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Upon host penetration, fungal pathogens secrete a plethora of effectors to promote
disease, including proteases that degrade plant antimicrobial proteins, and protease
inhibitors (PIs) that inhibit plant proteases with antimicrobial activity. Conversely, plants
secrete proteases and PIs to protect themselves against pathogens or to mediate
recognition of pathogen proteases and PIs, which leads to induction of defense
responses. Many examples of proteases and PIs mediating effector-triggered immunity
in host plants have been reported in the literature, but little is known about their role
in compromising basal defense responses induced by microbe-associated molecular
patterns. Recently, several reports appeared in literature on secreted fungal proteases
that modify or degrade pathogenesis-related proteins, including plant chitinases or PIs
that compromise their activities. This prompted us to review the recent advances on
proteases and PIs involved in fungal virulence and plant defense. Proteases and PIs from
plants and their fungal pathogens play an important role in the arms race between plants
and pathogens, which has resulted in co-evolutionary diversification and adaptation
shaping pathogen lifestyles.
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Introduction

For successful infection of host plants and establishment of disease, fungal pathogens need
weaponry to facilitate penetration, host colonization and uptake of nutrients for growth and
reproduction, and at the same time to protect themselves against host defense responses.
On the other hand, plants have developed surveillance systems to recognize and defend
themselves against invading pathogens. Plant immune receptors recognize conserved microbe-
associated molecular patterns (MAMPs) like chitin oligomers released from fungal cell walls
during infection. This recognition leads to MAMP-triggered immunity (MTI) and initiates
basal defense responses including the activation of structural and (bio)chemical barriers (Jones
and Dangl, 2006; Spoel and Dong, 2012). However, adapted plant pathogens have gained the
ability to overcome MTI by producing effector molecules that suppress or compromise MTI
responses, thereby facilitating effector-triggered susceptibility (ETS; Stergiopoulos and de Wit,
2009). In response, plants have developed an additional layer of defense that enables them to

Frontiers in Plant Science | www.frontiersin.org August 2015 | Volume 6 | Article 5841

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00584
https://creativecommons.org/licenses/by/4.0/
mailto:pierre.dewit@wur.nl
http://dx.doi.org/10.3389/fpls.2015.00584
http://journal.frontiersin.org/article/10.3389/fpls.2015.00584/abstract
http://journal.frontiersin.org/article/10.3389/fpls.2015.00584/abstract
http://journal.frontiersin.org/article/10.3389/fpls.2015.00584/abstract
http://journal.frontiersin.org/article/10.3389/fpls.2015.00584/abstract
http://loop.frontiersin.org/people/198933
http://loop.frontiersin.org/people/254290
http://loop.frontiersin.org/people/191065
http://loop.frontiersin.org/people/186884
http://loop.frontiersin.org/people/199158
http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Karimi Jashni et al. Plant and pathogen proteases and their inhibitors

recognize pathogen effectors or effector-modified host targets
leading to effector-triggered immunity (ETI; Jones and Dangl,
2006).

Proteases and protease inhibitors (PIs) secreted by pathogens
or their host plants have been extensively studied and have been
demonstrated to play an important role in ETS and ETI (van
der Hoorn, 2008). However, little is known about their role
in MTI and related plant basal defense responses. Plant basal
defense responses include the induction of pathogenesis-related
proteins (PRs) such as antimicrobial chitinases, β-1,3-glucanases
and proteases that hydrolyse the fungal cell wall components
chitin, glucans, and polypeptides, respectively. The induction of
these PR proteins upon plant infection, their antifungal activity,
as well as their exploitation in engineering resistance in transgenic
plants are very well documented (Wubben et al., 1996; Sels et al.,
2008; Balasubramanian et al., 2012; Cletus et al., 2013). An early
report in the literature suggested that pathogens might overcome
the deleterious effects of plant chitinases by secreting proteases
that modified them (Lange et al., 1996; Sela-Buurlage, 1996).
This was further supported by recent studies, which indicate that
chitinases are targeted by pathogen proteases and protected by PIs
(Naumann et al., 2011; Slavokhotova et al., 2014). This encouraged
us to review the recent advances on proteases and PIs that play a
role in the arms race betweenplants and their fungal and oomycete
pathogens.

Plant Proteases and Protease Inhibitors
Involved in Basal Defense

Most PR proteins exhibit direct antimicrobial activities, such as
chitinases that degrade chitin present in fungal cell walls. PR
proteins play a role in both constitutive and induced basal defense
responses (Avrova et al., 2004; Shabab et al., 2008; van Esse et al.,
2008). For example, tomato and potato contain basal levels of
proteases in their apoplast, including serine proteases like P69,
and papain-like cysteine proteases (PLCPs) like Rcr3, which are
required for resistance of tomato against Cladosporium fulvum
(Song et al., 2009), as well as Pip1 (Phytophthora inhibited protease
1; Tian et al., 2007; Shabab et al., 2008) and C14, which play
a role in the resistance of potato against Phytophthora infestans
(Kaschani et al., 2010; Bozkurt et al., 2011). After being challenged
by pathogens, proteases are induced both locally (Tian et al., 2005)
and systemically in the apoplast (Tian et al., 2007; Shabab et al.,
2008; Song et al., 2009), which suggests that their activity affects
pathogen growth directly or indirectly. Deletion or silencing of
genes encoding these proteases enhanced the susceptibility of
plants to pathogens, supporting their role in defense responses.
Deletion of Rcr3 increased the susceptibility of tomato to the late
blight pathogen P. infestans (Song et al., 2009), to the leaf mold
pathogenC. fulvum (Dixon et al., 2000), and also to the potato cyst
nematode Globodera rostochiensis (Lozano-Torres et al., 2012).
Likewise, silencing of C14 in Nicotiana benthamiana significantly
increased their susceptibility to P. infestans (Kaschani et al., 2010).
These findings suggest that proteases have a determinative role in
the execution of defense against plant pathogens.

Plant PIs have also been reported to play a role in plant
immunity, through the inhibition of pathogen proteases, or the

regulation of endogenous plant proteases (Ryan, 1990; Mosolov
et al., 2001; Valueva and Mosolov, 2004; Kim et al., 2009).
This has been shown for PIs from barley (Hordeum vulgare)
against proteases from Fusarium culmorum (Pekkarinen et al.,
2007), as well as for PIs from broad bean (Vicia faba), which
inhibited the mycelial growth of several pathogens (Ye et al.,
2001). The A. thaliana unusual serine protease inhibitor (UPI)
was shown to play a role in defense against the necrotrophic
fungi Botrytis cinerea and Alternaria brassicicola (Laluk and
Mengiste, 2011). The UPI protein strongly inhibited the
serine protease chymotrypsin but also affected the cysteine
protease papain (Laluk and Mengiste, 2011). Plants harboring
a loss-of-function UPI allele displayed enhanced susceptibility
to B. cinerea and A. brassicicola, but not to the bacterium
Pseudomonas syringae. Also, hevein-like antimicrobial peptides
from wheat (WAMPs) were shown to inhibit class IV chitinase
degradation by fungalysin, a metalloprotease secreted by
Fusarium verticillioides (Slavokhotova et al., 2014). WAMPs
bind to fungalysin, but are not cleaved by the enzyme due to
the presence of a Ser residue between the Gly and Cys residues
where cleavage of class IV chitinase by fungalysin normally takes
place (Naumann et al., 2011; Slavokhotova et al., 2014). Adding
equal molar quantities of WAMP and chitinase to fungalysin
was sufficient to completely inhibit fungalysin activity suggesting
a higher affinity of the protease to the WAMP than to the
chitinase.

Interestingly, some pathogens can also manipulate the
transcription of plant PIs to inhibit deleterious effects of plant
proteases in their favor. For example, production of maize
cysteine proteases is induced during infection by Ustilago maydis,
but at the same time the fungus induces the production of maize
cystatin CC9 that inhibits cysteine proteases to facilitate infection
(van der Linde et al., 2012b; Mueller et al., 2013). This suggests
an evolutionary arms race in which the infection strategy of
the pathogen benefits from the host’s antimicrobial defense to
suppress its defense responses.

Fungal Proteases Targeting Host Defense
Proteins

The arms race between pathogens and their hosts is often
explained by recognition of MAMPs or effectors through pattern
recognition receptors or resistance proteins, which results in MTI
or ETI (Jones and Dangl, 2006). However, several components of
basal defense are both constitutive and induced after interaction
between MAMPs/effectors and immune receptors. PR proteins
provide an excellent example of this. PR proteins are generally
stable proteins that often exhibit a basal level of expression,
but are also strongly induced after infection (Sels et al., 2008).
PR proteins and their antifungal activity have been exploited
to improve broad-spectrum resistance in plants. Plants such as
tobacco, tomato, potato, peanut, and cacao have been engineered
to over-express chitinases alone (Schickler and Chet, 1997; de las
Mercedes Dana et al., 2006; Maximova et al., 2006; Iqbal et al.,
2012; Cletus et al., 2013) or in combination with other PR proteins
in pea and rice (Sridevi et al., 2008; Amian et al., 2011), and
showed enhanced resistance to fungal pathogens.
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Plant chitinases and especially chitin-binding domain (CBD)-
containing chitinases play an important role in defense against
pathogenic fungi (Iseli et al., 1993; Suarez et al., 2001). Some
fungal pathogens such asC. fulvum secrete chitin-binding effector
proteins like CfAvr4 into the colonized extracellular space of
tomato leaves to protect themselves against the antifungal activity
of apoplastic plant chitinases (van den Burg et al., 2006). Indeed,
CfAvr4 binds to chitin of fungal cell walls, making chitin
inaccessible to plant chitinases, thereby preventing hydrolysis by
these enzymes (van den Burg et al., 2006). Functional homologs
of CfAvr4 have been identified in other Dothideomycete plant
pathogens, in which they likely also protect the fungal cell wall
against plant chitinases (Stergiopoulos et al., 2010; de Wit et al.,
2012; Mesarich et al., 2015). However, many fungal pathogens
do not carry homologs of the CfAvr4 gene in their genome.
It appears that some fungi secrete proteases that cleave CBD-
chitinases. For example, F. solani f. sp. phaseoli is able to modify
chitinases during infection of bean to facilitate host colonization
(Lange et al., 1996). Also an extracellular subtilisin protease
from F. solani f. sp. eumartii was reported to modify chitinases
and β-1,3-glucanases present in intercellular washing fluids of
potato (Olivieri et al., 2002). More recently, it was shown that
F. verticillioides and other maize pathogens, including Bipolaris
zeicola and Stenocarpella maydis, secrete two types of proteases
that truncate maize class IV CBD-chitinases (Naumann, 2011). A
fungalysin metalloprotease of F. verticillioides was found to cleave
within the CBD domain between conserved Gly and Cys residues
(Naumann et al., 2011), while a novel polyglycine hydrolase
present in many fungi belonging to the family of Pleosporineae
cleaved within the polyglycine linker present in the hinge domain
of class IV chitinases (Naumann et al., 2014, 2015). In another
recent study it was shown that the fungal tomato pathogens B.
cinerea, V. dahliae, and F. oxysporum f. sp. lycopersici secrete
proteases that modify tomato CBD-chitinases (Karimi Jashni
et al., 2015). For F. oxysporum f. sp. lycopersici, the synergistic
action of a serine protease, FoSep1, and a metalloprotease,
FoMep1 (the ortholog of fungalysin from F. verticillioides), was
required for cleavage and removal of the CBD from two tomato
CBD-chitinases (Karimi Jashni et al., 2015). Removal of the
CBD from two tomato CBD-chitinases by these two enzymes
led to a reduction of their chitinase and antifungal activity.
In addition, mutants of F. oxysporum f. sp. lycopersici lacking
both FoSep1 and FoMep1 exhibited reduced virulence on tomato,
confirming that secreted fungal proteases are important virulence
factors by targeting CDB-chitinases to compromise an important
component of plant basal defense (Karimi Jashni et al., 2015).

Collectively, the activity of fungal proteases might explain
why overexpression of plant chitinases in transgenic plants has
not become an effective strategy to obtain durable resistance
against fungal pathogens. Secretion of proteases and PIs by
pathogens to modify, degrade, or inhibit basal defense proteins
might have played an important role during co-evolution with
their host plants (Hörger and van der Hoorn, 2013). Therefore,
overexpression of chitinases from a heterologous source in
transgenic plants might be a more efficient approach to obtain
durable resistance against pathogens, as they have not co-evolved
with these “foreign” defense proteins.

Fungal Protease Inhibitors Targeting Host
Proteases

Plant pathogens also secrete PI effectors to inhibit plant defense
proteases and promote disease development. These effectors are
targeted to various host compartments (Tian et al., 2009). One
such effector, Avr2, secreted by C. fulvum during infection, is
required for full virulence of this fungus on tomato (Rooney
et al., 2005). Avr2 inhibits the tomato apoplastic PLCPs Rcr3
and Pip1 to support growth of C. fulvum in the apoplast.
Also, plants expressing Avr2 showed increased susceptibility to
other pathogenic fungi, including B. cinerea and V. dahliae
(van Esse et al., 2008). Moreover, A. thaliana plants expressing
Avr2 triggered global transcriptional reprogramming, reflecting
a typical host response to pathogen attack (van Esse et al.,
2008). Two other PI effectors are the cystatin-like proteins EPIC1
(extracellular proteinase inhibitor C1) and EPIC2B (extracellular
proteinase inhibitor C2B), whose expression is strongly induced
in the oomycete P. infestans during biotrophic growth on tomato
leaves (Tian et al., 2007; Song et al., 2009). These PIs selectively
target the plant PLCPs Rcr3, Pip1, and C14 in the apoplast of
potato and tomato. The EPICs inhibit C14 and possibly other
PLCPs over a wider pH range than that observed for Avr2, which
only inhibits Pip1 and Rcr3 at pH values occurring in the apoplast
where the pathogen grows. In addition, P. infestans secretes two
serine PIs (EPI1 and EPI10) that target and inhibit the major
apoplastic serine protease P69B, likely to decrease its role in
defense (Tian et al., 2004, 2005). It was proposed that EPI1 protects
EPIC1 and EPIC2B proteins from degradation by P69B (Tian,
2005). Furthermore, the maize pathogen U. maydis secretes the
cysteine PI Pit2 that strongly inhibits three abundant defense-
related maize cysteine proteases (CP2 and its two isoforms CP1A
and CP1B; Van der Linde et al., 2012a; van der Linde et al.,
2012b; Mueller et al., 2013). These findings indicate that cysteine
and serine PIs secreted by different groups of filamentous fungal
and oomycete pathogens, as well as their activity against plant
proteases, can compromise plant basal defense responses. A
schematic overview of different types of interactions between
pathogen and host proteases and PIs at the plant–pathogen
interface is presented in Figure 1.

Proteases, PI Effectors, and Their Role in
Receptor-Mediated Host Defense
Responses

The plant immune system is able to recognize pathogen effectors
to mount receptor-mediated defense responses. Although the
intrinsic function of protease and PI effectors secreted by some
pathogenic fungi promote disease through manipulation of host
defense, proteases and PI effectors can also be recognized by host
immune receptors mediating defense responses. This adaptation
and counter-adaptation reflects the arms race between pathogens
and their host plants. A clear example of such an evolutionary
arms race are the cysteine PIs Avr2 from C. fulvum and Gr-VAP1
(Globodera rostochiensis Venom Allergen-like Protein) from G.
rostochiensis that bind and inhibit the tomato cysteine protease
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FIGURE 1 | Proteases and protease inhibitors at the
plant–pathogen interface. As part of their basal defense response,
plants secrete deleterious enzymes such as proteases (A) and
chitin-binding domain (CBD)-containing chitinases (B) that target
pathogen components. In response, filamentous pathogens secrete
protease inhibitors (C) that inhibit plant cysteine or serine proteases.

Filamentous pathogens also secrete fungalysin metallo- or serine
proteases (D) that process antifungal CBD-chitinases of plants. In
response, plants secrete antimicrobial peptides such as hevein-like
antimicrobial peptides from wheat (WAMPs) (E) that inhibit fungalysin
metalloproteases or cystatins (F) that inhibit endogenous plant cysteine
proteases. Examples shown in this figure are discussed in the text.

Rcr3pim. The tomato immune receptor protein Cf-2 senses this
interaction andmediates the induction of defense responses (Song
et al., 2009; Lozano-Torres et al., 2012).Most likely, the interaction
causes a conformational change in Rcr3, which is recognized
by the Cf-2 receptor (Krüger et al., 2002; Rooney et al., 2005).
This hypothesis is supported by the finding that a natural variant
of Rcr3 is recognized by Cf-2 in an Avr2-independent manner
(Dixon et al., 2000). Moreover, in tomato plants lacking the Cf-
2 receptor, targeting of Rcr3 is not sensed and plants are more
susceptible to G. rostochiensis (Lozano-Torres et al., 2012).

Co-evolution Between Plants and Their
Pathogens is Reflected by the Numerous
Variant Proteases and PIs in the Genomes
of Both Organisms

The genomes of fungal plant pathogens encode predicted
proteases belonging to various subfamilies that vary in number
between pathogens with different lifestyles. Generally, hemi-
biotrophs and saprotrophs contain higher numbers of secreted
proteases than biotrophs (Ohm et al., 2012). However, these
predictions are based on gene numbers and may not be supported
by their transcription and translation profiles. For example, C.
fulvum, which is a biotrophic fungus, has numbers of proteases
that are comparable to the phylogenetically closely related hemi-

biotroph Dothistroma septosporum (de Wit et al., 2012). However,
likely due to its adaptation to a different host and lifestyle, manyC.
fulvum protease genes are not expressed in planta and some have
undergone pseudogenization (van der Burgt et al., 2014). Deletion
and duplication of protease genes were reported to occur in the
genome of the grass endophytic fungus Epichloë festucae (Bryant
et al., 2009) but their biological implications have not yet been
studied.

Adaptation of PI effectors from pathogens to inhibit different
host proteases has been observed in several cases. The Avr2
PI of C. fulvum, for example, has a high affinity for the host
proteases Rcr3 and Pip1 and a low affinity for C14 (Shabab et al.,
2008; Hörger et al., 2012). P. infestans EPICs have a high affinity
for C14 and a low affinity for Rcr3 and Pip1 (Kaschani et al.,
2010). Furthermore, U. maydis Pit2 inhibits the maize cysteine
proteases CP1, CP2, and XCP2, but does not inhibit cathepsin
CatB (Mueller et al., 2013). Different types of selection pressure
may lead to the circumvention of protease inhibition by PIs. For
example, purifying or diversifying selection has been reported
for the proteases Rcr3, C14, and Pip1, and has been shown to
act at their PI binding sites. Sequencing of the tomato proteases
Rcr3 and Pip1 across different wild tomato species has shown
that these proteins are under strong diversifying selection imposed
by Avr2. For instance, one of the variant residues in the binding
site of Rcr3 prevented inhibition by Avr2, indicating selection for
evasion from recognition by this inhibitor (Shabab et al., 2008).
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C14 from solanaceous plants is also the target of EPICs secreted by
P. infestans and is under diversifying selection in potato and under
conservative selection in tomato. This demonstrates that C14
plays an active role in host immunity against this pathogen and
variations in the sequence of C14 in natural hosts of P. infestans
highlight the co-evolutionary arms race at the plant–pathogen
interface (Kaschani et al., 2010).

Evolutionary diversification may vary from point mutation to
gene deletion or insertion. EPIC1 and EPIC2 are PIs present in
P. infestans, however their orthologs were lost in P. sojae and P.
ramorum (Tian et al., 2007). P. mirabilis, a species closely related
to P. infestans, is a pathogen of Mirabilis jalapa, and secretes the
PI PmEPIC1, an ortholog of EPIC1 that inhibits C14 but not Rcr3
(Dong et al., 2014). However, M. jalapa secretes MRP2, a PLCP
homolog of Rcr3, that is more effectively inhibited by PmEPIC1
than by EPIC1 (Dong et al., 2014). Substitution of one amino acid
residue in PmEPIC1 and EPIC1 restored the inhibitory function
of PmEPIC1 on Rcr3 and of EPIC1 on MRP2, respectively. These
results show that proteases and PIs have played important roles
in adaptation of the two Phytophthora species to their respective
host plants, although the two species diverged only a 1000 years
ago (Dong et al., 2014). This is an excellent example for a role
of a protease and PI in the arms race between a plant and its
pathogen and exemplifies how diversification and adaptation of
a protease-PI complex may work at the molecular level.

Conclusion and Perspective

The recent advances reviewed here exemplify determinative roles
of proteases and PIs in shaping plant–pathogen interactions.
Analyses of genome databases of both plants and pathogens
show that these organisms encode numerous proteases and PIs,

of which we are just beginning to understand some of their
roles. Advanced transcriptome and proteome tools such as RNA
sequencing and protease profiling will facilitate identification of
important proteases and PIs for further functional analysis. The
redundancy of proteases in pathogens is a technical challenge that
has so far hampered defining their biological functions. Targeted
deletion of one or even two protease genes failed to change
virulence of the plant pathogenic fungi Glomerella cingulata
(Plummer et al., 2004) and B. cinerea (ten Have et al., 2010),
respectively. Karimi Jashni et al. (2015) could only show decreased
virulence of a double protease mutant of the tomato pathogen
F. oxysporum by a combined biochemical and genetic approach,
and using a defined plant enzyme (CBD-chitinase) as a substrate
that was presumed to be involved in plant defense. This indicates
that multi-gene targeting of protease and PI genes to identify their
role in virulence or avirulence remains a challenge in filamentous
fungi. Targeting multiple protease and PI genes might also be
hampered by lack of sufficient numbers of selection markers for
targeted gene replacement. In the latter case multiple protease and
PI genes might be targeted by targeted gene silencing.
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