
HAL Id: hal-01455853
https://hal.science/hal-01455853v1

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Interoperability of corpus processing workflow engines:
the case of. AlvisNLP/ML in OpenMinTeD

Mouhamadou Ba, Robert Bossy

To cite this version:
Mouhamadou Ba, Robert Bossy. Interoperability of corpus processing workflow engines: the case
of. AlvisNLP/ML in OpenMinTeD. Meeting of working Group Medicago sativa, May 2016, Portoroz,
Slovenia. �hal-01455853�

https://hal.science/hal-01455853v1
https://hal.archives-ouvertes.fr


Interoperability of corpus processing workflow engines: the case of
AlvisNLP/ML in OpenMinTeD

Mouhamadou Ba, Robert Bossy
INRA – MaIAGE – Bibliome group

Domaine de Vilvert, 78352 Jouy-en-Josas, France
Mouhamadou.Ba@jouy.inra.fr, Robert.Bossy@jouy.inra.fr

Abstract
AlvisNLP/ML is a corpus processing engine developed by the Bibliome group. It has been used in several experiments and end-user
applications. We describe its design principles and data and workflow models, then we discuss interoperability challenges in the context
of the OpenMinTeD project. The objective of OpenMinTeD (EC/H2020) is to create an infrastructure for Text and Data Mining (TDM)
of scientific and scholarly publications. In order to offer to the infrastructure users a single entry point and the widest range of tools as
possible, the major European corpus processing engines will be made interoperable, including Argo, DKPro, and GATE. We show that
AlvisNLP/ML can be fully integrated into the OpenMinTeD platform while maintaining its originality.

Keywords: Natural Language Processing, Processing Workflows, Software Interoperability

1. Introduction
AlvisNLP/ML is a corpus processing engine developed by
the Bibliome group. It automates sequences of NLP and
machine learning steps. AlvisNLP/ML is a critical soft-
ware for conducting experiments in natural language pro-
cessing, information extraction, and information retrieval.
Moreover AlvisNLP/ML plays a key role in the deployment
of several end-user services like semantic search engines
(Bossy et al., 2008), corpus-based database and ontology
population (Nedellec et al., 2014; Golik et al., 2012), and
also in the preparation of the BioNLP-ST challenges (Bossy
et al., 2012; Bossy et al., 2015).
In this paper we present AlvisNLP/ML and its components,
and we discuss the plan to make AlvisNLP/ML interoper-
able with similar frameworks in the context of the Open-
MinTeD EC/H2020 project. The goal of OpenMinTeD is
to “create an open, service-oriented infrastructure for text
and data mining (TDM) of scientific and scholarly content”
(OpenMinTeD Consortium, 2016). The main technical am-
bition of OpenMinTeD is to make several corpus processing
engines interoperable in order to offer the widest range of
tools to the OpenMinTeD platform users. The engines pro-
vided by the consortium members include AlvisNLP/ML,
GATE (Cunningham et al., 2013), Argo/U-Compare (Rak
et al., 2012; Kano et al., 2009), DKPro Core (Eckart de
Castilho and Gurevych, 2014), LAPPS (Ide et al., 2014).
All of them are either built on top of the UIMA framework
(Ferrucci and Lally, 2004), or already provide an interop-
erability layer to UIMA, therefore we will assume that in-
teroperability issues are addressed in the context of UIMA
components.
Section 2 describes AlvisNLP/ML data and processing
models. Section 3 presents our perspective for the interop-
erability of AlvisNLP/ML components, and discusses po-
tential challenges.

2. Description of AlvisNLP/ML
The design principles of AlvisNLP/ML focus on gener-
icity, modularity, and support of reproducibility and ease

of use for NLP experimentation (Nédellec et al., 2009).
The typical target user is a researcher with basic computer
skills but not necessarily proficient in software program-
ming, their NLP knowledge can be advanced to moderate.
AlvisNLP/ML has been used by a wide range of academic
users: NLP specialists, knowledge engineers, computer sci-
entists, and bioinformaticians. One key problem in NLP
experiments is reproducibility because results depend on a
large number of stacked intermediate processing steps for
each of which several parameters and external resources
have an impact on the result. AlvisNLP/ML attempts to
address reproducibility by requiring the user to specify a
processing sequence, its parameters and resources within a
single file using a common language. In this way the con-
ducted experiments are fully transferable.

2.1. Processing Model
The processing model of AlvisNLP/ML relies on a sequen-
tial execution of individual modules. Each module offers a
core functionality and several modules can be combined in
sequences in order to build complex corpus extraction and
mining tasks.
The coordination of modules is achieved using a shared
data structure model that is able to represent the corpus con-
tents and annotations. The data structure is passed from one
module to the following, so that each module is able to ac-
cess the corpus and the result of previous modules, and to
append more annotations to the benefit of following mod-
ules. The AlvisNLP/ML processing model is thus similar
to UIMA, where the shared data structure is analogous to
UIMA’s CAS.

2.2. Data Model
The AlvisNLP/ML data model is composed of 3 main com-
ponents: the shared data structure, primitive modules and
plans.

• The shared data structure contains both the corpus
contents and annotations produced by different tools.

15



• Primitive modules are atomic tools for processing the
data structure contents. Primitive modules include to-
kenizers, named entity recognizers, syntactic parsers,
machine learning tools, corpus importers, annotation
exporters, etc.

• Plans (workflows) are sequences of primitive modules
coordinated in order to build complex corpus process-
ing tasks.

2.2.1. Shared Data Structure
The shared data structure is responsible for holding the cor-
pus contents and structure as well as the annotations gen-
erated by each primitive module. It is an fixed-depth tree
whose successive levels represent the corpus, documents,
sections, annotations and tuples. A section represents a pas-
sage of text in a document, an annotation represents a span
of the text contents (words and named entities), and a tu-
ple represents a labelled collection of nodes (dependencies,
constituents, semantic relations). Each node is further char-
acterized by a set of features which are key/value pairs (e.g.
POS tag, lemma, dependency label, cross-reference).
The data structure does not define types of annotations or
entities. Their interpretation as words or dependencies, for
instance, is entirely up to the workflow designer. This al-
lows for a greater flexibility and the user to experiment dif-
ferent strategies. AlvisNLP/ML shares this notational ap-
proach with the BioC project (Comeau et al., 2013).
Finally the transmission of information between the mod-
ules relies on conventions over feature names and tuple ar-
gument labels. The conventions are local to the plan how-
ever values are set by default in modules that perform tra-
ditional NLP tasks (“word”, “sentence”, “pos”, etc.)

2.2.2. Primitive Modules
The primitive modules are the elementary tools present
in AlvisNLP/ML. They are independent and non-
decomposable. A module is composed of an algorithm and
an interface. The algorithm is the actual implementation of
the module. It defines the operational task the module have
to full-fill. The interface defines the parameters supported
by a module and the description of the module. The module
parameters are used to specify external resources, to config-
ure the module behaviour, and to induce the portions of the
shared data structure on which a module read or write.

2.2.3. Plans
A plan specifies a sequence of modules to be executed in or-
der, and the value of the parameters for each module. The
parameters are set with two goals in mind: configure the
modules according to one’s needs, and coordinate the mod-
ules so that they create and access the relevant parts of the
shared data structure.
Plans are expressed in XML that the AlvisNLP/ML engine
interprets by instantiating the specified modules, convert-
ing the parameters, performing a static validation of the
plan, and executing the module algorithms. A typical plan
is generally composed of three parts: a first part reads ini-
tial data from external sources (reader modules), a second
part performs the specific text processing, and a third part

aggregates and presents the results in a suitable format (ex-
port modules).
Plans can be parametrized and composed into larger plans,
thus allowing the user to define and share custom libraries
of plans.

3. Integrating AlvisNLP/ML in
OpenMinTeD

To integrate AlvisNLP/ML in the future OpenMinTeD plat-
form, two points have to be taken into account: the module
registry, and module interoperability.

3.1. Module registry
The OpenMinTed platform will offer a registry that exposes
modules from all partners. This registry allows users to
browse and look for modules that fit their specific needs.
AlvisNLP/ML features a primitive registry of modules; it’s
sole responsibility is to to provide module instances, their
documentation, and their parameter set when executing a
plan. The OpenMinTeD registry however must allow the
exploration and the comparison in a large federated pool of
modules. To achieve this, a uniform description of modules
from all providers through a meta-data standard is neces-
sary.
Thus one of the challenges for the integration of
AlvisNLP/ML will be to align the description of its
modules to the OpenMinTeD standard. Currently
AlvisNLP/ML modules are described in two parts: a doc-
umentation file, and source code annotations. The source
code annotations allows the system to manage automat-
ically the module name, module parameters, data types,
and default values. The documentation, completed through
source code annotations, is designed for human consump-
tion. It helps users to understand the purpose and the cus-
tomization of modules. To fit the standard, the existing de-
scription model of AlvisNLP/ML must be extended with
additional aspects like flow control, functional classifica-
tion of modules, and licensing.

3.2. Module interoperability
Modules of each partner must be made interoperable in
order to avoid component “silos” and offer the user the
most of each system. The OpenMinTeD platform will com-
pose workflows with modules from different providers uni-
formly. That raises compatibility issues at different levels,
for example at data, protocol or licensing levels.
AlvisNLP/ML modules are mutually compatible since they
share the same data model. Concerning the compatibility
between AlvisNLP/ML modules and modules from other
partners, we foresee three major challenges: the shared data
structure, the engine, and the specification of module pa-
rameters.

3.2.1. Mapping of the shared data structure
The shared data structure of AlvisNLP/ML must be mapped
to one or several type-systems of our partners’ engine. For-
tunately all annotations and their associated information in
type-systems fit into one or several elements of the data
structure.

16



AlvisNLP/ML and partner’s type systems represent the
same core information, though they differ in its represen-
tation. Core elements such as corpus, documents, sections,
annotations, dependencies or relations are present in most
partner’s type-systems. Most discrepancies between type-
systems are nomenclatural differences. For instance, a sen-
tence in DKPro is called annotation in AlvisNLP/ML, sen-
tence is in fact an annotation (a class of annotations). In
other cases one element in one type-system benefit from
a more detailed breakdown in another type-system. For in-
stance LAPPS uses individual elements to represent the Lo-
cation, Organisation and Date whereas AlvisNLP/ML rep-
resents everything as annotations. The concrete mapping
between an entity of the AlvisNLP/ML data structure and
a element of a partner’s type system falls into a combina-
tion of basic operations such as renaming, selecting element
components, or composing/decomposing elements. Thus,
the integration can be achieved by specifying a back and
forth transformation in such a way that the AlvisNLP/ML
engine automatically injects and extracts data into/from the
data structure. The particular elements (e.g., audio, video),
from partner’s type systems, that AlvisNLP/ML does not
use, can be managed during the mapping process as byte
streams that will remain unprocessed and handed back at
the end of of the processing.

3.2.2. Encapsulating the engine
AlvisNLP/ML has its own engine, while most of the part-
ners systems are enacted by the UIMA engine. It is likely
OpenMinTeD platform will be operated on UIMA. There-
fore in order to be exposed as a OpenMinTeD service, a
module will have to embed a AlvisNLP/ML engine. This
poses software architecture challenges that must be taken
care of, especially regarding monitoring and usage of server
resources (CPU and filesystem).
Alternative scenarios take advantage of workflow engines
like Taverna (Wolstencroft et al., 2013) or Galaxy (Giar-
dine et al., 2005). AlvisNLP/ML modules would have to be
embedded with the engine in the same way. In the case of
Taverna, components are assumed to be distant and compo-
nents communicate through a data exchange protocol. Tav-
erna sees the components as “black-boxes”, the engine un-
derlying a component is not constrained.

3.2.3. Parameters
AlvisNLP/ML module parameters are strongly typed. Cur-
rently there are more than fifty different parameter types.
On one hand this further specifies the role of the parame-
ter in the module, thus helping the user to configure their
workflow. For instance a parameter of type regular expres-
sion instead of string, self-documents about the expected
values and even its function with regard to the module be-
haviour.
On the other hand it hinders the integration in a system
that assumes parameters are either scalars (integer, string,
or boolean), or collections of scalars. Since the definition
of parameters is strongly tied to the components implemen-
tation, it is very unlikely that the range of parameter types
will change from one system to another.
Complex and alternate parameter types can always be ex-
posed as string and automatically converted. This does

not entail any development since AlvisNLP/ML provides
converters for all parameter types. However we can take
advantage of strong typing to automatically complete the
component documentation, or to generate appropriate user
interfaces for configuring components.

4. Conclusion
OpenMinTeD is an ambitious project that aims to of-
fer Text and Data Mining services to a wide range of
users. One of its critical milestones is the interoperabil-
ity of several corpus processing workflow engines, includ-
ing AlvisNLP/ML. We have established that despite differ-
ences in data models, component specifications, and im-
plementation, there are enough common grounds between
AlvisNLP/ML and our partner’s systems. We showed that
the integration of AlvisNLP/ML in the OpenMinTeD plat-
form is a reasonable objective.
Most of the effort must be done in concertation with our
partners in order to specify mappings between the shared
data structure and different type-systems. Also we demon-
strated the necessity to define collaboratively a common vo-
cabulary to describe components and resources in order en-
able easy workflow composition.
Beyond automatic text processing adressed in this paper,
the OpenMinTeD project also comprises curation, human
validation and vizualisation aspects. These activities are
supported by tools that assist users to explore and review
data, and to build resources for further processing. Such
tools include annotation editors –like Brat (Stenetorp et al.,
2012) or AlvisAE (Papazian et al., 2012), and terminol-
ogy or ontology editors –like OBO-Edit (Day-Richter et
al., 2007) or TyDI (Nédellec et al., 2010). We believe that
the interoperability effort should extend to user interfaces
because it allows for a wider and more realistic range of
applications, especially participative resource building and
applications that require continuous update and processing.
However they raise new challenges since these components
operate in a different pace than automatic processing tools.

5. Acknowledgements
This work has received funding from the European Union’s
Horizon 2020 research and innovation programme (H2020-
EINFRA-2014-2) under grant agreement No. 654021. It
reflects only the author’s views and the EU is not liable
for any use that may be made of the information contained
therein. The development of AlvisNLP/ML was funded by
the Quaero project (OSEO). The remainder of the work and
perspectives described in this paper are funded by Open-
MinTeD.

6. Bibliographical References
Bossy, R., Kotoujansky, A., Aubin, S., and Nedellec, C.

(2008). Close integration of ML and NLP tools in
BioAlvis for semantic search in bacteriology. Proceed-
ings of the Workshop on Semantic Web Applications and
Tools for Life Sciences, UK.

Bossy, R., Jourde, J., Manine, A., Veber, P., Alphonse,
É., van de Guchte, M., Bessières, P., and Nedellec, C.
(2012). Bionlp shared task - the bacteria track. BMC
Bioinformatics, 13(S-11):S3.

17



Bossy, R., Golik, W., Ratkovic, Z., Valsamou, D.,
Bessières, P., and Nédellec, C. (2015). Overview of the
gene regulation network and the bacteria biotope tasks in
BioNLP’13 shared task. BMC Bioinformatics, 16(10):1–
16.

Comeau, D. C., Islamaj Dogan, R., Ciccarese, P., Cohen,
K. B., Krallinger, M., Leitner, F., Lu, Z., Peng, Y., Ri-
naldi, F., Torii, M., Valencia, A., Verspoor, K., Wiegers,
T. C., Wu, C. H., and Wilbur, W. J. (2013). BioC: a min-
imalist approach to interoperability for biomedical text
processing. Database, 2013.

Cunningham, H., Tablan, V., Roberts, A., and Bontcheva,
K. (2013). Getting more out of biomedical documents
with GATE’s full lifecycle open source text analytics.
PLoS Comput Biol, 9:1–16, 02.

Day-Richter, J., Harris, M. A., Haendel, M., Gene Ontol-
ogy OBO-Edit Working Group, and Lewis, S. (2007).
OBO-Edit–an ontology editor for biologists. Bioinfor-
matics (Oxford, England), 23(16):2198–2200, August.

Eckart de Castilho, R. and Gurevych, I. (2014). A broad-
coverage collection of portable NLP components for
building shareable analysis pipelines. In Proceedings
of the Workshop on Open Infrastructures and Analy-
sis Frameworks for HLT, pages 1–11, Dublin, Ireland,
August. Association for Computational Linguistics and
Dublin City University.

Ferrucci, D. and Lally, A. (2004). UIMA: An architectural
approach to unstructured information processing in the
corporate research environment. Nat. Lang. Eng., 10(3-
4):327–348.

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., El-
nitski, L., Shah, P., Zhang, Y., Blankenberg, D., Albert,
I., Taylor, J., et al. (2005). Galaxy: a platform for in-
teractive large-scale genome analysis. Genome research,
15(10):1451–1455.

Golik, W., Dameron, O., Bugeon, J., Fatet, A., Hue, I., Hur-
taud, C., Reichstadt, M., Salaün, M.-C., Vernet, J., Joret,
L., et al. (2012). ATOL: the multi-species livestock trait
ontology. In Metadata and Semantics Research, pages
289–300. Springer Berlin Heidelberg.

Ide, N., Pustejovsky, J., Cieri, C., Nyberg, E., Wang, D.,
Suderman, K., Verhagen, M., and Wright, J. (2014). The
language application grid. In Nicoletta Calzolari, et al.,
editors, Proceedings of the Ninth International Confer-
ence on Language Resources and Evaluation (LREC-
2014), pages 22–30. European Language Resources As-
sociation (ELRA).

Kano, Y., Baumgartner, W., McCrohon, L., Ananiadou,
S., Cohen, K., Hunter, L., and Tsujii, J. (2009). U-
Compare: share and compare text mining tools with
UIMA. Bioinformatics, 25(15):1997–1998. in press.

Nédellec, C., Nazarenko, A., and Bossy, R., (2009). Hand-
book on Ontologies, chapter Information Extraction,
pages 663–685. International Handbooks on Informa-
tion Systems. Springer.

Nédellec, C., Golik, W., Aubin, S., and Bossy, R.,
(2010). Knowledge Engineering and Management by the
Masses: 17th International Conference, EKAW 2010.
Proceedings, chapter Building Large Lexicalized On-

tologies from Text: A Use Case in Automatic Indexing of
Biotechnology Patents, pages 514–523. Springer Berlin
Heidelberg, Berlin, Heidelberg.

Nedellec, C., Bossy, R., Valsamou, D., Ranoux, M., Go-
lik, W., and Sourdille, P. (2014). Information extrac-
tion from bibliography for marker-assisted selection in
wheat. In Metadata and Semantics Research - 8th Re-
search Conference, MTSR. Proceedings, pages 301–313.

OpenMinTeD Consortium. (2016). Overview - open-
minted. http://openminted.eu/about/

overview/. Accessed: 2016-02-29.
Papazian, F., Bossy, R., and Nédellec, C. (2012). AlvisAE:

a collaborative web text annotation editor for knowledge
acquisition. In Proceedings of the Sixth Linguistic Anno-
tation Workshop, pages 149–152. Association for Com-
putational Linguistics.

Rak, R., Rowley, A., Black, W. J., and Anani-
adou, S. (2012). Argo: an integrative, interac-
tive, text mining-based workbench supporting curation.
Database, 2012:bas010.

Stenetorp, P., Pyysalo, S., Topić, G., Ohta, T., Ananiadou,
S., and Tsujii, J. (2012). BRAT: A web-based tool
for NLP-assisted text annotation. In Proceedings of the
Demonstrations at the 13th Conference of the European
Chapter of the Association for Computational Linguis-
tics, EACL ’12, pages 102–107, Stroudsburg, PA, USA.
Association for Computational Linguistics.

Wolstencroft, K., Haines, R., Fellows, D., Williams, A. R.,
Withers, D., Owen, S., Soiland-Reyes, S., Dunlop, I.,
Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Ba-
call, F., Hardisty, A., de la Hidalga, A. N., Vargas, M.
P. B., Sufi, S., and Goble, C. A. (2013). The taverna
workflow suite: designing and executing workflows of
web services on the desktop, web or in the cloud. Nu-
cleic Acids Research, 41(Webserver-Issue):557–561.

18


