
On the accuracy in high dimensional linear models and
its application to genomic selection

C.E. Rabiera,b,c,d, B. Mangine, S. Gruseaa
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Abstract. Genomic selection, a hot topic in genetics, consists in predicting
breeding values of selection candidates, using a large number of genetic mark-
ers, due to the recent progress in molecular biology. One of the most popular
method chosen by geneticists is Ridge regression. In this context, we focus on
some predictive aspects of Ridge regression and present theoretical results re-
garding the accuracy criteria, i.e., the correlation between predicted value and
true value. We show the influence of the singular values, the regularization pa-
rameter, and the projection of the signal on the space spanned by the rows of
the design matrix. Asymptotic results, in a high dimensional framework, are
also given, and we prove that the convergence to an optimal accuracy highly
depends on a weighted projection of the signal on each subspace. We discuss
also on how to improve the prediction. Last, illustrations on simulated and real
data are proposed.
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1. Introduction and background

This year 2016, professor Michael Goddard and professor Theodorus Meuwis-
sen are awarded The John J. Carty Award for the Advancement of Science by
the National Academy of Science. They are considered as pioneers in the devel-
opment of genomic selection (GS), because of their stimulating paper Meuwissen
et al. (2001). In this context, our manuscript is devoted to methodological as-
pect of GS, a hot topic in genomics.

1.1. Preliminaries

For many years, geneticists focused on linkage analysis (LA), in order to de-
tect Quantitative Trait Locus, so-called QTL (a gene influencing a quantitative
trait which is able to be measured) on a given chromosome.
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The most popular statistical method was Interval Mapping (Lander and
Botstein (1989)), which consisted in scanning the genome, with the help of
genetic markers, and in testing for the presence/absence of a QTL at every
location in the genome.

The mathematical properties of Interval Mapping have been studied in de-
tail by different research teams from all over the world (Cierco (1998); Chen
and Chen (2005); Chang et al. (2009); Kim et al. (2009); Azäıs et al. (2014)).
According to Wu et al. (2007), thousands of QTLs have been detected in plants,
animals, and humans using the concept of Interval Mapping.

More recently, geneticists adopted genome-wide association studies (GWAS).
In contrast to LA, GWAS are based on unrelated individuals and as a result,
larger sample sizes can be considered. GWAS enabled the discovery of many
SNP-trait associations in humans (e.g. Crohn’s disease Barrett et al. (2008),
human height Weedon et al. (2008)).

However, both approaches (LA and GWAS) suffered from the fact that they
were unable to detect QTLs with very small effects. Recall that most traits of
interest are called complex traits, since they are governed by a large number of
small-effect QTLs (Goddard and Hayes (2008); Buckler et al. (2009)). It turns
out that predictions based on selected SNPs could not be considered as reliable.
This inability to capture all the genetic variation is known under the name of
missing heritability.

Today, Genomic Selection, motivated by the seminal paper of Meuwissen et
al. (2001), is an extremely popular technique in genetics. It consists in predicting
breeding values of selection candidates, using a large number of genetic markers,
due to the recent progress in molecular biology. The goal is not to detect QTL
anymore, but to predict the future phenotype of young candidates as soon as
their DNA has been collected. GS relies on the expectation that each QTL will
be highly correlated with at least one marker (Schulz-Streeck et al. (2012)). In
genetics, this large correlation is named strong Linkage Disequilibrium (LD).
More precisely, LD refers to the non independence of alleles at 2 different loci
(see Durett (2008) for more details), whereas Linkage Equilibrium (LE) denotes
the independence of alleles at 2 different loci.

In contrast to LA and GWAS, where each marker is analyzed separately, GS
considers all markers simultaneously (Whole genome regression analysis). GS
was first applied to animal breeding (see Hayes et al. (2009)) and later to plant
breeding (Jannink et al. (2010)): it was recently investigated on apple (Kumar
et al. (2012)), sugar beet (Wurschum et al. (2013)), pea (Burstin et al. (2015)),
and on inbred lines of rice (Spindel et al. (2015)).

1.2. A linear model

Let us introduce the statistical model associated to GS. The quantitative
trait is observed on n training (TRN) individuals and we denote by Y1, . . . , Yn
the observations. p markers lie on the genome, and βj refers to the fixed marker
effect of the j-th marker. In what follows, X is a matrix of size n × p, and ′

denotes transposition. The i-th row of X, written as x′i = (Xi,1, ..., Xi,p), rep-
resents the genome information at each marker available for the i-th individual.
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A fixed number of QTLs lie on the genome, having an effect on the quanti-
tative trait. For 1 ≤ j ≤ p, βj = 0 means that the corresponding marker is not

a QTL, whereas βj 6= 0 refers to a QTL. In what follows, ‖β‖00 :=
∑p
j=1 |β|

0

(with 00 = 0) will denote the number of QTLs (i.e. non null marker effects).
We assume the following causal linear model for the quantitative trait:

Y = Xβ + ε, (1)

where Y = (Y1, ..., Yn)
′
, β = (β1, ..., βp)

′
, ε ∼ N(0, σ2

eIn), In is the identity
matrix of size n, σ2

e refers to the environmental variance.
In this manuscript, we will propose an analysis conditional on observed x1,

. . . , xn. However, before imposing this conditioning, we have to precise that the
matrix X is independent of ε. Simulated data will be generated accordingly. In
what follows, r will denote the rank of the matrix X, and R(X) will refer to
the linear space generated by the rows of X.

1.3. Introducing a test individual

A supplementary individual, so-called test (TST) individual (denoted new) is
genotyped but not phenotyped. Using same notations as those used for the TRN
population, xnew denotes the column vector containing the genome information
at the p markers of the individual new. As a result, the quantitative trait Ynew
can be written

Ynew = x′new β + εnew,

where εnew ∼ N(0, σ2
e).

We suppose that x′new, εnew and ε are all independent.

1.4. Introducing the accuracy

In GS, we are interested in predicting either the genotypic value x′new β,
or the phenotypic value Ynew. In both cases, an estimator Ŷnew is constructed
from a prediction model learned on n TRN individuals. Ŷnew is a function of the
random variables xnew and ε. Then, the quality of the prediction is evaluated
according to some accuracy criteria, i.e. the correlation between predicted and
true values. This criteria, rarely studied in the statistical literature, is a key
element in genetics: it plays a role in the rate of genetic gain. Indeed, the
accuracy is one component present in the breeders equation (see for instance
Lynch and Walsh (1998)). The phenotypic accuracy, ρph, also called predictive
ability, is defined in the following way

ρph :=
Cov

(
Ŷnew, Ynew

)
√

Var
(
Ŷnew

)
Var (Ynew)

, (2)
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whereas the genotypic accuracy, ρg, is defined as

ρg :=
Cov

(
Ŷnew, x

′
newβ

)
√

Var
(
Ŷnew

)
Var (x′newβ)

. (3)

Note that, when xnew, εnew and ε are all independent, these two accuracies
are linked by the relationship ρph/ρg = h, where h is the squared root of the
heritability of the trait:

h2 :=
Var (x′new β)

Var (Ynew)
=

Var (x′new β)

Var (x′new β) + Var (εnew)
=

β′Var (xnew)β

β′Var (xnew)β + Var (εnew)
.

(4)

In what follows, we set σ2
G = Var (x′new β), and as a consequence, we have the

relationship h2 = σ2
G/
(
σ2
G + σ2

e

)
.

Depending on the authors, one focuses either on the phenotypic accuracy
(e.g. Visscher et al. (2010)), or on the genotypic accuracy (e.g. Daetwyler et al.
(2008, 2010)).

Penalized regression methods (see Li and Sillanpää (2012) for a review in
GS), Bayesian methods (e.g. Kärkkäinen and Sillanpää (2012)), and reproduc-
ing kernel Hilbert spaces methods (de los Campos et al. (2010)) are essentially
the methods used by geneticists to make prediction in GS. More recently, models
combining Bayesian and deterministic approaches (i.e. including both random
and fixed marker effects) are also investigated (e.g. Spindel et al. (2016)).

In what follows, the oracle situation will denote the settings where the QTLs
locations and their effects are known. Then, under the oracle situation, the
natural predictor is Ŷnew = x′new β. As a result, according to formula (2), the
oracle accuracies are the following

ρoracleg = 1 , ρoracleph = h.

1.5. Some background on Ridge regression

In the present study, we propose to focus on Ridge regression. Indeed, it
is one of the most popular methods for prediction of breeding values. Ridge
regression (Tihonov (1963); Hoerl et al. (1970)) has been studied for many
years. In genetics, this regression model, initially proposed by Meuwissen et al.
(2001), is called random regression best linear unbiased predictor (RRBLUP)
or genomic best linear unbiased predictor (GBLUP).

The Ridge estimator, suitable in a high dimensional setting (i.e. p > n), is
the following:

β̂ := (X ′X + λIp)
−1
X ′Y, (5)

where λ refers to a regularization (or tuning) parameter, and Ip denotes the
identity matrix of size p× p.
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Although Ridge regression is approximately 60 years old, statisticians keep
studying this topic, and excellent papers have been published recently (e.g. Shao
and Deng (2012); Bühlmann (2013); Dicker (2016)). Bühlmann (2013) focused
on statistical inference in high dimension: he proposed to correct the bias of the
Ridge estimator due to projection bias. In Dicker (2016), the author presented
theoretical results when (Y,X) are jointly Gaussian and the columns of X are
independent and identically distributed. However, in genomics, this hypothesis
is too strong since the large number of markers (in the genome) can not be
considered independent due to linkage and a fixed genome size.

Shao and Deng (2012) proposed a study where the design matrix X was
treated as fixed. They focused on the estimation of θ, defined as the projection
of β ontoR(X) (i.e. linear space generated by the rows of X). Indeed, according
to their Lemma 1, β is identifiable in model (1) if and only if β ∈ R(X), which
is nonrealistic in practice. Recall that β is a vector of size p and that we have
dim (R(X)) ≤ n when p > n.

Since the Ridge estimator β̂ belongs to R(X) (cf. our Section 2.2), they

studied convergence rates for the mean squared error E
{(
`′β̂ − `′θ

)}2

, for any

vector ` such as ‖`‖ = 1. They also obtained rates regarding the expected L2

norm error, E
(∥∥∥Xβ̂ −Xβ∥∥∥2

)
, for the Ridge regression estimator Xβ̂ of Xβ

(cf. our Section 2.2).

1.6. Our contributions and roadmap

Our study starts, in Section 2, by recalling recent results on the accuracy.
After a quick reminder on the singular value decomposition, we introduce our
main theorem, Theorem 1, that presents a general formula for the genotypic
accuracy, ρg. This is a key formula for the rest of the manuscript, since other
theorems and lemmas are built on it. According to Theorem 1, ρg depends on
the projection of the signal β onR(X). This projection can be named “weighted
projection” since some weights depending on singular values and on the tuning
parameter λ, act as multiplying factors.

Section 3 focuses on the case where TRN and TST samples come from the
same probability distribution. In this context, Theorem 2 gives an estimation
ρ̂g of ρg and Lemma 1 introduces a lower bound for ρ̂g: as in ii) of Theorem 1
of Shao and Deng (2012), it only takes into account a global projection of the
signal on R(X), with a global weight (i.e. same weights on each subspace).

Lemmas 2 and 3 propose a sharper analysis. In particular, Lemma 2 deals
with the case where the projected signal is spread out uniformly on each vector
of an orthonormal basis of R(X). It shows that under six given conditions,
the estimation ρ̂g tends to the oracle genotypic accuracy. These conditions
are basically imposed on the singular values and on the ratio rank r of X to
projected signal on R(X).

Lemma 3 investigates extreme cases: the projected signal belongs either to
the subspace spanned by the vector of an orthonormal basis of R(X) associated
to the largest singular value of X, or to the subspace spanned by the vector
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associated to the smallest singular value. This setting is particularly interesting
since Ridge regression imposes shrinkage, without taking into account of the
signal.

In Section 4, we tackle the problem of TRN and TST samples not coming
from the same probability distribution. Theorem 3 introduces an estimator of
ρg, which relies on the scalar product between a random projection of the signal
and the usual projection of the signal on R(X). Lemma 4 is the analogue of
Lemma 1 under this new configuration.

Section 5 is devoted to Daetwyler et al. (2008)’s seminal formula for the
accuracy in GS. Although the link between Ridge regression and Daetwyler et
al. (2008) has already been addressed in one of our recent study (Rabier et al.
(2016)), new results are given in Lemma 5. These results are potentially of
interest for geneticists, since we give new substitutes for the effective number of
independent loci Me, a key quantity in the field (cf. Section 5 for more details).

Last, in Section 6, we propose another estimator for the genotypic accuracy;
it is still derived from Ridge regression, and it may present better performances
(cf. Theorem 6). We propose to project the vector Y on a well chosen subspace
of the space spanned by the columns of X. We will give necessary conditions in
Lemma 8, to observe an increase in terms of accuracy.

Our paper ends with an illustration on simulated data, mimicking the evolu-
tion of a population over time. We will show the impact of different probability
distributions (between TRN and TST) on the quality of the estimated accuracy.
Furthermore, we will highlight the fact that proxies built on our theoretical re-
sults outperform existing proxies in GS. Performances of the “modified” Ridge
estimator will also be illustrated. Finally, a real data analysis is proposed; it
relies on the recent paper of Spindel et al. (2015) dealing with GS in rice.

2. General expression for the accuracy

2.1. Introducing Ridge regression and the corresponding accuracy

Recall the expression of the Ridge estimator:

β̂ = (X ′X + λIp)
−1
X ′Y.

Since we have the well-known relationship

(X ′X + λIp)
−1
X ′ = X ′ (XX ′ + λIn)

−1
(6)

the computation of β̂ only requires the inversion of a n× n matrix.
In this context, the prediction for the so-called new individual is the follow-

ing:

Ŷnew := x′newβ̂ = x′newX
′V −1Y where V = XX ′ + λIn.

In what follows, we will assume that Y , the columns of X, Ynew and xnew are
centered.
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Assuming that x1, . . . , xn are known, and that ε, xnew and εnew are random,
the genotypic accuracy, according to formula (5) of Rabier et al. (2016), has the
following expression:

ρg =
β′ Var (xnew)X ′V −1Xβ(

σ2
eE
(
‖x′newX ′V −1‖2

)
+ β′X ′V −1XVar (xnew)X ′V −1Xβ

)1/2

σG

(7)

where ‖.‖ is the L2 norm, and Var (xnew) is the covariance matrix of size p× p.
Note that this accuracy can be viewed as a conditional accuracy since this
expression was obtained conditionally on the TRN design matrix X.

We introduce the following notations

A1 := β′ Var (xnew)X ′V −1Xβ , A2 := σ2
eE
(∥∥x′newX ′V −1

∥∥2
)

A3 := β′X ′V −1XVar (xnew)X ′V −1Xβ , A4 := σG.

2.2. SVD decomposition

Following Shao and Deng (2012) and Bühlmann (2013), let us consider the
singular value decomposition of X:

X = PDQ′, (8)

where P is an n× r matrix satisfying P ′P = Ir, Q is a p× r matrix satisfying
Q′Q = Ir, and D = Diag (d1, . . . , dr) with d1 ≥ . . . ≥ dr > 0. The columns of
Q (resp. P ) constitute an orthogonal basis of the space spanned by the rows
(resp. columns) of X. In what follows, Q(s) will denote the s-th column of Q,
and as a consequence R(X) = Span

{
Q(1), . . . , Q(r)

}
. By construction QQ′ is

an idempotent matrix, and QQ′β is the projection of β onto R(X). We set

θ := QQ′β

and, as mentioned in Shao and Deng (2012), we have the relationship

θ̂ := QQ′β̂ = β̂.

Then, the Ridge estimator β̂ presents the particularity to belong to R(X).
Note also that we have the relationship Xθ = Xβ. As a consequence, we have

E
(∥∥∥Xβ̂ −Xβ∥∥∥2

)
= E

(∥∥∥Xθ̂ −Xθ∥∥∥2
)

, and rates presented in Theorem 1 of

Shao and Deng (2012) for Xθ are also suitable for Xβ.

2.3. Results

Our main result is the following.

7



Theorem 1. Let Σ = Var (xnew) be the covariance matrix of size p × p. Fur-
thermore, let us assume that X is known, and that ε, xnew and εnew are random.
Then, the genotypic accuracy has the following expressions

ρg =
A1

(A2 +A3)
1/2

(A4)
1/2

where

A1 =

r∑
s=1

d2
s

d2
s + λ

β′ Σ Q(s)Q(s)′β , A2 = σ2
e

r∑
s=1

d2
s

(d2
s + λ)2

E
(∥∥∥Q(s)Q(s)′xnew

∥∥∥2
)

A3 =

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
Σ

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)
, A4 = β′Σβ.

The proof is given in Section 8.1. The phenotypic accuracy is obtained by
replacing the term A4 at the denominator by A4 + σ2

e . Note that Q(s)Q(s)′v is
the projection of a column vector v of size p on the vector space spanned by
Q(s). In view of Theorem 1, ρg depends on the projection Q(s)Q(s)′β of the
signal and also on the projection Q(s)Q(s)′xnew of the genome information for
the individual new.

Remark: In the backcross design (see for instance Azäıs et al. (2014)), we have
the relationship Σkk′ = e−2|tk−tk′ |, where tk and tk′ refer to locations of marker
k and k′ measured in Morgans.

In what follows we are interested in estimating the genotypic accuracy ρg. A
consistent estimator of A2 is easily derived from the Law of large numbers.
Besides, by Slutsky’s lemma in the matrix case, consistent estimators of A1, A3

and A4 can be obtained provided that a consistent estimator of the covariance
matrix Σ is used. This finally leads to a consistent estimator of ρg.

However, finding a consistent estimator for Σ is very challenging in the high
dimensional setting; it is nowadays a hot topic in statistics. Some recent results
(see e.g. Cai et al. (2010)) address this question, but the authors make quite
restrictive assumptions on the covariance matrix Σ.

In our present work we have chosen the empirical covariance estimator, since
it is the classical estimator used by geneticists in practice. We will show on
simulated data that our estimators perform in a very satisfactory manner.

3. Estimation when TRN and TST samples come from the same prob-
ability distribution

In this section, let us consider the case where the TRN and TST samples
are from the same probability distribution. In this context, using the empirical
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covariance matrix X ′X/n as an estimation of the covariance matrix Σ from
Theorem 1, we obtain the following theorem.

Theorem 2. Let us assume that x1, . . . , xn and xnew are independent and
identically distributed (i.i.d.). Besides, let us consider that x1, . . . , xn have
been observed (i.e. X is known), and that ε, xnew and εnew are random. Then,
an estimation of the genotypic accuracy is

ρ̂g =
Â1(

Â2 + Â3

)1/2 (
Â4

)1/2

where

Â1 =
1

n

r∑
s=1

d4
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥2

, Â2 =
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

Â3 =
1

n

r∑
s=1

d6
s

(d2
s + λ)2

∥∥∥Q(s)Q(s)′β
∥∥∥2

, Â4 =
1

n

r∑
s=1

d2
s

∥∥∥Q(s)Q(s)′β
∥∥∥2

.

In contrast to Theorem 1, the projection Q(s)Q(s)′xnew is not present in this
new expression. Theoretical developments rely on the following estimation Â2

of A2:

Â2 :=
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XQ(s)Q(s)′Q(s)Q(s)′X ′

)
.

The proof is given in Section 8.2. Note that the unknown quantity β present
in Theorem 2, can be estimated for instance by LASSO (Tibshirani (1996)),
Adaptative LASSO (Zou (2006)) or Group LASSO (Yuan and Lin (2006)). We
refer to our applications in Section 7.

Let us now introduce bounds for the quantity ρ̂g.

Lemma 1 (Bounds on ρ̂g). Using same hypotheses as in Theorem 2, we al-
ways have

‖QQ′β‖2 mins
d4s

d2s+λ√
σ2
e r + ‖QQ′β‖2 maxs

d6s
(d2s+λ)2

√
‖QQ′β‖2 maxs d2

s

≤ ρ̂g ≤ ρoracleg .

According to this lemma, the smaller the ratio r
‖QQ′β‖2 is, the larger the lower

bound is. Furthermore, the quantity mins
d4s

d2s+λ
should be large enough, and the

term maxs
d6s

(d2s+λ)2 not too large. The proof is given in Section 8.3.

Although this lower bound can give a first indication on the quality of the
prediction, a sharper analysis is needed (see below). Indeed, until now, as in
ii) of Theorem 1 of Shao and Deng (2012), we have only taken into account a
global projection QQ′β of the signal on R(X), with a global weight.
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3.1. Convergence of ρ̂g to ρoracleg when n→ +∞ and p→ +∞
Recall that d1 ≥ d2 ≥ . . . ≥ dr > 0 are the singular values of X. To study

asymptotic properties of ρ̂g, we consider that

d2
1 ∼ nψ with 0 < ψ ≤ 1,

d2
r ∼ nη with η ≤ ψ ≤ 1 and η and ψ do not depend on n.

Recall that un ∼ vn means that un
vn
−→ 1 when n→∞. Besides, we will assume

that
‖QQ′β‖2 ∼ n2τ with τ < η and τ not depending on n.

These conditions are largely inspired from Shao and Deng (2012). However,
we are mentioning the exact order of each term since our goal, in this section,
is to study the behavior of the quantity ρ̂g, which is a ratio. For instance,

Condition C2 of Shao and Deng (2012), which imposes ‖QQ′β‖2 = O(n2τ ), is
somewhat more general than ours.

On the other hand, in their Theorem 3, Shao and Deng (2012) suppose
d2

1 = O(n), whereas Fan and Lv (2008) assume (in condition 4) d2
1 = O(nυ)

with υ ≥ 0. This way, our condition on d2
1 can be viewed as a compromise

between the conditions considered in these two papers. Note that all the results
in the present paper are still valid even if ψ > 1.

Last, our condition on d2
r is inspired from condition C1 of Shao and Deng

(2012).
To begin with, we propose to study the case where the signal is spread out

uniformly on each subspace Span
{
Q(s)

}
, i.e.∥∥∥Q(s)Q(s)′β

∥∥∥2

∼ n2τ

r
, s = 1, . . . , r. (9)

Let us consider a regularization parameter λ such as :

• λ→∞

• λ = o
(
d2

1

)
The setting λ → ∞ when p → ∞ is somewhat classical in genomics. The
heritability h2 of a quantitative character is only approximately known by ge-
neticists, and it is well known that the Ridge regression can be viewed in a
Bayesian framework assuming same variance on each regressor. As a conse-
quence, in order to obtain an estimated value of λ, the signal (linked to h2) is
generally spread out accross all the regressors. It leads to a tuning parameter
which diverges to +∞ and the β̂k’s are more and more shrinked when the num-
ber of regressors increases (see for instance our section on the regularization
parameter in Rabier et al. (2016)).

Let us define three sets denoted Ω1, Ω2 and Ω3:

Ω1 =
{
s
∣∣λ = o(d2

s)
}

, Ω2 =

{
s

∣∣∣∣d2
s ∼

1

Cs
λ with Cs > 0

}
, Ω3 =

{
s
∣∣d2
s = o(λ)

}
.
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Note that Ω1 contains at least the index 1. On simulated data, after having
chosen λ by Restricted Maximum Likelihood (Corbeil and Searle (1976)), so-
called REML (cf. Section 7), these different sets were not empty. In what
follows, we will call respectively “largest singular values” the ones whose index
s belong to the set Ω1. In the same way, “intermediate singular values” and
“smallest singular values” refers to the sets Ω2 and Ω3 respectively.

Let us introduce a few extra conditions:

• (C1) n2τ

r

∑
s∈Ω1

d2
s → +∞

• (C2)
∑
s∈Ω3

d2
s = o(λ)

• (C3)
∑
s∈Ω3

d4
s = o(λ2)

• (C4) n2τ/r = o(1/λ), i.e. λ = o(r/n2τ )

• (C5) #Ω1 = O(1)

• (C6) #Ω2 = O(1),

where #Ω refers to the cardinal of the set Ω.
Before presenting our Lemma 2, let us give a few comments regarding the

above conditions. Under (C2), the L2 norm squared of the vector containing the
largest singular values ds for s ∈ Ω1 may diverge to +∞ at a rate slower than λ.
According to (C3), the L2 norm squared of the vector whose components are the
square of the smallest singular values may diverge to +∞ at a rate slower than
λ2. Condition (C4) assumes that the ratio r/n2τ diverges faster to +∞ than
the tuning parameter λ. Last, (C5) and (C6) impose that the number of large
singular values and the number of intermediate singular values are bounded. In
other words, when p > n, the rank r of the matrix X which is bounded by n,
will diverge to +∞ if and only if the number of small singular values tends to
+∞.

Lemma 2 (Convergence to the oracle accuracy). Let us consider same hy-
potheses as in Theorem 2. Besides, let us suppose that the projected signal is
spread out uniformly on each subspace Span

{
Q(s)

}
, i.e.∥∥∥Q(s)Q(s)′β

∥∥∥2

∼ n2τ

r
, s = 1, . . . , r (10)

and let us assume conditions (C1-C2-C3-C4-C5-C6). Then we have ρ̂g −→
ρoracleg .

If we set r = nγ with 0 < γ ≤ 1, then the condition (C4) implies that
τ < γ/2. In other words, when trying to recover the oracle accuracy, the lower
the rank r is, the weaker the signal can be.

Recall that the tuning parameter λ is such as λ → ∞, λ = o
(
d2

1

)
. Let us

now introduce the following lemma, dealing with extreme cases.

11



Lemma 3 (Extreme cases). Let us consider same hypotheses as in Theorem
2.

1. If the projected signal belongs only to Span
{
Q(1)

}
, that is to say∥∥∥Q(1)Q(1)′β

∥∥∥2

∼ n2τ ,
∥∥∥Q(s)Q(s)′β

∥∥∥2

= 0, for 1 < s ≤ r , then

• if 2τ + ψ > 1, then ρ̂g → ρoracleg .

• if 2τ + ψ < 1

– if
∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+ψ

)
, then ρ̂g → ρoracleg

– if n2τ+ψ = o
(∑r

s=1
d4s

(d2s+λ)2

)
, then ρ̂g → 0.

2. If the projected signal belongs only to Span
{
Q(r)

}
, that is to say∥∥∥Q(r)Q(r)′β

∥∥∥2

∼ n2τ ,
∥∥∥Q(s)Q(s)′β

∥∥∥2

= 0 , for 1 ≤ s < r, and

moreover λ ∼ Cnη+κ with κ > max(0,−η), C > 0, then,

• if τ + η/2− κ < 0, then ρ̂g → 0.

• if τ + η/2− κ > 0

– if
∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+η−2κ

)
, then ρ̂g → ρoracleg

– if n2τ+η−2κ = o
(∑r

s=1
d4s

(d2s+λ)2

)
, then ρ̂g → 0.

The proof is given in the Supplementary material.

Since
∑r
s=1

d4s
(d2s+λ)2

≤ r, we have r = o
(
n2τ+ψ

)
and thus the condition∑r

s=1
d4s

(d2s+λ)2
= o

(
n2τ+ψ

)
can be replaced by r = o

(
n2τ+ψ

)
. In the same way,

condition
∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+η−2κ

)
can be replaced by r = o

(
n2τ+η−2κ

)
.

According to this lemma, when the projected signal belongs only to Span
{
Q(r)

}
,

κ should be not too large in order to ensure τ+η/2−κ > 0, and also to fulfill the
condition r = o

(
n2τ+η−2κ

)
. As a consequence, the tuning parameter λ should

be chosen appropriately.

4. Estimation when TRN and TST samples are not from the same
probability distribution

In this section, we will consider the general case when the TRN and TST
samples are not necessarily from the same probability distribution. Further-
more, let us assume that nnew new individuals are available, and that we are
willing to predict the phenotypes of those individuals. Xnew will be a random
matrix of size nnew × p containing the genomic markers of the new individuals.
The singular value decomposition of Xnew is the following:

Xnew = WFZ ′,

12



where W is a nnew×rnew matrix satisfying W ′W = Irnew , Z is a p×rnew matrix
satisfying Z ′Z = Irnew , and F is rnew × rnew diagonal matrix of full rank.

Using X ′newXnew/nnew as estimator of the covariance matrix Σ, we obtain
the following Theorem 3, a random version of Theorem 2.

Theorem 3. Let us assume that X is given and that Xnew is random, with its
rows being i.i.d. Then, an estimator of the genotypic accuracy is

ρ̌g =
Ǎ1(

Ǎ2 + Ǎ3

)1/2 (
Ǎ4

)1/2 , (11)

where

Ǎ1 =
1

nnew

r∑
s=1

d2
s

d2
s + λ

(
rnew∑
α=1

f2
α < Z(α)Z(α)′β,Q(s)Q(s)′β >

)
,

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

nnew∑
i=1

(
rnew∑
α=1

fα Q
(s)′Z(α)W

(α)
i

)2

,

Ǎ3 =
1

nnew

r∑
s=1

d2
s

d2
s + λ

Q(s)′β

r∑
`=1

d2
`

d2
` + λ

Q(`)′β

(
rnew∑
α=1

f2
α < Z(α)Z(α)′Q(s), Z(α)Z(α)′Q(`) >

)
,

Ǎ4 =
1

nnew

rnew∑
α=1

f2
α

∥∥∥Z(α)Z(α)′β
∥∥∥2

.

Note that the expression in Equation (11) was obtained with the help of the
estimator Ǎ2, defined in the following way

Ǎ2 :=
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XnewQ

(s)Q(s)′Q(s)Q(s)′X ′new

)
.

The proof is given in the Supplementary material.
Let < ., . > denote the usual scalar product. We now introduce Lemma 4,

the analogue of Lemma 1 in this new framework.

Lemma 4 (Bounds on ρ̌g). Under the same hypotheses as in Theorem 3, we
always have

B1

(B2 +B3)
1/2

B
1/2
4

≤ ρ̌g ≤ ρoracleg ,

where

B1 = min
1≤s≤r

d2
s

d2
s + λ

min
1≤α≤rnew

f2
α < ZZ ′β , QQ′β >,

B2 = σ2
e r rnew max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α max

s,α

∥∥∥Q(s)′Z(α)W (α)
∥∥∥2

,

B3 = max
1≤s≤r

d4
s

(d2
s + λ)2

‖QQ′β‖2 max
1≤α≤rnew

f2
α r2,

B4 = ‖ZZ ′β‖2 max
1≤α≤rnew

f2
α.
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Note that it is possible to replace B2 by the quantity

σ2
e rnew

r∑
s=1

d2
s

(d2
s + λ)2

max
1≤α≤rnew

(
f2
α < Q(s), Z(α) >2

)
.

entailing another lower bound for ρ̂g. The proof is given in the Supplementary
material.

Contrary to the lower bound introduced in Lemma 1, this lower bound can
take negative values, since the scalar product < ZZ ′β , QQ′β > is present in
the numerator. This may happen when the rows of X are not i.i.d., or when
the probability distributions of TRN and TST are very different.

In Section 7, we will illustrate performances of ρ̌ph and ρ̂ph, on simulated
and real data.

5. Link with a seminal formula in GS

A large number of formulas for accuracy are now available in the literature.
One of the most popular was proposed in Daetwyler et al. (2008). In their
study, the authors assumed that the gene locations are known (i.e. indices of
the non null coefficients of β are perfectly known). Furthermore, they focused
on an orthogonal design. According to Rabier et al. (2016), a general version of
Daetwyler et al. (2008) formula regarding the genotypic accuracy, is√√√√ h2/(1− h2)

‖β‖00
n + h2

1−h2

. (12)

Recall that ‖β‖00 =
∑p
j=1 |β|

0
with (00 = 0). Note that in Daetwyler et al.

(2008), the authors analyzed the case σ2
G + σ2

e = 1. In that sense, formula (12)
is somewhat general since it does not rely on such assumptions.

Later, in Daetwyler et al. (2010), the authors extended their previous work,
in order not to deal with a more general design (not only orthogonal). Indeed,
they allowed for the presence of a large number of loci (in the genome) that
can not be considered independent due to linkage and a fixed genome size.
They proposed, in particular, to substitute the effective number of independent
loci Me for ‖β‖00, into their original formula. Subsequently, a large number of
research groups built on this concept and proposed different ways of estimating
Me. Those methods are either based on the effective population size (e.g.,
Goddard et al. (2011)), or on the number of independent tests in association
mapping (Li and Ji (2005)).

Let us come back to our present study. Our theoretical results allow us to
introduce now the following lemma.

Lemma 5. Instead of substituting the effective number of independent loci Me

for ‖β‖00, we should substitute the quantity nA2 from Theorem 1 into Daetwyler
et al. (2008) formula. It can be estimated by

14



• nÂ2 from Theorem 2, when x1, . . . , xn and xnew are i.i.d.

• nnewǍ2 from Theorem 3, when x1, . . . , xn are not i.i.d., provided that the
rows of Xnew are i.i.d.

This way, after having replaced ‖β‖00 by nÂ2 or nnewǍ2, we obtain new accuracy
proxies, that should be of interest for geneticists. However, as other suggested
proxies, these proxies are not optimal since with such simple expressions, there
is a loss of information. Recall that the true expression of ρg is presented in our
Theorem 1.

6. How to improve the quality of the prediction

In this section, we propose to introduce another estimator, derived from
Ridge regression, and that may present, in some cases, better performances than
previously studied estimators. We propose to project the vector Y on a well
chosen subspace of the space spanned by the columns of X. Let 1 ≤ r̃ ≤ r and
σ(.) a one-to-one map σ : {1, . . . , r̃} → {1, . . . , r}. We thus have σ(k) 6= σ(k′)
for k 6= k′.

Let us consider the estimator

β̃ = X ′V −1P̃ P̃ ′Y where P̃ =
(
Pσ(1), . . . , P σ(r̃)

)
.

Note that P̃ P̃ ′Y is the projection of Y on Span
{
Pσ(1), . . . , P σ(r̃)

}
. Besides, we

set Q̃ =
(
Qσ(1), . . . , Qσ(r̃)

)
. Then, the corresponding prediction for the so-called

new individual is the following:

Ỹnew = x′newβ̃ = x′newX
′V −1P̃ P̃ ′Y .

We refer to Section 7.2.4, where we describe a procedure for choosing σ(.) and
r̃. Let ρ̃g be the analogue of ρg, with Ŷnew replaced by Ỹnew (cf. formula (3)):

ρ̃g :=
Cov

(
Ỹnew, x

′
newβ

)
√

Var
(
Ỹnew

)
Var (x′newβ)

. (13)

A more explicit formula for ρ̃g is given in Lemma 1 of the Supplementary ma-
terial. This lemma can be viewed as a version of Theorem 1 based on this new
estimator. Let us now present a lemma which is the analogue of Theorem 2.

Lemma 6. Let us consider same hypotheses as in Theorem 2, then an estima-
tion of the quantity ρ̃g is

ˆ̃ρg =
ˆ̃A1(

ˆ̃A2 + ˆ̃A3

)1/2 ( ˆ̃A4

)1/2
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where

ˆ̃A1 =
1

n

r̃∑
s=1

d4
σ(s)

d2
σ(s) + λ

∥∥∥Q(σ(s))Q(σ(s))′β
∥∥∥2

, ˆ̃A2 =
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

ˆ̃A3 =
1

n

r̃∑
s=1

d6
σ(s)

(d2
σ(s) + λ)2

∥∥∥Q(σ(s))Q(σ(s))′β
∥∥∥2

, ˆ̃A4 = Â4.

The proof is given in the Supplementary material. Note that the quantities
Ã1, . . . , Ã4, are the analogues of A1, . . . , A4 in this new setting.

Let us introduce our Lemma 7, which is the analogue of Lemma 1 regarding
bounds for the genotypic accuracy.

Lemma 7 (Bounds on ˆ̃ρg). Let us consider same hypotheses as in Theorem
2, then we always have∥∥∥Q̃Q̃′β∥∥∥2

min
1≤s≤r̃

d4σ(s)
d2
σ(s)

+λ√
σ2
e r̃ +

∥∥∥Q̃Q̃′β∥∥∥2

max
1≤s≤r̃

d6
σ(s)

(d2
σ(s)

+λ)2

√
‖QQ′β‖2 max

1≤s≤r
d2
s

≤ ˆ̃ρg ≤ ρoracleg .

The proof relies heavily on the proof of Lemma 1, using the expressions of ˆ̃A1,
ˆ̃A2, ˆ̃A3 given in Lemma 6. We can notice that at the denominator, the quantities

r̃ and
∥∥∥Q̃Q̃′β∥∥∥ replace now the quantities r and ‖QQ′β‖ of Lemma 1. This way,

this decrease at the denominator will be profitable as soon as the numerator
does not decrease too much.

For fixed n, we can obtain the following comparison between ˆ̃ρg and ρ̂g.

Lemma 8. We have ˆ̃ρg ≥ ρ̂g if and only if the following relation holds:∣∣∣∣∣ ˆ̃A1 −
(Â1 − ˆ̃A1)( ˆ̃A2 + ˆ̃A3)

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3)

∣∣∣∣∣ ≥ (Â1 − ˆ̃A1)

√
(Â2 + Â3)( ˆ̃A2 + ˆ̃A3)

Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3)
.

The proof is given in Section 8.5. In other words, under this condition, the ac-
curacy has been improved and as a consequence, we should choose the estimator
Ỹnew instead of the classical estimator Ŷnew.

Remark: If
∥∥Q(`)Q(`)′β

∥∥2
= 0, for all ` /∈ {σ(1), . . . , σ(r̃)} then ˆ̃ρg ≥ ρ̂g. In-

deed, in this case we have ˆ̃A1 = Â1 and the condition in Lemma 8 is obviously
fulfilled.

We introduce the following notations : for i = 1, . . . , 3,

Ω̃i := Ωi ∩ {σ(1), . . . , σ(r̃)}.

We then have the following analogue of Lemma 2 which treats the case when
the signal is spread out uniformly among the different subspaces.
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Lemma 9. Let us consider the same hypotheses as in Lemma 2. Moreover, we
suppose that we have the relation∑

s∈Ω̃1

d2
s ∼

∑
s∈Ω1

d2
s.

Then we have ˆ̃ρg −→ ρoracleg and ρ̂g −→ ρoracleg .

The proof is given in the Supplementary material. In other words, we have to
impose that the L2 norm squared of the singular values that belong to Ω̃1, and
the L2 norm squared of the singular values that belong to Ω1, are equivalent. In

the same way as for the classical Ridge estimator, let us focus on a few extreme
cases.

Lemma 10 (Extreme cases). Let us consider same hypotheses as in Theo-
rem 2.

1. If 1 ∈ {σ(1), . . . , σ(r̃)} and the projected signal belongs only to Span
{
Q(1)

}
,

that is to say∥∥∥Q(1)Q(1)′β
∥∥∥2

∼ n2τ ,
∥∥∥Q(s)Q(s)′β

∥∥∥2

= 0, for 1 < s ≤ r,

and moreover 2τ + ψ < 1 and the following two conditions hold

•
∑r̃
s=1

d4σ(s)(
d2
σ(s)

+λ
)2 = o

(
n2τ+ψ

)
;

• n2τ+ψ = o
(∑r

s=1
d4s

(d2s+λ)2

)
,

then ˆ̃ρg → ρoracleg whereas ρ̂g → 0.

2. If r ∈ {σ(1), . . . , σ(r̃)} and the projected signal belongs only to Span
{
Q(r)

}
,

that is to say∥∥∥Q(r)Q(r)′β
∥∥∥2

∼ n2τ ,
∥∥∥Q(s)Q(s)′β

∥∥∥2

= 0 , for 1 ≤ s < r,

and moreover λ ∼ Cnη+κ with κ > max(0,−η), C > 0, τ + η/2 − κ > 0
and the following two conditions hold

•
∑r̃
s=1

d4σ(s)(
d2
σ(s)

+λ
)2 = o

(
n2τ+η−2κ

)
;

• n2τ+η−2κ = o
(∑r

s=1
d4s

(d2s+λ)2

)
,

then ˆ̃ρg → ρoracleg whereas ρ̂g → 0.

The proof is largely inspired from the proof of Lemma 3. According to this
lemma, there are a few cases where at the same time, the new accuracy ˆ̃ρg is
optimal and the classical accuracy ρ̂g is null.
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Note that the condition
∑r̃
s=1

d4σ(s)(
d2
σ(s)

+λ
)2 = o

(
n2τ+ψ

)
can be replaced by

r̃ = o
(
n2τ+ψ

)
. In the same way, the condition

∑r̃
s=1

d4σ(s)(
d2
σ(s)

+λ
)2 = o

(
n2τ+η−2κ

)
can be replaced by r̃ = o

(
n2τ+η−2κ

)
.

In Supplementary material we also investigate the same setting as in Theo-
rem 3, when Xnew is random. Lemma 2 and 3 (in Supplementary material) are
the analogues of Theorem 3 and Lemma 4, respectively.

7. Applications

In this section, we propose to illustrate our theoretical results, with the help
of simulated data.

7.1. Simulation framework

Genomic data were generated by means of the hypred R package Technow
(2014), and according to the same process as in Rabier et al. (2016). In particu-
lar, populations were simulated by random mating between haploid individuals
(i.e. with only one copy of each chromosome), during (a) 30, (b) 50, or (c)
70 generations. Recombination was modeled according to Haldane (1919). Re-
call that Haldane modeling assumes that the number of recombination follow a
standard Poisson process.

In generation zero, two haploid founder lines were crossed. These two lines
were completely different genetically: the first (resp. the other) line with allele
+1 (resp. −1) at each marker. Generation 1 consisted of (a) 400 or (b) 500
haploid offsprings of these two founders. After that, the population kept evolv-
ing by random mating with a constant size at each generation. This type of
simulation mimics recombinant inbred line (RIL) evolving populations. In the
final generation, under the 400 offsprings scenario, 2 individuals were randomly
selected, and 100 full sibs were generated in order to get some closely related
individuals (as in classical genomic studies). Then, it allows to deal with two
kinds of TRN populations, both based on 500 individuals: one contains 100 full
sibs, whereas the other does not contain any full sib. The prediction model was
evaluated on 100 TST (in all cases), that were produced in the last generation.

The focus was on one chromosome of length 1 Morgan. We considered 3
different densities of genetic markers equally spaced on the chromosome: (a)
100, (b) 1,000, or (c) 2,000 SNPs. We studied two configurations for the phe-
notypic model: (a) 2 QTLs located at 3cM and 80cM with effects +1 and −2,
respectively, or (b) 100 QTLs located every centimorgan, with the same effect
+0.15. The environmental variance σ2

e was set to 1.
In what follows, we will focus on the phenotypic accuracy criteria: ρ̂ph and

ρ̌ph will denote the analogue of the quantities ρ̂g and ρ̌g for the phenotypic
accuracy. As in Rabier et al. (2016), we set the value of σ2

e to 1, and we will
consider this true value in the expressions of ρ̂ph and ρ̌ph. Recall that ρph is
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obtained by replacing the term A4 by A4 + σ2
e , in our Theorem 1. Indeed,

in what follows, since we consider h unknown, we can not use the expression
ρph = hρg.

The empirical accuracy was computed in the R software, with the empirical
correlation between the predicted values and the true values. Note also that all
the quantities presented in the different tables, are averages based on 100 simu-
lations. Since we analyze the case where X does not vary across replicates, one
simulation consists (a) in regenerating 100 TST individuals, by random mating
between individuals from the penultimate generation, and (b) in regenerating
new phenotypes (TRN+TST).

The regularization parameter λ was estimated by REML. The rrBLUP R
package and in particular its function kin.blup were used to compute the vari-
ance components.

7.2. Illustrations on simulated data

7.2.1. Different probability distributions

To begin with, we propose to investigate the long-term behavior of GS,
i.e. the reliability of the predicted model as a function of time (Habier et al.
(2007); Goddard et al. (2009)). For instance, in plants, since a large number of
generations can be obtained easily, the fitted model is usually not readjusted at
each generation, in order to save time or costs due to genotyping.

In this context, Table 1 compares different estimators of the phenotypic
accuracy as a function of the number of generations during which the TST
sample evolved. The TRN sample was always based on 30 generations. We
can notice that ρ̌ph(β) matches the empirical accuracy whatever the number of
generations for TST. In contrast, ρ̂ph(β) deteriorates overtime. It was expected
since ρ̌ph(β) handles explicitly the TST matrix Xnew, which is not the case of
ρ̂ph(β) that relies on the TRN matrix X.

Table 2 considers the same number of generations for TRN and TST, and
focuses on the case where a few siblings (100 or none) are included in the TRN
sample. Recall that when full sibs are incorporated, the TRN and TST samples
do not come from the same probability distribution. According to the table,
even in presence of 100 full sibs, we observe a good agreement between the
empirical accuracy and estimations based on ρ̂ph(β). In view of Tables 1 and 2,
it seems that not readjusting the model overtime has more impact on prediction
than the presence of full sibs in the TRN set. To sum up, ρ̌ph(β) appears to be
a reliable estimator whatever the simulation framework.

7.2.2. Behavior of the accuracy when β is estimated

In fact, the vector β containing the marker effects, is an unknown quantity.
Then, we propose to consider here different estimators of β, suitable in a high-
dimensional setting. We will concentrate on the LASSO (Tibshirani (1996)),
the Adaptative LASSO (Zou (2006)) and on the Group LASSO (Yuan and Lin
(2006)). Note that other estimators could have been chosen. Recall that the
LASSO is a L1 penalization method, and that the Adaptative LASSO replaces
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Table 1: Comparison among different estimators of the phenotypic accuracy as a function
of the number of generations during which the TST sample evolved (TRN sample is always
based on 30 generations). The chromosome is of length 1M and 2 QTLs are located at 3cM
and 80cM with effects +1 and −2, respectively (n = 500, nnew = 100, σ2

e = 1). Emp. Acc.
refers to the empirical phenotypic accuracy.

Nb Markers Nb TST generations Emp. Acc. ρ̂ph(β) ρ̌ph(β)

100
30 0.6901 0.6959 0.6827
50 0.6587 0.6845 0.6523
70 0.6419 0.6800 0.6406

1,000
30 0.686 0.6941 0.6773
50 0.6511 0.7104 0.6438
70 0.6224 0.7078 0.6143

2,000
30 0.6900 0.6876 0.6791
50 0.6076 0.6872 0.5973
70 0.5652 0.6829 0.5613

Table 2: Comparison among different estimators of the phenotypic accuracy as a function of
the number of siblings in the TRN sample (TRN and TST samples based on the same number
of generations). The chromosome is of length 1M and 2 QTLs are located at 3cM and 80cM
with effects +1 and −2, respectively (n = 500, nnew = 100, σ2

e = 1). Emp. Acc. refers to the
empirical phenotypic accuracy.

Nb Markers Nb generations Nb Siblings Emp. Acc. ρ̂ph(β) ρ̌ph(β)

100

30
0 0.6933 0.6908 0.6834

100 0.6941 0.6890 0.6772

50
0 0.6819 0.6765 0.6695

100 0.6871 0.6571 0.6822

70
0 0.6708 0.6717 0.6660

100 0.6937 0.6869 0.6768

1,000

30
0 0.6843 0.6910 0.6841

100 0.6735 0.6739 0.6594

50
0 0.6602 0.6597 0.6570

100 0.6431 0.6058 0.6214

70
0 0.6728 0.6852 0.6663

100 0.6042 0.6116 0.5917

2,000

30
0 0.6744 0.6719 0.6660

100 0.6858 0.7053 0.6857

50
0 0.6327 0.6255 0.6202

100 0.6758 0.6913 0.6598

70
0 0.6813 0.6845 0.6673

100 0.6711 0.7033 0.6656

the L1 penalty by a weighted penalty. Zou (2006) proved that Adaptative
LASSO enjoyed oracle properties. Last, the Group LASSO differs from his
cousins, since it allows to handle a group structure for β. We used the glmnet,
parcor and gglasso R packages to compute the LASSO, the Adaptative LASSO
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and the Group LASSO, respectively.
Tables 3 and 4 focus on the scenario with 2 large QTLs and 100 small

QTLs, respectively. According to Table 3, the Adaptative LASSO presents
better performances than his cousins, whatever the density of markers and the
number of generations. As expected, the best estimators are the ones assuming
known β. Note that since the TRN and TST are based on the same number of
generations, we did not observe significative differences between ρ̂ph and ρ̌ph.

Table 4 shows that the accuracy based on LASSO and cousins, deteriorates
slightly with a high density of markers (1,000 or 2,000). It also decreases when
the number of generations increases. In view of the two tables, the Adaptative
LASSO is closer to the empirical accuracy under the 2 QTLs scenario. Indeed,
when 2 large QTLs well separated lied on the genome, the Adaptative LASSO
was able to recover perfectly those genes, whereas the 100 QTLs scenario makes
the signal recovery less trivial.

To complete our simulation study, it is worth to consider the case of a mixture
between major genes and multiple small QTLs which mimics probably better
the common architecture for a lot of traits. So, we generated two large QTLs
located at 3cM and 80cM, and 98 small QTLs located every centimorgan (except
at 3cM and 80cM). We considered three scenarios: (a) large QTLs with effects
+0.5 and −0.6, small QTLs with the same effect +0.07, (b) large QTLs with
effects +1 and −0.7, small QTLs with the same effect +0.1, (c) large QTLs
with effects +2 and −2, small QTLs with the same effect +0.1. According to
Table 5, under these new configurations, the performances are still fair even if
it deteriorates slightly in presence of a high density of markers.

To conclude, in view of all our results presented in this section, the Adap-
tative LASSO seems to be the most appropriate method for substituting β̂ into
the expressions of ρ̂ph and ρ̌ph.

7.2.3. Comparison with existing methods

Table 6 shows a comparison of performance of seven different proxies in
terms of the phenotypic accuracy. Three of these proxies, the ones based on
Me1, Me2, and Me3, rely on the effective population size (e.g., Goddard et al.
(2011)), whereas the MLJ -based proxy, comes from association studies Li and
Ji (2005).

Recall that these proxies consist in substituting the effective number of in-
dependent loci Me for ‖β‖00, into Daetwyler et al. (2008) original formula (cf.
Section 5). The expressions of Me1, Me2, and Me3 are the following:

Me1 =
2NeL

log(4Nel)
, Me2 =

2NeL

log(2Nel)
, Me3 =

2NeL

log(Nel)

where L, l, and Ne denote the genome length, average chromosome length,
and effective population size respectively. Me1 was proposed by Goddard et al.
(2009), whereasMe2 andMe3 are from Goddard et al. (2011). We refer to Rabier
et al. (2016) for more details on the estimation of Ne, based on Hill and Weir
(1998). The fifth proxy is the one introduced in Rabier et al. (2016). Note that
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Table 3: Comparison among different estimators of the phenotypic accuracy, in presence of
a few major genes (n = 500, nnew = 100, σ2

e = 1). The chromosome is of length 1M and

the 2 QTLs are located at 3cM and 80cM with effects +1 and −2, respectively. β̂LASSO,
β̂ADLASSO, β̂GPLASSO refer to the LASSO, Adaptative LASSO and Group LASSO estima-
tors of β, respectively. Emp. Acc. refers to the empirical phenotypic accuracy.

Nb markers Method 30 generations 50 generations 70 generations

100

Emp. Acc. 0.6967 0.6804 0.6708
ρ̂ph(β) 0.6969 0.6765 0.6717

ρ̂ph(β̂LASSO) 0.5962 0.5767 0.5735

ρ̂ph(β̂ADLASSO) 0.6927 0.6675 0.6676

ρ̂ph(β̂GPLASSO) 0.5934 0.5595 0.5484
ρ̌ph(β) 0.6915 0.6731 0.6654

ρ̌ph(β̂LASSO) 0.5907 0.5742 0.5677

ρ̌ph(β̂ADLASSO) 0.6872 0.6712 0.6614

ρ̌ph(β̂GPLASSO) 0.5857 0.5580 0.5411

1,000

Emp. Acc. 0.7015 0.6683 0.6713
ρ̂ph(β) 0.7155 0.6597 0.685

ρ̂ph(β̂LASSO) 0.6197 0.5354 0.5720

ρ̂ph(β̂ADLASSO) 0.7066 0.6488 0.675

ρ̂ph(β̂GPLASSO) 0.6244 0.5471 0.586
ρ̌ph(β) 0.6889 0.6576 0.6642

ρ̌ph(β̂LASSO) 0.5965 0.5347 0.5544

ρ̌ph(β̂ADLASSO) 0.6812 0.6454 0.6548

ρ̌ph(β̂GPLASSO) 0.6022 0.5495 0.5708

2,000

Emp. Acc. 0.6977 0.6316 0.4174
ρ̂ph(β) 0.6933 0.6254 0.4600

ρ̂ph(β̂LASSO) 0.5872 0.4794 0.2790

ρ̂ph(β̂ADLASSO) 0.6783 0.6134 0.4399

ρ̂ph(β̂GPLASSO) 0.5904 0.4814 0.2801
ρ̌ph(β) 0.6881 0.6264 0.4095

ρ̌ph(β̂LASSO) 0.5842 0.4831 0.2522

ρ̌ph(β̂ADLASSO) 0.6830 0.6138 0.3890

ρ̌ph(β̂GPLASSO) 0.5902 0.4878 0.2601

the heritability h2 was estimated with the help of variance components obtained
by the rrBLUP R package. Last, the remaining proxies are those suggested in
this paper: ρ̂ph(β̂ADLASSO) and ρ̌ph(β̂ADLASSO).

Table 6 reports the Mean Squared Error (MSE) associated to each method,
and based on 15 architectures. An architecture refers to a fixed number of: (a)
SNPs; (b) QTL numbers, effects, and locations. The number 15 comes from
the fact that we considered (a) either 100, either 1,000 or 2,000 SNPs, and (b)
either 2 large QTLs, either 100 small QTLs, or the 3 scenarios of Table 5.

According to Table 6, ρ̌ph(β̂ADLASSO) and ρ̂ph(β̂ADLASSO) are the most
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Table 4: Comparison among different estimators of the phenotypic accuracy, in presence of
multiple small QTLs (n = 500, nnew = 100, σ2

e = 1). The chromosome is of length 1M and
100 QTLs with the same effect +0.15, are located every centimorgan. Same notations as in
Table 3.

Nb markers Method 30 generations 50 generations 70 generations

100

Emp. Acc. 0.8504 0.8055 0.7056
ρ̂ph(β) 0.8346 0.8007 0.6938

ρ̂ph(β̂LASSO) 0.7990 0.7010 0.6043

ρ̂ph(β̂ADLASSO) 0.8366 0.8036 0.6998

ρ̂ph(β̂GPLASSO) 0.7813 0.7370 0.5611
ρ̌ph(β) 0.8434 0.7941 0.6981

ρ̌ph(β̂LASSO) 0.8020 0.7471 0.60

ρ̌ph(β̂ADLASSO) 0.8426 0.7959 0.7029

ρ̌ph(β̂GPLASSO) 0.7889 0.7250 0.5611

1,000

Emp. Acc. 0.8700 0.8143 0.7233
ρ̂ph(β) 0.8781 0.8086 0.7308

ρ̂ph(β̂LASSO) 0.8558 0.7635 0.6532

ρ̂ph(β̂ADLASSO) 0.8495 0.7627 0.6718

ρ̂ph(β̂GPLASSO) 0.8508 0.7581 0.6466
ρ̌ph(β) 0.8604 0.8045 0.7162

ρ̌ph(β̂LASSO) 0.8299 0.7502 0.6233

ρ̌ph(β̂ADLASSO) 0.8226 0.7489 0.6452

ρ̌ph(β̂GPLASSO) 0.8273 0.7479 0.6224

2,000

Emp. Acc. 0.8590 0.8045 0.7387
ρ̂ph(β) 0.8464 0.8113 0.7319

ρ̂ph(β̂LASSO) 0.8116 0.7662 0.6503

ρ̂ph(β̂ADLASSO) 0.8102 0.7641 0.6697

ρ̂ph(β̂GPLASSO) 0.8062 0.7607 0.6495
ρ̌ph(β) 0.8510 0.7936 0.7300

ρ̌ph(β̂LASSO) 0.8096 0.7339 0.6317

ρ̌ph(β̂ADLASSO) 0.8093 0.7358 0.6542

ρ̌ph(β̂GPLASSO) 0.8074 0.7322 0.6364

competitive proxies. They outperformed our recent proxy Rabier et al. (2016),
and classical proxies used by geneticists. As expected, ρ̌ph(β) yielded the best
performances. Recall that it cannot be computed in practice because it depends
on the unknown β.

7.2.4. The quality of the prediction can be improved

In this section, we propose to illustrate the quality of predictions based on
β̃. Recall that this estimator is built after having projected the vector Y on a
well chosen subspace of the space spanned by the columns of X.

In order to find an appropriate subspace, we used the following procedure.
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Table 5: Comparison among different estimators of the phenotypic accuracy, in presence of
a mixture of major genes and small QTLs (50 generations, n = 500, nnew = 100, p =1,000,
σ2
e = 1). Three scenarios considered (a) 2 large QTLs with effects +0.5 and −0.6, 98 small

QTLs with the same effect +0.07, (b) 2 large QTLs with effects +1 and −0.7, 98 small QTLs
with the same effect +0.1, (c) 2 large QTLs with effects +2 and −2, 98 small QTLs with the
same effect +0.1. The chromosome is of length 1M and the large QTLs are located at 3cM
and 80cM, whereas the small QTLs are located every centimorgan (except at 3cM and 80cM).
Same notations as in Table 3.

Nb markers Method Scenario (a) Scenario (b) Scenario (c)

100

Emp. Acc. 0.5479 0.7012 0.8074
ρ̂ph(β) 0.5362 0.6900 0.8013

ρ̂ph(β̂LASSO) 0.3792 0.6096 0.7614

ρ̂ph(β̂ADLASSO) 0.5400 0.6678 0.8049

ρ̂ph(β̂GPLASSO) 0.3500 0.5909 0.7419
ρ̌ph(β) 0.5296 0.6868 0.7962

ρ̌ph(β̂LASSO) 0.3628 0.6016 0.7550

ρ̌ph(β̂ADLASSO) 0.5313 0.6942 0.7999

ρ̌ph(β̂GPLASSO) 0.3370 0.5720 0.7324

1,000

Emp. Acc. 0.5867 0.7374 0.8307
ρ̂ph(β) 0.5738 0.7316 0.8276

ρ̂ph(β̂LASSO) 0.4187 0.6575 0.7935

ρ̂ph(β̂ADLASSO) 0.5077 0.6639 0.7918

ρ̂ph(β̂GPLASSO) 0.4127 0.6526 0.7843
ρ̌ph(β) 0.5768 0.7274 0.8209

ρ̌ph(β̂LASSO) 0.4055 0.6411 0.7833

ρ̌ph(β̂ADLASSO) 0.4973 0.6478 0.7811

ρ̌ph(β̂GPLASSO) 0.4036 0.6401 0.7773

2,000

Emp. Acc. 0.5446 0.7063 0.8038
ρ̂ph(β) 0.5502 0.7132 0.8029

ρ̂ph(β̂LASSO) 0.3710 0.6297 0.7633

ρ̂ph(β̂ADLASSO) 0.4867 0.6445 0.7594

ρ̂ph(β̂GPLASSO) 0.3578 0.6197 0.7488
ρ̌ph(β) 0.5378 0.6972 0.7937

ρ̌ph(β̂LASSO) 0.3407 0.5958 0.7502

ρ̌ph(β̂ADLASSO) 0.4627 0.6190 0.7525

ρ̌ph(β̂ADLASSO) 0.3317 0.5886 0.7379

We decided that
d4σ(k)

d2
σ(k)

+λ

∥∥Q(σ(k))Q(σ(k))′β
∥∥2

was the k-th largest term of

the sequence
(

d4s
d2s+λ

∥∥Q(s)Q(s)′β
∥∥2
)
s=1,...,r

. r̃ was chosen as the largest value

satisfying the condition ˆ̃A1/A1 ≤ υ, where υ denotes a tuning parameter. The
corresponding accuracy was then computed for a given value of υ.

Since υ was unknown, we performed an optimization over the grid
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Table 6: Mean squared error (with respect to the Empirical accuracy) corresponding to 7 prox-
ies. The MSE corresponding to ρ̌ph(β) is also shown . MSE=

∑15
a=1 (AccPa −AccEa)2 /15

where 15 is the number of studied architectures. AccEa and AccPa are averages on 100 repli-
cates, and denote respectively, for architecture a, the Empirical Accuracy and the Accuracy
based on the chosen proxy (30 generations for TRN).

MSE based on 50 generations for TST 70 generations for TST
ρ̌ph(β) 5.9685× 10−5 3.8455× 10−5

ρ̌ph(β̂ADLASSO) 1.2108× 10−3 1.2118× 10−3

ρ̂ph(β̂ADLASSO) 2.2677× 10−3 1.5168× 10−3

Plos One (2016) 3.3056× 10−3 1.007× 10−2

Me1 3.7936× 10−3 1.3779× 10−2

Me2 3.7508× 10−3 1.3518× 10−2

Me3 3.6970× 10−3 1.3165× 10−2

MLJ 5.5578× 10−3 6.1021× 10−3

{0.7, 0.8, 0.9, 0.925, 0.95, 0.975, 0.99}, and kept the highest accuracy.
Tables 7 and 8 focus on the cases n = 500 and n = 800, respectively.

According to the tables, in all studied cases, the quantity ˆ̃ρph(β) was greater
than ρ̂ph(β). In the same way, the empirical accuracy associated to the new

estimator (i.e. cor
(
Ỹnew, Ynew

)
), was always greater than the classical empirical

accuracy based on the Ridge estimator (i.e. cor
(
Ŷnew, Ynew

)
).

Last, Table 9 focuses on the case where the vector β belongs to R(X). In
particular, we considered β = 0.3Q(1) + 0.3Q(2) + 0.3Q(3). As expected (cf.
remark below Lemma 8), ˆ̃ρph(β) took greater values than ρ̂ph(β).

Table 7: Illustration of the predictions based on β̃. cor
(
Ŷnew, Ynew

)
(resp.

cor
(
Ỹnew, Ynew

)
) refers to the empirical correlation between Ŷnew (resp. Ỹnew) and Ynew.

The chromosome is of length 4M and 100 QTLs with the same effect +0.15, are located every
centimorgan on [0, 1M]. 4,000 markers (p=4,000) are equally spaced on [0, 4M] (n = 500,
nnew = 100).

σ2
e Method 50 generations 100 generations

1

cor
(
Ŷnew, Ynew

)
0.7478 0.5959

cor
(
Ỹnew, Ynew

)
0.7682 0.6132

ρ̂ph(β) 0.7399 0.6352
ˆ̃ρph(β) 0.7570 0.6541

9

cor
(
Ŷnew, Ynew

)
0.2874 0.1949

cor
(
Ỹnew, Ynew

)
0.3152 0.2163

ρ̂ph(β) 0.3023 0.2320
ˆ̃ρph(β) 0.3306 0.2604
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Table 8: Same as Table 7 except that n = 800.

σ2
e Method 50 generations 100 generations

1

cor
(
Ŷnew, Ynew

)
0.7911 0.6127

cor
(
Ỹnew, Ynew

)
0.8087 0.6301

ρ̂ph(β) 0.7824 0.6509
ˆ̃ρph(β) 0.7965 0.6663

9

cor
(
Ŷnew, Ynew

)
0.3725 0.1981

cor
(
Ỹnew, Ynew

)
0.4044 0.2302

ρ̂ph(β) 0.3766 0.2248
ˆ̃ρph(β) 0.4041 0.2494

Table 9: Comparison among the quantities ρ̂ph(β) and ˆ̃ρph(β), when the vector β belongs to

R(X). The chromosome is of length 1M, β = 0.3Q(1) + 0.3Q(2) + 0.3Q(3) and nnew = 100.

σ2
e n Method 200 generations 400 generations

1
500

ρ̂ph(β) 0.7550 0.6721
ˆ̃ρph(β) 0.7810 0.7041

800
ρ̂ph(β) 0.7487 0.7037
ˆ̃ρph(β) 0.7728 0.7312

9
500

ρ̂ph(β) 0.3370 0.2623
ˆ̃ρph(β) 0.3809 0.3079

800
ρ̂ph(β) 0.3317 0.2904
ˆ̃ρph(β) 0.3734 0.3330

7.3. Real data: GS in rice

To conclude this article, we propose to analyze some data from the recent
paper of Spindel et al. (2015) dealing with GS in rice.

We considered the dataset of 13,101 SNPs, randomly chosen by the authors
from their 73,147 collected SNPs. We decided to focus on two rice traits: flow-
ering and yield. Besides, our analysis relies on the dry season 2012. 80% of the
observations were chosen for the TRN set, and the remaining 20% were affected
to the TST set. According to the data, the number of TRN individuals was
n = 252 for flowering, and n = 248 for yield. In both cases, we considered
nnew = 63. Table 10 shows a comparison of performance of seven different
proxies in terms of the phenotypic accuracy. The computed MSE rely on 100
data sets (with random individuals in TRN and TST sets).

In order to compute proxies based on Me1, Me2, Me3, we used the value
L = 13.101 for the genome length (from Section “GS using marker subsets”
of Spindel et al. (2015)), and l = 1.09175 for the average chromosome length.
Recall that the rice presents 12 chromosomes. In order to make calculation
easier, the effective population size Ne was obtained by using only 1,007 SNPs
spread out on the genome (a SNP every 0.012 Morgan). Furthermore, we used
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the Adaptative LASSO to compute our suggested proxies, ρ̂ph(β) and ρ̌ph(β).
Note that since σ2

e was unknown, we considered the estimation of σ2
e given by

REML.
According to Table 10, ρ̌ph(β̂ADLASSO) is the most interesting proxy. In-

deed, for flowering and yield, the associated MSE was the smallest among all
proxies, and the associated mean accuracies were pretty close to the empirical
accuracies (0.5485 vs. 0.5576 for flowering, and 0.2650 vs. 0.3361 for yield). As
a consequence, the results presented in this manuscript should be of interest for
geneticists.

Table 10: Mean squared error (with respect to the Empirical accuracy) corresponding to 7
proxies, and based on rice data from Spindel et al. (2015) (dry season 2012). The computed
MSE rely on 100 data sets (with random individuals in TRN and TST sets). The average, for
each proxy, is given in brackets. The Empirical accuracy was 0.5576 for flowering, and 0.3361
for yield (n = 252 for flowering, n = 248 for yield, nnew = 63 in both cases).

MSE based on Flowering Yield

ρ̌ph(β̂ADLASSO) 1.6248× 10−2 (0.5485) 2.807× 10−2 (0.2650)

ρ̂ph(β̂ADLASSO) 2.41× 10−2 (0.6201) 4.85× 10−2 (0.4571)
Plos One (2016) 7.08× 10−2 (0.7903) 1.25× 10−1 (0.6647)

Me1 4.49× 10−2 (0.7055) 5.70× 10−2 (0.5234)
Me2 4.18× 10−2 (0.6917) 5.10× 10−2 (0.5064)
Me3 3.83× 10−2 (0.6741) 4.43× 10−2 (0.4854)
MLJ 4.71× 10−2 (0.7142) 6.27× 10−2 (0.5383)

8. Proofs

8.1. Proof of Theorem 1

By definition,

A1 = β′ Var (xnew)X ′V −1Xβ.

We set D = Diag
(

d1
d21+λ

, . . . , dr
d2r+λ

)
. With this notation, we have the rela-

tion:

X ′V −1 = QDP ′. (14)

Using formula (8), we easily have

X ′V −1Xβ =

r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β. (15)

As a consequence, since Σ = E (xnew x
′
new), we have the relationship

A1 =

r∑
s=1

d2
s

d2
s + λ

β′ Σ Q(s)Q(s)′β. (16)
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By definition,

A2 = σ2
eE
(∥∥x′newX ′V −1

∥∥2
)
.

According to formula (14) and , we have∥∥x′newX ′V −1
∥∥2

= x′newX
′V −1

(
X ′V −1

)′
xnew

= x′newQDP
′PDQ′xnew

= x′newQD
2
Q′xnew.

Furthermore, we have

QD
2
Q′ =

r∑
s=1

d2
s

(d2
s + λ)2

Q(s)Q(s)′.

Since Q(s)Q(s)′ is an idempotent matrix, we obtain

∥∥x′newX ′V −1
∥∥2

=

r∑
s=1

d2
s

(d2
s + λ)2

x′newQ
(s)Q(s)′xnew

=

r∑
s=1

d2
s

(d2
s + λ)2

x′newQ
(s)Q(s)′Q(s)Q(s)′xnew

=

r∑
s=1

d2
s

(d2
s + λ)2

∥∥∥Q(s)Q(s)′xnew

∥∥∥2

.

Finally,

A2 =

r∑
s=1

d2
s

(d2
s + λ)2

E
(∥∥∥Q(s)Q(s)′xnew

∥∥∥2
)
.

By definition,

A3 = β′X ′V −1XVar (xnew)X ′V −1Xβ.

Then, according to formula (15),

A3 =

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
Σ

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)
.

8.2. Proof of Theorem 2

Let us define Â1 in the following way:

Â1 =

r∑
s=1

d2
s

d2
s + λ

β′ Σ̂ Q(s)Q(s)′β,
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where Σ̂ := X ′X/n is the empirical covariance matrix.
Then, using the SVD decomposition X = PDQ′, we obtain

Â1 =
1

n

r∑
s=1

d2
s

d2
s + λ

β′ X ′X Q(s)Q(s)′β

=
1

n

r∑
s=1

d2
s

d2
s + λ

β′ QD2Q′ Q(s)Q(s)′β

=
1

n

r∑
s=1

d2
s

d2
s + λ

β′

(
r∑

u=1

d2
uQ

(u)Q(u)′

)
Q(s)Q(s)′β.

Since Q′Q = Ir, we further deduce

Â1 =
1

n

r∑
s=1

d2
s

d2
s + λ

β′ d2
sQ

(s)Q(s)′ Q(s)Q(s)′β

=
1

n

r∑
s=1

d4
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥2

.

A natural estimation of A2 is

Â2 =
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

n∑
i=1

∥∥∥Q(s)Q(s)′xi

∥∥∥2

=
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XQ(s)Q(s)′Q(s)Q(s)′X ′

)
=
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XQ(s)Q(s)′X ′

)
=
σ2
e

n

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
PDQ′Q(s)Q(s)′QDP ′

)
.

Note that
DQ′Q(s) = dses,

where es denotes the s-th vector of the canonical basis of Rr.

Â2 =
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

Tr (Pese
′
sP
′)

=
σ2
e

n

r∑
s=1

d4
s

(d2
s + λ)2

Tr (P ′Pese
′
s)

=
1

n

r∑
s=1

d4
s

(d2
s + λ)2

.
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Let us consider the following estimation of A3:

Â3 =

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
Σ̂

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)

=
1

n

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
X ′X

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)

=
1

n

(
X

r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′ (
X

r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)
.

Note that

XQ(s)Q(s)′β = PDQ′Q(s)Q(s)′β = dsPesQ
(s)′β = dsP

(s)Q(s)′β.

As a consequence,

r∑
s=1

d2
s

d2
s + λ

XQ(s)Q(s)′β =

r∑
s=1

d3
s

d2
s + λ

P (s)Q(s)′β.

Last, we obtain

Â3 =
1

n

(
r∑
`=1

d3
`

d2
` + λ

β′Q(`)P (`)′

)(
r∑
s=1

d3
s

d2
s + λ

P (s)Q(s)′β

)

=
1

n

r∑
`=1

d3
`

d2
` + λ

r∑
s=1

d3
s

d2
s + λ

β′Q(`)P (`)′P (s)Q(s)′β

=
1

n

r∑
`=1

d6
`

(d2
` + λ)2

β′Q(`)Q(`)′β

=
1

n

r∑
`=1

d6
`

(d2
` + λ)2

∥∥∥Q(`)Q(`)′β
∥∥∥2

.

Finally, let us consider the following estimation of A4:

Â4 = β′Σ̂β =
1

n
β′X ′Xβ.

We have

Â4 =
1

n
β′QD2Q′β =

1

n

r∑
s=1

d2
sβ
′Q(s)Q(s)′β

=
1

n

r∑
s=1

d2
sβ
′Q(s)Q(s)′Q(s)Q(s)′β =

1

n

r∑
s=1

d2
s

∥∥∥Q(s)Q(s)′β
∥∥∥2

.
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8.3. Proof of Lemma 1

Â1 =
1

n

r∑
s=1

d4
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥2

=
1

n

r∑
s=1

(
d3
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥)(ds ∥∥∥Q(s)Q(s)′β

∥∥∥)

≤ 1

n

(
r∑
s=1

d6
s

(d2
s + λ)2

∥∥∥Q(s)Q(s)′β
∥∥∥2
)1/2( r∑

s=1

d2
s

∥∥∥Q(s)Q(s)′β
∥∥∥2
)1/2

= Â
1/2
3 Â

1/2
4 ,

using the Cauchy-Schwartz inequality. Since Â2 ≥ 0, we obtain

ρ̂g ≤
Â1

Â
1/2
3 Â

1/2
4

≤ 1.

In order to obtain the lower bound, we just have to notice that

‖QQ′β‖2 =

r∑
s=1

∥∥∥Q(s)Q(s)′β
∥∥∥2

.

Then,

nÂ1 =

r∑
s=1

d4
s

d2
s + λ

∥∥∥Q(s)Q(s)′β
∥∥∥2

≥ ‖QQ′β‖2 min
s

d4
s

d2
s + λ

nÂ3 =

r∑
s=1

d6
s

(d2
s + λ)2

∥∥∥Q(s)Q(s)′β
∥∥∥2

≤ ‖QQ′β‖2 max
s

d6
s

(d2
s + λ)2

nÂ4 =

r∑
s=1

d2
s

∥∥∥Q(s)Q(s)′β
∥∥∥2

≤ ‖QQ′β‖2 max
s
d2
s.

Since
d4s

(d2s+λ)2 is bounded by one, we have nÂ2 = σ2
e

r∑
s=1

d4s
(d2s+λ)2 ≤ σ2

er. As a

consequence,

ρ̂g ≥
‖QQ′β‖2 mins

d4s
d2s+λ√

σ2
e r + ‖QQ′β‖2 maxs

d6s
(d2s+λ)2

√
‖QQ′β‖2 maxs d2

s

.

8.4. Proof of Lemma 2

Using Theorem 2, we have:

nÂ1 ∼
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d4
s

d2
s + Csd2

s

n2τ

r
+
∑
s∈Ω3

d4
s

λ

n2τ

r
.
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According to our conditions (C3) and (C4),

∑
s∈Ω3

d4
s

λ

n2τ

r
= o(1).

Then,

nÂ1 ∼
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d2
s

1 + Cs

n2τ

r
. (17)

We have ∑
s∈Ω2

d2
s

1 + Cs

n2τ

r
≤
∑
s∈Ω2

d2
s

n2τ

r
≤ n2τ

r
#Ω2C̃λ,

with C̃ > 0.
Since #Ω2 = O(1) by (C6) and λn

2τ

r = o(1), we have

∑
s∈Ω2

d2
s

n2τ

r
= o(1) (18)

and thus
∑
s∈Ω2

d2s
1+Cs

n2τ

r = o(1). Therefore

nÂ1 ∼
∑
s∈Ω1

d2
s

n2τ

r
. (19)

In the same way, using condition (C3), we have

nÂ2 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
.

Let us now focus on the quantity Â3.

nÂ3 ∼
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d2
s

(1 + Cs)2

n2τ

r
+
∑
s∈Ω3

d6
s

λ2

n2τ

r
.

Since
∑
s∈Ω3

d6
s ≤

∑
s∈Ω3

d2
s

∑
s∈Ω3

d4
s, we have

∑
s∈Ω3

d6
s = o(λ3) (cf. (C2) and

(C3)). Then, according to (C4),
∑
s∈Ω3

d6s
λ2

n2τ

r = o(1). This yields,

nÂ2 + nÂ3 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
+
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d2
s

(1 + Cs)2

n2τ

r
.

We further have ∑
s∈Ω2

d2
s

(1 + Cs)2

n2τ

r
≤
∑
s∈Ω2

d2
s

n2τ

r
.
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Using the previous relation (18), we have
∑
s∈Ω2

d2s
(1+Cs)2

n2τ

r = o(1). As a

result,

nÂ2 + nÂ3 ∼ σ2
e#Ω1 + σ2

e

∑
s∈Ω2

1

(1 + Cs)2
+
∑
s∈Ω1

d2
s

n2τ

r
.

Then, conditions (C1), (C5) and (C6) ensure that

nÂ2 + nÂ3 ∼
∑
s∈Ω1

d2
s

n2τ

r
. (20)

Last,

nÂ4 ∼
∑
s∈Ω1

d2
s

n2τ

r
+
∑
s∈Ω2

d2
s

n2τ

r
+
∑
s∈Ω3

d2
s

n2τ

r
.

According to conditions (C4) and (C2),
∑
s∈Ω3

d2
s
n2τ

r = o(1). Using again the
relation (18) we deduce

nÂ4 ∼
∑
s∈Ω1

d2
s

n2τ

r
. (21)

To conclude, using formulae (19), (20) and (21), we have ρ̂g → 1.

8.5. Proof of Lemma 8

To simplify notations, let us put

u := ˆ̃A1, δ1 := Â1 − ˆ̃A1,

v := ˆ̃A2 + ˆ̃A3, δ2 := Â2 + Â3 − ( ˆ̃A2 + ˆ̃A3).

With these notations the condition ˆ̃ρg ≥ ρ̂g reads

u+ δ1√
v + δ2

≤ u√
v
,

which is further equivalent to

δ2u
2 − 2uδ1v − δ2

1v ≥ 0.

The discriminant in the u variable equals ∆ = 4δ2
1v(v+ δ2) and is positive. The

above second order inequation is thus satisfied for∣∣∣∣u− δ1
δ2
v

∣∣∣∣ ≥ δ1
δ2

√
v(v + δ2),

which gives, after few simplifications, the desired statement.

Supporting information. Additional information for this article is
available below
Text S1 : Supplementary material containing a few proofs.
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1. Introduction

Lemma 1. Let us consider same hypotheses as in Theorem 1 of the main
manuscript. Then, the quantity ρ̃g defined in Section 6 of the main manuscript
has the following expression

ρ̃g =
Ã1(

Ã2 + Ã3

)1/2 (
Ã4

)1/2
,

where

Ã1 =

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ Q(σ(s))Q(σ(s))′β , Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)

Ã3 =

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
Σ

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)
, Ã4 = A4.

Proof. After having replaced the quantity X ′V −1 by X ′V −1P̃ P̃ ′, formula (5)
of Rabier et al. (2016) becomes

ρg =
β′ Var (xnew)X ′V −1P̃ P̃ ′Xβ(

σ2
eE
(∥∥∥x′newX ′V −1P̃ P̃ ′

∥∥∥2
)

+ β′X ′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′Xβ

)1/2

σG

.

As a result, let us define

Ã1 := β′ Var (xnew)X ′V −1P̃ P̃ ′Xβ , Ã2 := σ2
eE
(∥∥∥x′newX ′V −1P̃ P̃ ′

∥∥∥2
)
,

Ã3 := β′X ′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′Xβ , Ã4 := A4.
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Using the fact that X ′V −1 = QDP ′ and the fact that Σ = E (xnew x
′
new), we

have

Ã1 = β′ ΣX ′V −1P̃ P̃ ′Xβ

= β′ ΣQDP ′P̃ P̃ ′Xβ.

After some simple algebra, we obtain

QDP ′P̃ =

(
dσ(1)

d2
σ(1) + λ

Q(σ(1)), . . . ,
dσ(r̃)

d2
σ(r̃) + λ

Q(σ(r̃))

)
. (1)

Then,

Ã1 = β′ Σ

(
r̃∑
s=1

dσ(s)

d2
σ(s) + λ

Q(σ(s))P (σ(s))′

)(
r∑
s=1

dsP
(s)Q(s)′

)
β

= β′ Σ

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)

=

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ Q(σ(s))Q(σ(s))′β.

Let us now consider Ã2. We have∥∥∥x′newX ′V −1P̃ P̃ ′
∥∥∥2

= x′newX
′V −1P̃ P̃ ′P̃ P̃ ′(X ′V −1)′xnew

= x′newQDP
′P̃ P̃ ′PDQ′xnew.

According to formula (1), we obtain

QDP ′P̃ P̃ ′PDQ′ =

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Q(σ(s))Q(σ(s))′

and

x′newQDP
′P̃ P̃ ′PDQ′xnew =

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

x′newQ
(σ(s))Q(σ(s))′xnew

=

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2

.

The last equality comes from the fact that Q(σ(s))Q(σ(s))′ is an idempotent
matrix. To conclude, we have

Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)
.
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Furthermore, recall that

Ã3 = β′X ′P̃ P̃ ′V −1XVar (xnew)X ′V −1P̃ P̃ ′Xβ.

Since the expression of X ′V −1P̃ P̃ ′Xβ is also present in Ã1, we easily obtain

Ã3 =

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
Σ

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)
.

Lemma 2. Let us consider same hypotheses as in Theorem 3 of the main
manuscript. Then, a natural estimator of the quantity ρ̃g is the following:

ˇ̃ρg :=
ˇ̃A1(

ˇ̃A2 + ˇ̃A3

)1/2 ( ˇ̃A4

)1/2
,

where

ˇ̃A1 =
1

nnew

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

(
rnew∑
α=1

f2
α < Z(α)Z(α)′β,Q(σ(s))Q(σ(s))′β >

)
,

ˇ̃A2 =
σ2
e

nnew

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

nnew∑
i=1

(
rnew∑
α=1

fα Q
(σ(s))′Z(α)W

(α)
i

)2

,

ˇ̃A3 =
1

nnew

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))′β

r̃∑
`=1

d2
σ(`)

d2
σ(`) + λ

Q(σ(`))′β

(
rnew∑
α=1

f2
α < Z(α)Z(α)′Q(σ(s)), Z(α)Z(α)′Q(σ(`)) >

)
,

ˇ̃A4 = Ǎ4.

Proof. In the same way as before, we consider the estimators ˇ̃A1, ˇ̃A2 and ˇ̃A3,
of Ã1, Ã2 and Ã3, respectively:

ˇ̃A1 :=
1

nnew

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ X ′newXnew Q
(σ(s))Q(σ(s))′β,

ˇ̃A2 :=
σ2
e

nnew

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Tr
(
XnewQ

(σ(s))Q(σ(s))′Q(σ(s))Q(σ(s))′X ′new

)
,

ˇ̃A3 =
1

nnew

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
X ′newXnew

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)
.

After some easy computations we can deduce the stated formulas.
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Lemma 3. Let us consider same hypotheses as in Theorem 3 of the manuscript.
Then we always have

B̃1(
B̃2 + B̃3

)1/2

B̃
1/2
4

≤ ˇ̃ρg ≤ ρoracleg ,

where

B̃1 = min
1≤s≤r̃

d2
σ(s)

d2
σ(s) + λ

min f2
α < ZZ ′β , Q̃Q̃′β >,

B̃2 = σ2
e r̃ rnew max

1≤s≤r̃

d2
σ(s)

(d2
σ(s) + λ)2

max f2
α max

1≤s≤r̃,α

∥∥∥Q(σ(s))′Z(α)W (α)
∥∥∥2

,

B̃3 = max
1≤s≤r̃

d4
σ(s)

(d2
σ(s) + λ)2

∥∥∥Q̃Q̃′β∥∥∥2

max f2
α r̃2,

B̃4 = B4.

The proof relies heavily on the proof of Lemma 4 of the main manuscript,

provided that we consider the expressions of ˇ̃A1, ˇ̃A2, ˇ̃A3 given in Lemma 2
above.

2. Proof of Lemma 3 of the main manuscript

2.1. The projected signal belongs only to Span
{
Q(1)

}
Using Theorem 2, we have:

ρ̂g =

d31
d21+λ

∥∥Q(1)Q(1)′β
∥∥(

σ2
e

r∑
s=1

d4s
(d2s+λ)2 +

d61
(d21+λ)2

∥∥Q(1)Q(1)′β
∥∥2
)1/2

. (2)

From Lemma 1 and the fact that
r∑
s=1

d4s
(d2s+λ)2 ≤ r ≤ n, we deduce that

1 ≥ ρ̂g ≥
d31

d21+λ

∥∥Q(1)Q(1)′β
∥∥(

σ2
en+

d61
(d21+λ)2

∥∥Q(1)Q(1)′β
∥∥2
)1/2

. (3)

Using further the fact that d2
1 ∼ nψ and λ = o(d2

1), we obtain

d6
1

(d2
1 + λ)2

∥∥∥Q(1)Q(1)′β
∥∥∥2

∼ n2τ+ψ ,
d3

1

d2
1 + λ

∥∥∥Q(1)Q(1)′β
∥∥∥ ∼ nτ+ψ/2.
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If 2τ + ψ > 1, then

d31
d21+λ

∥∥Q(1)Q(1)′β
∥∥(

σ2
en+

d61
(d21+λ)2

∥∥Q(1)Q(1)′β
∥∥2
)1/2

−→ 1.

Finally, according to formula (3), ρ̂g → 1.
Let us now consider the case 2τ +ψ < 1. Then, it is obvious from expression

(2), that we need to impose
∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+ψ

)
in order to obtain ρ̂g → 1.

In contrast, if n2τ+ψ = o
(∑r

s=1
d4s

(d2s+λ)2

)
then ρ̂g → 0.

2.2. The projected signal belongs only to Span
{
Q(r)

}
Using again Theorem 2, we have:

ρ̂g =

d3r
d2r+λ

∥∥Q(r)Q(r)′β
∥∥(

σ2
e

r∑
s=1

d4s
(d2s+λ)2 +

d6r
(d2r+λ)2

∥∥Q(r)Q(r)′β
∥∥2
)1/2

. (4)

Recall that d2
r ∼ nη with η < ψ ≤ 1. If we suppose moreover that λ ∼ Cnκ+η

with κ > max(0,−η) and C > 0, then we have

d3
r

d2
r + λ

=
dr

1 + λ/d2
r

∼ 1

C
nη/2−κ

d3
r

d2
r + λ

∥∥∥Q(r)Q(r)′β
∥∥∥ ∼ 1

C
nτ+η/2−κ.

It is obvious that ρ̂g → 0 when τ +η/2−κ < 0. Indeed, at the denominator,

since d2
1 = o(n), we have σ2

e
d41

(d21+λ)2
∼ σ2

e which is bounded away from 0.

If τ + η/2 − κ > 0, then we have to separate two different cases. If∑r
s=1

d4s
(d2s+λ)2

= o
(
n2τ+η−2κ

)
, then ρ̂g → 1.

In contrast, if n2τ+η−2κ = o
(∑r

s=1
d4s

(d2s+λ)2

)
, then ρ̂g → 0.

3. Proof of Theorem 3 of the main manuscript

Let us consider the following natural estimator of A1:

Ǎ1 =
1

nnew

r∑
s=1

d2
s

d2
s + λ

β′ X ′newXnew Q
(s)Q(s)′β.

We have

Ǎ1 =
1

nnew

r∑
s=1

d2
s

d2
s + λ

β′ ZF 2Z ′ Q(s)Q(s)′β

=
1

nnew

r∑
s=1

d2
s

d2
s + λ

β′
rnew∑
α=1

f2
αZ

(α)Z(α)′Q(s)Q(s)′β.
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Further, a natural estimator of A2 is

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
XnewQ

(s)Q(s)′Q(s)Q(s)′X ′new

)
=

σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

Tr
(
WFZ ′Q(s)Q(s)′ZFW ′

)
.

We can easily see that

Tr
(
WFZ ′Q(s)Q(s)′ZFW ′

)
=

nnew∑
i=1

(
rnew∑
α=1

fαQ
(s)′Z(α)W

(α)
i

)2

,

which gives

Ǎ2 =
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

nnew∑
i=1

(
rnew∑
α=1

fαQ
(s)′Z(α)W

(α)
i

)2

.

A natural estimator of A3 is:

Ǎ3 =
1

nnew

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)′
X ′newXnew

(
r∑
s=1

d2
s

d2
s + λ

Q(s)Q(s)′β

)

=
1

nnew

(
r∑
s=1

d2
s

d2
s + λ

XnewQ
(s)Q(s)′β

)′ ( r∑
s=1

d2
s

d2
s + λ

XnewQ
(s)Q(s)′β

)
.

Using the fact that

XnewQ
(s) = WFZ ′Q(s) =

rnew∑
α=1

fαQ
(s)′Z(α)W (α),

we deduce

r∑
s=1

d2
s

d2
s + λ

XnewQ
(s)Q(s)′β =

r∑
s=1

d2
s

d2
s + λ

rnew∑
α=1

fαQ
(s)′Z(α)Q(s)′βW (α).

Consequently,

Ǎ3 =
1

nnew

r∑
s=1

r∑
`=1

d2
s d

2
`

(d2
s + λ)(d2

` + λ)

rnew∑
α=1

fαQ
(s)′Z(α)Q(s)′βW (α)′

rnew∑
ϑ=1

fϑQ
(`)′Z(ϑ)Q(`)′βW (ϑ)

=
1

nnew

r∑
s=1

d2
s

d2
s + λ

Q(s)′β

r∑
`=1

d2
`

d2
` + λ

Q(`)′β

rnew∑
α=1

f2
α < Z(α)Z(α)′Q(s), Z(α)Z(α)′Q(`) > .
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4. Proof of Lemma 4 of the main manuscript

To begin with, let us focus on the upper bound. First, we have to notice
that we have the relationship

Ǎ1 =
1

nnew

rnew∑
α=1

< fαZ
(α)Z(α)′β ,

r∑
s=1

d2
s

d2
s + λ

fαZ
(α)Z(α)′Q(s)Q(s)′β > .

Then, applying two times the Cauchy-Schwartz inequality, we obtain

Ǎ1 ≤
1

nnew

rnew∑
α=1

(∥∥∥fαZ(α)Z(α)′β
∥∥∥ ∥∥∥∥∥

r∑
s=1

d2
s

d2
s + λ

fαZ
(α)Z(α)′Q(s)Q(s)′β

∥∥∥∥∥
)

≤ 1

nnew

(
rnew∑
α=1

∥∥∥fαZ(α)Z(α)′β
∥∥∥2
)1/2

rnew∑
α=1

∥∥∥∥∥
r∑
s=1

d2
s

d2
s + λ

fαZ
(α)Z(α)′Q(s)Q(s)′β

∥∥∥∥∥
2
1/2

= Ǎ
1/2
4

1
√
nnew

rnew∑
α=1

f2
α

∥∥∥∥∥
r∑
s=1

d2
s

d2
s + λ

Z(α)Z(α)′Q(s)Q(s)′β

∥∥∥∥∥
2
1/2

.

We have

rnew∑
α=1

f2
α

∥∥∥∥∥
r∑
s=1

d2
s

d2
s + λ

Z(α)Z(α)′Q(s)Q(s)′β

∥∥∥∥∥
2

=

rnew∑
α=1

f2
α

(
r∑
s=1

d2
s

d2
s + λ

β′Q(s)Q(s)′Z(α)Z(α)′

)(
r∑
`=1

d2
`

d2
` + λ

Z(α)Z(α)′Q(`)Q(`)′β

)

=

r∑
s=1

d2
s

d2
s + λ

β′Q(s)
r∑
`=1

d2
`

d2
` + λ

β′Q(`)
rnew∑
α=1

f2
α < Z(α)Z(α)′Q(s) , Z(α)Z(α)′Q(`) >

= nnewǍ3.

Thus

Ǎ1 ≤ Ǎ1/2
4 Ǎ

1/2
3 .

Since Ǎ2 ≥ 0, we finally obtain

ρ̌g ≤
Ǎ1

Ǎ
1/2
4 Ǎ

1/2
3

≤ 1.
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Let us now move on to the lower bound. We have the relationship:

Ǎ2 ≤
σ2
e

nnew
max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α

 r∑
s=1

∥∥∥∥∥
rnew∑
α=1

Q(s)′Z(α)W (α)

∥∥∥∥∥
2


≤ r σ2
e

nnew
max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α max

1≤s≤r

∥∥∥∥∥
rnew∑
α=1

Q(s)′Z(α)W (α)

∥∥∥∥∥
2

≤ r σ2
e

nnew
max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α max

1≤s≤r

rnew∑
α=1

∥∥∥Q(s)′Z(α)W (α)
∥∥∥2

≤ r rnew σ
2
e

nnew
max

1≤s≤r

d2
s

(d2
s + λ)2

max
1≤α≤rnew

f2
α max

s,α

∥∥∥Q(s)′Z(α)W (α)
∥∥∥2

.

Coming back to the expression of Ǎ2, we also have:

Ǎ2 ≤
σ2
e

nnew

r∑
s=1

d2
s

(d2
s + λ)2

max
α

(
f2
α < Q(s), Z(α) >2

) nnew∑
i=1

(
rnew∑
ω=1

W
(ω)
i

)2

.

We can notice that
∑nnew

i=1

(∑rnew

ω=1 W
(ω)
i

)2

= Tr(WW ′) = Tr(W ′W ) = rnew.

As a consequence, another bound is the following

Ǎ2 ≤
σ2
e rnew
nnew

r∑
s=1

d2
s

(d2
s + λ)2

max
1≤α≤rnew

(
f2
α < Q(s), Z(α) >2

)
.

On the other hand, we have

Ǎ1 ≥ min
1≤s≤r

d2
s

d2
s + λ

min
1≤α≤rnew

f2
α

r∑
s=1

(
rnew∑
α=1

β′ Z(α) Z(α)′Q(s)Q(s)′β

)

=
1

nnew
min

1≤s≤r

d2
s

d2
s + λ

min
1≤α≤rnew

f2
α β′ Z Z ′QQ′β

=
1

nnew
min

1≤s≤r

d2
s

d2
s + λ

min
1≤α≤rnew

f2
α < Z Z ′β , QQ′β > .

Last,

Ǎ3 ≤
1

nnew
max

1≤s≤r

d4
s

(d2
s + λ)2

max
1≤s≤r

∥∥∥Q(s)Q(s)′β
∥∥∥2

max
1≤α≤rnew

f2
α

r∑
s=1

r∑
`=1

rnew∑
α=1

Q(s)′Z(α)Z(α)′Q(`)

=
1

nnew
max

1≤s≤r

d4
s

(d2
s + λ)2

max
1≤s≤r

∥∥∥Q(s)Q(s)′β
∥∥∥2

max
1≤α≤rnew

f2
α

r∑
s=1

r∑
`=1

Q(s)′ZZ ′Q(`)

≤ 1

nnew
max

1≤s≤r

d4
s

(d2
s + λ)2

max
1≤s≤r

∥∥∥Q(s)Q(s)′β
∥∥∥2

max
1≤α≤rnew

f2
α

×
{
r max

1≤s≤r

∥∥∥ZZ ′Q(s)
∥∥∥2

+ r(r − 1) max
s 6=`

< ZZ ′Q(s), ZZ ′Q(`) >

}
.
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Since ZZ ′ is an idempotent matrix and Q(s)′Q(s) = 1 for all 1 ≤ s ≤ r, we have∥∥∥ZZ ′Q(s)
∥∥∥2

≤ 1.

Besides, according to Cauchy-Schwartz inequality,

|< ZZ ′Q(s), ZZ ′Q(`) >|≤
∥∥∥ZZ ′Q(s)

∥∥∥∥∥∥ZZ ′Q(`)
∥∥∥ ≤ 1.

Finally, since QQ′ is an idempotent matrix, and putting together all the
above considerings, we obtain

Ǎ3 ≤
r2

nnew
max

1≤s≤r

d4
s

(d2
s + λ)2

‖QQ′β‖2 max
1≤α≤rnew

f2
α,

which finishes the proof.

5. Proof of Lemma 6 of the main manuscript

To begin with, let us recall the expression Ã1 given in Lemma 1 above:

Ã1 =

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ Q(σ(s))Q(σ(s))′β.

Let us consider the following natural estimation ˆ̃A1:

ˆ̃A1 :=

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ̂ Q(σ(s))Q(σ(s))′β,

where Σ̂ = X ′X/n is the empirical covariance matrix.
We have

ˆ̃A1 =
1

n

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′ Σ̂ Q(σ(s))Q(σ(s))′β

=
1

n

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

β′QD2Q′ Q(σ(s))Q(σ(s))′β.

It is easy to see that

QD2Q′ Q(σ(s)) = d2
σ(s)Q

(σ(s)).

Therefore,

ˆ̃A1 =
1

n

r̃∑
s=1

d4
σ(s)

d2
σ(s) + λ

β′Q(σ(s))Q(σ(s))′β =
1

n

r̃∑
s=1

d4
σ(s)

d2
σ(s) + λ

∥∥∥Q(σ(s))Q(σ(s))′β
∥∥∥2

.
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Let us recall the expression Ã2 given previously:

Ã2 = σ2
e

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

E
(∥∥∥Q(σ(s))Q(σ(s))′xnew

∥∥∥2
)
.

A natural estimation of Ã2 is

ˆ̃A2 :=
σ2
e

n

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

n∑
i=1

∥∥∥Q(σ(s))Q(σ(s))′xi

∥∥∥2

=
σ2
e

n

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Tr
(
XQ(σ(s))Q(σ(s))′Q(σ(s))Q(σ(s))′X ′

)
=
σ2
e

n

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Tr
(
XQ(σ(s))Q(σ(s))′X ′

)
=
σ2
e

n

r̃∑
s=1

d2
σ(s)

(d2
σ(s) + λ)2

Tr
(
PDQ′Q(σ(s))Q(σ(s))′QDP ′

)
.

Note that
DQ′Q(σ(s)) = dσ(s)eσ(s),

where eσ(s) denotes the σ(s)-th vector of the canonical basis of Rr. As a result,

ˆ̃A2 =
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

Tr
(
Peσ(s)e

′
σ(s)P

′
)

=
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

Tr
(
P ′Peσ(s)e

′
σ(s)

)
=
σ2
e

n

r̃∑
s=1

d4
σ(s)

(d2
σ(s) + λ)2

.

An estimation for the quantity Ã3 is the following

ˆ̃A3 :=

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
Σ̂

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)
.

We have the following relations

ˆ̃A3 =
1

n

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)′
X ′X

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

Q(σ(s))Q(σ(s))′β

)

=
1

n

(
r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

XQ(σ(s))Q(σ(s))′β

)′( r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

XQ(σ(s))Q(σ(s))′β

)
.
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As X = PDQ′, we have

XQ(σ(s))Q(σ(s))′β = dσ(s)Peσ(s)Q
(σ(s))′β = dσ(s)P

(σ(s))Q(σ(s))′β

and thus

r̃∑
s=1

d2
σ(s)

d2
σ(s) + λ

XQ(σ(s))Q(σ(s))′β =

r̃∑
s=1

d3
σ(s)

d2
σ(s) + λ

P (σ(s))Q(σ(s))′β.

Last, we obtain

ˆ̃A3 =
1

n

(
r̃∑
`=1

d3
σ(`)

d2
σ(`) + λ

β′Q(σ(`))P (σ(`))′

)(
r̃∑
s=1

d3
σ(s)

d2
σ(s) + λ

P (σ(s))Q(σ(s))′β

)

=
1

n

r̃∑
`=1

d3
σ(`)

d2
σ(`) + λ

r̃∑
s=1

d3
σ(s)

d2
σ(s) + λ

β′Q(σ(`))P (σ(`))′P (σ(s))Q(σ(s))′β

=
1

n

r̃∑
`=1

d6
σ(`)

(d2
σ(`) + λ)2

β′Q(σ(`))Q(σ(`))′β

=
1

n

r̃∑
`=1

d6
σ(`)

(d2
σ(`) + λ)2

∥∥∥Q(σ(`))Q(σ(`))′β
∥∥∥2

.

6. Proof of Lemma 9 of the main manuscript

Using Lemma 6 of the main manuscript and proceeding in the same way as
in the proof of Lemma 2 of the main manuscript, we obtain

n ˆ̃A1 ∼
∑
s∈Ω̃1

d2
s

n2τ

r
,

n ˆ̃A2 + n
˜̂
A3 ∼

∑
s∈Ω̃1

d2
s

n2τ

r
,

n ˆ̃A4 = nÂ4 ∼
∑
s∈Ω1

d2
s

n2τ

r
,

and the stated result follows.
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