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Applying holistic indicators to assess dairy farm efficiency is essential for sustainable milk production. Data Envelop-
ment Analysis (DEA) has been instrumental for the calculation of such indicators. However, ‘additive’ DEA models 
have been rarely used in dairy research. This study presented an additive model known as slacks-based measure 
(SBM) of efficiency and its advantages over DEA models used in most past dairy studies. First, SBM incorporates 
undesirable outputs as actual outputs of the production process. Second, it identifies the main production factors 
causing inefficiency. Third, these factors can be ‘priced’ to estimate the cost of inefficiency. The value of SBM for ef-
ficiency analyses was demonstrated with a comparison of four contrasting dairy management systems in terms of 
technical and environmental efficiency. These systems were part of a multiple-year breeding and feeding systems 
experiment (two genetic lines: select vs. control; and two feeding strategies: high forage vs. low forage, where the 
latter involved a higher proportion of concentrated feeds) where detailed data were collected to strict protocols. The 
select genetic herd was more technically and environmentally efficient than the control herd, regardless of feeding 
strategy. However, the efficiency performance of the select herd was more volatile from year to year than that of 
the control herd. Overall, technical and environmental efficiency were strongly and positively correlated, suggest-
ing that when technically efficient, the four systems were also efficient in terms of undesirable output reduction. 
Detailed data such as those used in this study are increasingly becoming available for commercial herds through 
precision farming. Therefore, the methods presented in this study are growing in importance.

Key words: efficiency indicators; slacks-based measure (SBM); undesirable outputs; savings potentials; slack shares; 
experimental dairy farm data

Introduction
Sustainably improving resource use efficiency to meet the nutritional demands of a growing and more affluent 
population is a key challenge facing humankind today (Foresight 2011). Dairy farming is required to comply with 
agricultural policies considering resource use efficiency as a prerequisite for sustainability (Sutton et al. 2011, van 
den Berg et al. 2011). Wider definitions of efficient dairy farm production are therefore essential for dairy farm 
sustainability and so is the translation of these definitions to improved efficiency indicators (see Callens and Tyteca 
1999, de Koeijer et al. 2002). In this study, we were concerned with the calculation of more advantageous indica-
tors for technical and environmental efficiency (from now on denoted as TE and EE respectively) of dairy farms.

Widely-used efficiency indicators evaluating dairy systems have the form of partial ratios expressing e.g. impacts 
per kilogram of milk and/or meat and per hectare of land use (e.g. Lovett et al. 2006, Chagunda et al. 2009, Bell 
et al. 2011, O’Brien et al. 2014, Ross et al. 2014). Consequently, the number of these indicators will be large if an 
efficiency assessment is to be comprehensive. This can complicate interpretation of the results and their commu-
nication to stakeholders (see Jollands et al. 2003). Furthermore, such partial ratios do not account for the whole 
range of production performance parameters (Asmild et al. 2009, Bogetoft 2012). Also, assessments of this nature 
tend to report indicator results averaged across all farms in the study, ignoring the potential wide range of results 
between different farms (see Iribarren et al. 2011).

An advantageous alternative to partial efficiency indicators is the multiple-input, multiple-output efficiency meas-
urement method known as Data Envelopment Analysis (DEA; Charnes et al., 1978), which we employed in this 
study. DEA calculates single aggregated indices of efficiency for each dairy farm by assessing the whole produc-
tion system and the different environmental impacts generated by the farms’ given technology (Berre et al. 2013). 
Thus, DEA provides us with a broader view of the dairy farm efficiency problem. Consequently, numerous studies 
have used DEA to assess, among others, the TE and EE of dairy farms (e.g. Berre et al. 2014, Ramilan et al. 2011, 
Shortall and Barnes 2013, Toma et al. 2013).
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Current DEA dairy farm studies can be improved in three ways outlined below. The first two issues are model- 
related and the third is data-related. We attempted to overcome all three issues in this study. First, almost all stud-
ies have employed DEA models which assume that the reductions in inputs (e.g. feed) and undesirable outputs 
(e.g. greenhouse gas emissions; GHGE) that a farm should make to become efficient are proportional. The same 
is true for studies aiming to achieve dairy farm efficiency through an increase in desirable outputs (e.g. milk) and 
a decrease in undesirable outputs. On the other hand, models relaxing this proportionality assumption allow us 
to identify the variables (inputs and desirable/undesirable outputs) contributing the most to a farm’s inefficiency 
(e.g. Iribarren et al. 2011). Second, most studies with undesirable outputs have used DEA models which are un-
able to incorporate them as actual outputs of the production process. Specifically, undesirable outputs have been 
modelled as inputs to be minimized (e.g. Ramilan et al. 2011, Shortall and Barnes 2013) or their reciprocal has 
been considered as a desirable output to be maximized (e.g. Shortall and Barnes 2013). The former practice fails 
to reflect the true production process (Färe and Grosskopf 2003, Kuosmanen 2005, You and Yan 2011). With the 
latter practice, the scale and interval of the original data are lost (You and Yan 2011). To the best of our knowl-
edge, only a few DEA dairy studies have dealt with the issues of proportionality and inappropriate modelling of 
undesirable outputs (e.g. Berre et al. 2013, 2014, Iribarren et al. 2011). This can be achieved with the use of DEA 
models such as directional distance functions (Berre et al. 2013, 2014) or ‘additive’ models (Iribarren et al. 2011). 
In this study, we also employed additive DEA models.

The third limitation of dairy farm DEA studies is that they have often used survey data based on voluntary par-
ticipation of farmers (e.g. Barnes et al. 2011, Hansson et al. 2011, Iribarren et al. 2011, Kelly et al. 2012, Shortall 
and Barnes 2013). This raises the question whether these data are truly random and representative (Jack 2009). 
Moreover, survey data are usually uncontrolled for important efficiency drivers/differentials such as management 
(see Cooper et al. 2007, chapter 7), genetic potential (Wall et al. 2010), feeding regime (Capper et al. 2009) and 
the often largely diverse climatic and bio-physical conditions under which farms operate (see Bogetoft and Otto 
2011, chapter 3. Also see Barnes 2006 and Shortall and Barnes 2013). Year-to-year variation is also an important 
consideration in the assessment of dairy farm efficiency (e.g. Cloutier and Rowley 1993, Fogarasi and Latruffe 
2009). However, farm technology can change through time in commercial herds (e.g. the introduction of a new 
milking parlour; Fraser and Cordina 1999) making inter-year efficiency comparisons less reliable. A solution to 
the aforementioned issues is to use data from experimental dairy systems which divide the herd into sub-groups 
(‘treatments’) of interest, under the same management and where more detailed data are collected to strict pro-
tocols over multiple years. An example is the multiple-year genetic line × feeding systems experiment in Dumfries, 
Scotland, known as the ‘Langhill’ experiment (Pollott and Coffey 2008).

The aims of this study were: (i) to introduce to dairy research additive DEA models that overcome the aforemen-
tioned modelling issues of proportionality and inappropriate modelling of undesirable outputs when calculating 
TE and EE; (ii) to demonstrate the potentials for more in-depth efficiency analyses and dairy systems comparisons 
using the Langhill dataset; (iii) to demonstrate how the analysis can be further informed by incorporating input 
price data in the study of TE; (iv) to assess whether increasing TE also increases EE; and (v) to evaluate the perfor-
mance of Langhill’s experimental dairy farming systems.

Material and methods
Data Envelopment Analysis

DEA was developed by Charnes et al. (1978), originating from Farrell’s (1957) work. It is a non-stochastic, non-par-
ametric technique that benchmarks different decision-making units (DMUs) performing the same task in terms 
of their capacity to convert inputs into outputs by using the least resources and/or producing maximum desirable 
output and the least undesirable output. Calculation of the aggregated DEA efficiency index does not require a 
priori assumptions on the importance of each variable for the DMUs’ performance. This fact makes DEA a par-
ticularly attractive multiple-criteria tool. DEA constructs an efficient frontier, that is, a piece-wise linear surface 
over observed data points against which (the frontier) all DMUs are benchmarked. This frontier comprises of the 
best performers and the performance of all other DMUs is evaluated by deviations from the frontier line. This is 
a fundamental difference between DEA and methods such as regression as the latter reflects ‘average’ or ‘cen-
tral tendency’ behaviour (Cooper et al. 2007) and is unable to provide a holistic characterization of DMUs within 
a multiple-objective assessment.
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Dealing with proportionality in DEA

In the introduction of this study we referred to the fact that most DEA dairy farm studies have used models as-
suming that a DMU can become efficient by proportionally reducing its inputs and/or undesirable outputs and/
or by proportionally increasing its desirable outputs. For example, assume that one uses the model of Charnes et 
al. (1978) to maximize efficiency by minimizing input use or by maximizing production of desirable outputs. Also 
assume that this model has calculated an efficiency score of 0.80 for a specific farm (with this model scores are 
always between zero and one). Then efficient input use for this farm is 80% of its current input use, i.e. this farm 
has to reduce all its inputs by 20%. Accordingly, achieving efficient desirable output levels would require this farm 
to increase all its desirable outputs by 20%.

There exist models not assuming that input excesses or desirable output shortfalls, called ‘inefficiencies’ or ‘slacks’ 
in the DEA terminology, are equal among inputs or desirable outputs. A family of such models is that of the addi-
tive models (e.g. Cooper et al. 1999, Cooper et al. 2011, Tone 2001). The term ‘additive’ is attributed to the fact 
that these models’ objective functions involve summations of all input and desirable output slacks (reference to 
undesirable output slacks is made later in the text) in order to identify all potential sources of inefficiency. We 
further demonstrate this below by presenting Tone’s (2001) slacks-based measure (SBM) of efficiency, variants of 
which were used in this study.

Suppose that there are n DMUs each using m inputs to produce s desirable outputs, denoted as xio (i = 1,…, m) 
and yro (r = 1,…, s), all assumed positive. The SBM efficiency score of the jth DMU under evaluation, denoted as 
DMUo, is given by the following programme (Tone 2001):

									       
												                (1)

subject to,

								                  , 
								                   

where xio and yro are the inputs and desirable outputs of DMUo respectively, and       and       are the input and 
desirable output slacks of DMUo respectively. The scalar λj, when greater than zero, indicates which DMUs were 
used as a reference by DMUo for the calculation of ρ*. The above programme is run n times, once for each DMU. 

Because ρ in model 1 is minimized, its numerator is minimized and its denominator is maximized. Minimizing the 
numerator minimizes the negative sum of input slacks which means that it maximizes the (positive) sum of input 
slacks. Maximizing the denominator also maximizes the sum of desirable output slacks. Thus, model 1 calculates 
the maximal possible inefficiencies in inputs and desirable outputs that can occur for DMUo relatively to the oth-
er DMUs. The value of the numerator (denominator) is at most (at least) one because the sum of input (desirable 
output) slacks is averaged and subtracted from (added to) unity. Thus, ρ is bounded by zero and one, with one 
indicating that DMUo is efficient.

When DMUo is efficient, all its slacks equal zero as this means that it does not need to further reduce its inputs 
and increase its desirable outputs to become efficient. If it is inefficient, one can identify through the slack values 
(which in this case are non-proportional) the inputs and desirable outputs contributing the most to its inefficien-
cy. For an inefficient DMU any choice of input resulting in xio > ∑j xijλj means that with some combination of inputs 
other DMUs (identified by the non-zero λj values) could have improved this input in amount by      = xio - ∑j xijλj 
without worsening any other input or desirable output (Brockett et al. 2004). The same applies for the desirable 
outputs and their shortfalls       = yro + ∑j yrjλj.

𝜌𝜌∗ = min
𝜆𝜆𝑗𝑗,𝑠𝑠𝑖𝑖𝑖𝑖

− ,𝑠𝑠𝑟𝑟𝑟𝑟+  
𝜌𝜌 =

1 − 1
𝑚𝑚 ∑ 𝑠𝑠𝑖𝑖𝑖𝑖

− 𝑥𝑥𝑖𝑖𝑖𝑖⁄𝑚𝑚
𝑖𝑖=1

1 + 1
𝑠𝑠 ∑ 𝑠𝑠𝑟𝑟𝑟𝑟

+ 𝑦𝑦𝑟𝑟𝑟𝑟⁄𝑠𝑠
𝑟𝑟=1

 

𝑥𝑥𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1
+ 𝑠𝑠𝑖𝑖𝑖𝑖

− , 𝑖𝑖 = 1, … , 𝑚𝑚 

𝑦𝑦𝑟𝑟𝑟𝑟 = ∑ 𝑦𝑦𝑟𝑟𝑟𝑟𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1
− 𝑠𝑠𝑟𝑟𝑟𝑟

+ , 𝑟𝑟 = 1, … , 𝑠𝑠 

𝑠𝑠𝑖𝑖𝑖𝑖
− , 𝑠𝑠𝑟𝑟𝑟𝑟

+ , 𝜆𝜆𝑗𝑗 ≥ 0 (𝑖𝑖 = 1, … , 𝑚𝑚, 𝑗𝑗 = 1, … , 𝑛𝑛) 

𝑠𝑠𝑖𝑖𝑖𝑖−  𝑠𝑠𝑟𝑟𝑟𝑟+  

𝑠𝑠𝑖𝑖𝑖𝑖
− , 𝑠𝑠𝑟𝑟𝑟𝑟

+ , 𝜆𝜆𝑗𝑗 ≥ 0 (𝑖𝑖 = 1, … , 𝑚𝑚, 𝑟𝑟 = 1, … , 𝑠𝑠, 𝑗𝑗 = 1, … , 𝑛𝑛) 

𝑠𝑠𝑖𝑖𝑖𝑖−  

𝑠𝑠𝑟𝑟𝑟𝑟+  
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Because the slacks are normalized by being divided by their corresponding inputs and desirable outputs, SBM is 
units invariant, that is, it is independent of the units in which the inputs and desirable outputs are measured, pro-
vided that these units are the same for every DMU (Cooper et al. 2007). Moreover, the normalization of slacks can 
be interpreted as a ‘data-driven’ weighting scheme. This weighting scheme is a more objective one compared to 
methods where the weights are (subjectively) pre-defined by the user (Cooper et al. 1999).

Modelling undesirable outputs with DEA

In the introduction we commented on the issues arising when one models undesirable outputs as inputs to be 
minimized or when one considers their reciprocals as desirable outputs to be maximized. Other approaches have 
also been suggested in the literature (see Gomes and Lins 2008, Scheel 2001), such as considering the additive 
inverse of an undesirable output as a desirable output and then adding to this a positive scalar large enough to 
convert it to a positive value. These methods still fail to reflect the true production process and also cannot be 
applied to all DEA models. On the other hand, undesirable outputs can be modelled as such in an additive man-
ner with the use of SBM models. Specifically, Tone’s (2001) SBM (model 1) has been extended to the Undesirable 
Output Model (Cooper et al. 2007) presented below.

Suppose that, in addition to the inputs and desirable outputs defined above, the n DMUs also produce k undesir-
able outputs, denoted as zd (d = 1,…, k) respectively, assumed positive. The Undesirable Output Model is the fol-
lowing programme:

												                

												                 

subject to

									                    ,

where zdo and        are the undesirable outputs and their slacks for DMUo respectively. Importantly, in model 2 the 
undesirable outputs are positioned in the output set and neither transformation of their values (e.g. reciprocal, 
additive inverse, etc.) nor position change from output to input are required (Cooper et al. 2007). As with model 1, 
model 2 is run n times, ρu* takes values between zero and one and an efficient DMU has all its slacks equal to zero.

An important aspect of undesirable output modelling is that of disposability, which refers to the impact that un-
desirable output reduction can have on inputs and desirable outputs. Specifically, undesirable outputs are weakly 
disposable when they cannot be reduced without increasing inputs or reducing desirable outputs. On the other 
hand, strongly disposable undesirable outputs can be reduced at no cost. (The readers are referred to Färe et al. 
1989 as a starting point to disposability. Also, see Yang and Pollitt 2010 for a comprehensive coverage of refer-
ences and for example models.)

In dairy studies with DEA, undesirable outputs have been modelled as both weakly (e.g. Berre et al. 2013, 2014, 
Ramilan et al. 2011, Toma et al. 2013) and strongly disposable (e.g. Iribarren et al. 2011, Shortall and Barnes 2013). 
Shortall and Barnes (2013), whose study’s undesirable outputs were GHGE, followed the argument of de Koeijer et 
al. (2002) that environmental impacts generated by non-point source pollutants must be addressed through more 
efficient input use rather than desirable output reduction. In this study, we adopted this logic to model GHGE, the 
undesirable output of our study (see Data sub-section below). However, it should be pointed out that weak dis-
posability of undesirable outputs can be added to model 2 if necessary, see Bremberger et al. (2015).

𝜌𝜌𝑢𝑢∗ = min
𝜆𝜆𝑗𝑗,𝑠𝑠𝑖𝑖𝑖𝑖

− ,𝑠𝑠𝑟𝑟𝑟𝑟+ ,𝑠𝑠𝑑𝑑𝑑𝑑
𝑢𝑢  

𝜌𝜌𝑢𝑢 =
1 − 1

𝑚𝑚 ∑ 𝑠𝑠𝑖𝑖𝑖𝑖
− 𝑥𝑥𝑖𝑖𝑖𝑖⁄𝑚𝑚

𝑖𝑖=1

1 + 1
𝑠𝑠 + 𝑘𝑘 (∑ 𝑠𝑠𝑟𝑟𝑟𝑟

+ 𝑦𝑦𝑟𝑟𝑟𝑟⁄𝑠𝑠
𝑟𝑟=1 + ∑ 𝑠𝑠𝑑𝑑𝑑𝑑

𝑢𝑢 𝑧𝑧𝑑𝑑𝑑𝑑⁄𝑘𝑘
𝑑𝑑=1 )

 

𝑠𝑠𝑑𝑑𝑑𝑑𝑢𝑢  

(2) 

𝑥𝑥𝑖𝑖𝑖𝑖 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1
+ 𝑠𝑠𝑖𝑖𝑖𝑖

− , 𝑖𝑖 = 1, … , 𝑚𝑚 

𝑦𝑦𝑟𝑟𝑟𝑟 = ∑ 𝑦𝑦𝑟𝑟𝑟𝑟𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1
− 𝑠𝑠𝑟𝑟𝑟𝑟

+ , 𝑟𝑟 = 1, … , 𝑠𝑠 

𝑧𝑧𝑑𝑑𝑑𝑑 = ∑ 𝑧𝑧𝑑𝑑𝑑𝑑𝜆𝜆𝑗𝑗

𝑛𝑛

𝑗𝑗=1
+ 𝑠𝑠𝑑𝑑𝑑𝑑

𝑢𝑢 , 𝑑𝑑 = 1, … , 𝑘𝑘 

𝑠𝑠𝑖𝑖𝑖𝑖
− , 𝑠𝑠𝑟𝑟𝑟𝑟

+ , 𝑠𝑠𝑑𝑑𝑑𝑑
𝑢𝑢 , 𝜆𝜆𝑗𝑗 ≥ 0 (𝑖𝑖 = 1, … , 𝑚𝑚, 𝑟𝑟 = 1, … , 𝑠𝑠, 𝑑𝑑 = 1, … , 𝑘𝑘, 𝑗𝑗 = 1, … , 𝑛𝑛) 



AGRICULTURAL AND FOOD SCIENCE
A. D. Soteriades et al. (2015) vol 24: 235–248

239

Technical and environmental efficiencies with SBM

TE can be defined as a DMU’s ability to minimize its inputs given its current (desirable and undesirable) output 
production. TE can also be defined as a DMU’s ability to maximize desirable output given its current input use and 
production of undesirable outputs. The former definition of TE refers to an input-oriented model while the latter 
to an output-oriented one. To demonstrate the TE model below, we used input orientation. Model 1 can be eas-
ily modified to an input-oriented TE measure as follows (Cooper et al. 2007):

												          

subject to

							                     

where the third constraint is added because undesirable outputs were also present in our production technology 
(see Ramilan et al. 2011). It should be noted that model 3 is a simple linear programme. Model 3 has also been 
used in the study of Iribarren et al. (2011).

EE is defined as a DMU’s ability to minimize undesirable outputs for the given input and desirable output levels 
(see Ramilan et al. 2011, Shortall and Barnes 2013). This leads to an undesirable output-oriented model. Model 
2 can be modified so as to agree with this definition of EE as follows:

												                (4)

subject to

Model 4 can be converted to a simple linear programme by maximizing the objective function’s denominator in-
stead and then calculating its reciprocal to obtain the EE score.

Once the models for TE and EE are run, the optimal input and undesirable output slacks for DMUo can be used to 
examine variable-specific patterns, i.e. input and undesirable output savings potentials, by calculating the ratio 
of each slack over its corresponding input or undesirable output.

TE = min
𝜆𝜆𝑗𝑗,𝑠𝑠𝑖𝑖𝑖𝑖

−  
1 − 1

𝑚𝑚 ∑ 𝑠𝑠𝑖𝑖𝑖𝑖
− 𝑥𝑥𝑖𝑖𝑖𝑖⁄

𝑚𝑚

𝑖𝑖=1
 

 

𝑥𝑥𝑖𝑖𝑖𝑖 =∑𝑥𝑥𝑖𝑖𝑖𝑖𝜆𝜆𝑗𝑗
𝑛𝑛

𝑗𝑗=1
+ 𝑠𝑠𝑖𝑖𝑖𝑖− , 𝑖𝑖 = 1,… ,𝑚𝑚 

𝑦𝑦𝑟𝑟𝑟𝑟 ≤∑𝑦𝑦𝑟𝑟𝑟𝑟𝜆𝜆𝑗𝑗
𝑛𝑛

𝑗𝑗=1
, 𝑟𝑟 = 1, … , 𝑠𝑠 

𝑧𝑧𝑑𝑑𝑑𝑑 ≥∑𝑧𝑧𝑘𝑘𝑘𝑘𝜆𝜆𝑗𝑗
𝑛𝑛

𝑗𝑗=1
, 𝑑𝑑 = 1,… , 𝑘𝑘 

 
𝑠𝑠𝑖𝑖𝑖𝑖

− , 𝜆𝜆𝑗𝑗 ≥ 0 (𝑖𝑖 = 1, … , 𝑚𝑚, 𝑗𝑗 = 1, … , 𝑛𝑛) 

EE = min
𝜆𝜆𝑗𝑗,𝑠𝑠𝑑𝑑𝑑𝑑

𝑢𝑢  

1
1 + 1

𝑘𝑘 ∑ 𝑠𝑠𝑑𝑑𝑑𝑑
𝑢𝑢 𝑧𝑧𝑑𝑑𝑑𝑑⁄𝑘𝑘

𝑑𝑑=1

 

𝑧𝑧𝑑𝑑𝑑𝑑 ≥∑𝑧𝑧𝑑𝑑𝑗𝑗𝜆𝜆𝑗𝑗
𝑛𝑛

𝑗𝑗=1
, 𝑑𝑑 = 1,… , 𝑘𝑘 

 

(3)

𝑥𝑥𝑖𝑖𝑖𝑖 ≥∑𝑥𝑥𝑖𝑖𝑖𝑖𝜆𝜆𝑗𝑗
𝑛𝑛

𝑗𝑗=1
, 𝑖𝑖 = 1,… ,𝑚𝑚 

𝑦𝑦𝑟𝑟𝑟𝑟 ≤∑𝑦𝑦𝑟𝑟𝑟𝑟𝜆𝜆𝑗𝑗
𝑛𝑛

𝑗𝑗=1
, 𝑟𝑟 = 1, … , 𝑠𝑠 

𝑧𝑧𝑑𝑑𝑑𝑑 =∑𝑧𝑧𝑑𝑑𝑑𝑑𝜆𝜆𝑗𝑗
𝑛𝑛

𝑗𝑗=1
+ 𝑠𝑠𝑑𝑑𝑑𝑑𝑢𝑢 , 𝑑𝑑 = 1,… , 𝑘𝑘 

 
𝑠𝑠𝑑𝑑𝑑𝑑

𝑢𝑢 , 𝜆𝜆𝑗𝑗 ≥ 0 (𝑑𝑑 = 1, … , 𝑘𝑘, 𝑗𝑗 = 1, … , 𝑛𝑛). 

    ,
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Seeking cost-effective reductions in inputs

One can assign input price data to the optimal slacks        (the asterisk denotes optimality) calculated by model 3 in 
order to determine the proportion of their cost to the total input cost. We refer to this proportion as ‘slack share’ 
(Tsutsui and Goto 2009). Specifically, let us define pio (i = 1,…, m) as the price of input xio for DMUo. Then the slack 
share of slack       for DMUo is given by the following ratio:

												             

Comparing a DMU’s input savings potentials with the slack shares reveals whether there exist both technical and 
economic incentives for this DMU to reduce its inputs to the technically efficient levels. For example, consider 
that DMUo has a large slack share for a specific input. Then, reducing this input by its slack would be effective 
for reducing the overall cost of DMUo. On the other hand, reducing an input with a large savings potential and a 
small slack share to its technically efficient levels would save only a small amount of the overall cost (see Tsutsui 
and Goto 2009).

Data
Our study used detailed records from Scotland’s Rural College’s (SRUC) Langhill dairy systems study (Veerkamp et 
al. 1994, Pollott and Coffey 2008), a long-term breeding and feeding systems experiment. The production systems 
within the herd represented a range of dairy systems that may be found commercially. The herd consisted of ge-
netic lines selected for kilograms of milk fat plus protein or selected to remain close to the average genetic merit 
for milk fat plus protein production for all animals evaluated in the UK each year. The advantage of this dataset is 
that it provided information that is not routinely available on commercial farms and allowed for efficiency com-
parisons between clearly-defined systems; and between years. In the next sub-sub-section we briefly describe 
the experiment, based on the studies of Bell et al. (2011), Chagunda et al. (2009), Pryce et al. (1999) and Ross et 
al. (2014). The second sub-sub-section is devoted to the description of the DEA variables and their derivation. 
These DEA variables were derived by Toma et al. (2013) for the purpose of their own DEA exercise so readers are 
referred to their study for further details. The third sub-sub-section describes the input price data used for the 
calculation of input slack shares.

Langhill dairy systems experiment

The data used in this study covered the period 2004–2010, during which time the experiment’s protocol remained 
unchanged. The herd was divided into four distinct systems defined by two different genetic merits fed on two 
different diets. The number of cows was kept at approximately 50 per system. The high forage diet aimed at pro-
viding 70–75% home-grown forage in the dry matter (DM), complemented by bought-in concentrates and sum-
mer grazing, typically from March to November. The low forage herds were housed all-year-round, and their diet 
consisted of about 45% home-grown forages and 55% bought-in concentrates. Within each diet, cows were either 
of average UK genetic merit for milk fat and protein production (control cows) or represented the top 5% of UK 
genetic merit (select cows). Thus, there were four distinct systems, namely high-forage control (HFC), high-forage 
select (HFS), low-forage control (LFC) and low-forage select (LFS).

Cows remained in the herd for at least three lactations unless culling was necessary due to reduced cow welfare. 
Cows of greater than three lactations could be retained in the herd until a replacement heifer of suitable genet-
ic merit was available. Cows were milked three times a day and milk yield per cow was automatically recorded, 
while fat and protein concentrations in milk were obtained from weekly cow-specific samples. Live-weights were 
recorded after every milking for milking cows and weekly for dry cows and replacement animals. Feed intakes of 
individual milking cows were recorded using automated HOKO feed measurement gates (Insentec BV, Marknesse, 
The Netherlands). 

Other data recorded in the Langhill dataset included annual home-grown forage yields and on-farm fertilizer ap-
plications, land use and fuel use. Annual crop yields and hectares required were obtained directly from the data-
base or from farm records. The Langhill database holds information on each farm field and all activities that are 
carried out such as sowing, fertilizing, and also the number of trailer loads harvested. Types of fertilizer used and 
application rates are also routinely recorded.

𝑠𝑠𝑖𝑖𝑖𝑖−∗ 

𝑠𝑠𝑖𝑖𝑖𝑖−∗ 

(5)𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 =  (𝑝𝑝𝑖𝑖𝑜𝑜𝑠𝑠𝑖𝑖𝑖𝑖
−∗) ∑ 𝑝𝑝𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖

𝑚𝑚
𝑖𝑖=1⁄  (𝑖𝑖 = 1, … , 𝑚𝑚). 
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DEA variables and how they were derived

In this sub-sub-section we outline the DEA variables that we used for our exercise. Then, we briefly describe the 
process followed by Toma et al. (2013) in order to derive these variables. For further details refer to their study.

We used the following DEA input, output and undesirable output data per system and per year for the calcula-
tion of TE and EE:

•	 Inputs: home-grown feed (forage and grazed grass; t [tonnes] DM); purchased feed (concentrates; t 
DM); land use (ha); and nitrogen (N) fertilizer use (t N). It should be noted that land use and N ferti-
lizer use data concerned only on-farm activities, i.e. land use and N fertilizer use embedded in pur-
chased feed were not accounted for. Other inputs such as labour and capital were not available in 
the database and thus were not included in the input dataset. Replacements were also not included 
because replacement rates between systems were similar (the experiment’s protocol required that 
all cows remain in the system for maximum three lactations only).

•	 Output: energy-corrected milk (t; see Sjaunja et al. 1990).

•	 Undesirable output: GHGE (t CO2-eq. [CO2-equivalents]).

Statistics for the data above per system and per year are presented in the Appendix.

We assumed that the systems’ technology did not change from year to year and so we considered each system as 
a different DMU for each of the seven years of the experiment. This resulted in a total of (seven years) × (four sys-
tems) = 28 DMUs. This assumption was based on the fact that the experiment’s protocol and management prac-
tices remained unchanged during the years 2004–2010 and so did the systems’ production technology.

The DEA variables were derived as follows. Data were extracted from the Langhill database for each cow and  
aggregated annually at the four system levels for each of the seven years. Data relating to milk yield, fertilizer ap-
plication, fuel use, feed intake, land use and diet were extracted directly from the database and data for herd dy-
namics and young stock were taken from an annual inventory of the systems. Daily milk yields were summed by 
system and fat and protein concentrations from each of the three daily milking times were sampled and analysed 
once per week and averaged.

Aggregated annual system data were then used to calculate total GHGE, expressed in t CO2-eq. The PAS2050  
accredited SAC Carbon Calculator v3.11 (SAC 2011) estimated GHGE attributed to each of the four groups. The 
Carbon Calculator applies IPCC (2006) Tier 2 methodologies, equations, and emission factors (outlined in Table 
1 in Toma et al. 2013) and requires detailed information regarding farm inputs and outputs related to livestock, 
land and crops, purchased feeds and energy use. Herd dynamic inputs were based on an annual reconciliation of 
all ages of livestock accounting for sales, purchases and cow culling. Direct and indirect CO2 emissions were calcu-
lated by allocating land hectares and fertilizer applications on a per-crop and fertilizer-type basis. Electricity use 
was not available in the database and was estimated from milk yield (Sheane et al. 2010). Due to limited use or 
data unavailability, sprays of pesticides, fungicides, herbicides and carbon sequestration were not accounted for 
in the carbon foot-printing exercise. Also, emissions from meat production were not included because replace-
ment rates were similar between systems, the destinations of culled cows varied, and the emissions from calves 
leaving the system for beef would be attributable to the farms raising them.

Input price data

By comparing the TE input savings potentials with their slack shares (derived from equation 5) showed whether 
or not it was cost-effective to reduce current input use (see sub-sub-section ‘Seeking cost-effective reductions in 
inputs’ above). For that purpose we used input price data for the financial year April 2010–March 2011 (Table 1). 
Therefore, the comparison between input savings potentials and slack shares was restricted to systems HFC, HFS, 
LFC and LFS for the year 2010–2011 only so as to demonstrate equation 5. The price data in Table 1 were obtained 
from Langhill’s accounting data, the Farm Management Handbook (SAC Consulting 2010) and from DairyCo’s on-
line price data (http://www.dairyco.org.uk/market-information/farm-expenses/#.VGsUj2d5erE). 
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On the calculation of indicators for TE and EE

The data for land use, N fertilizer use and home-grown feed were interrelated as, for example, minimizing home-
grown feed involves reduced fertilizer requirements (Iribarren et al. 2011). Therefore, including land use, N ferti-
lizer use and home-grown feed in the same input set implies, to a large extent, double-counting of these three in-
puts. This can result in unreliable slack values for these three inputs. Consequently, we ran one DEA exercise with 
home-grown feed and purchased feed as the only inputs; and one where purchased feed was kept as an input but 
home-grown feed was replaced by two ‘proxies’, that is, land use and N fertilizer use (e.g. Kelly et al. 2012). We 
denote TE and EE for the first DEA run as TEF and EEF (F for ‘feeds’) respectively. For the second run, TE and EE are 
denoted as TELN and EELN (L for ‘land use’ and N for ‘N fertilizer’) respectively. We calculated the correlations be-
tween TEF and TELN and between EEF and EELN to test the degree to which these indicators were interchangeable 
with each other. The correlations were calculated with the non-parametric Spearman’s rank correlation coefficient. 
This coefficient quantifies monotone dependence between two variables by ranking their values (Panik 2005). 

All DEA and statistical calculations were run in the programming language R (R Development Core Team, 2014).

Application to the Langhill data
Correlations between indicators for TE and EE

Indicator interchangeability

The Spearman’s rank correlation between TEF and TELN was strong (0.78), while that between EEF and EELN was 
near-perfect (0.99). These findings suggested that our four indicators for TE and EE were interchangeable. Thus, 
all four indicators were used in the analysis below.

Synergy between TE and EE

The (Spearman’s rank) correlations between TEF and EEF; and between TELN and EELN were strong (0.65 and 0.85 
respectively). This result was in line with the findings of Shortall and Barnes (2013) that more technically efficient 
dairy farms are also more environmentally efficient in terms of GHGE.

Efficiency scores per efficiency type and system
The efficiency scores per system for TE and EE are summarized in Table 2. For TEF the highest-to-lowest efficiency 
systems were, both in terms of mean and median, HFS > LFS > HFC > LFC. For EEF, TELN and EELN the highest-to-
lowest efficiency systems were, both in terms of mean and median, LFS > HFS > LFC > HFC. Therefore, systems LFS 
and HFS, both systems with cows of high (select) genetic potential for milk production, were the best perform-
ers for TE and EE. This suggested that select cows might be better able to achieve higher efficiency performance, 
regardless of whether on a low-forage or a high-forage diet. Our findings for EE agreed with those of Toma et al. 
(2013). Our additional contribution to their findings was the calculation of TE which shows, for the case of TEF, 
that HFS systems could outperform LFS systems. However, the efficiency scores’ standard deviations for LFS and 
HFS systems indicated a higher variation of TE and EE scores between years. This was also true for the HFC sys-
tem for TELN. On the other hand, the LFC system was the least variable for both TE and EE at the expense of lower 
minimum and maximum efficiency scores (Table 2).

HFC = high-forage control; HFS = high-forage select; LFC = low-forage control; LFS = low-forage select; DM = Dry 
Matter; N = nitrogen; t = tonnes

Table 1. Input price data for each system for the financial year April 2010–March 2011

HFC HFS LFC LFS

Home-grown feed [£ (t DM)-1] 37.55 38.16 43.72 44.57

Purchased feed [£ (t DM)-1] 196.95 198.87 205.01 209.02

Land use (£ ha-1) 180.00 180.00 180.00 180.00

N fertilizer [£ (t N)-1] 756.52 756.52 756.52 756.52
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Savings potentials

Using models 3 and 4 for the calculation of TE and EE respectively facilitated the identification of those inputs and 
undesirable outputs contributing the most to the DMUs’ inefficiency. This allowed for the identification of specific 
aspects in which the four systems differed. As discussed above, this can be done by looking at the input and undesir-
able output savings potentials. These savings potentials are summarised per efficiency type and system in Table 3.

The savings potentials of system HFC for home-grown feed, land use and N fertilizer use were by far the largest 
(Table 3). Also, the same savings potentials were notably large for the system LFC, and they were the smallest for 
LFS. Two main conclusions were drawn from these results. First, the results confirmed our findings above, i.e. sys-
tems HFC and LFC, comprising of control cows, could not compete in terms of resource use efficiency with systems 
HFS and LFS, comprising of select cows (see Veerkamp et al. 1994). Second, they reflected the high dependency 
of HFC on home-grown feed and associated land use and N fertilizer use. These two conclusions were justified 
by looking at the same savings potentials for HFS: they were also large, but not always larger than those of LFC. 
In terms of purchased feed savings potentials, systems LFC and LFS were comparatively disadvantaged as a larger 
part of their diet depended on purchased feed. It should be noted though that the difference in purchased feed 
savings potentials between LFC and LFS was quite large, with the latter system performing better.

 
The lowest to highest ranking of the four systems for GHGE savings potentials was LFS > HFS > LFC > HFC (Table 
3). This was an important finding in that it demonstrated the advantage of aggregated DEA indicators over partial 
ratios. Indeed, Toma et al. (2013) expressed the four systems’ GHGE per kg of energy-corrected milk and found 
that the systems ranked as LFS > LFC > HFS > HFC. This partial ratio of efficiency ignored other production factors 
(feed, land, N fertilizer), leading to the conclusion that LFC systems are more environmentally efficient than HFS. 

Table 2. DEA efficiency scores for TE and EE per system averaged across the years 2004–2010

TEF TELN

HFC HFS LFC LFS HFC HFS LFC LFS

Mean 0.79 0.92 0.78 0.90 0.72 0.89 0.83 0.95

SD 0.05 0.06 0.03 0.08 0.08 0.09 0.04 0.07

Median 0.80 0.91 0.79 0.86 0.76 0.90 0.84 1.00

Min 0.72 0.84 0.74 0.80 0.63 0.76 0.77 0.81

Max 0.84 1.00 0.82 1.00 0.82 1.00 0.88 1.00

EEF EELN

HFC HFS LFC LFS HFC HFS LFC LFS

Mean 0.76 0.90 0.84 0.93 0.76 0.90 0.84 0.96

SD 0.03 0.07 0.03 0.06 0.03 0.07 0.03 0.05

Median 0.77 0.88 0.85 0.94 0.77 0.88 0.85 1.00

Min 0.72 0.83 0.79 0.88 0.72 0.83 0.79 0.89

Max 0.79 1.00 0.88 1.00 0.79 1.00 0.88 1.00
TE = technical efficiency; EE = environmental efficiency; TEF and EEF = TE and EE, respectively, with home-grown feed and purchased 
feed as inputs; TELN and EELN = TE and EE, respectively, with land use, N fertilizer use and purchased feed as inputs; HFC = high-forage 
control; HFS = high-forage select; LFC = low-forage control; LFS = low-forage select; SD = standard deviation

Table 3. Input and undesirable output savings potentials per system and efficiency type.

TEF TELN EEF EELN

Home-
grown feed Purchased feed Land use N fertilizer Purchased 

feed GHGE

HFC 42.7 0.9 39.3 48.2 0.9 32.5 32.5

HFS 16.3 0.0 11.6 21 0.0 11.3 11.2

LFC 20.5 23.2 12.4 20.1 21.8 19.8 19.4

LFS 9.8 10.5 4.1 6.3 5.9 7.0 4.0
TEF and EEF = technical and environmental efficiency, respectively, with home-grown feed and purchased feed as inputs; TELN and 
EELN = technical and environmental efficiency, respectively, with land use, N fertilizer use and purchased feed as inputs; HFC = 
high-forage control; HFS = high-forage select; LFC = low-forage control; LFS = low-forage select; GHGE = greenhouse gas emissions
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Our finding also demonstrated the usefulness of non-proportional slacks for ranking DMUs in terms of input and 
undesirable output-specific performance.

Savings potentials and slack shares for the year 2010–2011
In this sub-section we demonstrate the benefit of introducing input price data to the analysis of TE. We calculated 
the four systems’ slack shares for the year 2010–2011 (the last year of the experiment) with equation 5 and com-
pared these to the systems’ input savings potentials for the same year (Table 4).

The savings potentials of systems HFS and LFS were zero for the year 2010–2011 so we focused the analysis on 
HFC and LFC systems (Table 4). Notably, the savings potentials of system HFC for home-grown feed, land use and 
N fertilizer use were large (between 49.3% and 54%). However, the corresponding slack shares ranged between 
2.3% and 7.9%. The same was true for LFC but to a lesser extent. On the other hand, both the savings potential 
and slack share of purchased feed were high for LFC.

These results were particularly interesting for home-grown feed, purchased feed and N fertilizer use, for the fol-
lowing reason. Comparing the slack shares with the savings potentials helped prioritize the reduction of those in-
puts that simultaneously resulted in increased TE and economic savings. For example, LFC clearly had to prioritize 
the reduction of purchased feed over home-grown feed and N fertilizer use (Table 4). Such an analysis with SBM 
would be greatly beneficial for commercial farmers, especially when combined with further economic analyses 
on the slacks. For instance, in the study of Iribarren et al. (2011), the slacks derived from model 3 were ‘priced’ to 
show that Galician dairy farms could achieve significant economic savings.

Conclusions

In this study we demonstrated the advantages of additive SBM models for the calculation and analysis of the ef-
ficiency of dairy systems. The SBM models aggregate the non-proportional input and (desirable and undesirable) 
output slacks into single efficiency scores without requiring a priori weighting of the inputs and outputs. The ef-
ficiency scores are dimensionless and bounded between 0 and 1, thus allowing for the comparison of different 
DMUs in terms of efficiency. The slacks can be used for further efficiency analyses, for example to determine the 
contribution of each DEA variable to each DMU’s inefficiency. Also, the input slacks can be ‘priced’ so as to de-
termine the cost of inefficient input use. Moreover, with SBM models undesirable outputs are positioned in the 
output set. Thus, neither transformation of their values (e.g. reciprocal, additive inverse, etc.) nor position change 
from output to input are required for the calculation of EE.

In this study, the SBM models were applied to compare the four Langhill systems, namely, HFC, HFS, LFC and LFS. 
The Langhill dataset was particularly advantageous for systems comparisons because it consisted of detailed data 
collected to strict protocols over multiple years. Importantly, efficiency drivers/differentials such as farm man-
agement and bio-physical conditions did not apply as all four systems were in the same farm. Our main conclu-
sions are listed below:

The strong and positive correlation between TE and EE suggested that when technically efficient, the four systems 
were also efficient in terms of GHGE reduction.

Table 4. Input savings potentials and slack shares per system for the year 2010–2011

TEF TELN

Home-grown feed Purchased feed Land use N fertilizer Purchased feed

Savings 
potential

Slack 
share

Savings 
potential

Slack 
share

Savings 
potential

Slack 
share

Savings 
potential

Slack 
share

Savings 
potential

Slack 
share

HFC 50.5 7.9 2.6 2.2 54 6.4 49.3 2.3 2.6 2.2

HFS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LFC 17.7 1.6 21.6 19.7 18.8 1.1 20.1 0.5 21.6 19.9

LFS 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TEF and EEF = technical and environmental efficiency, respectively, with home-grown feed and purchased feed as inputs; TELN and EELN 

= technical and environmental efficiency, respectively, with land use, N fertilizer use and purchased feed as inputs; HFC = high-forage 
control; HFS = high-forage select; LFC = low-forage control; LFS = low-forage select
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The better efficiency performance for TE and EE of LFS and HFS systems compared to that of HFC and LFC systems 
showed that select animals could outperform control animals in terms of efficiency regardless of feeding strategy. 
However, HFS and LFS systems were more volatile from year to year for TE and EE.

These results require further testing with larger datasets. They demonstrated, however, the value of SBM for this 
type of analyses. Because of recent advancements in precision agriculture for commercial herds (e.g. HM Govern-
ment 2013), the use of more advantageous efficiency models such as SBM grows in importance.
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Appendix

GHGE = greenhouse gas emissions; CO2-eq. = carbon dioxide equivalents; HFC = high-forage control; HFS = high-forage select; LFC = low-
forage control; LFS =  low-forage select; SD = standard deviation; DM = Dry Matter; N = nitrogen; t =  tonnes

Statistics, input, desirable output and undesirable output data per system per year

Inputs Desirable output Undesirable 
output

System Year Number 
of cows

Home-grown 
feed (t DM)

Purchased 
feed (t DM)

Land 
use (ha)

N fertilizer 
(t N)

Energy-corrected 
milk (t)

GHGE (t CO2-
eq.)

LFC 2004 43 156.9 300.9 17.9 2.8 356.9 373.8

2005 47 176.2 391.5 24.7 2.4 414.4 421.6

2006 49 192.2 402.7 19.6 3.1 430.7 438.4

2007 50 211.6 427.2 30.3 3.1 456.8 461.6

2008 50 207.2 426.6 28.6 3.3 482.3 468.2

2009 50 188.4 425.9 26.1 3.0 473.6 541.4

2010 51 198.9 424.4 30.1 3.2 478.2 514.8

Mean 48 190.2 399.9 25.3 3.0 441.8 460.0

SD 2.8 18.9 45.9 5.0 0.3 45.2 56.4

LFS 2004 37 163.3 304.6 18.8 2.9 393.2 380.0

2005 36 159.1 346.7 22.2 2.2 401.1 390.4

2006 40 194.6 401.2 19.9 3.1 482.7 419.6

2007 44 216.8 424.4 31.0 3.2 494.2 442.5

2008 44 204.8 403.0 28.1 3.2 537.7 449.0

2009 48 193.9 425.0 26.5 3.0 549.6 533.5

2010 53 219.6 446.1 32.8 3.4 641.4 547.6

Mean 43 193.2 393.0 25.6 3.0 500.0 451.8

SD 6.0 24.0 49.9 5.5 0.4 87.0 65.7

HFC 2004 43 209.4 220.6 25.9 4.3 339.9 424.0

2005 49 256.2 247.3 37.7 3.7 384.7 478.4

2006 52 239.3 237.8 27.7 4.3 379.3 499.3

2007 53 275.1 259.6 41.1 5.0 381.4 515.5

2008 54 290.6 284.1 43.4 4.6 395.2 530.1

2009 55 278.3 287.3 41.2 4.8 454.3 605.9

2010 55 284.6 293.5 45.7 4.3 411.1 571.4

Mean 51 261.9 261.5 37.5 4.4 392.3 517.8

SD 4.4 29.1 27.8 7.7 0.4 34.9 59.8

HFS 2004 42 221.4 214.9 27.3 4.5 408.6 427.0

2005 47 253.6 226.7 37.3 3.6 409.0 451.0

2006 47 226.6 224.0 26.3 4.1 380.6 453.6

2007 47 255.6 230.8 38.2 4.6 385.1 466.9

2008 51 287.5 263.7 43.0 4.6 451.9 513.5

2009 55 279.6 268.4 41.4 4.8 477.1 585.7

2010 55 304.0 272.2 48.3 4.5 541.2 588.0

Mean 49 261.2 243.0 37.4 4.4 436.2 498.0

SD 4.6 30.9 24.1 8.1 0.4 57.9 66.1
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