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Abstract

The aim of this paper is to study the stationary flow of an Oldroyd fluid with particular diffusive stress, flowing

through a thin 3D pipe. An asymptotic expansion with respect to a small parameter describing the ratio between the

diameter of the cross section and the length is calculated and rigorously justified. The result obtained is compared

against a numerical solution in the particular case of axisymmetric geometries.

1 Introduction

We consider the stationary flow of an incompressible Oldroyd fluid with diffusive stress in a thin tube – these equations
could model the flow of blood or other substances in the human body since it is known that such biological fluids exhibit
non-newtonian behaviour. The word “thin” is used to express the fact that the typical diameter of such pipe is much
smaller when compared to its length − mathematically we shall use a small parameter ε to express this ratio. Note that
in the standard Oldroyd model the diffusive stress term is usually omitted, since it is orders of magnitude smaller than
the other terms in the equation. Taking the aforementioned facts into account, we suppose that this term is of order
ε2 − while there is no physical motivation for this choice, we argue that it is needed to obtain a “good” matching of
asymptotic coefficients in a sense we shall indicate later.

Firstly, we prove the existence of the solution for our problem – its uniqueness will be shown later under additional
hypothesis on ε. In terms of actually finding this solution, since the full 3D model is very difficult to deal with, we shall
discuss two ways of reducing its complexity. The first method is the same as the one used in [6]: it involves writing the
asymptotic expansion of the rescaled solution with respect to ε, formally computing its coefficients and finally showing
the validity of this expansion by proving a convergence result. The second possibility is to reduce the 3D problem to a 2D
one in the particular case of an axis-symmetric domain. Two numerical algorithms for solving this reduced problem are
presented, and the corresponding solutions are compared to the one obtained via the first method.

We conclude this section with some bibliographical remarks. The first mathematical investigation of the Oldroyd model
was done by Renardy, who proved an existence result in the stationary case in [12]. On the subject of the asymptotic
behaviour of Newtonian fluids in thin pipes there are many results by E. Mariušić-Paloka, see for instance [9], and G.
Panasenko [11], among others. A more recent paper on quasi-newtonian fluids in thin pipes is [6].

2 Statement of the problem

The equations describing the model presented in the previous section can be written as a system coupling the velocity u,
the pressure p and the extra-stress σ:





−(1− r)∆u +Re(u · ∇) · u+∇p = div σ + fε,
div u = 0,

We
(
(u · ∇)σ + ga(σ,∇u)

)
+ σ − ε2∆σ = 2rDu,

(1)

where
ga(σ,∇u) =

(
σ ·Wu−Wu · σ

)
+ a(σ ·Du+Du · σ),
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with

Wu =
∇u− (∇u)T

2
, Du =

∇u+ (∇u)T

2
.

By fε we have denoted the exterior forces acting on the fluid. We have used Re > 0 the Reynolds number, We > 0 the
Weissenberg number, r ∈ (0, 1) the retardation parameter, and a ∈ [−1, 1]. The parameter ε will be assume a “small”
positive number. It appears in the diffusive coefficient for the stress but it is linked to the geometry of the domain Ωε

where the fluid flows:
Ωε =

{
(x1, x2, x3) ∈ R

3| x1 ∈ (0, 1), (x2, x3) ∈ εS(x1)
}
,

where S(x1) are sufficiently regular domains − without insisting too much, we also suppose the application x1 7→ S(x1) is
also smooth enough (C2 regularity is sufficient). For the sake of simplicity we are going to assume Ωε ⊂ [0, 1]× [0, ε]× [0, ε],
with 0 < ε ≤ 1, and the three-part boundary of Ωε is given by the following:

Γε = {(x1, x2, x3) ∈ R
3| x1 ∈ (0, 1), (x2, x3) ∈ ε∂S(x1)},

Σε
0 = εS(0) and Σε

1 = εS(1).

Since we intend to use periodic boundary conditions, we shall assume that the domain is ”cylindrical” near the boundaries,
that is to say S(x1) = S(0) = S(1) = S(1− x1) for x1 ∈ (0, δ), δ being a any positive real.

As for the boundary conditions we consider





u = 0 on Γε,

σ = 0 on Γε,

u|Σε

0
= u|Σε

1
, σ|Σε

0
= σ|Σε

1
,

∂1u|Σε

0
= ∂1u|Σε

1
, ∂1σ|Σε

0
= ∂1σ|Σε

1
,

p|Σε

0
− p|Σε

1
= pd,

(2)

where the constant pd corresponds to the given pressure difference at the two ends of the tube.

For the remainder of this paper, we will make two assumptions:

1. The first assumption is about the parameter a ∈ [−1, 1] introduced in order to describe different objective (frame
indifferent) time derivatives. For technical reason, we will assume

a = 0.

From a physical point of view, this choice corresponds to the Jaumann (or co-rotational) derivative. This restriction
is used to obtain the existence of a stationary solution in Section 3. Except for this theoretical section, it seems that
the more general case a 6= 0 can be treated in the same way. In particular, the asymptotic model obtained in the
case ε → 0 is independent of the value of a.

2. The second assumption relates to the force term fε. We assume that it satisfies one of the following conditions:

(F1) There exist smooth f̃ : Ωε → R
3 such that fε(x1, xk) = f̃(x1,

xk

ε ).

(F2) supε ‖fε‖L∞(Ωε) < ∞.

Finally, let us conclude with some remarks on notations. We shall denote Ω = Ω1, Γ = Γ1. We will call a function
v : Ωε → R

k smooth whenever v ∈ C2(Ωε). Henceforth, ‖ · ‖ will mean the L2 norm on Ωε, while ‖ · ‖0 will be used for
the L2 norm on Ω. We shall denote by C various constants independent of ε.

3 The existence problem

The proof of the existence of a weak solution is based on classical energy estimates and compactness arguments. We
proceed very carefully to show that some boundary conditions are verified in a very weak sense. Defining

H1
#(Ωε) =

{
v ∈ H1(Ωε) | v|Σε

0
= v|Σε

1

}
,
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we consider the following spaces

V =
{
v ∈

(
H1

#(Ωε)
)3

| div v = 0, v = 0 on Γε

}
,

W =
{
τ ∈ M3×3

(
H1

#(Ωε)
)
| τij = τji, τ = 0 on Γε

}
.

The variational problem can be written as:





Find (u, σ) ∈ V ×W such that, for all (v, τ) ∈ V ×W ,

(1− r)

∫

Ωε

∇u : ∇v +Re

∫

Ωε

(u · ∇)u · v +

∫

Ωε

σ : Dv =

∫

Ωε

fεv + pd

∫

Σε

0

v1,

We

∫

Ωε

(
(u · ∇)σ + g0(σ,∇u)

)
: τ +

∫

Ωε

σ : τ + ε2
∫

Ωε

∇σ : ∇τ = 2r

∫

Ωε

Du : τ.

(3)

Evidently, every classical solution

(u, σ, p) ∈
(
C2(Ωε) ∩ C1(Ωε)

)
×
(
C2(Ωε) ∩ C1(Ωε)

)
×
(
C1(Ωε) ∩ C(Ωε)

)

which verifies (1) and (2) is a solution to (3). The goal is to prove that there exists a solution to the problem (3), which
is also a so-called weak solution to the problem (1)–(2).

Proposition 1. For all ε > 0 the problem (3) admits at least one solution (u, σ) ∈ V ×W , which satisfies

‖∇u‖ ≤ Cε2, ‖∇σ‖ ≤ Cε. (4)

Proof. We consider the Hilbert space V ×W endowed with the scalar product:

〈(u1, σ1), (u2, σ2)〉 = (u1, u2)V + ε2(σ1, σ2)W ,

where

(u1, u2)V =

∫

Ωε

∇u1 : ∇u2, (σ1, σ2)W =

∫

Ωε

∇σ1 : ∇σ2.

Let {v1, . . . , vn, . . . } be a dense basis in V , {τ1, . . . , τn, . . . } a dense basis in W , and let Vn,Wn be the subspaces generated
by {v1, . . . , vn} and {τ1, . . . , τn} respectively. We show that the approximate problem:

“Find (un, σn) ∈ Vn ×Wn such that (3) holds for all (v, τ) ∈ Vn ×Wn”

has a solution satisfying (4). We first define the application Pn : Vn ×Wn → Vn ×Wn by

〈Pn(u, σ), (v, τ)〉 =2r
(
(1 − r)

∫

Ωε

∇u : ∇v +Re

∫

Ωε

(u · ∇)u · v +

∫

Ωε

σ : Du−

∫

Ωε

fεv − pd

∫

Σε

0

v1

)

+
(
We

∫

Ωε

(
(u · ∇)σ + g0(σ,∇u)

)
: τ +

∫

Ωε

σ : τ + ε2
∫

Ωε

∇σ : ∇τ − 2r

∫

Ωε

Du : τ
)
.

For any (u, σ) ∈ Vn ×Wn, we evaluate 〈Pn(u, σ), (u, σ)〉 as follows

〈Pn(u, σ), (u, σ)〉 = 2r(1− r)‖∇u‖2 − 2r

∫

Ωε

fεu− 2rpd

∫

Σε

0

u1 + ‖σ‖2 + ε2‖∇σ‖2. (5)

To obtain previous equality, we have used the classical following cancellations (which are due to the free-divergence of the
velocity, the homogeneous Dirichlet boundary condition for the velocity, and due to the symmetry of the stress tensor):

∫

Ωε

(u · ∇)u · u =

∫

Ωε

(u · ∇)σ : σ =

∫

Ωε

(
σ ·Wu−Wu · σ

)
: σ = 0.

Before passing further, let us recall an elementary result:
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Lemma 1. Let u ∈ H1(Ωε) with u = 0 on Γε. Then

‖u‖ ≤ ε‖∇u‖, ‖u‖L4 ≤ c0ε
1/4‖∇u‖.

Moreover, for all u ∈ V we have ∣∣∣
∫

Σε

0

u1

∣∣∣ ≤ ε2‖∇u‖.

Proof. See for instance [6].

Returning to the proof of Proposition 1 we can then write

∣∣∣pd
∫

Ωε

u1

∣∣∣ ≤ pdε
2‖∇u‖,

whereas the term
∫
Ωε

fεu is treated differently depending on the assumption on the source fε.

• In the case where the assumption (F1) holds, we have

∣∣∣
∫

Ωε

fεu
∣∣∣ ≤ ‖fε‖‖u‖ ≤ ε‖f‖0 · ε‖∇u‖.

• In the case where the assumption (F2) holds, we write
∣∣∣
∫

Ωε

fεu
∣∣∣ ≤ sup

ε
‖fε‖L∞(Ωε)

∫

Ωε

|u| ≤ sup
ε

‖fε‖L∞(Ωε)|Ωε|
1/2‖u‖

≤ sup
ε

‖fε‖L∞(Ωε) · ε · ε‖∇u‖.

In both cases, denoting ξ = (u, σ), and ‖ξ‖2 = ‖∇u‖2 + ε2‖∇σ‖2, we deduce from the equation (5) that

〈Pn(ξ), ξ〉 ≥ 2r(1 − r)‖ξ‖2 − 2rε2(Cf + pd)‖ξ‖,

the constant Cf being defined by Cf = ‖f‖0 in the case (F1), and by Cf = supε ‖fε‖L∞(Ωε) in the case (F2). Consequently,
for

‖ξ‖ =
Cf + pd
1− r

ε2,

we have 〈Pn(ξ), ξ〉 ≥ 0. Since Pn is clearly continuous, using a well known result – see, for instance, [7] – we derive the
existence of (un, σn) ∈ Vn ×Wn such that Pn(un, σn) = 0, and, in addition, it follows easily

‖∇un‖ ≤
Cf + pd
1− r

ε2, ‖∇σn‖ ≤
Cf + pd
1− r

ε. (6)

Since Pn(un, σn) was constructed as a sum of two linear independent functionals, it follows that (un, σn) is a solution
to the approximate problem above mentioned. Using (6) and the compact embedding of H1 into L4 we have, up to a
subsequence,

um ⇀ u weakly in V, (7a)

σm ⇀ σ weakly in W, (7b)

um → u strongly in L4, (7c)

σm → σ strongly in L4. (7d)

It is immediate that the limit (u, σ) satisfy (4); we show next that (u, σ) is the desired solution. Fix n ≥ 1, and
(v, τ) ∈ Vn ×Wn. Then for m ≥ n (in the above subsequence sense), we can write





(1− r)

∫

Ωε

∇um : ∇v +Re

∫

Ωε

(um · ∇)um · v +

∫

Ωε

σm : Dv =

∫

Ωε

fεv + pd

∫

Σε

0

v1,

We

∫

Ωε

(
(um · ∇)σm + g0(σm,∇um)

)
: τ +

∫

Ωε

σm : τ + ε2
∫

Ωε

∇σm : ∇τ = 2r

∫

Ωε

D(um) : τ

4



To prove the convergence, let us write the following estimates

∣∣∣∣
∫

Ωε

(um · ∇)um · v −

∫

Ωε

(u · ∇)u · v

∣∣∣∣ ≤

∫

Ωε

∣∣((um − u) · ∇)um · v
∣∣+
∫

Ωε

∣∣(u · ∇)(um − u) · v
∣∣

≤ ‖um − u‖L4‖∇um‖‖v‖L4 +

∫

Ωε

∣∣(u · ∇)(um − u) · v
∣∣,

∣∣∣∣
∫

Ωε

(um · ∇)σm : τ −

∫

Ωε

(u · ∇)σ : τ

∣∣∣∣ ≤

∫

Ωε

∣∣((um − u) · ∇)σm : τ
∣∣+
∫

Ωε

∣∣(u · ∇)(σm − σ) : τ
∣∣

≤ ‖um − u‖L4‖∇σm‖‖τ‖L4 +

∫

Ωε

∣∣(u · ∇)(σm − σ) : τ
∣∣,

∣∣∣∣
∫

Ωε

g0(σm,∇um) : τ −

∫

Ωε

g0(σ,∇u) : τ

∣∣∣∣ ≤

∫

Ωε

∣∣g0(σm − σ,∇um) : τ
∣∣+
∫

Ωε

∣∣g0(σ,∇(um − u)) : τ
∣∣

≤ ‖σm − σ‖L4‖∇um‖‖τ‖L4 +

∫

Ωε

∣∣g0(σ,∇(um − u)) : τ
∣∣.

Owing to (7a)-(7d) and the continuous embedding of H1 into L4, we easily derive that all the terms on the left hand side
are convergent to 0. The remaining linear terms are trivial. We readily derive that (u, σ) is a solution to (3).

Next we show that the solution whose existence was proven at the first step is in fact a weak solution for the problem
(1)–(2).

Proposition 2. For all ε > 0, the solution (u, σ) to the variational problem (3) allows to obtain a weak solution (u, p, σ) ∈
V × L2(Ωε)×W to the problem (1)–(2).

Proof. Since V ′ = {v ∈
(
C∞

0 (Ωε)
)3
, div v = 0} ⊂ V and W ′ = M3×3

(
C∞

0 (Ωε)
)
⊂ W it easily follows from (3) that, for all

v ∈ V ′, w ∈ W ′, {
〈−(1− r)∆u +Re(u · ∇) · u− div σ − fε − pd , v〉 = 0,

〈We
(
(u · ∇)σ + g(σ,∇u)

)
+ σ − ε2∆σ − 2rDu , τ〉 = 0,

where the brackets understood in the distributional sense. Moreover, the overline pd ∈ V ′ is given by 〈pd, v〉 = pd
∫
Σε

0

v1.

A simple application of the de Rham theory enables us to retrieve the pressure p ∈ L2(Ωε) such that (1) holds in the
distributional sense. To conclude we need to verify the last two boundary conditions in (2). We shall show only those
involving u and p, since the remaining one (involving σ) is derived exactly in the same way. At first glance it looks strange,
since L2 functions don’t have boundary trace, but we shall see the exact sense in which these equalities are understood.
First, let us introduce the following result:

Lemma 2. If f ∈
(
L2(Ωε)

)3
such that div f ∈ L

3

2 (Ωε). Then f · n ∈ H− 1

2 (∂Ωε) in the following sense

〈f · n, φ〉 =

∫

Ωε

(
φdiv f + f · ∇φ

)
, ∀φ ∈ H1(Ωε)

(where 〈·, ·〉 denotes the pairing between H− 1

2 (∂Ωε) and H
1

2 (∂Ωε)) meaning that the term on the right hand side is only

dependent on the boundary trace value of φ, and that it defines a linear continuous functional on H
1

2 (∂Ωε).

Proof. Using a result in [4] we can find a g ∈
(
W 1, 3

2 (Ωε)
)3

such that

div g = div f.

From [10] we get that ∫

∂Ωε

φg · n =

∫

Ωε

(
φdiv g + g · ∇φ

)
, ∀φ ∈ H1(Ωε).

By using the continuous inclusion of H
1

2 (∂Ωε) into L3(∂Ωε), it is immediate that the term on the left hand side defines a

linear continuous functional on H
1

2 (∂Ωε).
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Next, by standard Sobolev embeddings, we have g ∈
(
W 1, 3

2 (Ωε)
)3

⊂
(
L2(Ωε)

)3
and so f − g ∈

(
L2(Ωε)

)3
, while div (f −

g) = 0 ∈
(
L2(Ωε)

)3
. Hence by using the result in [5] we derive (f − g) · n ∈ H− 1

2 (∂Ωε) and

〈(f − g) · n, φ〉 =

∫

Ωε

(f − g) · ∇φ, ∀φ ∈ H1(Ωε).

Hence, for h ∈ H
1

2 (∂Ωε), then given φh ∈ H1(Ωε) such that φh = h on ∂Ωε, the application

h 7→

∫

Ωε

(
φh div f + f · ∇φh

)

is well defined and determines a linear continuous functional on H
1

2 (∂Ωε), being the sum of two applications enjoying this
property. The proof of the lemma 2 is then completed.

In order to achieve the proof of Proposition 2, observe that for i ∈ {1, 2, 3}, we have (the vectors ei being the vectors of
the usual basis of R3)

div
(
− (1− r)∇ui + p ei

)
=
(
div σ + f − u · ∇u

)
i
∈ L

3

2 (Ωε),

and since −(1− r)∇ui + p ei ∈
(
L2(Ωε)

)3
we can use Lemma 2 to get

(
− (1− r)∇ui + p ei

)
· n ∈ H− 1

2 (∂Ωε) and, for all
φ ∈ H1(Ωε) and all i ∈ {1, 2, 3}:

〈(−(1 − r)∇ui + pei) · n, φ〉 =

∫

Ωε

(
(div σ + f − u · ∇u)iφ− (1 − r)∇ui∇φ+ p ∂iφ

)
. (8)

Let h ∈ H
1

2 (Σε
0) = H

1

2 (Σε
1), and let

hj =

{
hej on Σε

0 ∪ Σε
0,

0 on Γε.

It is clear that hj ∈ H
1

2 (∂Ωε) and
∫
∂Ωε

hj = 0. Using a known result [4], we find vj ∈ V such that div vj = 0 and vj = hj

on ∂Ωε, for all j ∈ {1, 2, 3}. By taking in (8) test functions vji , summing for i ∈ {1, 2, 3}, and taking into account that u
is a variational solution we get, for any j ∈ {1, 2, 3}:

〈(−(1 − r)∇uj + pej) · n, h〉0 + 〈(−(1− r)∇uj + pej) · n, h〉1 = −pdδ1j

∫

Σε

0

h,

where 〈·, ·〉k denotes the pairing between H− 1

2 (Σε
k) and H

1

2 (Σε
k), for k ∈ {0, 1}. Taking into account that n = −e1 on Σε

0

and n = e1 on Σε
1, it follows that ∂1uk|Σε

0
= ∂1uk|Σε

1
for k ∈ {2, 3} and that

〈−(1− r)∂1u1 + p, h〉0 − 〈−(1− r)∂1u1 + p, h〉1 = pd

∫

Σε

0

h.

To conclude the proof, we only need to only that ∂1u1|Σε

0
= ∂1u1|Σε

1
. First, observe that ∂1u ∈ L2(Ωε) and div (∂1u) = 0,

so that, by Lemma 2, ∂1u · n ∈ H− 1

2 (∂Ω) and

〈∂1u · n, φ〉 =

∫

Ωε

∂1u · ∇φ, ∀φ ∈ H1(Ω).

Take any φ ∈ C2(Ωε) such that φ|Σε

0
= φ|Σε

1
. We have

∫

Ωε

∂1u · ∇φ = −

∫

Ωε

u · ∇∂1φ+

∫

∂Ωε

u · ∇φn1

=

∫

Ωε

div u ∂1φ−

∫

∂Ωε

∂1φu · n+

∫

∂Ωε

u · ∇φn1,

but, since u ∈ V and n2 = n3 = 0 on Σε
0, Σ

ε
1 we get

〈∂1u1, φ〉0 − 〈∂1u1, φ〉1 =

∫

∂Ωε

∂2φu2 + ∂3φu3 = 0,

using that u ∈ V and the periodicity of φ; hence, by a density argument we obtain the desired result.

The uniqueness of this solution will be proved later under additional hypothesis on ε.
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4 Asymptotic expansion

From now on, we are going to assume that fε satisfies condition (F1). Moreover, we will also systematically use the
dummy index k to represent either summation for k ∈ {2, 3}, either the repeated index.
Let (u, p, σ) be a solution of (1) and (2), and consider the applications ũ : Ω → R

3, σ̃ : Ω → M3×3(R) and p̃ : Ω → R

defined by

ũ(x1, xk) = u(x1, εxk),

σ̃(x1, xk) = σ(x1, εxk),

p̃(x1, xk) = p(x1, εxk).

By a-priori estimates, we easily derive
‖ũ‖0 ≤ Cε2, ‖σ̃‖0 ≤ Cε.

So let us formally write

ũ1 = ε2ũ0
1 + · · ·+ ε2n+2ũn

1 + . . .

ũk = ε3ũ0
k + · · ·+ ε2n+3ũn

k + . . .

p̃ = p̃0 + · · ·+ ε2np̃n + . . .

σ̃11 = ε2σ̃0
11 + · · ·+ ε2n+2σ̃n

11 + . . .

σ̃1k = εσ̃0
1k + · · ·+ ε2n+1σ̃n

1k + . . .

σ̃ℓm = ε2σ̃0
ℓm + · · ·+ ε2n+2σ̃n

ℓm + . . .

for ℓ,m ∈ {2, 3}. Obviously, we assume that all ũm
α , σ̃m

αβ , p̃
m are independent of ε for allm ≥ 0, α, β ∈ {1, 2, 3}. Upon writ-

ing the equations in the rescaled domain Ω, plugging in the expansions above and identifying the appropriate powers of ε
we get the following 10 equations for each j ≥ 0 (we have tacitly assumed that terms with negative upper coefficients are 0):

• Each component of the momentum equation:

−(1− r)∂2
k ũ

j
1 + ∂1p̃

j = ∂1σ̃
j−1
11 + ∂kσ̃

j
1k + h̃j

1 (V1)

−(1− r)∂2
k ũ

j
2 + ∂2p̃

j+1 = ∂1σ̃
j
12 + ∂kσ̃

j
2k + h̃j

2 (V2)

−(1− r)∂2
k ũ

j
3 + ∂3p̃

j+1 = ∂1σ̃
j
13 + ∂kσ̃

j
3k + h̃j

3 (V3)

where

h̃j
1 = (1− r)∂2

1 ũ
j−1
1 − Re

j−2∑

i=0

(
ũi
1∂1ũ

j−i−2
1 + ũi

k∂kũ
j−i−2
1

)
+ f̃ j

1

h̃j
2 = (1− r)∂2

1 ũ
j−1
2 − Re

j−3∑

i=0

(
ũi
1∂1ũ

j−i−3
2 + ũi

k∂kũ
j−i−3
2

)
+ f̃ j

2

h̃j
3 = (1− r)∂2

1 ũ
j−1
3 − Re

j−3∑

i=0

(
ũi
1∂1ũ

j−i−3
3 + ũi

k∂kũ
j−i−3
3

)
+ f̃ j

3

with f̃ j
α = f̃α for j = 0 and f̃ j

α = 0 for j > 0.

• The six components of the symmetric stress given by the Oldroyd model:

We

[ j−1∑

i=0

(
ũi
α∂ασ̃

j−i−1
11 − ∂1ũ

i
kσ̃

j−i−1
1k

)
+

j∑

i=0

∂kũ
i
1σ̃

j−i
1k

]

+ σ̃j
11 − ∂2

1 σ̃
j−1
11 − ∂2

kσ̃
j
11 = 2r∂1ũ

j
1 (E1)
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We

[ j−1∑

i=0

ũi
α∂ασ̃

j−i−1
12 +

1

2

j−2∑

i=0

(
∂1ũ

i
2σ̃

j−i−2
11 − ∂1ũ

i
kσ̃

j−i−2
2k

)

+
1

2

j−1∑

i=0

(
− ∂2ũ

i
1σ̃

j−i−1
11 +

(
∂3ũ

i
2 − ∂2ũ

i
3

)
σ̃j−i−1
13 + ∂kũ

i
1σ̃

j−i−1
2k

)]

+ σ̃j
12 − ∂2

1 σ̃
j−1
12 − ∂2

kσ̃
j
12 = r(∂1ũ

j−1
2 + ∂2ũ

j
1) (E2)

We

[ j−1∑

i=0

ũi
α∂ασ̃

j−i−1
13 +

1

2

j−2∑

i=0

(
∂1ũ

i
3σ̃

j−i−2
11 − ∂1ũ

i
kσ̃

j−i−2
3k

)

+
1

2

j−1∑

i=0

(
− ∂3ũ

i
1σ̃

j−i−1
11 +

(
∂2ũ

i
3 − ∂3ũ

i
2

)
σ̃j−i−1
12 + ∂kũ

i
1σ̃

j−i−1
3k

)]

+ σ̃j
13 − ∂2

1 σ̃
j−1
13 − ∂2

kσ̃
j
13 = r(∂1ũ

j−1
3 + ∂3ũ

j
1) (E3)

We

[ j−1∑

i=0

(
ũi
α∂ασ̃

j−i−1
22 + ∂1ũ

i
2σ̃

j−i−1
12 + ∂2ũ

i
2σ̃

j−i−1
22 +

(
∂3ũ

i
2 − ∂2ũ

i
3

)
σ̃j−i−1
23

)

−

j∑

i=0

∂2ũ
i
1σ̃

j−i
12

]
+ σ̃j

22 − ∂2
1 σ̃

j−1
22 − ∂2

kσ̃
j
22 = 2r∂2ũ

j
2 (E4)

We

[ j−1∑

i=0

ũi
α∂ασ̃

j−i−1
23 −

1

2

j∑

i=0

(
∂3ũ

i
1σ̃

j−i
12 + ∂2ũ

i
1σ̃

j−i
13

)

+
1

2

j−1∑

i=0

(
∂1ũ

i
3σ̃

j−i−1
12 +

(
∂2ũ

i
3 − ∂3ũ

i
2

)(
σ̃j−i−1
22 − σ̃j−i−1

33

)
+ ∂1ũ

i
2σ̃

j−i−2
13

)]

+ σ̃j
23 − ∂2

1 σ̃
j−1
23 − ∂2

kσ̃
j
23 = r(∂2ũ

j
3 + ∂3ũ

j
2) (E5)

We

[ j−1∑

i=0

(
ũi
α∂ασ̃

j−i−1
33 + ∂1ũ

i
3σ̃

j−i−1
13 + ∂3ũ

i
3σ̃

j−i−1
33 +

(
∂2ũ

i
3 − ∂3ũ

i
2

)
σ̃j−i−1
23

)

−

j∑

i=0

∂3ũ
i
1σ̃

j−i
13

]
+ σ̃j

33 − ∂3
1 σ̃

j−1
33 − ∂2

kσ̃
j
33 = 2r∂3ũ

j
3 (E6)

• The incompressibility relation becomes:
∂1ũ

j
1 + ∂kũ

j
k = 0. (D)

• The boundary conditions are expected to become (for any j ≥ 0 again):

ũj
α|Γ = 0 ∀α ∈ {1, 2, 3},

σ̃j
αβ |Γ = 0 ∀α, β ∈ {1, 2, 3},

ũj|Σ0
= ũj |Σ1

, σ̃j |Σ0
= σ̃j |Σ1

,

∂1ũ
j |Σ0

= ∂1ũ
j|Σ1

, ∂1σ̃
j |Σ0

= ∂1σ̃
j |Σ1

,

p̃0|Σ0
− p̃0|Σ1

= pd,

p̃j |Σi
= 0 ∀ i ∈ {0, 1} (only for j ≥ 1).

(BC)
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4.1 Main order

By taking j = 0 in (V1), (E2), (E3) and j = −1 in (V2), (V3) we derive





−(1− r)∆kũ
0
1 + ∂1p̃

0 = f̃1 + ∂2σ̃
0
12 + ∂3σ̃

0
13,

σ̃0
12 −∆kσ̃

0
12 = r∂2ũ

0
1,

σ̃0
13 −∆kσ̃

0
13 = r∂3ũ

0
1,

∂2p̃
0 = 0,

∂3p̃
0 = 0,

(P 0
1 )

where ∆k = ∂2
2 + ∂2

3 , and the set of equations described in (P 0
1 ) is defined on the domain Ω = {(x1, x2, x3) ∈ R

3| x1 ∈
(0, 1), (x2, x3) ∈ S(x1)}. By taking in (BC) we get





ũ0
1(x1, ·) = 0, on ∂S(x1), x1 ∈ (0, 1),

σ̃0
12(x1, ·) = 0, on ∂S(x1), x1 ∈ (0, 1),

σ̃0
13(x1, ·) = 0, on ∂S(x1), x1 ∈ (0, 1),

ũ0
1|Σ0

= ũ0
1|Σ1

,
σ̃0
1k|Σ0

= σ̃0
1k|Σ1

,
∂1ũ

0
1|Σ0

= ∂1ũ
0
1|Σ1

,
∂1σ̃

0
1k|Σ0

= ∂1σ̃
0
1k|Σ1

,
p̃0(0)− p̃0(1) = pd,

(BC0)

We shall use the superposition principle to solve this problem. First, consider – for all x1 ∈ (0, 1) – the bi-dimensional
problem {

−(1− r)∆k ṽ = f̃1 on S(x1),

ṽ = 0 on ∂S(x1).

Call ṽ1 the unique smooth solution of this Dirichlet problem (the source term f̃1 being a scalar, the solution ṽ1 takes
values in R), and let us denote

γ1(x1) =

∫

S(x1)

∂1ṽ1(x1, ·).

Secondly, consider the problem (ṽ being a scalar function – with values in R, and τ̃ being a vectorial function – with
values in R

2): 



−(1− r)∆k ṽ + 1 = divk τ̃ on S(x1),

τ̃ −∆k τ̃ = r∇k ṽ on S(x1),

ṽ = 0 and τ̃ = 0 on ∂S(x1).

and let us denote

γ2(x1) =

∫

S(x1)

∂1ṽ2(x1, ·).

Remark 1. Note that the system has a unique solution. The existence part can be proved via a classical approximation
technique, using the following energy estimate:

E(ṽ, τ̃) := r(1 − r)‖∇k ṽ‖
2
L2(S(x1))

+ ‖τ̃‖2L2(S(x1))
+ ‖∇k τ̃‖

2
L2(S(x1))

= −r

∫

S(x1)

ṽ ≤ r‖∇k ṽ‖L2(S(x1)).

To show the uniqueness, observe that, if (ṽ(1), τ̃ (1)) and (ṽ(2), τ̃ (2)) are two solutions then

E(ṽ(1) − ṽ(2), τ̃ (1) − τ̃ (2)) = 0,

and the conclusion easily follows. The regularity of the solution can be shown by alternating between the two elliptic
problems (considered separately) – see [2].
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Let us call this solution (ṽ2, τ̃2, τ̃3). Define

(ũ0
1, σ̃

0
12, σ̃

0
13) = (ṽ1 + ∂1p̃

0 ṽ2 , ∂1p̃
0 τ̃2 , ∂1p̃

0 τ̃3),

with p̃0 determined by imposing

−∂1

(
γ2(x1)∂1p̃

0(x1)

)
= γ(x1) and p̃0(0)− p̃0(1) = pd.

Note that p̃0 is defined up to a constant, but ũ0
1, σ̃0

12 and σ̃0
13 are uniquely defined. Due to the imposed regularity

requirements, we have ũ0
1, σ̃

0
12, σ̃

0
13 ∈ C2(Ω) and p̃0 ∈ C1(Ω). It is clear that (ũ0

1, p̃
0, σ̃0

12, σ̃
0
13) satisfy (P 0

1 ) in the classical
sense. The geometrical assumption on the domain implies that ũ0

1(x1) = ũ0
1(1−x1) and σ̃0

1k(x1) = σ̃0
1k(1−x1) for x1 ∈ [0, δ).

Let us call such functions periodic. Clearly all combinations of periodic functions (sum, product, multiplication with scalar)
rests periodic. Moreover, as for all periodic functions, ∂1ũ

0
1(0) = ∂1ũ

0
1(1) = ∂1σ̃1k(0) = ∂1σ̃1k(1) = 0, so that all conditions

in (BC0) are satisfied. Moreover, the following compatibility condition is verified:

∫

S(x1)

∂1ũ
0
1 = 0.

4.2 Next orders

Next, proceed by induction. Let j ≥ 0. Suppose we have determined smooth periodic ũi
1, σ̃

i
1k, p̃

i with
∫
S(x1)

∂1ũ
i
1 = 0 for

all i ≤ j, and σ̃i
11, ũ

i
k, σ̃

i
kℓ for all i < j (nothing if j = 0). We show how to determine smooth σ̃j

11, ũ
j
k, σ̃

j
kℓ and ũj+1

1 , σ̃j+1
1k ,

p̃j+1 – all periodic – with
∫
S(x1)

∂1ũ
j+1
1 = 0.

X Determination of σ̃j
11: Using (E1) we first derive

σ̃j
11 − ∂2

kσ̃
j
11 = f̃ j

11,

with known smooth periodic f̃ j
11, which can be solved as an elliptic problem – with homogeneous Dirichlet boundary

conditions – on every S(x1): σ̃
j
11 is then known.

X Determination of ũj
k, σ̃

j
kℓ and p̃j+1: By considering (E4), (E5) and (E6), and also (V2), (V3) and (D) we obtain





−(1− r)∂2
k ũ

j
2 + ∂2p̃

j+1 = ∂kσ̃
j
2k + g̃j2,

−(1− r)∂2
k ũ

j
3 + ∂3p̃

j+1 = ∂kσ̃
j
3k + g̃j3,

σ̃j
22 − ∂2

kσ̃
j
22 = 2r∂2ũ

j
2 + f̃ j

22,

σ̃j
23 − ∂2

kσ̃
j
23 = r(∂2ũ

j
3 + ∂3ũ

j
2) + f̃ j

23,

σ̃j
33 − ∂2

kσ̃
j
33 = 2r∂3ũ

j
3 + f̃ j

33,

∂kũ
j
k = −∂1ũ

j
1

(P j
k )

where all the g̃j ’s and f̃ j ’s are known, smooth and periodic. The above is a coupled inhomogeneous Stokes and elliptic
system in 2D, and, if we supplement Dirichlet boundary conditions we get a system like





−(1− r)∆k ṽ
j +∇kp̃

j+1 = divk τ̃
j + g̃j on S(x1),

τ̃ j −∆k τ̃
j = 2rDkṽ

j + F̃ j on S(x1),

divk ṽ
j = −∂1ũ

j
1 on S(x1),

ṽj = 0 and τ̃ j = 0 on ∂S(x1).

Owing to the condition
∫
S(x1)

∂1ũ
j
1 = 0, use a classical result [4] to find z̃j (not necessarily smooth) such that

{
divk z̃

j = −∂1ũ
j
1 on S(x1),

z̃j = 0 on ∂S(x1).
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Evidently we can choose z̃j to be periodic. Therefore, in order to prove the existence of a solution to problem (P j
k ) it

suffices to prove the existence to the following problem




−(1− r)∆kw̃
j +∇kp̃

j+1 = divk τ̃
j + g̃j,1 on S(x1),

τ̃ j −∆k τ̃
j = 2rDkw̃

j + F̃ j,1 on S(x1),

divk w̃
j = 0 on S(x1),

w̃j , τ̃ j = 0 on ∂S(x1).

The above system is a linearized version of our initial problem, and the existence of a unique solution is shown using the
Lax-Milgram theorem. The regularity is obtained by alternating between the Stokes problem and the elliptic ones in (P j

k ).
Moreover, since the source terms are periodic, this solution is also periodic. Note that p̃j+1 is defined up to a constant for
all x1 – say r̃j+1(x1).

X Determination of ũj+1
1 and σ̃j+1

1k : By taking j + 1 instead of j in (V1),(E2),(E3) we derive




−(1− r)∂2
k ũ

j+1
1 + ∂1r̃j+1 = g̃j+1

1 + ∂2σ̃
j+1
12 + ∂3σ̃

j+1
13 ,

σ̃j+1
12 − ∂2

kσ̃
j+1
12 = r∂2ũ

j+1
1 + f̃ j+1

12 ,

σ̃j+1
13 − ∂2

kσ̃
j+1
13 = r∂3ũ

j+1
1 + f̃ j+1

13 ,

(P j+1
1 )

with known, smooth, periodic g̃j+1
1 , f̃ j+1

12 , f̃ j+1
13 . This is handled in exactly the same manner as problem (P 0

1 ), with the
sole difference that r̃j+1 is uniquely defined by the conditions r̃j+1(0) = r̃j+1(1) = 0.

5 Error estimates

Let

un
1 (x1, xk) =

n∑

j=0

ε2j+2ũj
1

(
x1,

xk

ε

)
,

un
ℓ (x1, xk) =

n∑

j=0

ε2j+3ũj
k

(
x1,

xk

ε

)
, ℓ ∈ {2, 3},

pn(x1, xk) =

n∑

j=0

ε2j p̃j
(
x1,

xk

ε

)
,

σn
11(x1, xk) =

n∑

j=0

ε2j+2σ̃j
11

(
x1,

xk

ε

)
,

σn
1ℓ(x1, xk) =

n∑

j=0

ε2j+1σ̃j
1ℓ

(
x1,

xk

ε

)
, ℓ ∈ {2, 3},

σn
ℓm(x1, xk) =

n∑

j=0

ε2j+2σ̃j
ℓm

(
x1,

xk

ε

)
, ℓ,m ∈ {2, 3}.

Proposition 3. Provided ε is small enough, for all n ≥ 0, the following estimates hold true:

‖∇(u− un)‖ ≤ Cε2n+4,

‖∇(σ − σn)‖ ≤ Cε2n+3,

‖p− pn‖ ≤ Cε2n+2.

Proof. From the previous section we get that (un, σn) ∈ V ×W . Also, (un, σn, pn) are smooth and satisfy (2). After some
calculations we get 




−(1− r)∆un +Re(un · ∇) · un +∇pn+1 = div σn + fε +Rn,

We
(
(un · ∇)σn + g0(σ

n,∇un)
)
+ σn − ε2∆σn = 2rDun +Qn,

div un = 0,

(9)
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where Rn, Qn have complicated expressions that we’d rather omit. Still, as in [6] we can prove

‖Rn‖L∞ ≤ Cε2n+2, ‖Qn‖L∞ ≤ Cε2n+3. (10)

It easily follows 



(1− r)

∫

Ωε

∇un : ∇v +Re

∫

Ωε

(un · ∇)un · v +

∫

Ωε

σn : Dv

=

∫

Ωε

fεv + pd

∫

Σ0
ε

v1 +

∫

Ωε

Rnv,

We

∫

Ωε

(
(un · ∇)σn + g0(σ

n,∇un)
)
: τ +

∫

Ωε

σn : τ + ε2
∫

Ωε

∇σn : ∇τ

= 2r

∫

Ωε

Dun : τ +

∫

Ωε

Qn : τ.

(11)

By taking in (3) and (11) v = u− un and τ = σ − σn and making some elementary manipulations, we obtain

2r(1− r)‖∇(u − un)‖2 + ‖σ − σn‖2 + ε2‖∇(σ − σn)‖2

≤ 2r

∣∣∣∣
∫

Ωε

Rn(u− un)

∣∣∣∣+
∣∣∣∣
∫

Ωε

Qn(σ − σn)

∣∣∣∣

+ 2rRe

(∣∣∣∣
∫

Ωε

(u − un) · ∇un · (u− un)

∣∣∣∣+
∣∣∣∣
∫

Ωε

u · ∇(u− un) · (u− un)

∣∣∣∣

)

+We

(∣∣∣∣
∫

Ωε

(u − un) · ∇σn : (σ − σn)

∣∣∣∣ +
∣∣∣∣
∫

Ωε

u · ∇(σ − σn) : (σ − σn)

∣∣∣∣

+

∣∣∣∣
∫

Ωε

g0(∇(u − un), σn) : (σ − σn)

∣∣∣∣+
∣∣∣∣
∫

Ωε

g0(∇u, σ − σn) : (σ − σn)

∣∣∣∣

)
.

By using Hölder’s inequality, (10), Lemma 1, estimates in Proposition 1, as well as the following trivial ‖∇σn‖ ≤ Cε, we
derive the following estimates:

∣∣∣∣
∫

Ωε

Rn · (u− un)

∣∣∣∣ ≤ Cε2n+4‖∇(un − u)‖,

∣∣∣∣
∫

Ωε

Qn(σ − σn)

∣∣∣∣ ≤ Cε2n+5‖∇(σ − σn)‖,

∣∣∣∣
∫

Ωε

(u− un) · ∇un · (u− un)

∣∣∣∣ ≤ Cε3‖∇(u− un)‖2,

∣∣∣∣
∫

Ωε

u · ∇(u − un) · (u− un)

∣∣∣∣ ≤ Cε5/2‖∇(u− un)‖2,

∣∣∣∣
∫

Ωε

(u− un) · ∇σn : (σ − σn)

∣∣∣∣ ≤ Cε3/2‖∇(un − u)‖‖∇(σ − σn)‖ ≤ Cε1/2(‖∇(un − u)‖2 + ε2‖σ − σn‖2),

∣∣∣∣
∫

Ωε

u · ∇(σ − σn) : (σ − σn)

∣∣∣∣ ≤ Cε5/2‖∇(σ − σn)‖2,

∣∣∣∣
∫

Ωε

g0(∇(u− un), σn) : (σ − σn)

∣∣∣∣ ≤ Cε3/2‖∇(un − u)‖‖∇(σ − σn)‖ ≤ Cε1/2(‖∇(un − u)‖2 + ε2‖σ − σn‖2),

∣∣∣∣
∫

Ωε

g0(∇u, σ − σn) : (σ − σn)

∣∣∣∣ ≤ Cε5/2‖∇(σ − σn)‖2.

Hence, for ε small, enough we can derive

‖∇(u− un)‖2 + ε2‖∇(σ − σn)‖2 ≤ Cε2n+4(‖∇(u − un)‖ + ‖∇(σ − σn)‖)

12



from which follows easily

‖∇(u− un)‖ ≤ Cε2n+4,

‖∇(σ − σn)‖ ≤ Cε2n+3.

To derive a pressure estimate, use the result in [6] to find φn ∈
(
H1

0 (Ωε)
)3

such that:

div φn = p− pn+1 on Ωε,

‖∇φn‖ ≤ Cε−1‖p− pn+1‖.

Consider the first equation in (1) – understood in distributional sense – and (9). By subtracting the two and then applying

φn ∈
(
H1

0 (Ωε)
)3

we obtain

‖p− pn+1‖2 + (1− r)

∫

Ωε

∇(u − un) · ∇φn

=

∫

Ωε

(
(un · ∇)un − (u · ∇)u

)
· φn −

∫

Ωε

Rn · φn.

Proceeding in a very similar manner to the way we determined the velocity estimates – while also using these estimates –
we establish

‖p− pn+1‖ ≤ Cε2n+3,

from which the pressure estimate easily follows.

Remark 2. By replicating the proof of Proposition (3), we can prove that, for ε small enough, the solution to problem
(1)–(2) is unique.

6 Axisymmetric equation

In view of the last remark in the previous section, we shall suppose that ε is small enough so that the solution to our
problem is uniquely defined.
Henceforth, suppose that the domain Ωε is axisymmetric, namely that is obtained by rotating around the x1 axis the
following 2D domain

Dε = {(x1, x3) ∈ R
2 | x1 ∈ (0, 1), x3 ∈ (0, εh(x1))}.

for some smooth h : [0, 1] → R
∗
+, such that h(x1) = h(0) = h(1) = h(1− x1) for all x1 ∈ (0, δ).

A comprehensive study of various equations in axisymmetric domains can be found in [1]. The goal of this section is to
show that the weak solution is ”axisymmetric” in a sense that we shall properly define provided the source term enjoys
the same property. In [8] a characterization of regular axisymmetric functions related to the Navier-Stokes equation is
given. Here we show how to extend those results to the case of weak solutions. Although the result is very intuitive, the
proof – while elementary – is quite technical. We start by introducing cylindrical coordinates

x1 = x,

x2 = z sin θ,

x3 = z cos θ,

with x ∈ [0, 1], z ∈ [0, εh(x)], θ ∈ [0, 2π). We write

{
u = ux(x, z, θ)ex + uz(x, z, θ)ez + uθ(x, z, θ)eθ

σ = σxx(x, z, θ)ex ⊗ ex + · · ·+ σθθ(x, z, θ)eθ ⊗ eθ

with

ex =



1
0
0


 , ez =




0
sin θ
cos θ


 , eθ =




0
cos θ
− sin θ


 .
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Consider
X = C1(Ωε) ∩ C(Ωε) ∩H1(Ωε).

Note that if u ∈ X 3 and σ ∈ M3×3

(
X
)
then ux, uz, uθ, σxx, . . . , σθθ ∈ C1(Dε × (0, 2π)), and so we can define

Xs = {u ∈ X 3 | ∂θux = ∂θuz = ∂θuθ = 0},

Ys = {σ ∈ M3×3

(
X
)
| σij = σji, ∂θσxx = · · · = ∂θσθθ = 0}.

Lemma 3. Given u ∈ X 3 then ux, uz, uθ ∈ C(Dε × (0, 2π)), and for all θ ∈ (0, 2π] we have ux(·, ·, θ), uz(·, ·, θ), uθ(·, ·, θ) ∈
C1(D′

ε) where D′
ε = Dε ∪ {(x, 0) |x ∈ (0, 1)}. Moreover, for all x ∈ (0, 1) and θ ∈ [0, π) we have

uz(x, 0, θ) = −uz(x, 0, θ + π), (12a)

uθ(x, 0, θ) = −uθ(x, 0, θ + π), (12b)

∂zux(x, 0, θ) = −∂zux(x, 0, θ + π). (12c)

In particular, if u ∈ Xs then uz(x, 0) = uθ(x, 0) = 0 and ∂zux(x, 0) = 0.

Proof. The proof is trivial and follows from the definition of ux, uz, uθ.

Observe that if u ∈ X 3 then ∫

∂Ωε

u2 =

∫

Tε

(u2
x + u2

z + u2
θ)z

where Tε = ∂(Dε × (0, 2π)) \ {(x, 0, θ) |x ∈ (0, 1), θ ∈ (0, 2π)}. Also, if u ∈ Xs then

‖u‖2H1 = 2π

∫

Dε

(
u2
x + u2

z + u2
θ

)
z +

u2
z

z
+

u2
θ

z

+ 2π

∫

Dε

(
(∂xux)

2 + (∂zux)
2 + (∂xuz)

2 + (∂zuz)
2 + (∂xuθ)

2 + (∂zuθ)
2
)
z.

This motivates the introduction of the following spaces

H = {u ∈ L2
z(Dε) | ∇u ∈

(
L2
z(Dε)

)2
}

H ′ = {u ∈ L2
z−1(Dε) | ∇u ∈

(
L2
z(Dε)

)2
}

where, if w ≥ 0 on Dε, then L2
w(Dε) is the classical weighted Lebesgue space, endowed with the scalar product

(u, v)L2
w
=

∫

Dε

uvw.

The spaces H and H ′ become Hilbert spaces when endowed with the following scalar products:

(u, v)H = 2π
(
(u, v)L2

z
+ (∂xu, ∂xv)L2

z
+ (∂zu, ∂zv)L2

z

)

(u, v)H′ = 2π
(
(u, v)L2

z
+ (u, v)L2

z−1

+ (∂xu, ∂xv)L2
z
+ (∂zu, ∂zv)L2

z

)

The application T :
(
Xs, ‖ ·‖H1

)
→ H×H ′×H ′ defined by Tu = (ux, uz, uθ) is an isometry, and so if Xs is the completion

of Xs in H1 then T can be uniquely extended to an isometry – still denoted by T : Xs → H ×H ′ ×H ′.
As we could see in Lemma 3, if u ∈ Xs then ux, uz, uθ ∈ C = {(vx, vz, vθ) ∈ C1(D′

ε) ∩ C(Dε) | ∂zvx(x, 0) = 0, vz(x, 0) =
vθ(x, 0) = 0}. We can now show that this completely defines the elements in Xs.

Lemma 4. The operator T is bijective from Xs to C.

Proof. Given (ux, uz, uθ) ∈ C, then we have

u1(x1, x2, x3) = ux(x1, z),

u2(x1, x2, x3) = uz(x1, z)
x2

z
+ uθ(x1, z)

x3

z
,

u3(x1, x2, x3) = uz(x1, z)
x3

z
− uθ(x1, z)

x2

z
,
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with r =
√
x2
2 + x2

3. The only non-trivial part is to show that u,∇u are well-defined on z = 0. This is obvious for u1 and
∂1u1, while

∂ku1(x1, x2, x3) = ∂zux(x1, z)
xk

z

(for k ∈ {2, 3}) is 0 on z = 0, as the product of a function which tends to 0 as z → 0 and a bounded function. The same
idea is used to show that uk, ∂1uk are 0 on z = 0, for k ∈ {2, 3}. Finally,

∂2u2(x1, x2, x3) = ∂zuz(x1, z)
x2
2

z2
+ uz(x1, z)

x2
3

z3
+ ∂zuθ(x1, z)

x2x3

z2
− uθ(x1, z)

x2x3

z3

= ∂zuz(x1, z) +
(uz(x1, z)

z
− ∂zuz(x1, z)

)x2
3

z2
+

x2x3

z2

(−uθ(x1, z)

z
+ ∂zuθ(x1, z)

)
.

Since uz(x1, 0) = uθ(x1, 0) = 0, the second and the third term in the above equation are convergent to 0, while the first
is convergent to ∂zuz(x1, 0). The rest of the terms are treated exactly in the same manner.

Clearly, all the above considerations can be extended to σ, and we define Ys to be the completion of Ys with respect to
the H1 norm. Define

Vs =
{
u ∈ Xs ∩ (H1

#)
3 | div u = 0, u = 0 on Γε

}

Ws =
{
σ ∈ Ys ∩M3×3(H

1
#) | σ = 0 on Γε

}
.

Let us denote L1(u, σ) and L2(u, σ) the operators involved in the variational formulation (3). We have proven in the first
part that there exists exactly one solution to the problem

{
〈L1(u, σ), v〉 = 0 for all v ∈ V,

〈L2(u, σ), τ〉 = 0 for all τ ∈ W.

In a completely similar manner, it can be proven that there is (û, σ̂) ∈ Vs ×Ws such that

{
〈L1(û, σ̂), v̂〉 = 0 for all v̂ ∈ Vs,

〈L2(û, σ̂), τ̂〉 = 0 for all τ̂ ∈ Ws.

We intend to prove that (û, σ̂) is in fact a solution to (3). The key ingredient will be the following:

Lemma 5. Assume that f ∈ Xs. Then there exists bounded operators Φ : V → Vs and Ψ : W → Ws with Φv := vs and
Ψτ := τs such that, for all (v, τ) ∈ V ×W ,

〈L1(û, σ̂), v〉 = 〈L1(û, σ̂), v
s〉, (13a)

〈L2(û, σ̂), τ〉 = 〈L2(û, σ̂), τ
s〉. (13b)

Note that this readily implies that (û, σ̂) is solution to the variational problem (3).

Proof. We prove only for Φ, since the other one is similar. Let v ∈ X 3. Then, by Lemma 3 we have vx, vz, vθ ∈
C(Dε × (0, 2π)), and for all θ ∈ [0, 2π) we have vx(·, ·, θ), vz(·, ·, θ), vθ(·, ·, θ) ∈ C1(D′

ε). Denote

vsx(x, z) =
1

2π

∫ 2π

0

vx(x, z, θ)dθ,

vsz(x, z) =
1

2π

∫ 2π

0

vz(x, z, θ)dθ,

vsθ(x, z) =
1

2π

∫ 2π

0

vθ(x, z, θ)dθ.

Clearly vsx, v
s
z , v

s
θ ∈ C(Dε) ∩ C1(D′

ε), and from (12a), (12b), (12c) it follows that ∂zv
s
x(x, 0) = 0, vsz(x, 0) = vsθ(x, 0) = 0.

Hence, from Lemma 4, we get that vs(= T−1(vsx, v
s
z, v

s
θ)) ∈ Xs. Moreover, it is elementary to see that

‖vs‖H1(Ωε) ≤ ‖v‖H1(Ωε). (14)
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If we denote vas = v − vs, then we have the following

∫ 2π

0

vasx (x, z, θ)dθ =

∫ 2π

0

vasz (x, z, θ)dθ =

∫ 2π

0

vasθ (x, z, θ)dθ = 0.

So if (u, σ) ∈ Xs × Ys, then by a change of variables it can be proved that

〈L1(u, σ), v
as〉 = 0,

and so by a density argument it follows
〈L1(û, σ̂), v〉 = 〈L1(û, σ̂), v

s〉,

which implies that (13a) is true for all v ∈ X 3. From (14) we get that Φ is continuous on X 3, and so it can be uniquely
extended to H1, and (14) is still verified for all v ∈ H1. To conclude we need to show that Φ(V ) ⊂ Vs, that is, for all
v ∈ V , vs is divergence free and satisfies the same boundary conditions as v. The continuity of Φ readily implies that
vs = 0 on Γε, while using the following inequalities

‖div vs‖L2(Ωε) ≤ ‖div v‖L2(Ωε) ∀ v ∈ X 3

‖vs(0)− vs(1)‖L2(Σε

0
) ≤ ‖v(0)− v(1)‖L2(Σε

0
) ∀ v ∈ X 3

which are easily derived by changing of variables, that using Cauchy-Schwarz inequality, we derive that div vs = 0 and
vs ∈ H1

# through a density argument.

We can actually prove more. Note that

Vs = V ′
s ⊕ V ′′

s and Ws = W ′
s ⊕W ′′

s ,

where

V ′
s = {v ∈ Vs | vθ = 0},

V ′′
s = {v ∈ Vs | vx = vz = 0},

W ′
s = {σ ∈ Ws |σxθ = σzθ = 0},

W ′′
s = {σ ∈ Ws |σxx = σxz = σzz = σθθ = 0}.

We intend to show that, provided f ∈ {g ∈ Xs | gθ = 0}, the solution is in V ′
s × W ′

s. We use the same trick as before.
First, there exists (ũ, σ̃) ∈ V ′

s ×W ′
s such that

〈L1(ũ, σ̃), ṽ〉 = 0,

〈L2(ũ, σ̃), τ̃ 〉 = 0.

for all (ṽ, τ̃ ) ∈ V ′
s ×W ′

s. Pick any (v̂, τ̂ ) ∈ Vs ×Ws. Then it can be expressed as (ṽ, τ̃ ) + (v, τ ) with (ṽ, τ̃ ) ∈ V ′
s ×W ′

s and
(v, τ) ∈ V ′′

s ×W ′′
s . To conclude, it rests to prove that

〈L1(ũ, σ̃), v〉 = 0,

〈L2(ũ, σ̃), τ 〉 = 0,

which follows easily from changing the variables.
Finally, we’d like to prove that the recovered pressure is also ”axisymmetric” in some sense. We look at ∂θp as a distribution
in Dε × (0, 2π). Let q ∈ C1

0 (Dε × (0, 2π)) be arbitrary but fixed. Then if v = T−1(0, 0, q), evidently v ∈ C1
0 (Ωε). The

de-Rahm theory leads us to

〈L1(ũ, σ̃), v〉 =

∫

Ωε

p div v, (15)

where (ũ, σ̃) is the solution to problem (3). Taking into account the definition of v and the fact that (ũ, σ̃) ∈ V ′
s ×W ′

s, we
get that

〈L1(ũ, σ̃), v〉 = 0. (16)
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From (15) and (16) we derive

0 =

∫

Ωε

p div v =

∫

Dε×(0,2π)

p∂θq,

so that ∂θp = 0 in the distributional sense.
Let us summarize the results obtained in this section:

Proposition 4. Suppose that f ∈ {g ∈ Xs | gθ = 0}. Then the solution (u, σ) to problem (1)–(2) belongs to the axisym-
metric space V ′

s ×W ′
s. Moreover, the pressure satisfies ∂θp = 0 in the distributional sense.

7 Numerical results

This section is devoted to the numerical simulation of the fluid flows for the direct problem and the asymptotic problem.
In particular in the axisymmetric case we analyse the behaviour of the solution of the 3D problem with respect to the
solution of the asymptotic problem when the domain thickness becomes very small. When dealing with non-axisymmetric
domains we present numerical results for the asymptotic model and discuss them qualitatively.

7.1 Numerical methods

The direct problem. Let us discuss the numerical simulation of the direct problem in the axisymmetric case. First,
we rewrite the variational problem in cylindrical coordinates: Find (ux, uz, σxx, σxz, σzz , σθθ) ∈ V1 such that for all
(vx, vz, τxx, τxz, τzz, τθθ) ∈ V1,

∫

Dε

(1− r)
(
z(∂xux∂xvx + ∂zux∂zvx + ∂xuz∂xvz + ∂zuz∂zvz) +

uzvz
z

)

+ z(ux∂x + uz∂z)(uxvx + uzvz)

+ z(σxx∂xvx + σxz(∂xvz + ∂zvx) + σzz∂zvz) + σθθvz =

∫

Dε

zfvx (AS1)

∫

Dε

z(ux∂x + uz∂z)(σxxτxx + 2σxzτxz + σzzτzz + σθθτθθ)

+ z(∂xuz − ∂zux)(σxz(τzz − τxx)− τxz(σzz − σxx))

+ z(σxxτxx + 2σxzτxz + σzzτzz + σθθτθθ)

+ ε2
(
z(∂xσxx∂xτxx + ∂zσxx∂zτxx + 2∂xσxz∂xτxz + 2∂zσxz∂zτxz

+ ∂xσzz∂xτzz + ∂zσzz∂zτzz + ∂xσθθ∂xτθθ + ∂zσθθ∂zτθθ)

+
σxzτxz + σzzτzz + σθθτθθ

z

)

=

∫

Dε

z(τxx∂xux + τxz(∂xuz + ∂zux) + τzz∂zuz) + τθθuz (AS2)

where V1 is an appropriate variational space.
The boundary conditions translate to





u = 0, σ = 0 on γε,

uz = σxz = σzz = σθθ = 0 on C,

u, σ and p are x1 periodic.

where we have written the lower and the upper part of the boundary of Dε as

C = {(x, 0) |x ∈ [0, 1]}, γε = {(x, εh(x)) |x ∈ [0, 1]}.
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Following equations (AS1), (AS2) we define the following operators:

A1(u, v) =

∫

Dε

(1 − r)
(
z(∂xux∂xvx + ∂zux∂zvx + ∂xuz∂xvz + ∂zuz∂zvz) +

uzvz
z

)

A2(σ, v) =

∫

Dε

z(σxx∂xvx + σxz(∂xvz + ∂zvx) + σzz∂zvz) + σθθvz

A3(σ, τ) =

∫

Dε

z(σxxτxx + 2σxzτxz + σzzτzz + σθθτθθ)

+ ε2
(
z(∂xσxx∂xτxx + ∂zσxx∂zτxx + 2∂xσxz∂xτxz

+ 2∂zσxz∂zτxz + ∂xσzz∂xτzz + ∂zσzz∂zτzz + ∂xσθθ∂xτθθ + ∂zσθθ∂zτθθ)

+
σxzτxz + σzzτzz + σθθτθθ

z

)

A4(u, τ) =

∫

Dε

z(τxx∂xux + τxz(∂xuz + ∂zux) + τzz∂zuz) + τθθuz

N1(u,w, v) =

∫

Dε

z(ux∂x + uz∂z)(wxvx + wzvz)

N2(u, σ, τ) =

∫

Dε

z(ux∂x + uz∂z)(σxxτxx + 2σxzτxz + σzzτzz + σθθτθθ)

N3(u, σ, τ) =

∫

Dε

z(∂xuz − ∂zux)(σxz(τzz − τxx)− τxz(σzz − σxx))

l(v) =

∫

Dε

zfvx + pd

∫

Cε

0

vx,

which leads us to consider the following discrete problem:





Find (uh, σh, ph) ∈ Vh ×Wh ×Qh such that, for all (vh, τh, qh) ∈ Vh ×Wh ×Qh,

A1(uh, vh) +N1(uh, uh, vh) +A2(σh, vh) +B(ph, vh) = l(vh)
B(qh, uh) = 0,

N2(uh, σh, τh) +N3(uh, σh, τh) +A3(σh, τh) = A4(uh, τh),

(17)

where Vh,Wh, Qh are appropriate finite-dimensional subspaces and B(p, v) =
∫
Dε

p div v. The numerical analysis of the

above problem is outside the scope of this paper − we refer to [3] for a detailed study of the axisymmetric Navier-Stokes
system. Here, we shall present two iterative algorithms for solving the problem (17) by linearization. We drop the
subscript h for convenience. Note that the way to address the computation of a nonlinear system usually relies on an
iterative process based upon a linearized problem. In the case of the Oldroyd system, we present two different methods:

Method I. Start with u0 = 0, σ0 = 0. Define un+1, σn+1 and pn+1 by





Find (un+1, σn+1, pn+1) ∈ Vh ×Wh ×Qh such that, for all (v, τ, q) ∈ Vh ×Wh ×Qh,

A1(u
n+1, v) +N1(u

n, un+1, v) +A2(σ
n, v) +B(pn+1, v) = l(v)

B(q, un+1) = 0
N2(u

n, σn+1, τ) +N3(u
n+1, σn+1, τ) +A3(σ

n+1, τ) = A4(u
n+1, τ).

Method II. Start with u0 = 0, σ0 = 0. Define un+1, σn+1 and pn+1 by





Find (un+1, σn+1, pn+1) ∈ Vh ×Wh ×Qh such that, for all (v, τ, q) ∈ Vh ×Wh ×Qh,

A1(u
n+1, v) +N1(u

n, un+1, v) +A2(σ
n+1, v) +B(pn+1, v) = l(v)

B(q, un+1) = 0,
N2(u

n, σn+1, τ) +N3(u
n, σn+1, τ) +A3(σ

n+1, τ) = A4(u
n+1, τ).

In both cases, the solution of the problem is defined as (u∞, σ∞, p∞). In practice the algorithm is stopped by a criterion
based upon the error related to the convergence process. Let us comment the differences between the two algorithms:
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• Note the subtle but crucial difference. While the first method involves splitting the system and treating them
separately, the second one solves the system as a whole. In detail, Method I is a splitting process which consists
in defining (un+1, pn+1) as the solution of a generalized Stokes problem and then update σn+1 with the linearized
constitutive equation, whereas Method II defines (un+1, σn+1, pn+1) as the solution of a linear mixed problem. In
both methods, quadratic nonlinear terms are treated in a classical way which consists in preserving the main unknown
in the equation (the velocity field in the momentum equation, the extra-stress in the constitutive equation).

• The first method is computationally faster but has the disadvantage of not converging for r ≥ 8/9. As a consequence
Method I is generally privileged when the fluid is not too elastic; but computations with large values of r are possible.

• In both cases, the computation of the numerical solution may rely on standard finite element solvers which only
require the determination of the solution of well-posed elliptic linear problems. In simulations, we use P

2 elements
for the velocity field, P1 for the pressure (ensuring the inf-sup condition at the discrete level) and P

1 elements for
the extra-stress.

The asymptotic model. We aim at computing the main order of the asymptotic expansion:

ũ ∼ ε2(ũ0
1, 0, 0), p̃ ∼ p̃0, σ̃ ∼ ε




0 σ̃0
12 σ̃0

13

σ̃0
12 0 0

σ̃0
13 0 0




We shall use a superposition principle to compute the solution of the asymptotic problem:

i. For all x1 ∈ (0, 1), define ṽ1(x1, ·) as the unique solution of the bidimensional scalar problem

P1(x1)





Find ṽ(x1, ·) ∈ H1
0 (S(x1)) such that, for all v ∈ H1

0 (S(x1)),

(1− r)

∫

S(x1)

∇kṽ(x1, ·) · ∇kv =

∫

S(x1)

f̃1(x1, ·)v

where ∇kv = (∂2v, ∂3v)
t. In practice, we solve these 2D problems by using P

1 elements and compute

γ1(x1) :=

∫

S(x1)

∂1ṽ1(x1, ·)

by means of a simple integration.

ii. For all x1 ∈ (0, 1), define (ṽ2, (τ̃2, τ̃3))(x1, ·) as the unique solution of the bidimensional problem

P2(x1)





Find (ṽ, τ̃)(x1, ·) ∈ [H1
0 (S(x1))]

3 such that, for all (v, τ) ∈ [H1
0 (S(x1))]

3,

(1− r)

∫

S(x1)

∇kṽ(x1, ·) · ∇kv +

∫

S(x1)

τ̃ · ∇kv = −

∫

S(x1)

v,
∫

S(x1)

∇k τ̃(x1, ·) · ∇kτ +

∫

S(x1)

τ̃(x1, ·) τ − r

∫

S(x1)

∇kṽ(x1, ·) · τ = 0

and define

γ2(x1) :=

∫

S(x1)

∂1ṽ2(x1, ·).

These 2D problems are solved using P
1 elements for both the velocity and the elastic stress.

iii. Define p̃0 as the unique solution of

−∂1

(
γ2(x1)∂1p̃

0(x1)

)
= γ1(x1) and p̃0(0)− p̃0(1) = pd,

by means of simple integrations.

iv. Define (ũ0
1, σ̃

0
12, σ̃

0
13) as

(ũ0
1, σ̃

0
12, σ̃

0
13) = (ṽ1 + ∂1p̃

0 ṽ2 , ∂1p̃
0 τ̃2 , ∂1p̃

0 τ̃3)

.
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Let us give some details on the computation of the numerical solution: Steps i. and ii. can be done with any standard
2D finite element solver (with P

1 finite elements for instance) and only require the repetition of the computation for many

positions of x1. However note that this repetition can be drastically reduced if x1 7→ S(x1) and x1 7→ f̃1(x1, ·) do not
vary on a significant range of the coordinate x1 ∈ (0, 1). Besides computations in Steps i. and ii. can be easily driven in
parallel. Finally item iii. can be done by performing simple numerical integrations.

7.2 Numerical validation in the axisymmetric case

Let us now consider specific examples on which we will base our numerical simulations. Two axisymmetric geometries are
investigated:

• Geometry (I) is a thin axisymmetric tube with a constriction step whose section Dε is completely described by the
boundary (see the picture below).

Cε
0 = {(0, z) | z ∈ (0, ε)}, Cε

1 = {(1, z) | z ∈ (0, ε)},

C = {(x, 0) |x ∈ (0, 1)} and γε = {(x, εh(x)) |x ∈ (0, 1)},

where

h(x) =





1, x ∈ (0.0, 0.4),
1.5− 1.25 · x, x ∈ (0.4, 0.6),

1, x ∈ (0.6, 1.0).

Dirichlet conditions are prescribed on γε and periodic conditions are prescribed on Cε
0 and Cε

1 for both the velocity
and the elastic stress.

C

Cε
0 Cε

1

γε

• Geometry (II) is a thin axisymmetric tube with an inner obstacle whose section Dε is completely described by the
boundary (see the picture below). Dirichlet conditions are prescribed on γε and free outlet conditions are prescribed
on Cε

0 and Cε
1 for both the velocity and the elastic stress.

Cε
0 = {(0, z) | z ∈ (0, ε)}, Cε

1 = {(1, z) | z ∈ (0.75ε, ε)},

C = {(x, 0) |x ∈ (0, 0.25)} and γε = {(x, ε) |x ∈ (0, 1)} ∪ {(0.25, y) | y ∈ (0, εβ)} ∪ {(x, ε) |x ∈ (0, 1)},

C

Cε
0

Cε
1

γε

Note that these geometries lack the required regularity of our analysis. Nevertheless numerical simulations allow us to
overcome this issue. We use everywhere the model parameters (elasticity parameter, source term, pressure drop):

r = 0.5, f̃ = 0, pd = 1.

Computations have been led:

− with the direct model for ε ∈ {0.3, ..., 0.1} in which case the solution is denoted (uε, σε, pε). Furthermore in the
geometry (I) we define pε as the average pressure along the x1-axis, i.e.

pε(x1) =
1

εh(x1)

∫ εh(x1)

0

p(x1, ·).

A similar definition of the average pressure along the x−axis is done for the geometry (II).
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− with the asymptotic model, in which case the solution is denoted (ũ, σ̃, p̃).

Remark 3. Let us give some details on how to solve the asymptotic solution in the case of geometries (I) or (II):

• The computation of the solution of the asymptotic model only requires to solve elliptic problems

– on 2D disks for geometry (I), see Figure 8 and 9 ;

– on 2D disks for x1 ∈ (0, 0.25), see Figure 10, and on 2D annuli for x1 ∈ (0.25, 1), see Figure 11.

• Step i. is straightforward if the source term satisfies f̃ = 0 (as assumed in our computations): in this case the
solution ṽ1(x1, ·) of problem P1(x1) reduces to 0 for any x1 and, as a consequence, γ1(x1) = 0 for any x1.

• In step ii., solving problems P2(x1) for x1 ∈ (0, 1) can be done as follows:

– for geometry (I), solving problems P2(x1)for x1 ∈ (0, 0.4)∪(0.6, 1) reduces to one single resolution as x1 7→ S(x1)
does not vary on this range of coordinates ; solving problems P2(x1) for x1 ∈ (0.4, 0.6) cannot be reduced similarly
and, in practice, the number of resolution for this range of axial coordinates depends on the discretization number
of the axial coordinate.

– for geometry (II), the resolution of two elliptic problems is only required for the whole range of axial coordinates
x1: indeed problem P2(x1) is solved once on a disk for any x1 ∈ (0, 0.25) and problem P2(x1) is solved once on
a annulus for any x1 ∈ (0.25, 1).

• As γ1 ≡ 0, the pressure field is defined as (as pd = 1):

p̃(x1) = −

∫ x1

0 γ2∫ 1

0
γ2

which can be computed by means of numerical integrations.

Figures 1–4 provide the numerical results obtained with the direct model for the velocity field, the pressure field, the
pressure field and the components of the elastic extra-stress. In order to compare the direct model to the asymptotic one,
we focus on the pressure profile: we compare the average pressure for various values of ε to the asymptotic pressure p̃, see
Figures 5 and 6, and we numerically obtain:

‖pε − p̃‖L2(0,1) = O(ε),

see in particular Figure 7.
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(I)

1.1e-020.0e+00 2.2e-02

ux

(II)

4.0e-040.0e+00 8.0e-04

ux

Figure 1: Geometry (I) or (II) with ε = 0.2: axial component of the velocity field.

(I)

0.0e+00-1.7e-03 2.8e-03

uz

(II)

1.7e-040.0e+00 3.4e-04

uz

Figure 2: Geometry (I) or (II) with ε = 0.2: radial component of the velocity field.

(I)

0.0e+00-5.0e-01 1.8e-01

p

(II)

1.4e-010.0e+00 2.8e-01

p

Figure 3: Geometry (I) or (II) with ε = 0.2: pressure field. Note that the linear profile (x, y, z) 7→ −x due to the pressure
drop pd = 1 has been removed in the above results.
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(I)

0.0e+00-2.9e-03 2.9e-03

σxx

(II)

-1.2e-04-2.0e-04 4.2e-05

σxx

(I)

-2.2e-03-4.4e-03 0.0e+00

σxz

(II)

0.0e+00-7.6e-05 4.0e-05

σxz

(I)

0.0e+00-7.4e-04 3.9e-04

σzz

(II)

0.0e+00-6.8e-05 3.4e-05

σzz

(I)

0.0e+00-7.4e-04 8.9e-04

σθθ

(II)

3.2e-050.0e+00 6.5e-05

σθθ

Figure 4: Geometry (I) or (II) with ε = 0.2: components of the elastic extra-stress.
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−0.1
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u
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pε for ε = 0.3
pε for ε = 0.1
p̃ (asymptotic pressure)

Axial coordinate

Figure 5: Geometry (I): pressure profiles for various values of the radius magnitude and in the asymptotic case (note that
the linear contribution x 7→ −x has been removed).

0
0 0.5 1

0.1

0.2

P
re
ss
u
re

pε for ε = 0.3
pε for ε = 0.1
p̃ (asymptotic pressure)

Axial coordinate

Figure 6: Geometry (II): pressure profiles for various values of the radius magnitude and in the asymptotic case (note
that the linear contribution x 7→ −x has been removed).
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geometry (I)
geometry (II)
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‖
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Figure 7: Geometry (II): convergence of the average pressure pε to the asymptotic pressure p̃ with respect to the small
parameter ε.

7.3 The asymptotic model in the non-axisymmetric case

We consider the case of a non-axisymmetric domain, namely a cylinder with an upper constriction referred as geometry
(III), see Figure 12:

− for x1 ∈ (0, 0.4) ∪ (0.6, 1), the section S(x1) is the disk of radius 1 ;

− for x1 ∈ (0.4, 0.6), the section S(x1) is modified by removing from the unit disk the upper part [z > 1 − K] with
K = 0.15.

We also consider the case of an axisymmetric domain, namely a cylinder with a constriction referred as geometry (IV),
see Figure 13:

− for x1 ∈ (0, 0.4) ∪ (0.6, 1), the section S(x1) is the disk of radius 1 ;

− for x1 ∈ (0.4, 0.6), the section S(x1) is the disk of radius 1−K with K = 0.15.

Geometries (III) and (IV) only differ in the constriction part, namely for x1 ∈ (0.4, 0.6): in geometry (III) the constriction
of magnitude K in the upper part whereas, in geometry (IV), the constriction of magnitude K is axisymmetric.

Numerical simulations provide the asymptotic pressure, velocity field and elastic extra-stress tensor:

ũ ∼ ε2(ũ0
1, 0, 0), p̃ ∼ p̃0, σ̃ ∼ ε




0 σ̃0
12 σ̃0

13

σ̃0
12 0 0

σ̃0
13 0 0


 .

Let us comment the results:

− Figure 14 focuses on the pressure profile for geometries (III) and (IV). Pressure variations are more important in
geometry (IV) whose constriction magnitude is larger than in geometry (III).

− Figures 15 and 16 present the velocity and the components of the elastic stress tensor at x1 = 0.25 (in the regular
area) and x1 = 0.50 (in the constricted area) for geometry (III).
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a)

3.4e-010.0e+00 6.7e-01

ũ0
1

b)

0.0e+00-2.4e-02 2.4e-02

σ̃12

c)

0.0e+00-2.4e-02 2.4e-02

σ̃13

Figure 8: Geometry (I): normalized fields at x1 = 0.25: a) velocity profile ũ0
1, b) extra-stress σ̃12, c) extra-stress σ̃13.

a)

3.4e-010.0e+00 6.7e-01

ũ0
1

b)

0.0e+00-2.4e-02 2.4e-02

σ̃12

c)

0.0e+00-2.4e-02 2.4e-02

σ̃13

Figure 9: Geometry (I): normalized fields at x1 = 0.58: a) velocity profile ũ0
1, b) extra-stress σ̃12, c) extra-stress σ̃13.
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a)

1.1e-020.0e+00 2.1e-02

ũ0
1

b)

0.0e+00-5.0e-04 5.0e-04

σ̃12

c)

0.0e+00-5.1e-04 5.1e-04

σ̃13

Figure 10: Geometry (II): normalized fields at x1 = 0.125: a) velocity profile ũ0
1, b) extra-stress σ̃12, c) extra-stress σ̃13.

a)

1.1e-020.0e+00 2.1e-02

ũ0
1

b)

0.0e+00-5.0e-04 5.0e-04

σ̃12

c)

0.0e+00-5.1e-04 5.1e-04

σ̃13

Figure 11: Geometry (II): normalized fields at x1 = 0.500: a) velocity profile ũ0
1, b) extra-stress σ̃12, c) extra-stress σ̃13.
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a) b)

Figure 12: Geometry (III): a) section S(x1) for x1 ∈ (0, 0.4) ∪ (0.6, 1), b) section S(x1) for x1 ∈ (0.4, 0.6).

a) b)

Figure 13: Geometry (IV): a) section S(x1) for x1 ∈ (0, 0.4) ∪ (0.6, 1), b) section S(x1) for x1 ∈ (0.4, 0.6).
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geometry (III)
geometry (IV)

Figure 14: Geometries (III) and (IV): pressure profile in the asymptotic case (note that the linear contribution x 7→ −x
has been removed).

− Figures 17 and 18 present the velocity and the components of the elastic stress tensor at x1 = 0.25 (in the regular
area) and x1 = 0.50 (in the constricted area) for geometry (IV). Note that the velocity magnitude is more important
in the constricted area, as it is expected.

The regular sections of geometries (III) and (IV) are the same: this implies that, considering the construction of the
asymptotic model, the flux

∫
S(x1)

ũ0
1 through each section S(x1) in geometry (III) only differs from the one in geometry

(IV) through the ratio between the derivative of their respective pressure distribution. As a consequence, denoting F(III)

and F(IV) the respective fluxes, we expect to obtain F(III) > F(IV) (see the behaviour of the pressure derivative in geome-
tries (III) and (IV) in Figure 14). In practical computations, we obtain F(III) = 0.7436 and F(IV) = 0.6421.
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a)

2.5e-010.0e+00 5.0e-01

ũ0
1

b)

0.0e+00-2.1e-02 2.1e-02

σ̃12

c)

0.0e+00-2.1e-02 2.1e-02

σ̃13

Figure 15: Geometry (III): normalized fields at x1 = 0.25: a) velocity profile ũ0
1, b) extra-stress σ̃12, c) extra-stress σ̃13.

a)

2.5e-010.0e+00 5.0e-01

ũ0
1

b)

0.0e+00-2.1e-02 2.1e-02

σ̃12

c)

0.0e+00-2.1e-02 2.1e-02

σ̃13

Figure 16: Geometry (III): normalized fields at x1 = 0.50: a) velocity profile ũ0
1, b) extra-stress σ̃12, c) extra-stress σ̃13.
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a)

2.8e-010.0e+00 5.6e-01

ũ0
1

b)

0.0e+00-2.1e-02 2.1e-02

σ̃12

c)

0.0e+00-2.1e-02 2.1e-02

σ̃13

Figure 17: Geometry (IV): normalized fields at x1 = 0.25: a) velocity profile ũ0
1, b) extra-stress σ̃12, c) extra-stress σ̃13.

a)

2.8e-010.0e+00 5.6e-01

ũ0
1

b)

0.0e+00-2.1e-02 2.1e-02

σ̃12

c)

0.0e+00-2.1e-02 2.1e-02

σ̃13

Figure 18: Geometry (IV): normalized fields at x1 = 0.50: a) velocity profile ũ0
1, b) extra-stress σ̃12, c) extra-stress σ̃13.
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