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Porogranular materials composed of elastic Helmholtz resonators for
acoustic wave absorption

Stéphane Griffiths, Benoit Nennig,a) and Stéphane Job
Institut supérieur de mécanique de Paris (SUPMECA), Laboratoire Quartz EA 7393, 3 rue Fernand Hainaut,
93407 Saint-Ouen, France.

(Originally published in JASA 141(1) http://dx.doi.org/10.1121/1.4973691)

We present a theoretical and experimental study of the acoustic absorption of granular porous media
made of non-cohesive piles of spherical shells. These shells are either rigid or elastic, possibly drilled
with a neck (Helmholtz resonators), and either porous or impervious. A description is given of
acoustic propagation through these media using the effective medium models proposed by Johnson
(rigid particles) and Boutin (rigid Helmholtz resonators), which we extend to the configurations
studied in this work. A solution is given for the local equation of elasticity of a shell coupled to
the viscous flow of air through the neck and the micropores. The models and our simulations are
compared to absorption spectra measured in reflection in an impedance tube. The effective medium
models and our measurements show excellent agreement for configurations made of rigid particles
and rigid Helmholtz resonators that induce an additional peak of absorption at low frequency. A shift
of the Helmholtz resonance toward low frequencies, due to the softness of the shells is revealed by
our experiments for elastic shells made of soft elastomer and is well reproduced by our simulations.
We show that microporous shells enhance and broaden acoustic absorption compared to stiff or
elastic resonators.

PACS numbers: 43.55.+p, 47.56.+r, 43.20.Hq, 45.70.Cc
Keywords: Acoustic absorption; Porogranular medium; Double porosity; Shell elasticity; Helmholtz
resonator

I. INTRODUCTION

Granular materials are an interesting alternative to the
standard porous materials generally used to absorb sound
waves. Their ease of use and handling makes them ideal
candidates for building applications, for instance. The
physics of acoustic wave propagation in porous materials
made of piles of non-cohesive particles has been widely
studied over the last few years as an equivalent fluid1,2

or via an extended Biot theory3 to include the effect of
contact dynamics between grains on the elastic response
of a rigid frame. Practical applications such as the limi-
tation of sound transmission through double leaf panels
filled with polystyrene beads has been investigated by
Chazot and Guyader4,5. Regarding sound absorbing ap-
plications, Nennig et al.6 improved the sound absorption
of 2 millimeter glass beads by trapping modes in t-shape
inclusions. These works showed the potential of such ma-
terials, regardless of their porosity.

Sound propagation in a porous medium with rigid
Helmholtz resonators, for instance, rigid shells with a
hole on their surface, has been investigated theoretically
using periodic homogenization methods7,8, numerically9

and experimentally8,9. In particular, Boutin et al.7,8

provided the effective parameters for macroscopic wave
propagation in such a metamaterial. In particular, he
gave a detailed description of the effect of viscothermal
dissipation in the pore network between the resonators
and in the resonator necks. Although the losses are not
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considerable, embedded Helmholtz resonators yield to an
acoustic metamaterial with a negative bulk modulus and
where group and phase velocities have an opposite sign,
close to the resonator resonance. Similar results were
observed by Fang et al. for a 1D array of resonators10.
However, high viscothermal losses may limit resonator
efficiency7,9 if the matrix is in the viscous regime (near
diffusion equation), i.e. when the frequency is above the
viscous frequency (see appendix I). In our case, the vis-
cous/inertial transition occurs at 44 Hz for the granular
matrix.

Another interesting feature is the effect of the res-
onators elasticity on the global absorption of the granu-
lar medium, which introduces or affects resonant mech-
anisms and thus the peaks in the absorption spectrum.
However, the effect of elasticity can be coupled with shell
resonances to contribute another source of absorption to
the system11. Up to now, very few works have focused on
resonators with elastic shells. In the 1990s, Photiadis12

and Norris et al.13 investigated such materials for under-
water acoustic applications. Norris et al. showed that
the resonant frequency fs =

√
R0fr of an elastic res-

onator can be shifted down in comparison to the resonant
frequency fr of a rigid resonator, by writing:

R0 =

(
1 +

3

2

rm
t

γP0

E
(1− ν)

)−1

, (1)

which depends on the mean radius of the shell rm, the
shell thickness t, the Youngs modulus E and the Poisson’s
coefficient ν of the shell material. The terms γ and P0

are the specific heat ratio and the atmospheric pressure,
respectively. For airborne applications, with rm/t ≈ 10,
the use of a material with a Youngs modulus of the order
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of 1 MPa or less leads to a significant shift fs ≈ 0.6fr.
This work presents a comparison between experimen-

tal data and theoretical models relating to the sound ab-
sorption of porogranular media made of rigid, elastic or
microporous Helmholtz resonators with or without an ex-
tended neck. Here, the microporous character of the shell
originates from the fabrication process of the naturally
pervious elastomer. In our experiments, only airborne
excitations were considered.

In the first part, after a brief reminder of the model of
Boutin et al.7,8 relating to rigid Helmholtz resonators, a
lumped model is proposed as an extension to the config-
urations tested. In the second part, the different models
are compared to absorption measurements and to results
found in the literature.

II. LUMPED PARAMETER RESONATOR MODELS

Here, we consider a granular medium composed of
identical elastic resonators packed randomly to a given
compaction (filling fraction) C = 1− φ, or porosity φ, in
view to finding the effective bulk modulus and density of
the medium, excited by a harmonic airborne wave pext

(time convention e−jωt), in the long wavelength approx-
imation.

As shown by Boutin8, the flux of the resonator, ob-
tained as the forced response to the macroscopic pres-
sure wave, is one order of magnitude smaller than the
flux between the grains of the porous matrix. Here, the
porous matrix, denoted by the subscript m, stands for
a virtual porous medium composed of the air contained
between the impervious and rigid grains. This implies
that the presence of the resonators does not change the
global effective density (or permeability) ρeff = ρm of the
medium or the bulk modulus Em in the porous matrix
(see appendix I). However, the effective bulk modulus of
the granular medium, Eeff , is changed drastically accord-
ing to

Eeff =

(
1− C
Em

+
C

Er

)−1

, (2)

where Er is the effective modulus of the resonators.
The aim of this part is to obtain a closed form esti-
mation of the effective modulus of the resonators Er
in the long wavelength approximation. It is noteworthy
that the following approach does not take into account
the orientation and the possible interactions between the
resonators14.

The model derived by Boutin et al.7,8 can be extended
by modifying the pulsed flux. The contribution of the
elastic shell, or of its microporosity, can be added as sup-
plementary fluxes coupled to the flux exiting the neck.

We consider a thin spherical elastic shell of thickness
t, diameter ds, area Ss and volume Vs, as shown in Fig.
1, made of an elastic material. As the particles are elas-
tomer, they are incompressible. Its internal volume V0

is filled with a perfect fluid having a uniform pressure p.
The shell has a cylindrical hole whose effect on the modal
behavior of the shell is considered negligible. This neck

V0

Ss

Vs

p

Sn

ln

pext

Porous

Impervious

t

ds

FIG. 1. Picture of the granular pack and sketch of a spherical
resonator with its associated shell.

has a volume Vn, a length ln, a section Sn and contains
a mass mn of fluid. Each micropore has a volume Vµ, a
length lµ, a section Sµ and contains a mass mµ of fluid.

The acoustic radiation from a neck or micropore into
the free space is taken into account via a correction length
δi = 8di/(3π)15 of ln and lµ, with respect to their diam-
eters di (with i = n, µ).

For small perturbations, and by neglecting losses, the
fluid pressure in the cavity is defined by

p = −K0∇ · ua, (3)

where K0 = γP0 = ρ0c
2
0 is the adiabatic bulk modulus

of the fluid and ua is the acoustic displacement of the
fluid. After integrating this equation in the volume of
the cavity, the continuity of the acoustic displacement,
assuming a uniform pressure field, yields

p = −K0

V0
J (4)

where J =
∑
i Siui is the volumetric flux across the shell.

Index i represents the shell (s), the neck (n) or the mi-
cropores (µ) of the shell. Here ui and Si stand for the
radial displacement and the surface of these elements re-
spectively.

The long wavelength approximation implies that pext

is uniform around the shell. Assuming that the neck
does not change the thin shell mode, the displacement
us of the spherical shell can be assumed as purely radial
and constant across the thickness. Thus the resonance
frequency of the first breathing mode is given by Baker16

and reads

ωs =

√
2(1 + ν)E∗

ρsr2
s

, (5)

with ρs being the density of the material and rs the ra-
dius of the shell. The term E∗ = E/(1 − ν2) depends
on the elastic characteristics of the material and can be
made complex to account for the viscoelastic losses. The
lumped stiffness of the shell for the first radial mode
(breathing mode) is thus defined as ks = ω2

sms, where
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ms is the moving mass of the shell. Here, we do not con-
sider the flexural modes11,16 of the shell: they appear at
lower frequency but do not imply a significant variation
of volume.

In addition to the viscoelastic losses in the shell, dis-
sipation occurs with capillary air flow in the neck and
through the micropores. By considering the neck and
the micropores as cylindrical channels, as shown in Fig.
2, the momentum equation can be reduced to the Eq.
(4.9) of Ref. 17

− jωρ0u̇i(r) = − ∂p
∂n

+
η

r

∂

∂r

(
r
∂u̇i(r)

∂r

)
, (6)

where η stands for the dynamic viscosity of air and n for
the outward normal vector of the shell.

The adherence boundary condition implies that
u̇i(Ri) = u̇s, at r = Ri, with Ri being the radius of
the channel (i = n, µ) and u̇s the mean velocity of the
shell. After integration (see Eq. 4.9 in Ref. 17), this
yields the total viscous force in a cylindrical pore of vol-
ume Vi = Sili

Fi(ui, us) = Viρ0ω
2 Bi

1−Bi
[ui − us] , (7)

with Bi = 2
βRi

J1(βRi)
J0(βRi)

, β =
√

jωρ0
η and where J0 and

J1 stand for the Bessel function of the first kind. The
viscous force depends on the relative difference between
the mean velocity of air in the neck or in the micropores
and the mean velocity of the shell.

n

ShellPore

Ri0 r

ui us

ui(r)(r)(r)(r)

.

.

.

FIG. 2. Velocity profile in a micropore or in the neck.

We now focus on an impervious elastic shell having
a neck. Using Eqs. (4), (5) and (7), the equations of
motion of the lumped displacement of the shell and of
the gas in the neck are{
−mnω

2un = −SnK0

V0
J + Fn(un, us)− pextSn,

−msω
2us = −ksus − Ss K0

V0
J − Fn(un, us)− pextSs.

(8)
Here, the total flux reads J = Snun + Ssus. The eigen-
value of the homogeneous problem (pext = 0) without
viscosity, allows estimating the different resonance modes

of the resonator. Moreover, the resolution of the system
(8) for a constant harmonic external pressure pext makes
it possible to compute the volumetric flux J and obtain
effective bulk modulus of the resonators Er in the long
wavelength approximation

Er(ω) = V0
pext

J
. (9)

The effective modulus Eeff of the granular medium is
determined using Eq. (2). Knowing parameters Eeff and
ρeff (see appendix I, Eq. (A2)) makes it possible to pro-
vide a full description of an effective medium.

When the neck is not present or in the case of a mi-
croporous shell, similar approaches are implemented, as
presented in the next sections.

III. EXPERIMENTAL RESULTS

The measurements are performed using an impedance
sensor (provided by the Centre de Transfert de Technolo-
gie du Mans18, France) located at the top end of a tube
having an internal diameter dt = 22 mm and a length
lt = 50 mm (see Fig. 3a). The opposite side is closed by
a rigid aluminum wall on which the sample of height h
is placed. Impedance measurements are performed over
the whole frequency range achievable by the sensor, from
20 Hz to 6000 Hz with sweep sine excitation.

Several configurations were tested, as summarized in
Fig. 3. The shells themselves were either rigid (Fig. 3b)
or elastic (Fig. 3c, d). In the latter case, the shells were
porous or impervious. Three cases were measured for
each type of shell: undrilled, simply drilled or drilled
with an extended neck.

h

d
t

Impedance
Sensor

l
t

Undrilled

Drilled
(dn=0.6mm)

With a neck
(dn=1.3mm,
ln=5mm)

(b)(a)

Rigid
Wall

(d)

Rigid shells Porous shells

(c)

Elastic shells

FIG. 3. (a) Sketch of the impedance tube and (b) rigid , (c)
elastic and (d) porous shells used for the absorption measure-
ments. The different configurations tested (undrilled, drilled
or with a neck) are listed for each kind of shell.

In this setup, only plane waves propagate at normal in-
cidence below 6000 Hz. The comparison with the model
proposed is therefore straightforward. The acoustic re-
flection coefficient

R(ω) =
Zlayer − Zair

Zlayer + Zair
, (10)
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is determined as a combination of the characteristic
impedance of air Zair = ρ0c0 and the complex sur-
face impedance of the material Zlayer = jZeffcot(keffh),
with Zeff = ρeffceff , the characteristic impedance of
the medium. The effective wavenumber keff = ω/ceff

is related to the sound speed in the granular packing
ceff =

√
Eeff/ρeff . Then, the absorption coefficient is

given by A(ω) = 1− |R(ω)|2.
The skeleton of the poroelastic material17,19 can be

considered as motionless above the decoupling frequency
f0 = σφ2/(2πρ) when subjected to fluid-born excita-
tion if: i) the bulk moduli of the solid phase Ke and
of the saturating fluid K0 are similar, and ii) the den-
sity of the solid phase ρs is higher than the density of
the fluid ρ0. Here, the density of the packed grains is
ρ = (1 − φ)ρp ≈ 214 kg.m−3 � ρ0, where ρp = 384
kg.m−3 is the density of one hollow spherical porous
shell. The bulk modulus of the skeleton network of
grains can be estimated from an effective medium the-
ory that originates from Hertz-Mindlin interactions be-
tween particles20: Ke depends on the static load applied
on the packing. In the first approximation, we estimate
this load as the weight of the packing itself, F0 ≈ 9.10−4

N. This gives20

Ke =
kn
12π

(φZ)2/3

(
6πpstat

kn

)1/3

(11)

where kn = 4G/(1 − ν) is the effective stiffness between
two grains and G is their shear modulus. The term Z is
the coordination number (set at Z = 6 by assuming ran-
dom close packing) and pstat is the static pressure related
to F0 and to the grain contact area. It turns out that the
bulk modulus of the solid phase, Ke ≈ 1.77.105 Pa, has
the same order of magnitude as the bulk modulus of air
K0 = 1.4.105 Pa. Here, the decoupling frequency is equal
to f0 ≈ 15.3.10−2 Hz, meaning that the porous matrix
can be considered as motionless over the whole frequency
range of interest. The granular packing thus behaves like
an equivalent fluid. Thus non-linear contact dynamics
between particles is not involved, as confirmed by mea-
surements performed at several excitation levels between
93 and 103 dB, showing no difference in frequency or in
amplitude.

Various arrangements of particles were tested. Finally,
despite a shift of the absorption peak due to the different
height of each packing, no significant effect due to the
granular arrangement was observed in the frequency
range measured [20-6000] Hz (see Appendix II).

A. Rigid shells

The rigid polymer shells (ref. P150603 provided by
Ateca, France) used in this work had an external di-
ameter of ds = 5.55 ± 0.15 mm and a thickness of
t = 0.34 ± 0.06 mm measured by microscope imaging
analysis. Using a pycnometer the density of the shells
was measured as ρs = 1488± 84 kg.m−3.

The acoustic absorption was measured for different
configurations of the shells, and is presented in Fig.4 and
compared to the models. In every case, different heights
of the packing were tested to experimentally identify the
different absorption peaks corresponding to the quarter
wavelength frequency fλ/4, which scales as the inverse of
the height of the sample, and to the Helmholtz frequency
fH , which depends solely on the characteristics of the res-
onators. The height and the compaction corresponding
to the three configurations probed are summarized in ta-
ble I. The quarter wavelength frequency

fλ/4 ≈
1

4h
Re

√ Ēeff

ρ̄eff

, (12)

is estimated by taking the mean values of the bulk mod-
ulus Ēeff and of the density ρ̄eff over the frequency band
measured.

In the first case (Fig. 4a), the acoustic absorption is
measured in a sample made of rigid and impervious shells
(without holes). Here, the model reduces to the Johnson-
Champoux-Allard (JCA) model17 with the parameters
given in appendix I. It can be observed that the JCA
model agrees well with the measured data. The absorp-
tion corresponding to the quarter wavelength frequency
is prominent and well described both in frequency and in
amplitude by the JCA model.

A 0.6 mm diameter hole is then drilled in each shell;
each particle now corresponds to a Helmholtz resonator
whose neck length is equal to the thickness of the shell
plus a length correction (see above). Our model reduces
to :

− ω2mnun = −Sn
K0

V0
J − pextSn + Fn(un, 0), (13)

with J = Snun. This model matches the model proposed
by Boutin7,8.

As can be seen in Fig. 4b the models are indeed in
good agreement. For both models, the length of the neck
accounts for a length correction and the models are cal-
culated using the same rigid frame porous parameters ρm
and Em. The only slight difference between the models
stems from the way the dissipation is taken into account.

The models predict the quarter wavelength resonance
at fλ/4 = 2080 Hz quite well but they both fail to pre-
dict the Helmholtz resonance, found experimentally at
fH = 3980 Hz and predicted theoretically 500 Hz lower.
The difference between the experiments and the mod-
els is likely due to the high sensitivity of the system to
the length correction, rendering the acoustic radiation
at the holes. Indeed, the radiative reactance becomes
the leading inertial term when the diameter of the aper-
ture is larger than the thickness of the shells. However,
the hole shape and its neighborhood on both sides can
significantly modify the classical baffled circular piston
end correction proposed by Ingard15. Next, the presence
of a neck with a length greater than the end correction
provides more reliable estimations, since the thickness
becomes the leading inertial term and the system is less
sensitive to uncertainty on the end correction.
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In the third case, a tube with an inner diameter of 1.3
mm and length of 5 mm is placed in the hole, as shown
in Fig. 1b. The models remain formally unchanged and
good agreement between the experimental data and both
models is observed in Fig. 4c. The model developed
describes the quarter wavelength resonance at fλ/4 =
1770 Hz and the Helmholtz resonance at fH = 3000 Hz
well, both in frequency and amplitude. Even the last
absorption peak corresponding to the 3λ/4 resonance is
described well. The discrepancies between both models
can be explained by the different ways the dissipation
is taken into account in the estimation of the effective
compressibility of the resonators Er.

Configurations Height h C

Undrilled 25.13 ± 0.87 mm 0.56

Drilled (dn = 0.6 mm, ln = t) 25.30 ± 1.43 mm 0.56

Neck (dn = 1.3 mm, ln = 5 mm) 27.64 ± 1.30 mm 0.51

TABLE I. Heights and compacities corresponding to the 60
rigid shells used for absorption measurements.

B. Elastic shells

The medium is now composed of elastic resonators
made of elastomer (ref. E150403, provided by Ateca,
France). The elastic shells have an external diameter
ds = 5.60 ± 0.19 mm and their thickness measured by
SEM photographs is t = 0.33 ± 0.04 mm. The thick-
ness and the external diameter are very similar to the
rigid shells. The average mass of the particles is ms =
36.7 ± 1.4 mg, and the density of the shells is measured
using a pycnometer as ρs = 1202± 23 kg.m−3.

The Youngs modulus of the material used to make
the spheres is estimated as equal to E = 3(1 − 0.3j)
MPa, which suits our experimental results well and is
in line with the previous Dynamic Mechanical Analyzer
(DMA) measurements for a 5 mm high and 18 mm diam-
eter cylindrical sample of the same material, indicating
a value of about 2 Mpa. Although this is a fair estima-
tion, the slight difference of elasticity can be attributable
to the specifications of the elastomer curing process to
fabricate a thin shell or a thicker bulk specimen instead.
Since the elastomer is incompressible, the Poisson’s ratio
is set to ν = 0.495.

The SEM photograph in Fig. 5a shows the presence
of a small particle inside the elastomer shell, which is a
polystyrene residue resulting from the fabrication process
of the hollow elastomer shells. Its diameter is about 1 mm
and is considered negligible as it represents only 0.88%
of the internal volume.

The shells are naturally porous (Fig. 5b), thus a layer
of acrylic coating was sprayed on their surface to make
them impervious and to measure the absorption of non-
porous elastic shells (Fig. 5c). Adding such a layer on
the surface of the shells increases the elastic modulus E.
It is inferred as equal to E = 4(1− 0.3j) MPa.
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FIG. 4. Acoustic absorption measured for 60 rigid shells (—
) compared to the model developed (- -) and to the model
given by Boutin (- · -) for (a) non drilled shells, (b) shells
drilled with a 0.6 mm diameter hole and (c) shells 1.3 mm in
diameter with a 5 mm long neck.
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(a)

(b)

(c)

FIG. 5. (a) SEM photograph of an elastomeric resonator and
(b) of its surface and (c) its surface after acrylic coating.

As with the rigid shells, the measurements were per-
formed for non-drilled shells and for shells having a neck
of 0.6 mm in diameter (see Fig. 3b). As previously, the
samples contained 60 shells and Table II summarizes the
heights and associated compactions.

For non-drilled shells, our model reduces to

− ω2msus = −ksus − Ss
K0

V0
J − pextSs. (14)

Configurations Height h C

Undrilled 26.43 ± 0.93 mm 0.53

Drilled (dn = 0.6 mm, ln = t) 25.18 ± 0.73 mm 0.55

TABLE II. Heights and compacities corresponding to the 60
elastic shells.

with J = Ssus. The comparison with measured absorp-
tion is presented in Fig. 6a. It shows that the model
gives a good description of the absorption and the quar-
ter wavelength peak is accurately modeled in both fre-
quency and amplitude. When compared with the rigid
shells (see Fig. 4a.) the elastic beads lead to a slight
shift and widening of the quarter wavelength peak. The
effect is small here because the shell is stiffer than the
bulk modulus of the matrix and the pulsed flux is small
enough, far from the volume resonance of the shell, not to
modify Eeff (see also Fig. 8 and the related discussion).

For shells having a hole, the system is given by Eq.
(8) with the flux J = Ssus + Snun. The acoustic ab-
sorption shown in Fig. 6b compares the experimental
data to our model and to the low frequency approxima-
tion of the scattering model of Norris et al. (Eq. (67) in
Ref. 13). The latter assumes that each elastic resonator
behaves as in a free field. Note that the length of the
Helmholtz resonator neck, ln, was added to Norris orig-
inal work established initially for holes through a shell
with no thickness.

Both models are in fairly good agreement and de-
scribe the quarter wavelength (fλ/4 = 2100 Hz) and the
Helmholtz (fH = 3150 Hz) absorption frequencies well,
although they differ slightly at higher frequencies. Our
model predicts the 3λ/4 (f3λ/4 = 4600 Hz) absorption
quite accurately, where Norris’ model overestimates the
frequency of this peak absorption; this peak is however
very sensitive to the parameters of the model. For both
models, the prediction of the absorption magnitude is not
as good as the location of the frequency peaks. This can
be explained by leaks in the acrylic coating. A detailed
discussion concerning the effect of the microporosity is
provided in the next section.

In comparison, absorption is higher over the whole fre-
quency range with soft shell resonators (fig. 6b) than
with rigid counterparts (fig. 4b).

We can also observe a shift toward low frequencies of
the Helmholtz absorption due to the elasticity of the
shells as mentioned by Norris13. From Eq. (1), the
shells used in this work lead to R0 = 0.7. The error on
the predicted Helmholtz frequency for the elastic shell
(fH = 3150 Hz), with respect to the resonance frequency
of rigid shells (fH ≈ 3500 Hz), is below 10%.

C. Elastic porous shells

Here, we consider microporous shells. The SEM pho-
tograph of the surface of a shell presented in Fig. 5b,
shows that all the micropores have complex and differ-
ent shapes. Considering a single geometry for all the
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FIG. 6. Acoustic absorption measured for impervious elas-
tomer shells (—) compared to the model developed (- -) and
the model adapted from Norris (- · -) for (a) non-drilled shells,
(b) shells drilled with a 0.6 mm diameter hole.

micropores would lead to a poor description, by concen-
trating the absorption into a narrow frequency band. In
the first approximation, we consider a uniform distribu-
tion of micropore radii, centered on the averaged radius
(Rµ = 33.10−6 m) and a total microporosity equal to
φµ = 1.82.10−3. Parameters Rµ and φµ are both deter-
mined with the model fitted to measurements of acoustic
absorption of non-drilled porous shells. Here, we con-
sider N = φµSs/Sµ holes with k different radii (between
Rµ1

= 20.10−6 m and Rµ2
= 50.10−6 m). Each set of

holes has the same weight φµ/k. The mean displacement
of the air in the micropores is uiµ (with i = 1, · · · , k) and
the associated viscous losses are taken into account. The
equations of motion are thus

(a)

(b)

(c)

FIG. 7. Acoustic absorption measured for porous elastomer
shells (—) compared to the model developed (- -) for (a) non
drilled shells, (b) shells drilled with a 0.6 mm in diameter
hole, and (c) shells having a 1.3 mm in diameter and 5 mm
long neck.
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(a)

(b)

FIG. 8. Modulus of the outgoing fluxes to (a) non drilled
shells and (b) shells with a 0.6 mm diameter neck. The curves
correspond to the flux of the neck (- · -), of the shell (—), of
the micropores (- -) and the total flux (—).



−ω2mnun =− Sn
K0

V0
J − pextSn + Fn(un, us),

−ω2msus =− ksus − Ss
K0

V0
J − pextSs − Fn(un, us)

−NFµ(uµ, us),

−ω2N ′mµu
1
µ =−N ′S1

µ

K0

V0
J −N ′pextS1

µ +N ′F 1
µ(u1

µ, us),

...

−ω2N ′mµu
k
µ =−N ′Skµ

K0

V0
J −N ′pextSkµ +N ′F kµ (ukµ, us),

(15)
with N ′ = N/k and the flux J = (Snun + Ssus +∑k
c=1N

′Scµu
c
µ).

Absorption measurements are performed for the three
cases presented in Fig. 3b whose corresponding heights
and compactions are given in table III.

Figure 7 presents the experimental results obtained for
each case together with the absorption calculated by our
model. In the first case (Fig. 7a), when the granular

(a)

(b)

(c)

FIG. 9. Real part (—) and imaginary part (- -) of the effective
wave number keff for (a) elastic, (b) non drilled porous shells
and (c) porous shells with a 0.6 mm diameter neck.

medium is composed of non-drilled shells, the microp-
orosity yields an absorption close to one at the quarter
wavelength frequency although the quarter wavelength
frequency is almost the same as for impervious shells. In
addition, the slope of the acoustic absorption at low fre-
quencies is steeper when the shell is microporous. This
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Configurations Height h C

Undrilled 25.86 ± 1.13 mm 0.56

Drilled (dn = 0.6 mm, ln = t mm) 25.04 ± 0.45 mm 0.58

Neck (dn = 1.3 mm, ln = 5 mm) 28.56 ± 1.99 mm 0.51

TABLE III. Heights and compacities corresponding to the 60
porous shells.

is a typical result for a double porosity medium21,22.
The inter-scale ratio between the mesopore radius rp (air
gap between the shells), and the micropore radius rµ,
ε0 = rµ/rp = 49.8.10−3, is small enough to be in line
with the high-permeability contrast where the effects are
strongest.

The model captures the acoustic behavior of the
medium and predicts the quarter wavelength frequency
(fλ/4 = 2360 Hz) quite well despite the fact that the
agreement may be artificial because of the fit.

Similarly, the measurements and the model are in
good agreement when the pack is composed of porous
Helmholtz resonators, with a neck (Fig. 7c) and with-
out a neck (Fig. 7b). The quarter wavelength and the
Helmholtz absorptions are well-predicted and the ampli-
tudes are rendered faithfully.

Thus the model can also be used to evaluate the com-
petition between the different fluxes. They are plotted
up to 10 kHz, although the homogenization approach
is not assumed as fully valid up to the upper bound
frequency (λ/ds ∼ 5 at 10 kHz) and coupling between
resonators14 may exist. It is nonetheless instructive to
consider the theoretical absorptions and the correspond-
ing fluxes. The fluxes are presented in Fig. 8 for the
porous samples tested. As already observed by Norris et
al.13, all the fluxes may have the same order of magnitude
depending on the parameters chosen. As shown in Fig.
8a, without a hole the total flux is driven by the flow
in the micropores up to 4000 Hz, leading to increased
absorption at low frequencies. This characteristic is no
longer visible when a hole is drilled in the shells. The
flow through the neck overwhelms the flow through the
micropores (as seen on figures 8b) and the increase of
the absorption slope in the low frequency domain is no
longer visible. As seen in figures 8b, the Helmholtz ab-
sorption frequency corresponds to a maximum of the flow
originating from the neck, but the model also reveals the
strong couplings between the shell and micropores close
to this frequency.

At higher frequencies, the flow is clearly dominated by
the shell breathing mode around 7500 Hz. In vacuo, this
mode occurs16 at 5800 Hz. Taking into account the air
inside the shell, the frequency is shifted to 7400 Hz in our
sample. The flux due to the shell can be considerable and
complementary to the flux in the neck. For practical ap-
plications, softer shells can be used to shift the breathing
mode down toward lower frequencies.

It can be seen in Fig. 9 that the Helmholtz resonance
and shell breathing mode have similar effects on the effec-
tive wavenumber. They lead to a frequency band where
the phase and the group velocities are opposite and to

strong attenuation (imaginary part of the wavenumber).
This is a direct consequence of the effective bulk mod-
ulus Eeff since density ρeff is a regular function of the
frequency. In order to maximize the attenuation close
to the resonance, it is better to have a resonator with a
high quality factor. It is noteworthy that without losses,
the Helmholtz resonance leads to a band gap, i.e. to
an imaginary wavenumber. As the damping tends to
smooth the abrupt variations of the effective wavenumber
(or of Eeff(ω)), losses in the resonator have to be small
enough to maintain a strong imaginary part of the effec-
tive wavenumber (see Ref. 7 for detailed discussion on the
parameter influencing the band gap). Furthermore, the
dynamics in the micropores is dominated by the viscous
force. This yields non-resonant over-damped oscillations
(the damping ratio in the sample is high, ζ ∼ 2 over
the whole probed frequency range) that mainly modify
the attenuation. Nonetheless, maximizing attenuation is
useful but not sufficient to obtain good absorption since
the latter results in a combination between attenuation
and reflections at the interfaces with the air and with the
rigid wall.

IV. CONCLUSIONS

In this work, we studied the acoustic absorption of
granular media composed of shells made of different types
of material (rigid, elastic and elastic and microporous)
coupled or not with an Helmholtz resonator (drilled, ex-
tended neck).

For each case, the comparison between the acoustic ab-
sorption measurements and the models proposed showed
that the main trends of acoustic behavior were well pre-
dicted. Nevertheless, capturing dissipation precisely was
harder than identifying the absorption peak frequencies.
For the elastic porous shell, one method of improvement
was to measure Rµ and φµ directly with a porosity-meter
combined with a resistivity-meter and also measure the
shell elasticity constant directly.

Each feature created a mass flux in the host medium
that affected sound propagation. The different configu-
rations measured and the model were used to analyze the
contribution of each flux mechanism. It was shown that:

i) Helmholtz resonators can boost sound absorption
close to their resonance frequency and lower the global
effective bulk modulus7,8.

ii) The micropores can efficiently enhance absorption
at low frequency when there is no neck. When a neck is
present, they add broadband dissipation.

iii) Without a hole, the first breathing mode of the shell
can be an efficient resonator. However, with the samples
tested, this effect was mainly visible only in the simula-
tions. When a neck was present, shell elasticity lowered
the Helmholtz frequency. This shift was consistent with
Eq. (1).

Optimizing the absorption of the materials required
balancing the fluxes of the neck, shell and micropores.
To do this, the critical coupling approach already ap-
plied to absorb sound with the Helmholtz resonator and
membranes23 appeared to be a promising design option.
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Another path of enhancement is to mix different grain
sizes to fill the interstices and increase viscothermal losses
in the host medium.

Porogranular material are promising and can absorb
sound waves more efficiently than rigid grains. Since each
grain is an independent and customizable building block,
this method provides a very versatile class of acoustic
metamaterials. The encouraging results obtained in this
work lead us to consider extending this study to transmis-
sion insulation using thinner and softer resonators. This
may make it possible for us to observe nonlinear wave
propagation through hollow spherical shells, as shown in
Ref. 24.
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APPENDIX A: RIGID FRAME MODEL

The effective modulus of the porous matrix Em(ω) and
the effective density ρeff(ω) = ρm(ω) are calculated using
the Johnson-Champoux-Allard equivalent fluid model.
They take into account thermal and viscous losses and
are defined by :

Em(ω) = γP0

γ − (γ − 1)

(
1− jωνG̃(ωPr)

ωPr

)−1
−1

,

(A1)

ρm(ω) =
ρ0α∞
φ

(
1− jων F̃ (ω)

ω

)
, (A2)

where ων = σφ/ρ0α∞ is the viscous frequency, γ is the
specific heat ratio, P0 is the atmospheric pressure, Pr is
the Prandtl number, ρ0 is the density of the fluid in the
pores, φ is the porosity, α∞ is the tortuosity, and σ is
the flow resistivity. The correction functions G̃(ωPr)25

and F̃ (ω)26 are given by :

G̃(ωPr) =

[
1− jηρ0 Pr ω

(
2α∞
σφΛ′

)2
]1/2

,

F̃ (ω) =

[
1− jηρ0ω

(
2α∞
σφΛ

)2
]1/2

,

(A3)

where the terms Λ and Λ′ are the viscous and thermal
characteristic lengths respectively and η is the dynamic
viscosity of the fluid. According to the sphere diameters,
here we use the following parameters given by Allard1.
These parameters have also been used in Refs.3,6. The
resistivity of the matrix is σ = 4ηF/Λ2 with the forma-
tion factor F = 3.4. The thermal characteristic length is
given by Λ′ = φds/3(1 − φ) and the viscous characteris-
tic length is estimated as Λ = Λ′/3. The only exception
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FIG. 10. Acoustic absorption obtained for different pouring
methods.

with Allard1 is the high frequency limit of tortuosity,
which we set at α∞ = 1.5, instead of 1.36. Boutin et al.2

indeed showed that α∞ strongly depends on the com-
paction close to φ ≈ 0.5. As an example, for C = 0.53,
the different parameters take the values σ = 760 N.s.m−4,
Λ = 552 µm and Λ′ = 1700 µm.

APPENDIX B: ARRANGEMENT OF THE GRANULAR
PACKING

Different measurements with the same number of
porous grains were performed for various pouring meth-
ods: the grains were poured randomly (compaction: 0.61,
height: 25.5 mm) or layer by layer (compaction: 0.63,
height: 22.5 mm). The experimental results are pre-
sented in Fig.10. Regarding the same number of grains,
low compaction packing is higher. Maximum absorption
occurs at lower frequency for low compaction than for
high compaction packing.
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