviparous, brooding, or both (Table 1). Matrotrophic
viviparity is encountered in 20 phyla (not Kampto-
zoa), whereas matrotrophic brooding occurs in 10, 9 of
which (again excluding Kamptozoa) possess both types of
incubation—Porifera, Cnidaria, Annelida, Bryozoa, Arthro-
poda, Echinodermata, Mollusca, Cycliophora and Chor-
data. While viviparity is recorded widely among families
in most of these nine phyla, matrotrophic brooding dom-
inates among Mollusca and Echinodermata. Cycliophora
exhibits both types of matrotrophic incubation within a
single life cycle. The total number of phyla with vivipar-
ity and brooding (matrotrophic or otherwise) are 23 and
15, respectively, with considerable overlap of the two.
This pattern highlights the wide distribution of embry-
onic incubation among Metazoa, with the prevalence of
viviparity.

Matrotrophy is associated with all known sites of viviparous
incubation, although not in all higher taxa. It occurs in
mesohyl (Porifera), mesoglea (two hexacorals), parenchyma
(‘turbellarians’, Acoelomorpha and Cycliophora), three types
of body cavities – pseudocoel (parthenogenetic generations
of Digenea as well as Acanthocephala, a loriciferan
and Nematoda with matrophagy), coelom (Polychaeta,
some sea stars and holothurians, a few gymnolaemate
and all cyclostome Bryozoa) and haemocoel (two Acari
and many Insecta including all Strepsiptera), ovary (one
scyphozoan and one hydrozoan medusa, majority of
matrotrophic Nemertea, numerous insects, a number
of echinoderms from four classes except Echinoidea),
sexual ducts (matrotrophic Neodermata, Gastropoda, all
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Scorpionida, numerous Insecta, two isopod crustaceans,
all matrotrophic onychophorans, Nematoda, the sole
matrotrophic gastrotrich and rotiferan, one nemertean
and one ascidian species), and even intracellularly or
intraplasmodially (in Dicyemida and Orthonectida). The
last instances are exceptional; the most common locations
for matrotrophic incubation are the female genital system
and body cavities (see online Appendix S1 for details and
references here and below).

The same can be said about brooding, almost all
known sites of which are associated with matrotrophy,
although not in all taxa. Large internal spaces – like
the mantle cavity of molluscs – are the usual locations
for matrotrophic incubation, along with invaginations
of the parental body wall – specialized brood-chambers
(a scyphozoan, Kamptozoa, all phylactolaemate and
some gymnolaemate Bryozoa, a leech, Cycliophora and
matrotrophic echinoderms from all five classes). In one sea
star, progeny are brooded in the stomach. Marsupia made
of pre-existing structures (various appendages and folds),
biogenic material (silk-like protein), or body-wall outgrowths,
are known to form in Crustacea, Pseudoscorpionida, and
cheilostome Bryozoa. In two matrotrophic leeches, young
are brooded directly on the ventral surface of the mother.

Developmentally timed shifts in the site of matrotrophic
incubation are known: (i) during viviparous development
when the embryo moves from the ovary to the oviduct or
uterus (recorded in a gastropod mollusc and a dermapteran
insect) and in some teleost fishes (Blackburn, 2014), or from
the ovary to haemocoel (in a mite), or uterus to pseudocoel
(some nematodes); and (ii) transition from matrotrophic
viviparity to matrotrophic brooding when juveniles burst
out from the gonad, being suspended beneath a maternal
subumbrella (hydrozoan medusa Crossota millsae), or embryos
move from the ovary to the water tubes of the inner
demibranchs (suggested in the bivalve Corbicula fluminea).
In some calcareous sponges, the incubation site changes
during incurvation of the larva that moves from the mesohyl
to the choanocyte chamber (it is uncertain that EEN is
present in both incubational stages). In salps, embryos initially
developing in the ovarian follicle are further nourished in
an atrial cavity. However, shifts from one matrotrophic
brooding site to another are unknown.

Considered as an overall pattern, some taxa show a
very restricted range of incubation sites whereas others
have different variants. Structural and ecological constraints
are reasonably inferred determinants for this aspect of
reproduction. Sites of matrotrophic incubation are most
diverse in Arthropoda and Bryozoa. Arthropods exhibit
viviparity in the ovary (Insecta), genital ducts (Scorpionida,
Insecta, Isopoda) or haemocoel (Acari, Insecta) and
brooding within ‘silk’ brood chamber (Pseudoscorpionida)
and marsupial sac/brood pouch (Branchiopoda, Isopoda,
Decapoda). Among Bryozoa, nourishment of the developing
young occurs in internal brood sacs (Phylactolaemata,
Ctenostomata, Cheilostomata), the introvert (Ctenostomata)
and various skeletal brood chambers (Cheilostomata).

Viviparous bryozoans (Cyclostomata and Epistomiidae)
incubate embryos in the perivisceral coelom, surrounded
by either modified peritoneal cells or by ovarian cells,
correspondingly. Although matrotrophy is more widespread
among chordates and Platyhelminthes, these phyla are
notable for the more limited range of incubational variation.

These observations are consistent with a view that
matrotrophy evolved repeatedly, irrespective of the site
of gestation. What of those groups that incubate young
but show no evidence of matrotrophy? In Placozoa, the
maternal individual dies soon after the beginning of embryo
cleavage and only early developmental stages are incubated.
In brooding Phoronida, Pterobranchia (Hemichordata) and
Chaetognatha embryos are incubated externally. On the
other hand, the absence of parental provisioning in the only
known viviparous priapulid (Meiopriapulus fijiensis; Higgins
& Storch, 1991) and brooding Brachiopoda (James, 1997;
Seidel et al., 2012) is an enigma; seemingly, the preconditions
for evolving matrotrophy are present. Matrotrophy may exist
still undiscovered in these two taxa.

(4) Modes of matrotrophy – distribution among
and within phyla

Modes of matrotrophy occurring during embryonic
incubation include oophagy, embryophagy, histotrophy,
histophagy (including matrophagy) and placentotrophy (see
online Appendix S1).

Chordata exhibits all of these modes, with placentotrophy
represented most frequently, whether at class or species
level – in all Mammalia except monotremes, many
squamate reptiles, a relatively large number of bony and
cartilaginous fishes, some ascidians, and all salps (Wourms,
1981; Mukai, Saito & Watanabe, 1987; Wourms et al.,
1988; Godeaux, 1990; Blackburn, 1992, 1993, 2005, 2014;
Wourms & Lombardi, 1992; Wooding & Burton, 2008)
(Table 2).

The same range of nutritive modes is found among inver-
tebrates, but histotrophy and placentotrophy predominate
(Table 2). Oophagy and embryophagy are less frequent.
A ‘turbellarian’ flatworm, a polychaete, two nematodes,
an ophiuroid, a holothurian, a sea star and two crinoids
comprise known/inferred oophagous forms, whereas a
gastropod, a dipteran genus, four isopods, two ophiuroids,
several sea stars, two holothurians and a crinoid exhibit (or
presumably exhibit) embryophagy (see online Appendix S1
for details and references).

Histophagy occurs in a turbellarian genus and some
species of Gastropoda. It is inferred or present in most
matrotrophic Polychaeta (18 species), all Pseudoscorpionida
(∼3385 species) and katoikogenic scorpions (late in
their development), more than 800 species of Diptera,
a cockroach, several Isopoda, three Nematoda and
seven Echinodermata from three classes. During late
developmental stages, histophagy apparently also occurs in
matrotrophic Kamptozoa, one teredinid and, possibly, one
sphaeriid bivalve and in at least one onychophoran species.
Oo-, embryo- and histophagy imply that the young acquire
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Table 2. Distribution of the modes of matrotrophy within higher taxa of Animalia. Phyla are arranged in order of decreasing
numbers of families that include matrotrophic species. Terminology: oophagy, ingestion of sibling ova or products of their resorption;
embryophagy (sibling cannibalism), offspring feed upon developing siblings; histotrophy, the offspring epithelium absorbs nutrients
directly from the surrounding fluid of the parental cavity, incubation chamber or tissues; histophagy (including matrophagy*),
ingestion of secretions from parental tissues or glands, or feeding on detached cells or hypertrophied epithelium of parental sexual
ducts, skin, brood chamber or internal organs; placentotrophy, extraembryonic nutrition involving any form of placenta. Inferred
mode: mode of matrotrophy suggested in the literature or by the authors based on indirect evidence

Type of matrotrophic nutrition

Taxon Oophagy Embryophagy Histotrophy Histophagy Placentotrophy Inferred mode

Chordata
Mammalia + +
Reptilia +
Amphibia + + + +* 1 sp. (?)
Osteichthyes + + + + +
Chondrichthyes + + + + +
Ascidiacea +
Thaliacea/Salpida +

Platyhelminthes
Digenea + +
Monogenoidea +
Cestoda +
‘Turbellaria’ + + +

Arthropoda
Arachnida/Pseudoscorpionida + (katoikogenic) +
Arachnida/Scorpionida + (early stages) +
Arachnida/Acari Histotrophy
Insecta + + +* +
Crustacea/Branchiopoda + Histotrophy
Crustacea/Isopoda + + + +
Crustacea/Decapoda Histotrophy

Bryozoa
Stenolaemata/Cyclostomata +
Phylactolaemata + (later stages) Histotrophy
Gymnolaemata + (early stages) +

Porifera + Histotrophy
Nematoda + +* + Histotrophy
Echinodermata

Ophiuroidea + + Histotrophy
Histophagy

Asteroidea + + + Histotrophy
Holothurioidea + + + Histotrophy
Echinoidea Histotrophy
Crinoidea Oophagy

Embryophagy
Mollusca

Bivalvia + + Histotrophy
Gastropoda + + +

Annelida
Polychaeta + Histotrophy

Histophagy
Clitellata + Histotrophy

Nemertea Placentotrophy
Cnidaria

Scyphozoa Histotrophy
Hydrozoa Placentotrophy
Anthozoa Placentotrophy

Dicyemida Histotrophy
Acanthocephala Histotrophy
Onychophora + + (later stages) +
Orthonectida Histotrophy
Kamptozoa + +
Acoelomorpha Placentotrophy
Cycliophora + Histotrophy
Rotifera Placentotrophy
Gastrotricha Placentotrophy
Loricifera Histotrophy
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functional mouthparts and pharyngeal muscles as well as
certain digestive structures early in development.

In the case of histotrophy, the ‘embryo is suspended in the
nutriment’ (Hagan, 1951, p. 231), surrounded by parental
fluids without intimate contact with parental cells/tissue.
This nutritional mode occurs or is inferred in partheno-
genetic generations of Digenea, five known matrotrophic
Acanthocephala, all insects with haemocoelous development
(including all ∼600 species of Strepsiptera), onychophorans,
cheilostome bryozoans, the only known matrotrophic lori-
ciferan, and can be inferred in all Dicyemida, Orthonec-
tida and Cycliophora (during development of dwarf males
and chordoid larvae). Histotrophy is also inferred in two
matrotrophic mites, a decapod crustacean, a beetle and some
echinoderms (three ophiuroids, two sea stars, a holothurian
and an echinoid). In addition, the same nutritive mode occurs
or can be inferred during early development in poriferans,
cnidarians, nematodes, molluscs, polychaetes, phylactolae-
mate bryozoans, and isopod and branchiopod Crustacea.
While histotrophy dominates in terms of species numbers,
the number of invertebrate phyla with this pattern (proven
and inferred) is 15.

Placentotrophy also occurs or is inferred in 15 inverte-
brate phyla, including Porifera, Cnidaria, Platyhelminthes,
Nemertea, Annelida, Mollusca, Arthropoda, Onychophora,
Nematoda, Acoelomorpha, Gastrotricha, Rotifera, Kamp-
tozoa, Cycliophora and Bryozoa. In most of these groups,
there are only a few to several tens of placental species.
Exceptions are Scorpionida (currently 1753 species), Bry-
ozoa (∼844 matrotrophic species), gymnomeran Crustacea
(all 37 species), and ∼5050 insects, including a beetle, all
matrotrophic Dermaptera, Psocoptera, and Hemiptera
(Tables 1 and 2).

In the ophiurids Amphiura carchara and Amphipholis squamata

late-stage embryos are positioned with their mouth and arms
pressed against the wall of the bursa. Also, in the latter
species the everted epithelium of the intestinal portion of
the gut has elongated microvilli that are pressed against
the bursal cuticle. If extraembryonic nourishment occurs in
these instances, they both should be considered as special
examples of placentation.

The distribution of matrotrophic modes within phyla is
instructive. As with the distributional pattern of matrotrophic
sites, some phyla show a very restricted range of nutritional
modes whereas others employ different variants. The broader
the range of incubation sites in a particular phylum, the
more diverse are the nutritional modes employed. Most
(16) of the phyla having matrotrophic species exhibit only
one or, rarely, two modes of EEN. By contrast, several
phyla exhibit all five (Chordata) or four (Platyhelminthes,
Arthropoda, Echinodermata) known modes. There are
no known examples of oophagy in Arthropoda or
embryophagy in Platyhelminthes. Echinoderms show no
proven examples of placentotrophy although the two
ophiurid examples above may represent evidence for
the opposite. Three nutritional modes are known in
Mollusca and Nematoda. We are inclined to speculate

that while undocumented, histotrophy is likely widely
distributed in both phyla too, especially during early
embryogenesis.

Similar to the change in the site of matrotrophic nutrition,
a shift from one nutritive mode to another at different stages
of embryonic development occurs in some groups (mentioned
for vertebrates by Blackburn, 2014). The most common
example is transition from histotrophy to histophagy
(sometimes associated with oo- and embryophagy) after
formation of the embryonic digestive system. It is known in
isopod crustaceans and pseudoscorpions, flies of the genus
Miastor, and is inferred for the holothurian Synaptula hydri-
formis. It probably also occurs in matrotrophic polychaetes,
some nematodes, molluscs, and some other echinoderms.
Matrotrophic modes also can intergrade: oophagy can grade
into embryophagy, and histotrophy into placentotrophy.
In the latter case, intergradation accompanies embryonic
growth in the branchiopod crustaceans, onychophorans, and
almost certainly in some bivalve molluscs and matrotrophic
ascidians. In many matrotrophic bryozoans of class
Gymnolaemata, which are mostly brooders, the growing
embryo is initially resourced in the incubation chamber by
histotrophy, being appressed to its wall for placentotrophy
only in the final period of incubation when it occupies most
of the brood cavity. In fact, two modes of EEN are present
simultaneously during this period: while part of the embryo
surface is in placental contact with a parent, another part can
perform histotrophy (Moosbrugger et al., 2012). The same
presumably occurs in phylactolaemate bryozoans: growth
of the embryo during incubation in a brood sac is initially
supplemented only by nutrient absorption (histotrophy),
with the placental contact established later. Formation of this
contact, however, presumably does not preclude histotrophy.

Examples that reverse this pattern evidently exist
in katoikogenous scorpions: beginning with (inferred)
placentation via a trophamnion, their EEN continues
as histophagy. Placentation shifts to nourishment by the
‘queer feeding’ organ piercing the mesosoma in the
apoikogenous scorpion Lychas tricarinatus (Mathew, 1962, p.
227; Farley, 2001). In the onychophoran Peripatus acacioi,
nutrient provisioning begins with histotrophy, continues
as placentation, shifts back to histotrophy, and then
to histophagy. All the above variants (shifts in mode,
intergradation and simultaneous occurrence) are also
mentioned in discussions of vertebrate matrotrophy by
Blackburn (2014).

(5) Mechanisms of nutrient delivery and uptake

Matrotrophic modes are based on several physiological
mechanisms providing nutrient delivery and uptake, and
including secretion (apocrine and merocrine = exocytosis),
active transport across membranes, diffusion, endocytosis
and ingestion of parentally derived nutritive material.
Endocytosis includes pino- and phagocytosis, and in different
animal groups these two methods are involved in histotrophy
and placentotrophy. For example, phagocytosis is performed
by trophoblast cells in placental mammals (Wooding &
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Burton, 2008). Phagocytosis is known in some matrotrophic
sponges, and theoretically might occur during development
of the dwarf males and chordoid larva that grow at the
expense of degenerating parental tissues in Cycliophora.
Also, in the phylactolaemate bryozoan Plumatella fungosa,
embryonic cells of the placental contact were described as
‘digesting’ the cells of the brood sac (Braem, 1897).

In an evolutionary context, the early heterochronous
formation of functional mouthparts and a gut in developing
embryos likely facilitated oophagy, embryophagy and
histophagy (Blackburn, 2014). Histotrophy and placentotro-
phy can begin at much earlier developmental stages, even
during cleavage, involving the same cytological mechanisms,
ranging from diffusion to active transmembrane transport
and endocytosis. This pattern is shown in the bryozoan
Bicellarialla ciliata (Moosbrugger et al., 2012).

Nutrients are transported to the site of incubation from
maternal tissues (for example, parenchyma, fat body) or a
maternal gut. In the monogenean flatworms Pseudodiplorchis

americanus and Neodiplorchis scaphiopodis, Cable & Tinsley (1991)
described the close spatial arrangement of digestive and
reproductive systems, suggesting a route for the continuous
transfer of nutrients from parent to offspring. The intestine of
these species comprises highly branched anastomosing caeca
that interdigitate with loops of the uterus. Digestive epithelia
lie in close proximity to the glycogen-rich parenchyma
surrounding the uterus. Similarly, Wilke (1954) ascribed to
the gut an important role in the nourishment of the embryo
of the gastrotrich Urodasys viviparus.

The wall of the incubation chamber often serves
primarily for nutrient transfer, as Cable, Harris & Tinsley
(1996) suggested based on the uterine ultrastructure of
monogeneans. In the matrotrophic cockroach Diploptera

punctata, it was shown that the uterus does not synthesize
carbohydrates for developing embryos, merely transporting
them from cells of the maternal abdominal integument
(Youngsteadt et al., 2005). In the tapeworm Oochoristica anolis,
parenchyma rich in glycogen and lipid droplets surrounds
the syncytial uterine wall, which appears only to transport
material for embryonic nutrition (Conn & Etges, 1984).

By contrast, synthesis and secretion of proteinaceous
material by uterine cells has been recorded in the
dermapteran insect Arixenia esau (Tworzydlo, Kisiel &
Bilinski, 2013). Analogously, the ultrastructure of the
epithelium-derived embryophore in cheilostome bryozoans
and of the cytoplasmic projections of the uterine wall in
the cestode Fimbriaria fasciolaris indicate that these organs
develop a powerful synthetic apparatus (Woollacott &
Zimmer, 1975; Chomicz, 1996; Moosbrugger et al., 2012).
In freshwater unionid and marine teredinid bivalves, the
epithelial cells that nourish larvae contain large amounts of
glycogen (Calloway, 1982; Schwartz & Dimock, 2001). Also,
‘voluminous mucous cells’/‘thick glandular cells’ develop
during brooding in the epithelium of the interlamellar septa
of the inner demibranchs or marsupial sacs in corbiculid
and sphaerid Bivalvia, correspondingly (Gilmore, 1917;
Okada, 1935; Morton, 1977; Byrne et al., 2000). Uterine

cells produce a secretory product that is located apically
in them as prominent bodies called ‘mucus buds’ in the
onychophoran Epiperipatus biolleyi (Brockmann et al., 1999).

Transported and/or synthesized nutrients are released
to the incubation cavity by exocytosis (most known
instances) or apocrine secretion (ascidians, some nematodes).
In this context, the potential role of diffusion should
not be overlooked. In the dermapteran insect Arixenia

esau uterine cells are equipped with long microvilli, the
tips of which are covered with a ‘layer of electron
dense fibro-granular material’ during embryo incubation
(Tworzydlo et al., 2013: p. 3). Extracellular matrix (also called
‘electron-dense material’, ‘amorphous material/substance’,
‘flocculent material’, etc.) in the incubation cavity also has
been recorded in several sponges (Vacelet, 1979; A.V.
Ereskovsky, unpublished data), a turbellarian (Gremigni
& Domenici, 1977), a monogenean (Cable & Tinsley,
1991), three cestodes (Conn & Etges, 1984; Chomicz, 1996;
Korneva et al., 2014), two nematodes (Ellis et al., 1978),
two cheilostome bryozoans (Woollacott & Zimmer, 1975;
Moosbrugger et al., 2012), and an onychophoran (Campiglia
& Walker, 1995).

The consumption of nutrients during histotrophy and
placentotrophy takes place via diffusion, active transport
across membranes or pinocytosis. The latter mechanism
is well known in both chordates and invertebrates. Trans-
mission electron microscopy (TEM) images of intrauterine
embryonic nutrition in the turbellarian Mesostoma ehrenbergii

(Domenici & Gremigni, 1977; Gremigni & Domenici, 1977)
and the monogenean Pseudodiplorchis americanus (Cable &
Tinsley, 1991) are strikingly similar to those in gymnolae-
mate bryozoans (Woollacott & Zimmer, 1975; Ostrovsky
& Schwaha, 2011; Moosbrugger et al., 2012). In flatworms,
both uterine and peripheral cells of the developing embryo
produce cytoplasmic extensions/folds/microvilli toward the
uterine lumen, in which amorphous material is accumulated.
Similarly, a microvillous cell surface has been recorded in
both the embryophore and embryo of bryozoans together
with flocculent material in the incubation cavity. While
Cable & Tinsley (1991, p. 264) stated, ‘whether the microvil-
lous projections are involved in transport is unknown’
in a monogenean, it was proven experimentally that
[radio-labelled] nutrients cross the thin wall of the egg cov-
ering in M. ehrenbergii (Gremigni & Domenici, 1976, 1977).
Endocytosis by embryo cells was also shown by TEM images
in this species. Similar evidence confirms endocytosis in the
bryozoan embryo and also in the embryophore, indicating
removal of waste products (Moosbrugger et al., 2012).

In the onychophoran Peripatus acacioi, microvilli develop
on both basal (ad-uterine) and apical (ad-embryo) surfaces of
the syncytial placenta, indicating its probable active role in
the uptake of nutrients from the maternal haemocoel to the
fluid-filled embryo sac. The surface of the young embryo and
its stalk are covered by short microvilli with pinocytotic vesi-
cles at their bases (Campiglia & Walker, 1995). Microvilli are
also present on the embryo surface during the post-placental
period (Walker & Campiglia, 1988). Both the uterine
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wall and embryonic epithelial cells bear dense microvilli,
presumably reflecting secretory and absorptive functions in
another peripatid Epiperipatus biolleyi (Brockmann et al., 1999).

In a number of instances microvilli are developed either
by the parent or by the offspring only. For example, in the
unionid bivalves studied by Schwartz & Dimock (2001), the
epithelium of the interlamellar septa, and the septa of sec-
ondary water tubes, was covered with numerous branched
and unbranched microvilli, thus increasing the surface area
delivering nutrients to the incubation cavity and the area of
contact between larval and parental tissues. By contrast, the
microvilli-rich surface of velum of the veliger is characteristic
of the bivalve Corbicula australis (Byrne et al., 2000).

Similarly, in the nematodes Dipetalonema viteae, Dirofilaria

immitis and Setaria cervi it is only the uterine wall that develops
an extensive system of microvilli (Ellis et al., 1978). In
the ophiuran Amphioplis japonicus elongated microvilli were
detected on the epithelium of the gut of near-term juveniles.
This part of the gut was slightly everted through the mouth
and pressed against the bursal cuticle of the parent (Walker
& Lesser, 1989).

It should be noted here that in viviparous and brooding
matrotrophs, the cells that form the walls of incubation
chambers have very different origins (cell sources), suggesting
that their nutritive function was acquired convergently.
Evolutionary convergence is also implied in cytological
mechanisms for the delivery of nutrients to the incubation
cavity as well nutrient uptake by the progeny.

In a number of cases, nutrient transfer occurs across a
permeable barrier. In the turbellarian flatworm M. ehrenbergii,
this barrier is the embryonic capsule; in the matrotrophic
Neodermata and Acanthocephala it is the eggshell; in
bugulid bryozoans it is the cuticle of the embryophore.
In matrotrophic isopod crustaceans and the onychophoran
Peripatus acacioi, nutrients cross the cuticle (underlain by
microvilli) of the parental cotyledons and embryonic legs,
correspondingly (Walker & Campiglia, 1988; Hoese &
Janssen, 1989).

(6) Structural complexity of invertebrate nutritional
adaptations

Structurally, the simplest mode of provisioning is the use
of unmodified parental and embryonic epithelia/tissues
for nutrient transport. This occurs, for instance, when the
embryonic epithelium takes up soluble nutrients via diffusion,
or active transport across membranes or endocytosis, and
no special temporary structures are formed de novo in
either partner (parent and offspring). These physiological
mechanisms represent EEN in cases of coelomic and
pseudocoelous viviparity (polychaetes, digenean parthenits,
acanthocephalans, a loriciferan, holothurians), embryonic
incubation in parenchyma (in some rhabdocoel flatworms
and during development of dwarf males and chordoid
larvae in cycliophorans) and mesoglea (acroporid corals),
or intracellular development in dicyemids and orthonectids
(see online Appendix S1 for details and references).

By contrast, specialized temporary nutritive organs
or tissues may develop de novo or form by mod-
ification of pre-existing organs/tissues during incuba-
tion, and they can be acquired either by a parent,
offspring, or both. Highly diffuse evolutionary trends
or grades in matrotrophic complexity are suggested
by comparative indications drawn across invertebrate
taxa. They involve increasing structural complexity in
morphologies, including (i) the formation of placental
analogues – local zones of enhanced nutrient transport
(whether simple contacts or specialized parental–embryonic
cell complexes) from parental to embryonic cells directly or
via a slit-like space between them. Simple placental con-
tacts comprise merely tight apposition of the parent’s and
progeny’s tissues, often with no obvious morphological trace
of specialization. Blackburn (1992), for example, discusses
such contacts in squamate reptiles. In many cases, however,
cells of the incubation chamber multiply, form syncytia,
hypertrophy, develop synthetic apparatus, acquire microvilli,
and so on. Such localized changes could also include the
formation of various appendages that increase the total
secretory surface and contact surface with the embryo (some
Cestoda, Monogenea and Isopoda). Further indications of
increasing complexity include (ii) compartmentalization of
the common incubatory space into semi-isolated chambers,
inside which transport of parental nutrients may be more
effective (some bivalve Mollusca, Cestoda, Monogenea, Ony-
chophora, aphid insects, scorpions), and (iii) formation of
specialized internal secretory (‘milk’) glands (some Diptera
and all katoikogenous scorpions) (a shift in ovarian function
to secrete nutritive fluid in Pseudoscorpionida should be also
considered in this context).

Modified parental cells comprising the wall of the
incubation chamber represent the simplest ‘exchange’
structure. In several calcareous sponges, early embryonic
stages are accompanied by modification of the choanocytes
of the closest choanocyte chamber, forming a ‘nutritive’ or
‘placental membrane’ (Gatenby & King, 1929; Duboscq
& Tuzet, 1933; Gallissian, 1983) or ‘epilarval trophocyte
epithelium’ (Lanna & Klautau, 2012). In other matrotrophic
Porifera, the embryo is surrounded by a ‘follicle’ with
a presumed nutritive function, in which cells can be
either modified choanocytes, pinacocytes, or mesohylar
(Ereskovsky, 2010). Likewise in cyclostome bryozoans,
multiple cell layers of peritoneal origin (so-called ‘secondary
follicle’) wrap the early embryo. Later, multiplied cells of the
transformed membranous sac (‘nutritive cylinder’) carry out
nutrient transfer (Borg, 1926). Temporary hypertrophy of
the cells of the brood-chamber wall accompanies embryonic
development in matrotrophic kamptozoans (Nielsen, 1990),
gymnolaemate bryozoans (Woollacott & Zimmer, 1972,
1975; Moosbrugger et al., 2012; Ostrovsky, 2013a,b),
bivalves (Gilmore, 1917; Korniushin & Glaubrecht, 2003;
Pettinelli & Bicchierai, 2009), synascidians (Mukai et al.,
1997) and branchiopod crustaceans (Egloff, Fofonoff &
Onbé, 1997). The epithelium of the uterine wall thickens
and shows signs of active secretory activity in onychophorans
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(Anderson, Manton & Harding, 1972; Brockmann et al.,
1999). Additionally, the second secretory layer develops over
the vacuolated uterine epithelium in Epiperipatus biolleyi. Sim-
ilarly, the integument of the skin-brooding leech Helobdella

stagnalis shows intense mitotic activity and differentiation of
the secretory cells providing EEN (Cornec, 1978).

The uterine wall of some polystomatid monogeneans
forms long cytoplasmic extensions that wrap early embryos
and produce multilayered capsules through which nutrients
are transported (Cable & Tinsley, 1991). Various cytoplasmic
projections are formed by the uterine epithelium in
matrotrophic cestodes. In some, these projections envelop
early embryos (Conn & Etges, 1984; Chomicz, 1996), as
in monogeneans, sometimes being closely connected with
the highly folded outer embryonic envelope. Similarly, the
marsupia of isopod crustaceans bear microvillar cotyledons
that are absent in non-matrotrophic species (Hoese &
Janssen, 1989). Microvilli develop on the incubation chamber
wall (uterine or of a brood chamber) in some matrotrophic
flatworms (Domenici & Gremigni, 1977; Cable & Tinsley,
1991), nematodes (Ellis et al., 1978), bivalves (Schwartz &
Dimock, 2001), bryozoans (Woollacott & Zimmer, 1975;
Moosbrugger et al., 2012), an insect (Tworzydlo et al., 2013),
and two onychophorans (Campiglia & Walker, 1995;
Brockmann et al., 1999) (see also Section IV.5).

Close apposition of maternal and embryonic tissues invites
use of the term ‘placenta’ or ‘placental analogue’. Simple
apposition occurs in many of the instances noted above, but
the most complex invertebrate placental analogues occur
in Onychophora and Arthropoda. The placenta in the
onychophoran Peripatus acacioi is a swollen syncytial area
of uterine wall which increases in size during incubation
(Walker & Campiglia, 1990; Campiglia & Walker, 1995).
Once the embryo has become attached to the uterus via a
stalk, cells of embryonic origin cover developing placental
syncytium from the side of the incubation cavity and form
an ‘embryo sac’’ (see also Section IV.5). So-called ‘ring pla-
centas’ of the thickened uterine wall encircling an incubation
cavity and the embryo sac are formed in two other ony-
chophoran species (Anderson et al., 1972). In apoikogenous
scorpions, a ‘follicular placenta’, together with a ‘trophic
lobe’, develops in the wall of the ovariuterine tube, finally
abutting the embryo (Farley, 1996, 1998). Similar thickened
parts of the follicle wall, or ‘maternal pseudoplacentae’ (Hey-
mons, 1912; Hagan, 1951) are formed in the dermapteran
insect Hemimerus talpoides. As in onychophorans, in arthro-
pods, embryonic membranes are in intimate contact with
the maternal part of the placenta and involved in trans-
port of nutrients. Among invertebrate chordates, the most
complex placenta develops in salps. It is formed from the
thickened uterine wall and, when mature, comprises cortical
and central syncytial layers that isolate the embryonic blood
space from the central placental cavity, the walls of which are
bathed by maternal blood (Bone, Pulsford & Amoroso, 1985).

Compartmentalization of the common incuba-
tory space into isolated or semi-isolated chambers,
presumably enhancing the effectiveness of EEN, is known

in both brooders and viviparous matrotrophs. Whereas the
embryos of most matrotrophic bivalves are brooded inside
the water tubes of the demibranchs, sphaeriids incubate their
progeny inside brood sacs formed from the epithelium of the
mollusc’s gills (Gilmore, 1917; Groenewegen, 1926; Heard,
1965, 1977; Meier-Brook, 1970; Pettinelli & Bicchierai,
2009). In fact, increase in offspring size occurs first in
the marsupial sacs then extramarsupially between the gill
filaments. Inasmuch as extramarsupial juveniles can theo-
retically begin normal feeding on suspended matter (Beekey,
Karlson & Greenberg, 2000; Guralnik, 2004, see also
Kraemer & Galloway, 1986, on corbiculid species), only the
marsupial period of incubation is accompanied by EEN. We
caution that many authors have not differentiated between
these periods, measuring instead total larval increase
(see Appendix S1).

In some matrotrophic Cestoda, the development of
projections on the internal surface of the uterine wall results in
subdivision of its cavity into numerous chambers containing
one to several/many embryonated eggs (complex eggs
containing embryos) (Conn, 1993; Chomicz, 1996; Korneva
et al., 2014). In Onychophora, apoikogenous scorpions and
aphidoidean insects, embryos respectively occupy discrete
swollen parts of the uterus, ovarian tube or ovariole, being
separated by much narrower ‘contracted’ zones (Manton,
1949; Mathew, 1960; Anderson et al., 1972; Francke, 1982;
Miura et al., 2003). In katoikogenous scorpions, each embryo
develops inside a separate diverticulum of the ovariuterine
tubules (Mathew, 1968).

‘Milk glands’ of some arthropods are another structure
whose secretions are swallowed by the developing offspring.
These organs derive from follicle cells in katoikogenous
scorpions (Mathew, 1968; Farley, 2011) and from spermath-
ecae in at least four dipteran families (Meier, Kotrba &
Ferrar, 1999), showing an interesting example of appar-
ent change in the function of an organ in a reproductive
system.

Certain major structural innovations enhance nutrient
uptake in embryos. These include cytoplasmic appendages of
embryonic envelopes that serve to enlarge the area of contact
with the uterine wall (some matrotrophic Cestoda) (Chomicz,
1996; Korneva, 2005; Korneva, Kornienko & Guljaev, 2010;
Korneva et al., 2014). The surface area for nutrient uptake
is evidently enlarged in the greatly extended pleuropodia of
the cockroach Diploptera punctata (Hagan, 1951) and by the
barbed projections at the ends of the developing legs in the
onychophoran Peripatus acacioi (Walker & Campiglia, 1988;
Campiglia & Walker, 1995). Similar absorptive function is
suggested for the ‘trophic vesicle’ known in some peripatopsid
onychophorans with EEN, and described as a ‘swollen sac of
dorsal extra-embryonic ectoderm’ (Anderson, 1973, p. 4–16;
see also Eriksson & Tait, 2012). In the gastropod Fijidoma

maculata, the richly lobed larval velum presumably serves
as a placental analogue (Hubendick, 1952). Embryos are
surrounded by a stalked sac appressed to the thick glandular
part of the uterine wall in the gastropod Tekoulina pricei (Solem,
1972), and massive calcium transfer from the uterine wall to
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embryos through the larval organ (‘placenta-like podocyst’)
occurs in Stylodon studeriana (Tompa, 1984).

A unique nutritional structure evolved in the apoikoge-
nous scorpion Lychas tricarinatus; the dorsal side of its embryos
possesses a hollow appendage with a terminal globular body
through which nutrients are transported directly to the
midgut (Mathew, 1960, 1962). The appendage derives from
the extraembryonic cells and the nutrients are presumably
transported by the globular body from the maternal haemo-
coel (while the embryo develops in the ovarian tube) (Farley,
2011). In pseudoscorpions, ovarian nutritive secretions are
moved to the external brood chamber (Weygoldt, 1969).

Attachment structures (in some instances called ‘umbilical
cords’ or ‘placental stalks’) are found in the embryos of some
Nemertea, Echinodermata and Onychophora (Anderson
et al., 1972; Oguro, Shosaku & Komatsu, 1982; Walker &
Campiglia, 1988; Gibson, 1990; Campiglia & Walker, 1995).
In phylactolaemate Bryozoa, the embryo is attached to the
wall of the brood sac by the ‘spot-’ or ‘ring-like placenta’
(Braem, 1897, 1908). In nearly all cases, their precise role
in nutrition is unclear. An exception is the onychophoran
Peripatus acacioi, in which short microvilli on the stalk
surface are evidence of absorption (Campiglia & Walker,
1995).

In scorpions and matrotrophic insects, embryonic
membranes clearly participate in the transport of nutrients,
representing the offspring’s contribution to the placental
analogues (Hagan, 1951; Polis & Sissom, 1990; Farley,
2011). A similar structure of embryonic origin (so-called
‘embryo sac’) is formed in some peripatid onychophorans
(Anderson et al., 1972; Anderson, 1973; Walker & Campiglia,
1988; Campiglia & Walker, 1995). Its cells are tightly
appressed to the uterine wall including the placental
region. Notably, the stalk and embryo sac are not found
in the confamilial Epiperipatus biolleyi. In this species, the
embryo is surrounded by a ‘non-cellular coat’ of unknown
nature with numerous transport vesicles, and the uterine
wall shows pronounced secretory and transport activity
(Brockmann et al., 1999). It should be added here that
in the recent literature matrotrophic onychophorans are
divided into placentotrophic (matrotrophic Peripatidae) and
non-placental (matrotrophic Peripatopsidae) (Manton, 1949;
Anderson, 1973; Mayer et al., in press). Accepting Mossman’s
(1937) definition at least some peripatopsids possess
placentotrophy because their embryos have large ‘‘trophic
vesicle’’ that is appressed to the uterine wall (Anderson, 1973;
Mayer, 2007; Mayer et al., in press), thus forming a simple
placental contact. In the scyphozoan Stygiomedusa gigantea, the
‘cyst’ or ‘chorion’ surrounding the scyphistoma brooded in
the stomach invagination might function in a similar way,
although Russell & Rees (1960) suggested that the chorion
draws nourishment directly from the stomach lumen of the
parent medusa using its paired tube-like projections.

Spot- and ring-like placentas of phylactolaemate
bryozoans present a rare case in which cells of the embryo
are implanted in a brood-sac wall. Moreover, Braem (1897)
reported that embryonic cells of the placental interface in

Plumatella fungosa can ‘digest’ the cells of the brood chamber,
thus mirroring activities of the trophoblast in mammals.
Similarly, the cytoplasmic outgrowths of the egg capsule are
sometimes ‘inserted into the [uterine wall] as roots’ in some
matrotrophic cestodes (Korneva, 2005, p. 555; Korneva
et al., 2010, 2014).

These diverse structures are among the most striking
examples of convergence. Achievement of close contact
between parental and embryonic tissues is the consistent
theme emerging from the entire range of structures, from
simple apposition of the embryo to the wall of the incubation
chamber to the invasion of embryonic envelopes or embry-
onic cells in the maternal wall (as occurs in some cestodes and
phylactolaemate bryozoans, although the nutritive function
of such placental analogues has not yet been demonstrated
experimentally). In some arthropods and onychophorans
nutritional organs are astonishingly similar to placentas
in vertebrates, showing that convergent evolution acts at
all levels – positional, structural and physiological. For
instance, the nutritional complex comprising the embryo sac
(of embryonic origin) and placenta (of maternal origin) in
the peripatid onychophorans is analogous to the noninvasive
epitheliochorial placenta of some mammals (Anderson et al.,
1972; Anderson, 1973; Campiglia & Walker, 1995; see also
Wooding & Burton, 2008). Analogous ‘two-component’
placentas evolved in apoikogenic scorpions and the
dermapteran insect Hemimerus talpoides (Hagan, 1951). As
in vertebrates, EEN occurs in the sexual duct, involving
a parent–offspring cell complex. Nutritive mechanisms
also can be very similar: in the blue shark Prionace glauca
epithelial cells of the yolk-sac placenta are microvillous and
the space between maternal and fetal epithelia is filled with
electron-dense material, suggesting exo- and endocytosis
(Otake & Mizue, 1985). On the other hand, some nutritional
adaptations are found only in invertebrates; examples
include various nourishing appendages and internal ‘milk
glands’ formed by the parent. In general, chordates have
nutritive organs that are more complex, but similar organs
are structurally and positionally more diverse across
invertebrates.

(7) Multiple independent origins of matrotrophy
across Animalia

We consider the high diversity and scattered distribution
of matrotrophy in phylogenetic trees to be evidence of its
multiple independent evolution in Animalia. Our estimate
of the number of separate origins of parental resourcing of
offspring prior to their birth/release is based on the pattern of
distribution of oviparity, non-matrotrophic (lecithotrophic)
incubation and matrotrophic incubation across phyla.

We support the generally accepted assumption that
oviparity is an ancient reproductive mode from which
embryonic incubation (both viviparity and brooding,
matrotrophic and non-matrotrophic) originated numerous
times. On the other hand, some recent data show that
viviparity and matrotrophy can be lost as well as gained (e.g.
Riesgo et al., 2013, see also below). The liberation of ova
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to the external environment (oviparity or oviposition into a
brood chamber) is present in most (29) animal phyla. Excep-
tions are Placozoa, Cycliophora, Orthonectida, Dicyemida
and Acanthocephala, which are all viviparous, with brooding
(during asexual reproduction) also in cycliophorans. Six
phyla are exclusively oviparous (Sipuncula, Nematomorpha,
Tardigrada, Gnathostomulida, Kinorhyncha, Xenoturbell-
ida), and spawners comprise the vast majority of taxa in most
of the remaining phyla. While hardly conclusive evidence,
this dominance is at least consistent with the assumption
that oviparity is a plesiomorphic condition.

We found no reports indicating matrotrophy for 5 of
the 28 phyla in which embryonic incubation is known
to occur. These phyla include species with broadcasting
release and with embryonic incubation. Oviparity and
lecithotrophic viviparity occur in Priapulida, and oviparity
and lecithotrophic brooding are present in Chaetognatha,
Phoronida, Brachiopoda and Hemichordata. Ctenophora is
predominantly oviparous, but also includes two brooding
and one viviparous species. If the latter is matrotrophic, then
EEN has evolved independently in this phylum. Species in
an additional phylum, Placozoa, gestate their embryos until
the death of the parent, with further development taking
place in the external medium.

In the remaining 21 phyla, matrotrophy is either
established according to our criteria or strongly inferred
from indirect evidence. Sixteen phyla include both oviparous
and incubating (lecithotrophic and matrotrophic) species.
Five other phyla are represented exclusively by incubating
species. Kamptozoa are brooders, whereas Acanthocephala,
Orthonectida and Dicyemida are viviparous. Both brooding
and vivipary are present in Cycliophora.

Notwithstanding recent progress in molecular phyloge-
netics, the resolution of lower-level taxonomic detail in
phylogenies of animal phyla varies substantially with sam-
pling distributions and densities, and with gene selection
and analytical methods. Consequently, the position of many
matrotrophic taxa is imprecise or in certain cases even
unknown. We have attempted to cope with these varying
levels of imprecision in our estimates of matrotrophic origins,
especially with reference to reproductive character states and
hypothesized phylogenetic relationships often well above the
species level. Thus, our analysis should be considered as a
first, preliminary estimate of the number of matrotrophic
origins within phyla. We now briefly consider each phylum,
providing examples from disparate data sources.

Blackburn (2014) estimated that substantial matrotrophy
evolved at least 33 times among vertebrates (fishes, reptiles,
amphibians and mammals) (see also Blackburn, 1992, 2005).
Family Syngnathidae should be added to this list, as EEN
occurs in a sealed brood pouch of the males in the
‘patrotrophic’ genera Hippocampus and Syngnathus (Carcupino
et al., 2002). Among Tunicata, most colonial ascidians
incubate their progeny, and some species are matrotrophic.
Doliolids and pyrosomatids are viviparous–lecithotrophic,
and salpids are all viviparous–matrotrophic. Based on a
recent molecular phylogeny (Tsagkogeorga et al., 2009),

it is likely that nutrient-resourcing of embryos evolved
independently in ascidians and salps, which have different
nutritive structures. Moreover, it seems that EEN evolved
twice in the phylogenetically distant families of brooding
and viviparous ascidians (Stach & Turbeville, 2002;
Tsagkogeorga et al., 2009). Hence there appear to have been
at least 37 originations of matrotrophy among Chordata.

In Porifera, oviparity is known only in the Demospon-
giae, which also includes lecithotrophic and matrotrophic
larviparous species, and species with direct develop-
ment (Ereskovsky, 2010; Riesgo et al., 2013). Three
other sponge classes—Hexactinellida, Calcarea and
Homoscleromorpha—are all larviparous, and there are
matrotrophic species in each. Demospongiae is often consid-
ered to be a sister group to Hexactinellida, and Calcarea is
more closely related to Homoscleromorpha. The two latter
classes are considered as a clade sharing a common ances-
tor with Demospongiae–Hexactinellida (Dohrmann et al.,
2008; Philippe et al., 2009; Gazave et al., 2010; Wörheide
et al., 2012). Riesgo et al. (2013) argues that viviparity is
an ancestral character state in Porifera, with oviparity sec-
ondarily acquired in Demospongiae. Families with EEN
are insufficiently sampled in the molecular analysis, and
the number of independent origins of matrotrophy among
Porifera might be better estimated at present by comparing
the developmental origins of cells providing nourishment
to embryos. We suggest at least four such independent
origins—once in Calcarea (from choanocytes), once in
Homoscleromorpha (from endopinacocytes) and twice in
the clade Demospongiae–Hexactinellida (from pinacocytes
and cells of the mesohyl). This estimate should be considered
preliminary, since the formation of trophic structures (‘pla-
cental membrane’ and ‘nutritive capsule’) differs in different
calcareous sponges.

The majority of Cnidaria spawn gametes directly to
the aquatic environment. Embryo retention is known in
some anthozoans, scyphozoans and hydrozoans. Whereas
most corals are oviparous, embryonic incubation exists
in both octo- and hexacorals (sometimes accompanied by
feeding on particulate matter in the gastrocoel, reminiscent
of juvenile nourishment in the mantle cavity in some
bivalves, see Section IV.6), but matrotrophy is suggested
only in two species of Acroporidae (Hexacorallia). Among
Medusozoa that are predominantly oviparous, embryonic
incubation is known in some Scyphozoa and Hydrozoa.
Only two matrotrophic scyphozoan jellyfish species have
been recorded in the order Semaeostomeae, in the
phylogenetically distant families Pelagiidae and Ulmariidae
(Dawson, 2004; Bayha et al., 2010). One of these species
incubates larvae in the ovary; the other broods them in
specialized brood chambers—protrusions of the stomach.
Among the mostly oviparous hydrozoans, matrotrophic
incubation that begins in the ovary and continues as brooding
is known only in one species of Trachymedusae. Thus, the
phylogenetic distribution (Collins et al., 2006) of matrotrophy
and differences in the sites and modes of incubation strongly
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point to independent matrotrophic origins in three cnidarian
classes, and twice in Scyphozoa (four in total).

In Platyhelminthes, matrotrophy exists in several
species of free-living rhabdocoel flatworms (turbellarians
of the families Typhloplanidae and Graffillidae) and in sev-
eral groups of parasitic Neodermata. Since the overhelming
majority of turbellarians are oviparous, including in these
two phylogenetically distant families (Willems et al., 2006),
two independent origins of matrotrophy are indicated in this
clade. Current molecular phylogenies of Neodermata con-
sider classes Trematoda (Digenea plus Aspidogastrea) and
Cestoda (Gyrocotylidea, Amphilinidea and Eucestoda) as
sister groups, and class Monogenea as a sister group to this
clade (Lockyer, Olson & Littlewood, 2003; Baguñà & Riu-
tort, 2004; Willems et al., 2006; Caira & Littlewood, 2013).
Oviparity (production of non-embryonated eggs) is known
in all three major neoderm clades. Intrauterine development
of embryonated eggs also occurs here, evincing a link with
intrauterine matrotrophy in some families. The phylogenetic
distribution of these different reproductive patterns points
to at least three independent acquisitions of matrotrophy,
but many more appear likely. In Monogenea, matrotrophic
viviparity is known in Gyrodactylidae and Polystomatidae,
which belong to two major monogenean clades (Monopistho-
cotylea and Polyopisthocotylea, respectively). Both fami-
lies include species producing either non-embryonated or
embryonated eggs. In Eucestoda, matrotrophy has been
recorded in eight families (Nippotaeniidae, Tetrabothri-
idae, Nematotaeniidae, Proteocephalidae, Bothriocephali-
dae, Hymenolepididae, Dilepididae, Linstowiidae) belong-
ing to five orders (Waeschenbach et al., 2007; Waeschen-
bach, Webster & Littlewood, 2012a). Bothriocephalidae
(order Bothriocephalidea) includes species with embryonated
(including one matrotrophic) and non-embryonated eggs,
whereas the four orders including the remaining seven
families with matrotrophic species all appear to have embry-
onated eggs. These are all ‘oligolecithal’ (having few vitelline
cells in the complex egg) and possess thin, non-sclerotised
embryonic envelopes (Swiderski & Xylander, 2000; Conn &
Swiderski, 2008), suggesting EEN. We conservatively reason
that matrotrophy may have evolved at least twice in this class.
In the hermaphroditic generation of digeneans, matrotro-
phy is known in four phylogenetically distant families
(Hemiuridae, Plagiorchiidae, Philophthalmidae, Heronim-
idae) (Olson et al., 2003), interspersed between clades with
non-embryonated eggs in the phylogenetic tree (Galaktionov
& Dobrovolskij, 2003). While EEN may exist in some other
families that produce eggs with fully formed miracidia, there
are currently no supporting data. Thus, while secondary
losses of EEN are theoretically possible, the mosaic distribu-
tion of matrotrophy in Neodermata suggests two originations
in Monogenea, two in Cestoda and at least four in Digenea.
In addition, based on the nutrient provisioning of embryos
in the parental body cavity, matrotrophy is characteristic
of all digenean parthenitae, suggesting a single origin for
this additional kind of matrotrophic nutrition in Digenea.
We suggest that maternal provisioning evolved at least 11

times in Platyhelminthes. Given the huge number of unstud-
ied platyhelminth species, we anticipate discovery of more
instances of independent origination of matrotrophy.

Orthonectida are all viviparous matrotrophs, incubating
their sexual generation within a plasmodial stage. Similarly,
nematogen and infusoriform larvae grow inside parental
stages in all Dicyemida. The phylogenetic position of these
two lophotrochozoan phyla is poorly resolved (Petrov et al.,
2010; Suzuki et al., 2010; Dunn et al., 2014), but their bizarre
incubational modes relative to other major taxa strongly
indicate independent origins of matrotrophy.

The prevalence of non-matrotrophic species among
Kamptozoa suggests that EEN evolved secondarily in
this phylum. Matrotrophy has been recorded in three
species of Loxosomatidae and two species of Pedicellinidae
in the two orders. Although all species nourishing their
offspring form a placental analogue from the wall of
the brood pouch, phylogenetic relationships within the
phylum (Fuchs et al., 2010) strongly suggest at least one
independent origin of EEN in each order, since all other
species are non-matrotrophic brooders. The alternative is
numerous losses of parental provisioning in the phylum. In
Cycliophora, united with Kamptozoa as sister groups in
recent molecular studies (Hejnol et al., 2009), matrotrophic
viviparity and matrotrophic brooding are exhibited by
different generations (sexual and asexual, respectively) of
the complex life cycle. Both incubational variants employ
different modes of embryonic nutrition (placentotrophy and
inferred histotrophy). Since all kamptozoans are brooders
and cycliophoran females are viviparous, it is highly likely
that EEN evolved independently in these phyla. Moreover,
it has seemingly evolved twice in the same life cycle in
cycliophorans, as also in digeneans.

Five species from the three classes of Acanthocephala
are matrotrophic. Their acanthor larvae are incubated in
the pseudocoel, presumably nourished by histotrophy. Inas-
much as the related Rotifera (Near, 2002; García-Varela
& Nadler, 2006) are almost entirely oviparous, it is reason-
able to suggest that the viviparous Acanthocephala acquired
matrotrophy independently. Moreover, if most acantho-
cephalans are lecithotrophic, then the distant phylogenetic
positions of those families including matrotrophic species
(Verweyen, Klimpel & Palm, 2011) could point to three
independent origins of matrotrophy in this group (see also
García-Varela et al., 2000, 2002 for phylogenies). Only a
few Rotifera are viviparous–lecithotrophic and one species
is viviparous–matrotrophic. Gastrotricha are similarly all
oviparous except for one viviparous matrotrophic species
that incubates a single embryo in the uterus.

Compared with all aquatic invertebrates, Bryozoa have
the widest within-phylum taxonomic distribution of placental
analogues, unusually diverse incubational structures, and
numerous instances of incipient matrotrophy (Ostrovsky
et al., 2009; Ostrovsky, 2013a,b, see also Ostrovsky & Schäfer,
2003; Ostrovskii, 2004; Ostrovsky, 2008; Ostrovsky, Vávra
& Porter, 2008). As a reproductive strategy, yolky eggs
combined with low levels of parental provisioning is well
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known among vertebrates (Blackburn, 2005; Pollux et al.,
2009, see also Section III), and considered by some workers
as an initial step in the evolution of advanced substantial
matrotrophy (Stewart & Thompson, 2003, 2009). Incipient
matrotrophy almost certainly occurs in several invertebrate
groups, for example, in scorpions (Farley, 2001). Yet until
recently it was recorded (although not realized as such) only
in a few insects (Bontems, 1984; see also discussion in Hagan,
1951). Our investigation showed that both non-matrotrophic
and matrotrophic brooders (with incipient and substantial
placentotrophy) co-occur in some bryozoan families and
even genera, suggesting numerous independent evolutionary
transitions from lecithotrophy to EEN (Ostrovsky et al.,
2009; Ostrovsky, 2013a,b). Possible reversions are presently
unknown.

Apart from the simultaneous presence of different
reproductive patterns within the same lower-level taxa,
additional evidence of multiple origins of extraembryonic
nutrition in bryozoans is provided by the independent
evolution of brood structures, different sequences of
events during EEN (histotrophy versus placentotrophy),
differences in the origin (cell source), position, anatomy
and ultrastructure of placental analogues in different
groups, and the current level of molecular-phylogenetic
resolution (Reed, 1991; Ostrovsky & Taylor, 2004, 2005;
Fuchs, Obst & Sundberg, 2009; Ostrovsky et al., 2009;
Knight, Gordon & Lavery, 2011; Waeschenbach, Taylor
& Littlewood, 2012b; discussed in Lidgard et al., 2012;
Ostrovsky, 2013a,b). Matrotrophy evolved at least five times
in the order Ctenostomata (class Gymnolaemata), as inferred
from the distribution of reproductive patterns (Todd, 2000;
Ostrovsky, 2013a,b). It may have evolved more than 15
times in the gymnolaemate order Cheilostomata, based on
the co-occurrence of non-matrotrophic and matrotrophic
brooders in some families and even genera. Bryozoans of the
order Cyclostomata (class Stenolaemata) and the cheilostome
family Epistomiidae employ intracoelomic incubation that
almost certainly originated independently. The same can be
said for the class Phylactolaemata, which according to recent
molecular analyses is the sister group of all other bryozoans.
Thus, matrotrophy apparently evolved at least 23 times in
Bryozoa.

Most Nemertea are egg-laying except for a few viviparous
species that either incubate their progeny in the ovary or in
a female gonoduct with or without parental nourishment.
Matrotrophic species belong to five phylogenetically distant
families (Prosorhochmidae, Sacconemertidae, Tetrastem-
matidae, Zygonemertidae, Emplectonematidae) within class
Enopla. Each family also includes oviparous species (Stricker
et al., 2001; Sundberg, Turbeville & Lindh, 2001; Tholles-
son & Norenburg, 2003; Chernyshev, 2005; Maslakova &
Norenburg, 2008). Thus, EEN appears to have evolved at
least five times in Nemertea.

Spawning or egg laying are the dominant or exclu-
sive modes of reproduction in all classes of Mollusca,
and oviparity is widely regarded as plesiomorphic for this
phylum. Aplacophora are all oviparous except for some

Neomeniomorpha that brood their eggs in the mantle. Apla-
cophora may be a sister group of Polyplacophora, whose
species are mostly oviparous, excluding about 30 brooders.
Indicative viviparous species (Plate, 1899) have not been
confirmed (B. I. Sirenko, unpublished data). A clade unit-
ing Polyplacophora and Aplacophora is considered to be
a sister group to Conchifera, which includes the wholly
oviparous Cephalopoda and Scaphopoda (both having basal
positions in this clade) (Kocot et al., 2011). Sister classes
Bivalvia and Gastropoda each have oviparity (dominant)
and embryonic incubation and both include matrotrophic
species. In bivalves, matrotrophy is associated with brooding,
whereas gastropods exhibit both brooding and vivipar-
ity, pointing to independent origins of EEN in these
classes. Among gastropods, egg laying and lecithotrophic
and matrotrophic incubation exist in Caenogastropoda
(matrotrophy recorded/inferred in Thiaridae, Paludomidae,
Planaxidae and Janthinidae), Patellogastropoda (Acmaeidae)
and Heterobranchia (Achatinellidae, Acavidae and Veroni-
cellidae), also suggesting independent matrotrophic origins in
these three subclasses. Based on the distant phylogenetic posi-
tion of the above-mentioned families in these clades (Wade,
Mordan & Clarke, 2001; Colgan et al., 2007; Dayrat et al.,
2011), matrotrophy may have originated at least eight times
in Gastropoda. Among Bivalvia, most of which are broadcast
spawners, matrotrophic brooding is known in five families.
Two (Unionidae and Hyriidae) are in the Palaeoheterodonta
and three others (Corbiculidae, Sphaeriidae, Teredinidae)
in three different clades of Neoheterodontei (Bieler et al.,
2014; see also Graf, 2000; Giribet & Wheeler, 2002; Tay-
lor et al., 2007). The distant position of these families in the
bivalve phylogenetic tree suggests that matrotrophic nutrition
evolved 5 times in this class and 13 times in Mollusca.

The vast majority of Annelida are oviparous and
some are viviparous and brooders. Matrotrophy is known
only among polychaetes and three species of leeches.
Matrotrophic polychaetes are all viviparous, belonging to
seven families (Ctenodrillidae, Cirratulidae, Nereididae,
Spionidae, Syllidae, Ampharetidae, Geobangiidae) with
distant positions in phylogenetic trees (Struck et al., 2007;
Zrzavý et al., 2009), suggesting six independent origins of
matrotrophy. The three known matrotrophic leeches (genera
Glossiphonia, Helobdella and Marsupiobdella) are members of the
obligate brooding family Glossiphoniidae. However, their
phylogenetic position within the family (Siddall, Budinoff
& Borda, 2005) suggests three independent origins of
parental provisioning. Thus, the pattern of distribution of
matrotrophy in the two annelid classes suggests that it evolved
at least nine times in this phylum.

Matrotrophic viviparity occurs in both living families of
Onychophora, but placentotrophy is structurally different
in Peripatidae and Peripatopsidae (see Section IV.2). Both
these families also include lecithotrophic viviparous species,
and there are oviparous forms among peripatopsids. Mayer
et al. (in press) mapped reproductive characters onto a
recently published phylogeny (Murienne et al., 2014, see also
Gleeson et al., 1998; Monge-Najera, 1995), and suggested
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that the last common ancestor of Onychophora was either
lecithotrophic–viviparous or that it combined lecithotrophy
with matrotrophy. Depending on what was the case, EEN
has evolved twice or once in this phylum, respectively.

Oviparity is the dominant mode of reproduction in
Arthropoda although brooding and viviparity are common
or even obligatory for subgroups at some intermediate
taxonomic ranks. Most Chelicerata, considered to be the
basalmost arthropod clade (Regier et al., 2010), are oviparous,
strongly suggesting that oviparity is plesiomorphic for the
phylum. By contrast, Scorpionida and Pseudoscorpionida
are entirely matrotrophic; EEN appears to have evolved
independently in these orders since species of the former
exhibit viviparity whereas those of the latter have
brooding. Two matrotrophic viviparous mites are in families
(Spinturnicidae, Epidermoptidae) belonging to different
superorders (Krantz & Walter, 2009), which together with
the dominance of oviparity, suggest that Acari acquired
matrotrophy at least twice.

Myriapoda, sister to Pancrustacea, are mostly oviparous,
although some brooders are known. Matrotrophy is
undocumented here, so oviparity is inferred to be ancestral
in both Crustacea and Hexapoda. Among Crustacea, EEN
occurs in the Branchiopoda and Malacostraca. Among bran-
chiopods, matrotrophy is known in five families belonging
to three cladoceran clades – Anomopoda (Moinidae),
Ctenopoda (Sididae) and in all Gymnomera (Polyphemidae,
Cercopagidae, Podonidae). The position of these clades
with respect to each other, as well as the position of families
within clades (Stenderup, Olesen & Glenner, 2006) points
to three independent origins of matrotrophy in Cladocera.
Among malacostracans, EEN is known in Decapoda
(Hippolytidae) and Isopoda (Gnathiidae, Cirolanidae,
Armadillidiidae, Armadilliidae, Porcellionidae, Ligiidae,
Oniscidae, Hemioniscidae, Chaetiliidae). The phylogenetic
position of those isopod families with matrotrophic species
(Wilson, 1996; Mattern & Schlegel, 2001; Schmidt,
2008) suggests 7–8 independent origins in this group.
Among hexapods, matrotrophy has been recorded in
seven insect orders – Dermaptera, Diptera, Hemiptera,
Coleoptera, Psocoptera, Blattoidea and Strepsiptera –
the last being entirely matrotrophic. Since the other six
orders are dominated by oviparous species, matrotrophy
may have evolved independently in each. Support for this
view is provided by the relative position of these orders in the
hexapod phylogenetic tree (Kjer et al., 2006). In Diptera, the
phylogenetic position of the wholly or partly matrotrophic
families (Nirmala, Hypša & Žurovec, 2001) suggests 5–6
independent originations of EEN. A similar analysis suggests
two originations in Hemiptera (Schuh, Weirauch & Wheeler,
2009; Ortiz-Rivas & Martínez-Torres, 2010), and three in
Coleoptera (Hunt et al., 2007; Beutel, Ge & Hörnschemeyer,
2008). Thus EEN probably originated at least 14–15 times
in Insecta (see also Hagan, 1951; Meier et al., 1999), and
29–31 times in Arthropoda.

Most Nematoda are oviparous, but a substantial number
of species incubate their progeny in utero, and are either

lecithotrophic or matrotrophic. It is likely that EEN evolved
independently in both classes (Enoplea and Chromadorea)
(for recent phylogenies see De Ley, 2006; Smythe, Sanderson
& Nadler, 2006). In Enoplea, matrotrophy is known in three
families of two orders, whereas among Chromadorea all
known examples of matrotrophy are confined to order
Rhabditida (18 families). Seven families of Rhabditida
include both oviparous and matrotrophic species, the latter
having a highly mosaic distribution in gene trees (Holterman
et al., 2006; Meldal et al., 2007), indicating independent
origins of EEN. Available data are not sufficient to draw
firm conclusions; we conservatively estimate at least 10
independent transitions to matrotrophy among Nematoda.

Whereas most Loricifera are oviparous, both oviparity
and viviparity (lecithotrophic and matrotrophic) occur in
Pliciloricidae (Heiner & Kristensen, 2009). Both oviparous
and viviparous species are known among Acoelomorpha
(for phylogeny see Jondelius et al., 2011), and matrotrophy
is inferred in two distant families (Diopisthoporidae and
Childiidae). One and two originations of EEN are thus
suggested for these phyla correspondingly.

Oviparity (broadcasting and egg laying) is predominant
in all five extant classes of Echinodermata (for phylogeny
see Janies, Voight & Daly, 2011), and is widely regarded
as the ancestral character state. Matrotrophic brooding also
exists in all classes. The structure and position of brood
pouches as well as different mechanisms of nutrient uptake
by embryos point to EEN evolving independently in all
classes. The same can be claimed for matrotrophic vivipar-
ity, which occurs either in a coelomic cavity (Asteroidea,
Holothuroidea) or is intra-ovarian (Asteroidea, Ophiuroidea,
Holothuroidea, Crinoidea). Among Ophiuroidea, three fam-
ilies with parental provisioning (Ophiuridae, Ophiacan-
thidae, Amphiuridae) are phylogenetically distant (Smith,
Paterson & Lafay, 1995), and one brooding and one
viviparous matrotrophic species co-exist in the Ophiuri-
dae. We infer four independent origins of matrotrophy in
this class. There are five families with EEN among Aster-
oidea (Asterinidae, Asteriidae, Stichasteridae, Pterasteridae,
Xyloplacidae), all phylogenetically distant (Janies et al., 2011;
Mah & Foltz, 2011; Mah & Blake, 2012). The first four fam-
ilies include matrotrophic brooders, and Asterinidae also
includes a viviparous matrotrophic species. By contrast,
Xyloplacidae comprises only viviparous matrotrophs. Six
originations of matrotrophic nutrition are suggested in this
class. Among Holothuroidea, seven families (Cucumariidae,
Phyllophoridae, Psolidae, Deimaidae, Synaptidae, Chiri-
dotidae, Sclerodactylidae) include viviparous matrotrophs.
Cucumariidae and Psolidae also include matrotrophic brood-
ers. Only Synaptidae and Chiridotidae form a clade in both
morphological (Kerr & Kim, 2001) and molecular (Lacey
et al., 2005) analyses. Accordingly, we infer at least five inde-
pendent origins of matrotrophy in Holothuroidea. More are
likely, however, pending further research on holothurian
reproduction. Among Echinoidea, matrotrophic brooding
is known in the Urechinidae and Schizasteridae and the
genus Amphipneustes (Paleopneustina). Urechinids are very
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distantly related to paleopneustines and schizasterids, which
are close in gene trees (Kroh & Smith, 2010). We infer
two independent originations of EEN in Echinoidea. Among
Crinoidea, a viviparous matrotrophic species is known in
the Comasteridae and a matrotrophic brooding species in
the Notocrinidae, suggesting two originations. Therefore, we
conservatively estimate at least 19 independent originations
of matrotrophy in Echinodermata.

In summary, with respect to the incidence of independent
EEN originations across the animal phyla, Chordata,
Arthropoda, Bryozoa and Echinodermata are highest with
37, 29–31, 23, and 19, respectively. Matrotrophy apparently
originated 13, 11, 10 and 9 times among Mollusca,
Platyhelminthes, Nematoda and Annelida, respectively.
In the majority of phyla with parental provisioning it
evolved once.

We caution that both new or alternative phylogenetic
hypotheses and new discoveries of EEN will affect our
preliminary estimates of independent origins. The primary
source of caution is that the distribution of matrotrophy in
some phyla (e.g. Porifera, Nematoda, Mollusca, Arthropoda,
Acanthocephala) is clearly understudied and thus likely to
be underestimated. Second, while most authors tend to
consider the acquisition of viviparity (and thus matrotrophy)
from oviparous ancestors as predominant over loss (Wourms
& Lombardi, 1992; Lee & Shine, 1998; Blackburn,
1999a; Shine & Lee, 1999; Pollux et al., 2009; Ereskovsky,
2010 and references therein), maternal input can be
highly varied. For instance, the phylogenetic analysis of
Dulvy & Reynolds (1997) showed 6–8 reversals from
matrotrophic to lecithotrophic viviparity in elasmobranchs.
A recent large-scale phylogenetic analysis of squamate
reptiles (Pyron & Burbrink, 2014) argues that ∼115 putative
origins of viviparity in this group (of a claimed 150+ in
vertebrates; Blackburn, 2014) should be reinterpreted based
on evidence for an early origin of viviparity at the base
of this clade. Their results suggest a complex pattern of
multiple reversions to oviparity, a much-reduced number
of originations of viviparity, and consequent uncertainty
about the origins of matrotrophy. Discussing this issue in
respect to elasmobranchs, Blackburn (2014) stated that this
problem will not be solved without a consensus on their
phylogeny.

Among invertebrates, oviparity is thought to have arisen
twice from viviparity in Onychophora (Reid, 1996). Also,
Riesgo et al. (2013) suggested that viviparity (and, thus,
matrotrophy) may have been be lost in some sponges. At finer
scales, the evolution of varying degrees of matrotrophy and
placentation can be very labile and strongly correlated with
other life-history characteristics and environmental factors
(Chen & Caswell-Chen, 2004; Lewitus & Soligo, 2011; Pires
et al., 2011). Thus, estimates of the number and distribution of
independent origins of matrotrophy should be combined with
phylogenetic character mapping at several scales. Across
Animalia as a whole, these tasks have only just begun.

(8) Implications for evolution and ecology

Matrotrophic patterns encompass numerous structural and
physiological variants. These variants reflect stages (often
transitional) in the evolution of parental care and appar-
ent trends in the transformation of parent–offspring
cell–tissue relationships, studied most thoroughly in verte-
brates (reviewed in Blackburn et al., 1985; Blackburn, 1992,
1999b, 2014; Wake, 1992; Wourms & Lombardi, 1992;
Wooding & Burton, 2008; Hemberger, 2013). Recently
Blackburn (2014, p. 20) highlighted the morphological and
evolutionary principles that, together with the selective back-
ground, shape the evolutionary trajectories of matrotrophy in
vertebrates. These are ‘constraints . . . due to phylogenetic
inertia coupled with design limitations, . . . exaptation/
preadaptation, and heterochrony.’ Examples include
embryonic membranes that, on the one hand, pre-
vent embryos from ingesting surrounding fluid/tissue/
eggs/siblings, thus acting as a constraint in the evolution
of certain matrotrophic modes, and, on the other hand,
readily establish placental contact (preadaptation). Early
development of the functional feeding apparatus and diges-
tive tract in embryos, allowing them to ingest nutrients,
can be interpreted as an example of heterochrony. Our
results present evidence for similar trends and involvement
of the same principles in invertebrates, promising a compar-
ative context broader than vertebrates alone. The scope of
different developmental, physiological, morphological, and
life-history patterns presents additional questions and chal-
lenges for a general understanding of the evolution and
adaptive significance of matrotrophy.

One component in the evolution of matrotrophy
and placentation is maternal–fetal conflict (Crespi &
Semeniuk, 2004), important parts of which are cell–cell
communication in regulation of embryonic development
and nutrient provisioning, and mediation of deleterious
immune responses. In contrast to the situation in vertebrates,
where genomic conflicts between embryos and mothers are
implicated as a potent evolutionary force in the evolution
of life histories, reproductive structures, immune tolerance
and maternal investment (Schrader & Travis, 2009; Banet,
Au & Reznick, 2010; Wildman, 2011; Pollux et al., 2014),
studies on invertebrates – including but not focusing on
matrotrophy – are far fewer (e.g. Kamel, Grosberg &
Marshall, 2010; Trumbo, 2012; Wong, Meunier & Kölliker,
2013), entreating biologists to broaden comparative studies.
For instance, analysis of the members of the conserved
molecular signalling pathways that act in concert during
mammalian placenta formation (Sonderegger, Pollheimer &
Knofler, 2010; Park & Dufort, 2011; Singh, Chaudhry &
Asselin, 2011) could be a starting point for comparison
of incipient and fully developed placental analogues in
Bryozoa, representing an entirely separate model of placental
evolution. Here, too, conflicts and maternal provisioning are
already being explored (Marshall, 2008; Marshall & Keough,
2008).

Evolutionary changes in reproductive modes, pla-
cental nutrition, and matrotrophy in general are also
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considered largely adaptive, but this inference cannot
be considered in isolation from entire life cycle and
ecological contexts (Blackburn, 1992; Lombardi, 1996;
Trexler & DeAngelis, 2003). Two different life-cycle
patterns are vividly apparent among many matrotrophic
invertebrates, but not among vertebrates. First, many
colonial matrotrophic invertebrates, including virtually all
bryozoans, remain sessile once larval dispersal occurs. Their
distribution is concentrated in patches in space and time,
exposed to whatever water-borne nutritional resources are
available, and to predators from which they cannot flee.
Mating is by ‘spermcasting’ (Bishop & Pemberton, 2006) and
multiple inseminations by different genotypes may be com-
mon. This mode of life, with analogies among land plants
(Graham & Wilcox, 2000), may have influenced the repeated
acquisition and diversification of matrotrophy in bryozoans
and the plasticity of maternal investment (Marshall & Uller,
2007; Marshall et al., 2008; Ostrovsky et al., 2009). Second,
parasite life cycles in many invertebrate clades may be even
more concentrated in both time and space to exploit host
vulnerability and immediately infective transmission (Viney
& Cable, 2011). Repeated evolution of matrotrophy among
invertebrate parasites is tangled with a welter of adaptive fac-
tors and trade-offs: size and age at infectivity, growth rate and
resource intake, the timing of transmission before host death,
and more (Tinsley, 2004, 2005). For example, in parasitic
nematodes matrotrophy (and viviparity) may increase the
rapidity of maturation, outpacing the threatening immune
response of the final host, but may also act to ‘seclude’ the
organism from the hazards of larval exposure in the external
environment by reducing the transmission interval (Hugot
& Quentin, 2000). Among other factors, matrotrophy (and
viviparity) enable parasitic insects to reduce the vulnerability
of early developmental stages, but this reproductive pattern
has also been found in association with non-parasitic
lifestyles (Meier et al., 1999). In gyrodactylid monogenean
flatworms, nearly all of which are matrotrophic parasites,
acceleration of the life cycle and juvenile or larval reproduc-
tion (progenesis) undoubtedly contributed to the enormous
diversity of this group (Boeger, Kritsky & Pie, 2003).

In summary, adaptive hypotheses explaining why
matrotrophy and placentation evolved repeatedly in some
animal groups but not others are numerous and sometimes
conflicting (Houston et al., 2007; Marshall et al., 2008;
Blackburn, 2014): maximizing fecundity when resources are
abundant, allowing flexible energetic allocation in changing
or unpredictable environments, lowering gestation times to
permit additional broods, lowering risk to vulnerable early
life stages by retaining offspring longer or accelerating their
maturation, enhancing survivorship by producing fewer
but larger and fitter offspring (including transgenerational
effects), being impeded by immunological interactions or
driven by parent–offspring conflicts, facilitating inoculation
of offspring with beneficial symbionts, weakening precopu-
latory mate choice and more (Wourms & Lombardi, 1992;
Crespi & Semeniuk, 2004; Marshall & Uller, 2007; Haine,
2008; Marshall et al., 2008; Ostrovsky et al., 2009; Pollux

et al., 2009, 2014; Capellini, Venditti & Barton, 2011).
Reasons for evolving matrotrophy across Animalia may turn
out to differ among animal groups at different taxonomic
scales, may be variable or facultative in some groups but
not others, or may best be thought of as a continuum of
reproductive and developmental processes. We cannot say
at this point. But seeking a better understanding of the
empirical distribution of matrotrophy is one step in that
direction, encouraging a broader look beyond the first
question – how and when did mom feed the embryo?

V. CONCLUSIONS

(1) Our analysis shows that matrotrophy is demonstrated
or inferred in two-thirds of all animal phyla, i.e. 21 out of 34,
changing the paradigm that it is comparatively rare in inver-
tebrates. In fact, matrotrophy has an almost pan-metazoan
distribution. In some phyla EEN is represented by only
one or few matrotrophic species; in others it is an obligate
expression of parental care. Platyhelminthes, Arthropoda
and Bryozoa dominate, with 162, 83 and 53 families,
respectively, that are wholly or partly matrotrophic.

(2) The distribution of matrotrophy among and within
phyla has led us to estimate from 140 to 145 independent orig-
inations in all superclades—among Parazoa and Eumetazoa,
Radiata (Diploblastica) and Bilateria (Triploblastica), Proto-
stomia and Deuterostomia, Lophotrochozoa and Ecdysozoa.
Non-matrotrophic phyla are also represented in all the above
superclades. Matrotrophy evolved at least 29–31 times
among Arthropoda alone, comparable with Chordata (37
times). In Cycliophora and some Digenea it evolved twice in
the same life cycle. By contrast, matrotrophy has not evolved
in phyla that either lack incubation of the embryo or which
brood externally, thereby precluding nutritional exchange.

(3) Matrotrophy is associated with all known types
of incubation chambers (external brood sacs excepted).
Matrotrophic viviparity is more widespread, found in
20 phyla (excluding Kamptozoa), whereas matrotrophic
brooding is known in 10 phyla. Nine phyla possess both
types of incubation. As to the variety of matrotrophic
incubation sites, arthropods and bryozoans exhibit the
most diverse range. The most exotic variant is intracellular
and intraplasmodial matrotrophy (in Dicyemida and
Orthonectida).

(4) EEN in invertebrates is expressed by the
five matrotrophic modes, of which histotrophy and
placentotrophy (similar to chordates) are prevalent. Most
phyla have a very restricted range of nutritional modes;
a few have several. Platyhelminthes, Arthropoda and
Echinodermata have as many as four, exceeded only by
Chordata. As in vertebrates, matrotrophic modes can shift,
intergrade and be performed simultaneously during gestation
in invertebrates.

(5) Evolution of the nutritional organs that are formed
either by a parent or offspring, or both, includes formation
of (i) local zones of enhanced nutritional transport
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(placental analogues), including specialized parent–offspring
cell complexes and various appendages increasing the entire
secretory and absorbing surface and/or the contact surface
between embryo and parent, (ii) compartmentalization of
the common incubatory space into compact chambers with
more effective nutritional relationships, and (iii) internal
secretion (‘milk’) glands. Heterochronic (early) formation
of mouthparts and digestive system in embryos appears to
be an important innovation. Some placental analogues in
Onychophora and Arthropoda mimic the simplest vertebrate
placentae, constituting striking examples of convergent
evolution acting at all levels—positional, structural and
physiological. Generally speaking, invertebrate matrotrophic
adaptations are structurally less complex than in
chordates but are more diverse. Some nutritional
organs, like internal ‘milk glands’ are known only in
invertebrates.

(6) The broad distribution and high diversity of nutritional
modes, structures, sites and mechanisms in invertebrates
suggest high adaptive potential. However, matrotrophic
and non-matrotrophic species often coexist within the
same clades, and the mosaic distribution of EEN is
difficult to explain. Many more important questions remain
unanswered. Our analysis is the first attempt to encompass
the full range of invertebrate matrotrophy in one integrated
picture, and we hope that it will promote more research in
this field.
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talpoides. Zoologische Jahrbücher: Supplementheft 15, 141–184.
*Hickman, L. H. (1956). Parasitic turbellaria from Tasmanian Echinoidea. Papers and

Proceedings of the Royal Society of Tasmania 90, 169–181.
*Hickman, V. V. (1978). Notes on three species of Tasmanian sea cucumbers including

one species that broods its young in the coelome. (Holothurioidea: Phyllophoridae,
Caudinidae). Papers and Proceedings of the Royal Society of Tasmania 112, 29–37.

Higgins, R. P. & Storch, V. (1991). Evidence for direct development in Meiopriapulus

fijiensis (Priapulida). Transactions of the American Miscroscopical Society 110, 37–46.

Biological Reviews 91 (2016) 673–711 © 2015 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.



Invertebrate matrotrophy and placentation 703

*Hincks, T. (1861). Note on the ovicells of the cheilostomatous Polyzoa. Quarterly

Journal of Microscopical Science 1, 278–281.
*Hincks, T. (1873). Contributions to the history of the Polyzoa. Quarterly Journal of

Microscopical Science 13, 16–36.
*Hincks, T. (1880). A History of the British Marine Polyzoa. Van Voorst, London.
*Hirose, E. & Murakami, A. (2011). Microscopic anatomy and pigment

characterization of coral-encrusting black sponge with cyanobacterial symbiont,
Terpios hoshinota. Zoological Science 28, 199–205.

*Hodin, J. & Riddiford, L. (2000). Parallel alterations in the timing of ovarian
ecdysone receptor and ultraspiracle expression characterize the independent
evolution of larval reproduction in two species of gall midges (Diptera:
Cecidomyiidae). Development Genes and Evolution 210, 358–372.

Hoese, B. & Janssen, H. H. (1989). Morphological and physiological studies on the
marsupium in terrestrial isopods. Monitore Zoologico Italiano (N. S.) 4, 153–173.

*Hofmann, K. (1988). Observations on Peripatopsis clavigera (Onychophora,
Peripatopsidae). South African Journal of Zoology 23, 255–258.

Hogarth, P. J. (1976). Viviparity. Edward Arnold, London.
Holterman, M., van der Wurff, A., van den Elsen, S., van Megen, H.,

Bongers, T., Holovachov, O., Bakker, J. & Helder, J. (2006). Phylum-wide
analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes
and accelerated evolution toward crown clades. Molecular Biology and Evolution 23,
1792–1800.

*Holy, J. M. & Wittrock, D. D. (1982). Electron microscopy of eggshell formation
in Halipegus eccentricus (Trematoda: Hemiuridae). In Parasites - Their World and Ours.

Proceedings of the 5th International Congress of Parasitology (eds D. F. Mettick and S. S.
Desser), p. 712. Molecular and Biochemical Parasitology, Supplement.

*Holy, J. M. & Wittrock, D. D. (1986). Ultrastructure of the female reproductive
organs (ovary, vitellaria and mehlis gland) of Halipegus eccentricus (Trematoda,
Derogenidae). Canadian Journal of Zoology 64, 2203–2212.

*Hornbach, D. J., Way, C. M. & Burky, A. J. (1980). Reproductive strategies in
the fresh-water sphaeriid clam, Musculium partumeium (Say), from a permanent and a
temporary pond. Oecologia 44, 164–170.

*Hornung, E. (2011). Evolutionary adaptation of oniscidean isopods to terrestrial
life: structure, physiology and behavior. Terrestrial Arthropod Reviews 4, 95–130.

Houston, A. I., Stephens, P. A., Boyd, I. L., Harding, K. C. & McNamara, J.
M. (2007). Capital or income breeding? A theoretical model of female reproductive
strategies. Behavioral Ecology 18, 241–250.

Hubendick, B. (1952). Veloplacenta, a new genus of prosobranchiate Mollusca. Arkiv för

Zoologi 3, 179–183.
*Hughes, D. J. (1987). Gametogenesis and embryonic brooding in the cheilostome

bryozoan Celleporella hyalina. Journal of Zoology 212, 691–711.
Hugot, J. P. & Quentin, J. C. (2000). Nemacycle: a coding system for representation

of nematode life-cycles. Research and Reviews in Parasitology 60, 57–67.
*Hunt, D. J. (1993). Aphelenchida, Longidoridae and Trichodoridae: Their Systematics and

Bionomics. CAB International, Wallingford, Oxon.
Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O. S., Wild,

R., Hammond, P. M., Ahrens, D., Balke, V., Caterino, V. S., Gómez-Zurita,
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*Nitsche, H. (1869). Beiträge zur Kenntniss der Bryozen. 1. Beobachtungen über
die Entwicklungsgeschichte einiger chilostomen Bryozoen. 2. Ueber die Anatomie
von Pedicellina echinata SARS. Zeitschrift für Wissenschaftliche Zoologie 20, 1–36.

Nollen, P. M. (1968). Uptake and incorporation of glucose, tyrosine, leucine, and
thymidine by adult Philophthalmus megalurus (Cort, 1914) (Trematoda), as determined
by autoradiography. Journal of Parasitology 54, 295–304.

Norenburg, J. (1986). Redescription of a brooding nemertine, Cyanophthalma obscura

(Schultze) gen et comb. n., with observations on its biology and discussion of the
species of Prostomatella and related taxa. Zoologica Scripta 15, 275–293.

*Obst, M. & Funch, P. (2003). Dwarf male of Symbion pandora (Cycliophora). Journal

of Morphology 255, 261–278.
*Obst, M., Funch, P. & Kristensen, R. M. (2006). A new species of Cycliophora

from the mouthparts of the American lobster, Homarus americanus (Nephropidae,
Decapoda). Organisms, Diversity and Evolution 6, 83–97.

*Ogren, R. E. (1953). A contribution to the life cycle of Cosmocercoides in snails
(Nematoda: Cosmocercidae). Transactions of the American Microscopical Society 72,
87–91.

Oguro, C., Shosaku, T. & Komatsu, M. (1982). Development of the brittle star
Amphipholis japonica Matsumoto. In Proceedings of the 4th International Echinoderm Conference

(ed. J. M. Lawrence), pp. 491–496. Balkema, Rotterdam.
*Ohgaki, S. I. (1997). Some aspects of the breeding biology of Planaxis sulcatus

(Born)(Gastropoda: Planaxidae). Journal of Molluscan Studies 63, 49–56.
*Ohshima, H. (1915). Report on the Holothurians collected by the United States

Fisheries steamer ‘‘Albatross’’ in the northwestern Pacific during the summer of
1906. Proceedings of the United States National Museum 48, 213–291.

*Ohshima, H. (1916). A new case of brood-caring in holothurians. Annotationes

Zoologicae Japonenses 9, 121–124.
*Okada, Y. (1928). On the development of a hexactinellid sponge, Farrea sollasii.

Journal of the Faculty of Science, Imperial University of Tokyo 2, 1–27.
*Okada, K. (1935). Some notes on Musculium heterodon (Pilsbry), a freshwater bivalve.

II. The gill, the breeding habits, and the marsupial sac. Science Reports of the Tohoku

Imperial University, Series 4: Biology 9, 375–391.
*O’Loughlin, P. M. (1991). Brooding and fission in shallow water echinoderms of

southern Australia. In Biology of Echinodermata (eds T. Yanagisawa, I. Yasumasu,
C. Oguro, N. Suzuki and T. Motokawa), pp. 223–228. Balkema, Rotterdam.

*O’Loughlin, P. M. (1994). Brood-protecting and fissiparous cucumariids
(Echinodermata, Holothurioidea). In Echinoderms Through Time (eds B. David, A.
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*Söderström, A. (1920). Studien über die Polychätenfamilie Spionidae. PhD Dissertation:
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