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Inside a fixed bounded domain Ω of the plane, we look for the best compact connected set K, of given perimeter, in order to maximize the first Dirichlet eigenvalue λ 1 (Ω \ K). We discuss some of the qualitative properties of the maximizers, moving toward existence, regularity and geometry. Then we study the problem in specific domains: disks, rings, and, more generally, disks with convex holes. In these situations, we prove symmetry and in some cases non symmetry results, identifying the solution.

We choose to work with the outer Minkowski content as the "good" notion of perimeter. Therefore, we are led to prove some new properties for it as its lower semicontinuity with respect to the Hausdorff convergence and the fact that the outer Minkowski content is equal to the Hausdorff lower semicontinuous envelope of the classical perimeter.

Introduction

A shape optimization problem is composed by three prime ingredients: the cost functional, the class of admissible sets and the constraints. One also has to decide whether to tackle the minimization problem or the maximization problem. Often, only one of these is relevant.

A well studied cost functional is the one which models the principal frequency of vibration of a membrane. A shape optimization problem for this quantity has a long history going back at least to 1877 when Lord Rayleigh observed and conjectured that among all membranes of given area, the disk has the minimum principal frequency. This conjecture was solved by Faber in 1923 and, independently, by Krahn in 1924, and many other contributions to similar problems for the principal frequency appeared during the 20th and 21st centuries, see [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF], [START_REF]Shape Optimization and Spectral Theory[END_REF]. In 1963 Hersch, using the work of Payne and Weinberger [START_REF] Payne | Some isoperimetric inequalities for membrane frequencies and torsional rigidity[END_REF], proved that of all doubly connected membranes of given area and perimeter, the ring has the maximal principal frequency (see [START_REF] Hersch | Contribution to the method of interior parallels applied to vibrating membrane[END_REF][START_REF] Hersch | The method of interior parallels applied to polygonal or multiply connected membranes[END_REF] and also Theorem 4.1 of this paper for the precise statement).

The principal frequency of a membrane fixed along its boundary is mathematically described by the first eigenvalue of the Laplacian λ 1 of a bounded domain Ω in the plane with Dirichlet boundary conditions on ∂Ω. In this paper we discuss various shape optimization problems in the plane for the first eigenvalue of the Laplacian with Dirichlet boundary conditions on a domain with an obstacle: inside a given bounded domain Ω ⊂ R 2 our goal is to find the best compact set K (the obstacle) so as to optimize the first Dirichlet eigenvalue of the open set Ω \ K, 1 namely opt{λ 1 (Ω \ K) : K ⊂ Ω, K closed and subjects to additional constraints}.

We recall the variational characterization of λ 1 (Ω \ K) as the minimum of the Rayleigh quotient among all non zero functions in the Sobolev space H 1 0 (Ω \ K), that is

λ 1 (Ω \ K) := min u∈H 1 0 (Ω\K) u =0 Ω\K |∇u(x)| 2 dx Ω\K u(x) 2 dx
.

Essentially, we are imposing the Dirichlet condition over ∂Ω and over a supplementary region K, of possibly positive measure, and we look for the best obstacle, both in shape and location, which optimizes this eigenvalue. Similar problems in this spirit were tackled by Ramm and Shivakumar in [START_REF] Ramm | Inequalities for the minimal eigenvalue of the Laplacian in an annulus[END_REF], Harrel, Kröger and Kurata in [START_REF] Harrell | On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue[END_REF], Kesavan in [START_REF] Kesavan | On two functionals connected to the Laplacian in a class of doubly connected domains[END_REF], and by El Soufi and Kiwan in [START_REF] Soufi | Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry[END_REF]. However, in these papers the authors considered obstacles of fixed shape, trying to optimize the first eigenvalue only by means of rigid motions, translating or rotating the obstacle. Of course, the results that can be obtained dealing with a wider class of admissible obstacles, whose shapes can vary, are weaker than those obtained in the previous papers and it is hopeless to expect a universal solution (in general the shape and the location of an optimal obstacle depends on the domain Ω). More recently, Tilli and Zucco have treated in [START_REF] Tilli | Asymptotics of the first Laplace eigenvalue with Dirichlet regions of prescribed length[END_REF][START_REF] Tilli | Where best to place a Dirichlet condition in an anisotropic membrane?[END_REF] a related problem for the first eigenvalue of an elliptic operator in divergence form, in the restricted class of one-dimensional obstacles (i.e., sets of finite one-dimensional Hausdorff measure).

As additional constraints, in the optimization problem above, we are interested in area or perimeter. For the area we use the Lebesgue measure, while for the perimeter we must choose it careful. Indeed, since objects of positive capacity but of Lebesgue measure zero influence the first eigenvalue but are not seen by the classical perimeter (as defined by De Giorgi), we need to choose another notion of perimeter, more sensitive to one-dimensional objects. We want to work with a perimeter that (a) coincides with the classical notion of perimeter on regular sets; (b) measures twice the length of one-dimensional objects; (c) is lower semicontinuous with respect to some convergence. Item (a) is natural and allows to use results available on the classical perimeter. Item (b) rules out thin competitors (for instance it penalizes segments), helping for the identification of solutions in specific domains. Item (c) is crucial for the existence in the optimization problems with perimeter constraint. Therefore, we are led to consider the following quantity (see [START_REF] Ambrosio | Outer Minkowski content for some classes of closed sets[END_REF]). Definition 1.1 (Outer Minkowski content). Let K ⊂ R 2 be a closed set. The upper and lower outer Minkowski contents SM * (K) and SM * (K) of K are defined, respectively, as

SM * (K) := lim inf →0 L(K ⊕ \ K) and SM * (K) := lim sup →0 L(K ⊕ \ K) ,
where K ⊕ := {x ∈ R 2 : d K (x) ≤ } is the -tubular neighborhood of K through the distance function d K to K. If SM * (K) = SM * (K) their common value is denoted by SM(K) and called outer Minkowski content of K.

In Section 2 we prove that the outer Minkowski content of any compact, connected and non empty set of the plane always exists and that satisfies the three items listed above. Notice that, while items (a) and (b) are well-known to be satisfied by the outer Minkowski content (see [START_REF] Ambrosio | Outer Minkowski content for some classes of closed sets[END_REF]), this is not the same for the third one (we have not found any proof in the literature). More specifically, we prove the lower semicontinuity of the outer Minkowski content with respect to the Hausdorff convergence. Moreover, we use this result to answer a question posed by Cerf in [START_REF] Cerf | The Hausdorff lower semicontinuous envelope of the length in the plane[END_REF]: we show that the outer Minkowski content is equal to the Hausdorff lower semicontinuous envelope of the classical perimeter.

We are now ready to formulate four relevant problems for the first Dirichlet eigenvalue on a bounded domain Ω ⊂ R 2 , depending on the type of optimization (minimization or maximization) and the kind of constraint (area or perimeter ); the class of admissible obstacles will be chosen accordingly to guarantee existence of solutions. Then, in the rest of the paper, we will focus on the last of these four problems. Notice that we do not require any regularity of the boundary ∂Ω.

Problem 1: minimizing the first eigenvalue with an obstacle of given area. For a fixed A ∈ (0, L(Ω)), with L the Lebesgue measure, consider the minimization problem

min{λ 1 (Ω \ K) : K ⊂ Ω, K closed, L(K) = A}. (1) 
This problem is related to the minimization of the first eigenvalue among open sets constrained to lie in a given box (and also with a given area), see [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]Section 3.4]. Indeed, passing to the complementary set O = Ω \ K problem (1) becomes equivalent to the minimization of λ 1 (O) among open sets O ⊆ Ω of area L(Ω) -A (in this framework Ω represents the box). Therefore, from what is known on the minimizers contained into a box, we infer the existence of a solution of (1) and some of its qualitative properties. We have to distinguish two cases, depending on the existence of disks of area L(Ω) -A that are contained inside Ω (to this aim we introduce the inradius ρ(Ω) of Ω).

-Let A ≥ L(Ω) -πρ(Ω) 2 . Thanks to the Faber-Krahn inequality, a closed set K opt minimizes (1) if and only if K opt = Ω \ B with the open set B that is (up to sets of capacity zero) any disk in Ω of area L(Ω) -A. This imply that, in general, problem [START_REF] Ambrosio | Outer Minkowski content for some classes of closed sets[END_REF] does not have a unique solution. -Let A < L(Ω) -πρ(Ω) 2 . By [14, Theorem 3.4.1], [START_REF] Briançon | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF] and [START_REF] Henrot | Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions[END_REF], every minimizer K opt of (1) touches the boundary of Ω, its free boundary (i.e., the part of the boundary of K opt which is inside Ω) is analytic and does not contain any arc of circle.

Problem 2: maximizing the first eigenvalue with an obstacle of given area.

The corresponding maximization problem of (1) has no solutions. Indeed, one can construct a sequence of closed sets K n ⊂ Ω of Lebesgue measure A so that λ 1 (Ω \ K n ) ↑ ∞ as n → ∞ (for instance by taking K n as the union of a given closed set in Ω of area A with a curve filling Ω as n increases, see [START_REF] Tilli | Asymptotics of the first Laplace eigenvalue with Dirichlet regions of prescribed length[END_REF][START_REF] Tilli | Where best to place a Dirichlet condition in an anisotropic membrane?[END_REF] where the limit distribution in Ω of such curves is studied in detail). To guarantee the existence of a maximizer one needs to prevent maximizing sequences to spread out over Ω. This can be achieved by imposing stronger geometrical constraints on the class of admissible obstacles (notice that connectedness is still not sufficient). Therefore, for a fixed A ∈ (0, L(Ω)), we are led to consider the maximization problem

max{λ 1 (Ω \ K) : K ⊂ Ω, K closed and convex, L(K) = A}. (2) 
Now, the existence of a maximizer in the restricted class of convex sets is straightforward (see [START_REF] Bucur | Variational methods in shape optimization problems[END_REF][START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]). Moreover, as convexity seems necessary for the existence, it is natural to expect every solution of (2) to saturate the convexity constraint, in the sense that the boundary of any solution should contain non-strictly convex parts.

In particular, it would be interesting to know whether this maximization problem has only polygonal sets as solutions, see [START_REF] Lamboley | Polygons as optimal shapes with convexity constraint[END_REF], [START_REF] Lamboley | Regularity and singularities of optimal convex shapes in the plane[END_REF] for results in this direction for shape optimization problems with convexity constraints.

Problem 3: minimizing the first eigenvalue with an obstacle of given perimeter. The corresponding minimization problem of (1) with the area constraint replaced by a perimeter constraint (whatever notion of perimeter one would consider) is in general not well-posed. Indeed, for every L > 0, one can construct a sequence of smooth connected and closed sets K n ⊂ Ω of perimeter L approaching a subset of ∂Ω so that λ 1 (Ω\K n ) ↓ λ 1 (Ω) as n → ∞ (notice that by regularity there is no doubt on the notion of perimeter of K n ). Therefore, as in Problem 2, we restrict the class of admissible obstacles to convex sets. For a fixed L ∈ (0, SM(Ω)) (the existence of SM(Ω) will be provided by Lemma 2.2), consider the minimization problem

min{λ 1 (Ω \ K) : K ⊂ Ω, K closed and convex, SM(K) = L}. (3) 
The existence of a minimizer is a consequence of the compactness of the class of convex sets and of the continuity of SM w.r.t Hausdorff convergence of convex sets (see [START_REF] Bucur | Variational methods in shape optimization problems[END_REF][START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF] and recall (5) with (6) of this paper). Notice that, for particular domains Ω and small values L, it is still possible to have trivial solutions. For example, if the boundary ∂Ω contains a segment and if L is smaller than twice the length of such a segment, then every segment contained in ∂Ω of outer Minkowski content L minimizes (3). On the other hand, if L is large enough, every minimizer has positive Lebesgue measure, since minimizing sequences will not be able to degenerate to a segment. In any case, one expects that every minimizer of (3) touches the boundary ∂Ω.

Problem 4: maximizing the first eigenvalue with an obstacle of given perimeter. This is the problem that we analyze in detail in this paper. For a fixed L ∈ (0, SM(Ω)) (the existence of SM(Ω) will be provided by Lemma 2.2) we study the maximization problem

max{λ 1 (Ω \ K) : K ⊆ Ω, K continuum, SM(K) ≤ L}, (4) 
where, as usual, the word continuum (continua for the plural) stands for a compact, connected and non empty set. Notice that the class of admissible obstacles is very wide: a generic obstacle can be split into two pieces, a part of positive Lebesgue measure (the body) and a part of Lebesgue measure zero (the tentacles). Here connectedness of the admissible obstacles combined with the perimeter constraint, prevents maximizing sequences to spread out over Ω and it is sufficient for the existence of a solution (compare with Problem 2). Moreover, the assumption L < SM(Ω), prevents to have non trivial solutions, otherwise by (5) one could take K = Ω and λ 1 (∅) = ∞. Notice that we have chosen the inequality in the perimeter constraint, even though in the case of equality existence holds as well.

In Section 3, for general bounded domains Ω, we discuss some of the qualitative properties of the maximizers of (4), moving toward existence, regularity and geometry. Clearly any solution of (4) depends on the geometry of the domain Ω and this is the reason why it is hard to find explicit solutions. However, when the domain Ω has a specific shape, such as a disk, a ring, or more generally, a disk with convex holes, we are able to go beyond qualitative results. In Section 4 we prove symmetry and, in some cases non symmetry results, identifying the solution for certain values of the constraint (actually for all values when the domain is itself a disk). It is worth mentioning that when Ω is a ring appears the not so common phenomenon of symmetry breaking: for certain values of the constraint every maximizer is not radially symmetric.
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Some new properties of the outer Minkowski content

In this section we prove some new properties of the outer Minkowski content (see Definition 1.1) on continua (i.e., compact, connected, non empty sets) of the plane, such as its lower semicontinuity with respect to the Hausdorff convergence and the fact that it is equal to the Hausdorff lower semicontinuous envelope of the classical perimeter.

We start by fixing the notation and recalling some preliminary facts. Given a set U ⊂ R 2 we denote by int(U ), ∂U and U , respectively, the interior, the boundary and the closure of U . We will use K n → H K to denote a sequence {K n } of closed sets converging with respect to the Hausdorff convergence to a closed set K as n → ∞. Recall that the Hausdorff convergence preserves both connectedness and convexity (see [START_REF] Ambrosio | Topics on analysis in metric spaces[END_REF][START_REF] Henrot | Variation et optimisation de formes[END_REF] for other facts about the Hausdorff convergence). A residual domain of K in a set U ⊂ R 2 is a connected component of U \ K. We recall that every residual domain of a continuum in R 2 is simply connected and has a connected boundary (see [START_REF] Cerf | The Hausdorff lower semicontinuous envelope of the length in the plane[END_REF]). This implies that if a continuum K has k residual domains (with k ∈ N) then ∂K has at most k connected components. Now we recall the link of the outer Minkowski content of regular continua with more classical quantities, such as the De Giorgi perimeter P, the Hausdorff measure H 1 and the Minkowski content M (defined as its outer counterpart in Definition 1.1 but computing the limits as → 0 of the ratio L(K ⊕ )/(2 )). Let K ⊂ R 2 be compact.

(a) If K is Lipschitz (i.e., K is locally the subgraph of a Lipschitz function near every boundary point of K) then

SM(K) = P(K) = H 1 (∂K) < +∞. ( 5 
) (b) If K is 1-rectifiable (i.e.
, K is the image of a compact subset of the real line through a Lipschitz function from R to R 2 ) then

SM(K) = 2M(K) = 2H 1 (∂K) < +∞. (6) 
Item (a) has been proved in [1, Corollary 1] (see also [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]). The first equality in item (b) is trivial since SM and 2M, by definition, differs only on sets of positive Lebesgue measure; the second equality has been proved in [11, p. 275].

The lower semicontinuity of the outer Minkowski content with respect to the Hausdorff convergence is more tricky. We dedicate the rest of this section for its proof with some of its consequences, since it is interesting on its own and, to the best of our knowledge, new. To prove this result we adapt some ideas developed in [START_REF] Bucur | Boundary optimization under pseudo curvature constraint[END_REF] that were tailored for the so-called density perimeter.

Lemma 2.1. Let K ⊂ R 2 be a continuum. Then there exists a sequence of continua {K n } such that K n is a finite union of segments and K n → H K.

Proof. We recall the construction given in the proof of [START_REF] Bucur | Boundary optimization under pseudo curvature constraint[END_REF]Theorem 4.1]). Take a covering of K given by open disks of radius 1/n. By compactness the covering can be provided by a finite number of disks. Moreover, by connectedness this family of open disks can be considered connected. Then define the continuum K n as the family of all the segments connecting any two centers of those disks of this covering with non-empty intersection. By definition, K n satisfied what claimed.

We will need the following characterization of the outer Minkowski content. Lemma 2.2. Let K ⊂ R 2 be a continuum. Then the outer Minkowski content of K exists and

SM(K) = sup >0 L(K ⊕ \ K) -π . (7) 
Proof. To prove [START_REF] Bucur | Boundary optimization under pseudo curvature constraint[END_REF] it is sufficient to show that the quantity inside the sup is nonincreasing with respect to , namely that for every 0 < < δ

L(K ⊕δ \ K) δ -πδ ≤ L(K ⊕ \ K) -π . (8) 
Indeed in this case the sup in ( 7) is a limit and guarantees the existence of the limit in the definition of SM. We prove (8) by an approximation argument. Let > 0 and δ > 0 be fixed. By Lemma 2.1 there exists a sequence of continua {K n } such that K n is a finite union of segments and 12) in [START_REF] Bucur | Boundary optimization under pseudo curvature constraint[END_REF] for every set K n of the approximating sequence we have

K n → H K. Since both L(K n ) = 0 and L(∂K ⊕ n ) = 0 from the inequality (
L(K ⊕δ n \ K n ) δ -πδ ≤ L(K ⊕ n \ K n ) -π .
Therefore, by the continuity of the measure on increasing sequences of sets, for a fixed η > 0 there exists µ ∈ (0, ) so that

L(K ⊕δ n \ K ⊕µ n ) δ -πδ ≤ L(K ⊕ n \ K ⊕µ n ) -π + η. (9) 
Now, by definition of the Hausdorff convergence, there exists n µ such that µ+ ) , and (9) becomes

K n ⊂ K ⊕µ and K ⊂ K ⊕µ n for every n > n µ . Then K ⊕ n ⊂ K ⊕(
L(K ⊕δ n \ K ⊕µ n ) δ -πδ ≤ L(K ⊕(µ+ ) \ K) -π + η. (10) 
Using again the definition of the Hausdorff convergence, for all ξ and θ with 0 < µ < ξ < θ < δ, there exists n ξ,θ such that K ⊕θ ⊂ K ⊕δ n and K ⊕µ n ⊂ K ⊕ξ for every n > n ξ,θ . Then for n > max{n µ , n ξ,θ } the inequality [START_REF] Soufi | Extremal first Dirichlet eigenvalue of doubly connected plane domains and dihedral symmetry[END_REF] becomes

L(K ⊕θ \ K ⊕ξ ) δ -πδ ≤ L(K ⊕(µ+ ) \ K) -π + η. Since µ>0 ξ,θ µ<ξ<θ<δ K ⊕θ \ K ⊕ξ = int(K ⊕δ ) \ K and µ>0 K ⊕(µ+ ) \ K = K ⊕ \ K
the continuity of the measure on monotone (in the sense of set inclusion) sequences of sets with the fact that L(∂K ⊕δ ) = 0 gives

L(K ⊕δ \ K) δ -πδ ≤ L(K ⊕ \ K) -π + η.
By the arbitrariness of η we obtain [START_REF] Cerf | The Hausdorff lower semicontinuous envelope of the length in the plane[END_REF]. This gives [START_REF] Bucur | Boundary optimization under pseudo curvature constraint[END_REF] and then it follows the existence of the limits in Definition 1.1.

The lower semicontinuity of the outer Minkowski content with respect to the Hausdorff convergence is an immediate consequence of Lemma 2.2.

Theorem 2.3. Let {K n } be a sequence of continua in R 2 such that K n → H K. Then K ⊂ R 2 is a continuum and SM(K) ≤ lim inf n→∞ SM(K n ).
Proof. By [17, Proposition 2.2.17] the Hausdorff convergence preserves connectedness. Let > 0 be fixed. By definition of the Hausdorff convergence, for every δ ∈ (0, ) there exists n δ such that K n ⊂ K ⊕δ and K ⊂ K ⊕δ n for every n > n δ . This with [START_REF] Bucur | Boundary optimization under pseudo curvature constraint[END_REF] implies that

L(K ⊕ \ K ⊕δ ) -π ≤ L(K ⊕( +δ) n \ K n ) + δ -π( + δ) + δ + πδ(2 + δ) ≤ + δ SM(K n ) + πδ(2 + δ) ,
and taking the limit as n → ∞ gives

L(K ⊕ \ K ⊕δ ) -π ≤ + δ lim inf n→∞ SM(K n ) + πδ(2 + δ) Letting δ → 0, since δ>0 (K ⊕ \ K ⊕δ ) = K ⊕ \ K,
the continuity of the measure on increasing sequences of sets yields

L(K ⊕ \ K) -π ≤ lim inf n→∞ SM(K n ).
Taking the supremum in > 0, by Lemma 2.2 we obtain the thesis.

We use Theorem 2.3 to answer a question posed by Cerf in [START_REF] Cerf | The Hausdorff lower semicontinuous envelope of the length in the plane[END_REF], where the following quantity has been studied in detail. Definition 2.4 (Hausdorff lower semicontinuous envelope of the perimeter). Let K ⊂ R 2 be a continuum. The Hausdorff lower semicontinuous envelope of the classical perimeter S(K) of the set K is defined as

S(K) := inf lim inf n→∞ H 1 (∂K n ) : K n Lipschitz continuum in R 2 , K n → H K .
In [START_REF] Cerf | The Hausdorff lower semicontinuous envelope of the length in the plane[END_REF] the Hausdorff lower semicontinuous envelope of the classical perimeter has been characterized as follows:

S(K) = sup U U ∈U O∈C(K,U ) H 1 (∂O \ ∂U ),
where C(K, U ) is the collection of all residual domains of K in U and the supremum is taken over all families U of pairwise disjoint domains of R 2 . In the introduction of [START_REF] Cerf | The Hausdorff lower semicontinuous envelope of the length in the plane[END_REF] Cerf pointed out the interesting question of compare S with other classical quantities, like for instance the De Giorgi perimeter or the Minkowski content. In the following corollary we show that it coincides with the outer Minkowski content on continua of the plane.

Corollary 2.5. Let K ⊂ R 2 be a continuum. Then the following equality holds:

S(K) = SM(K).
Proof. Let {K n } be a sequence of Lipschitz continua in R 2 with K n → H K. By Theorem 2.3 and ( 5) it follows that

SM(K) ≤ lim inf n→∞ SM(K n ) = lim inf n→∞ H 1 (∂K n ).
By taking the infimum among all sequences {K n } of Lipschitz continua in R 2 with K n → H K, recalling Definition 2.4, we obtain the inequality SM(K) ≤ S(K).

For the reverse inequality we may assume SM(K) to be finite, otherwise the inequality is trivial. Then by the coarea formula and Fatou's lemma (see (2.74) and Theorem 1.20 in [START_REF] Ambrosio | Functions of Bounded Variation and Free Discontinuity Problems[END_REF]) we have [START_REF] Federer | Geometric Measure Theory[END_REF] where the last inequality is a consequence of the inclusion ∂K ⊕ ⊆ {d K = }. For every > 0 the set K ⊕ ⊂ R 2 is a continuum (the connectedness follows from the one of K) and K ⊕ → H K as → 0. If the sets K ⊕ were Lipschitz then the inequality would follow by Definition 2.4, but in general they are not. Nevertheless, we can conclude the proof by a diagonal argument, approximating, in the Hausdorff convergence, each set K ⊕ by means of smooth sets (we adapt the proof of [2, Theorem 3.42] to our contest where a similar approximation has been provided, but with a different topology). Indeed, from [2, Sect. 3.5] we have H 1 (∂K ⊕ ) ≥ P(K ⊕ ) and similar to [2, Theorem 3.42] we can build a sequence {K n } of Lipschitz continua such that P(K n ) → P(K ⊕ ) as n → ∞ (here we can deal with closed instead open sets since the perimeter P of a set E does not change by modifying E with a set of Lebesgue measure zero and from ( 11) L(∂K ⊕ ) = 0 while from the regularity of K n it holds L(∂K n ) = 0). Therefore, if we prove that K n → H K ⊕ as n → ∞, by a standard diagonal argument (by the Blaschke selection theorem [START_REF] Ambrosio | Topics on analysis in metric spaces[END_REF]Theorem 4.4.15] the Hausdorff convergence over closed sets is metrizable), there exists a subsequence {K j nj } of Lipschitz continua with K j nj → H K as j → ∞ such that (11) and Definition 2.4 yield

SM(K) = lim →0 1 0 H 1 ({d K = t}) dt ≥ 1 0 lim inf →0 H 1 ({d K = t }) dt ≥ lim inf →0 H 1 ({d K = }) ≥ lim inf →0 H 1 (∂K ⊕ ),
SM(K) ≥ lim inf j→∞ H 1 (∂K j nj ) ≥ S(K),
where we also used [START_REF] Bucur | Variational methods in shape optimization problems[END_REF] to say that P(K j n j ) = H 1 (∂K j n j ).

To conclude it remains to prove the convergence of smooth sets to K ⊕ . Let > 0 be fixed. Similar to [2, Theorem 3.42], we can choose the closed counterpart K n := {χ K ⊕ * ρ n ≥ t} where ρ n is a mollifier with support in the ball B(0, 1/n) and t is a suitable fixed real number with t ∈ (0, 1). Relying on this definition we can prove that K n → H K ⊕ as n → ∞, namely that for every δ > 0 there exists n δ such that for every n > n δ the inclusions K n ⊂ (K ⊕ ) ⊕δ and K ⊕ ⊂ (K n ) ⊕δ hold. Fix δ > 0 and let n δ = 1/δ . For the former inclusion, since χ K ⊕ * ρ n is a non-negative function, for every n > n δ we have

K n ⊂ supp(χ K ⊕ * ρ n ) ⊂ supp(χ K ⊕ ) + supp(ρ n ) = (K ⊕ ) ⊕1/n ⊂ (K ⊕ ) ⊕δ ,
where supp denotes the support of a function and + the Minkowski sum. For the latter inclusion let s = 1 -t and notice that 1

-χ K ⊕ * ρ n = (1 -χ K ⊕ ) * ρ n is again a non-negative function.
Then, similarly to the previous inclusions

R 2 \ K n ⊂ supp((1 -χ K ⊕ ) * ρ n ) ⊂ supp(1 -χ K ⊕ ) + supp(ρ n ) = (R 2 \ K ⊕ ) ⊕1/n . Since (R 2 \ K ⊕ ) ⊕1/n ⊂ R 2 \ K ⊕( -1/n
) by passing to the complementary sets and enlarging of δ we obtain (K n ) ⊕δ ⊃ (K ⊕( -1/n) ) ⊕δ . If n > n δ it is easy to see that (K ⊕( -1/n) ) ⊕δ ⊃ K ⊕ and the latter inclusion above is also proved. This concludes the proof of the corollary.

This corollary may serve as a translator of similar results independently established for the Hausdorff lower semicontinuous envelope of the perimeter S in [START_REF] Cerf | The Hausdorff lower semicontinuous envelope of the length in the plane[END_REF] and for the outer Minkowski content SM in [START_REF] Villa | On the outer Minkowski content of sets[END_REF]. In particular, from Corollary 2.5 one could deduce that, if K ⊂ R 2 is a continuum then

S(K) = P(K) + 2H 1 (∂K ∩ K 0 ),
where K 0 is the set of points where K has null density (see [START_REF] Cerf | The Hausdorff lower semicontinuous envelope of the length in the plane[END_REF][START_REF] Villa | On the outer Minkowski content of sets[END_REF]).

In the following we use Corollary 2.5 to show that the convex hull diminishes the outer Minkowski content of a continuum in the plane and moreover that the outer Minkowski content controls the Hausdorff measure.

Corollary 2.6. Let K ⊂ R 2 be a continuum and hull(K) be the convex hull of K. Then SM(hull(K)) ≤ SM(K).

Proof. For a Lipschitz continuum of the plane, it is well-known that the convex hull diminishes the perimeter (see [START_REF] Ferriero | A note on the convex hull of sets of finite perimeter in the plane[END_REF] and recall ( 5)). For a general continuum, we proceed by approximation using the characterization of the outer Minkowski content provided in Corollary 2.5. Indeed, for every η > 0 we may consider a sequence of Lipschitz continua

{K n } such that K n → H K and lim inf n H 1 (∂K n ) ≤ SM(K)+η.
Since the convex hull is stable with respect to the Hausdorff convergence, that is hull(K n ) → H hull(K) (see [17, Exercise 2.5]), by Corollary 2.5 and Definition 2.4 we obtain

SM(hull(K)) ≤ lim inf n→∞ H 1 (∂hull(K n )) ≤ lim inf n→∞ H 1 (∂K n ) ≤ SM(K) + η.
We get the thesis by the arbitrariness of η .

Corollary 2.7. Let K ⊂ R 2 be a continuum with a finite number of residual domains in R 2 . Then H 1 (∂K) ≤ SM(K).

Proof. Let η > 0 and denote by k ∈ N the number of residual domains of K in R 2 . From Corollary 2.5 there exists a sequence of Lipschitz continua {K n } with

K n → H K and lim n→∞ H 1 (∂K n ) ≤ SM(K) + η. (12) 
(we choose a subsequence for which the lim inf is a limit). From the assumption on K each set K n of the approximating sequence can be chosen to have at most k residual domains in R 2 . This implies that ∂K n has at most k connected components as well (otherwise its perimeter would be larger). Now, the sequence of closed sets {∂K n } converges, up to subsequences (not relabelled), to a closed set J with at most k connected components and so that ∂K ⊆ J ⊆ K (the first inclusion follows from Kuratowski convergence, the second one since the inclusion is continuous with respect to the Hausdorff convergence). Therefore, by the monotonicity of the Hausdorff measure and by applying the Go lab theorem [3, Theorem 4.4.17] to each connected component of ∂K n , we obtain that

H 1 (∂K) ≤ H 1 (J) ≤ lim inf n→∞ H 1 (∂K n ).
Combining this inequality with [START_REF] Ferriero | A note on the convex hull of sets of finite perimeter in the plane[END_REF], by the arbitrariness of η, we get the thesis.

3. Optimal obstacles: toward existence, regularity and geometry.

We start by proving the existence of a solution to problem [START_REF] Briançon | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF]. Then, we analyze some qualitative properties satisfied by such a solution.

Theorem 3.1. Let L ∈ (0, SM(Ω)). Then there exists a maximizer K opt of (4).

Proof. The existence follows from the direct methods of the Calculus of Variations. Let {K n } be a maximizing sequence of problem (4), so that

λ 1 (Ω \ K n ) → sup{λ 1 (Ω \ K) : K ⊆ Ω, K continuum, SM(K) ≤ L}, (13) 
as n → ∞. By the Blaschke selection theorem there exists a compact set K opt ⊂ Ω and a subsequence, not relabelled, such that K n → H K opt . Moreover, by Theorem 2.3, the set K opt is a continuum with SM(K opt ) ≤ L and thus it is an admissible competitor in (4). Then, by the Sverak continuity result (see [START_REF] Šverák | On optimal shape design[END_REF])

λ 1 (Ω \ K n ) → λ 1 (Ω \ K opt ) as n → ∞.
This with [START_REF] Harrell | On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue[END_REF] implies that K opt solves problem [START_REF] Briançon | Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints[END_REF].

Before giving the first properties of a solution to (4), let us introduce the notion of local convexity.

Definition 3.2 (Local convexity).

A continuum K ⊂ Ω is said to be locally convex inside Ω if for every x ∈ ∂K ∩Ω there exists r x > 0 such that K ∩B(x, r x ) is convex.

Notice that if this definition is satisfied for some radius r x > 0 then it is also satisfied for all smaller radius 0 < r < r x . Moreover, for points in (K \ ∂K) ∩ Ω there always exists such a radius r x . An interesting result relating local to global convexity goes back to 1928 (see [START_REF] Tietze | Über Konvexheit im kleinen und im großen und über gewisse den Punkter einer Menge zugeordete Dimensionszahlen[END_REF][START_REF] Nakajima | Über konvexe Kurven and Fläschen[END_REF]).

Theorem 3.3 (Tietze-Nakajima). Let K ⊂ R 2 be a continuum that is locally convex inside R 2 . Then K is convex.
We also need the following lemma. Lemma 3.4. Let L > 0 and let K ⊂ Ω be a Lipschitz continuum with H 1 (∂K) ≤ L. Let x ∈ Ω and let r > 0 such that B(x, r) ∩ Ω is convex. Then there exists a continuum K with the following properties:

-K ⊂ Ω, K ⊃ K and H 1 (∂ K) ≤ H 1 (∂K); -K ∩ B(x, r/2) is the union of N convex continua with N ≤ L/r .
Proof. The first condition is trivially satisfied if K = K, but the second one is not in general. Therefore, we construct a set K satisfying both conditions by taking suitable convex hulls of subsets of K. Let {K i } be the family of those connected components of K ∩ B(x, r) with non empty intersection with the disk B(x, r/2). We first notice that, for any index i, the set

H := K ∪ H i where H i := hull(K i ) is a continuum such that H ⊂ Ω, H ⊃ K, H 1 (∂H) ≤ H 1 (∂K). ( 14 
)
The inclusions follow from the fact that K i ⊂ H i ⊂ B(x, r) ∩ Ω. For the inequality on the Hausdorff measure, by writing

∂K i = (∂K i \ ∂H i ) ∪ (∂K i ∩ ∂H i ) and ∂H i = (∂H i \ ∂K i ) ∪ (∂H i ∩ ∂K i ), since H 1 (∂H i ) ≤ H 1 (∂K i ) (see [12]), we deduce that H 1 (∂H i \ ∂K i ) ≤ H 1 (∂K i \ ∂H i ). (15) 
Similarly, we write ∂K = (∂K \∂H)∪(∂K ∩∂H) and ∂H = (∂H \∂K)∪(∂H ∩∂K). Since K i ⊂ H i and K ⊂ H we obtain

∂K i \ ∂H i = ∂K i ∩ int(H i ) ⊂ ∂K ∩ int(H i ) ⊂ ∂K ∩ int(H) = ∂K \ ∂H,
and the monotonicity of H 1 with (15) yield

H 1 (∂H i \ ∂K i ) ≤ H 1 (∂K i \ ∂H i ) ≤ H 1 (∂K \ ∂H). (16) 
The inclusion ∂H \ ∂K ⊂ ∂H i \ ∂K i holds. Indeed, let x ∈ ∂H \ ∂K, that is x ∈ K ∪ H i but x / ∈ int(K ∪ H i ) and x / ∈ ∂K. Then x / ∈ int(K) and x / ∈ int(H i ). These facts imply that x ∈ ∂H i and moreover that x / ∈ ∂K i . Therefore, using again the monotonicity of H 1 yields H 1 (∂H \ ∂K) ≤ H 1 (∂H i \ ∂K i ) that combined with the inequality ( 16) gives [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]. Now, by using the monotonicity and the additivity properties of H 1 with the connectedness of each component we deduce that the cardinality N of the family {K i } is at most L/r . Therefore, setting K := N i=1 H i ∪ K provides a continuum satisfying the properties listed in the statement of theorem. Indeed, the first point of the list follows by induction from [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]. For the second one, notice that

K ∩ B(x, r/2) = N i=1 H i ∪ K i ∩ B(x, r/2) = N i=1 H i ∩ B(x, r/2),
that is a finite union of convex continua. Theorem 3.5. Let L ∈ (0, SM(Ω)) and let K opt be a maximizer of (4). Then the following properties hold.

(i):

K opt is locally convex inside Ω. Moreover, if Ω is convex then K opt is convex as well. (ii): The perimeter constraint is saturated, namely SM(K opt ) = L. (iii): If Ω has k residual domains in R 2 with k ≥ 1 then K opt has at most k residual domains in R 2 .
Proof. In the proofs of the three items we proceed by contradiction. For (i) assume K opt to be not locally convex inside Ω. This guarantees the existence of a point x ∈ ∂K opt ∩Ω for which the closed set K opt ∩B(x, r) is not convex for all r > 0. Then fix some r so small so that B(x, r)∩Ω is convex. The strategy of the proof consists in considering as competitor the continuum K opt ∪hull(K 1 ) where K 1 is the connected component of K opt ∩ B(x, r/2) containing x. If K opt ∪ hull(K 1 ) were admissible then, by monotonicity of the first eigenvalue, it would contradict the optimality of K opt . However, due to the subadditivity of the outer Minkowski content, it is not immediate to reach a contradiction. To overcome this difficulty, by approximation and the technical lemma above, we deduce more information on the set K opt ∩ B(x, r/2) that garantee to have additivity of the outer Minkowski content.

Let η > 0. From Corollary 2.5 and the estimate SM(K opt ) ≤ L, there exists a sequence of Lipschitz continua {K n } such that K n → H K opt and

H 1 (∂K n ) ≤ L + η,
for every n large enough. Without loss of generality, by optimality of K opt and Lemma 3.4 we can assume K n ∩ B(x, r/2) to be the union of at most (L + η)/r convex continua (notice that this bound is uniform with respect to n). Then, since convexity is preserved by Hausdorff convergence, it turns out that the set K opt ∩ B(x, r/2) is the union of a finite number of convex continua and, possibly, a non empty subset of ∂B(x, r/2) (this represent the set of those limit points x for which there exists a sequence {x n } such that x n ∈ K n \ B(x, r/2) and x = lim n→∞ x n ). Now, let K 1 be the connected component of K opt ∩ B(x, r/2) containing x and let K 2 := K opt ∩ hull(K 1 ) \ K 1 , that is the intersection of the remaining connected components with hull(K 1 ). Since hull(K 1 ) \ K 1 ⊂ B(x, r/2) we deduce that K 2 has a finite number of connected components, thus is compact and the quantity

d := min x∈K 1 , y∈K 2 |x -y| > 0. ( 17 
)
By choosing the radius in the definition of SM * (K 1 ∪ K 2 ) (see Definition 1.1) smaller than the number d as defined in [START_REF] Henrot | Variation et optimisation de formes[END_REF] and by using Lemma 2.2 we obtain the additivity of SM *

SM * (K opt ∩ hull(K 1 )) = SM * (K 1 ∪ K 2 ) = SM(K 1 ) + SM * (K 2 ). ( 18 
)
Now, we notice that K 1 can not be convex (otherwise for r < d the set K opt ∩ B(x, r) = K 1 ∩ B(x, r) would be convex, a contradiction with the assumption at the beginning of the proof). Therefore, the set K := K opt ∪ hull(K 1 ) strictly contains K opt and by monotonicity of the first eigenvalue

λ 1 (Ω \ K) > λ 1 (Ω \ K opt ).
By convexity of B(x, r) ∩ Ω the inclusion hull(K 1 ) ⊂ B(x, r) ∩ Ω holds so that K ⊂ Ω, and this implies that SM( K) > SM(K opt ) (otherwise K would be a better competitor contradicting the optimality of K opt ). Plugging this inequality into the strong subadditivity of SM (that can be proved similarly to [1, p. 739]))

SM( K) + SM * (K opt ∩ hull(K 1 )) ≤ SM(K opt ) + SM(hull(K 1 )), (19) 
yields SM * (K opt ∩ hull(K 1 )) < SM(hull(K 1 )). This inequality with (18) and Corollary 2.6 applied to K 1 gives SM * (K 2 ) < 0, a contradiction. The set K opt must be locally convex inside Ω.

The second statement in the case Ω convex follows directly from Corollary 2.6: K opt must be convex otherwise by convexity of Ω the continuum hull(K) would contradict the optimality of K opt .

For (ii) let us now assume SM(K opt ) < L. Consider a segment γ so that K opt ∪γ is connected and 0 < SM(γ \K opt ) ≤ L-SM(K opt ) (this is always possible thanks to ( 6)).Then, by the subadditivity of SM with respect to union of sets (similar to [START_REF] Hersch | The method of interior parallels applied to polygonal or multiply connected membranes[END_REF]) we deduce that SM(

K opt ∪ γ) ≤ L while λ 1 (Ω \ (K opt ∪ γ)) > λ 1 (Ω \ K opt ).
This contradicts the optimality of K opt and so every maximizer of (4) saturates the perimeter constraint.

At last for (iii) let us assume that K opt has more than k residual domains in R 2 . Since at most k different residual domains of K opt can contain those of Ω, all the other ones must be contained in Ω. Let ω ⊂ Ω be such a residual domain of K opt and define the continuum

K = K opt ∪ ω. Then K ⊂ Ω, K ⊃ K opt and since ( K ⊕ \ K) ⊂ (K ⊕ opt \ K opt ), we also have SM( K) ≤ SM(K opt )
. This provides a better competitor in (4) contradicting the optimality of K opt . Therefore, K opt has at most k residual domains. Remark 3.6. If Ω is Lipschitz then the local convexity of K opt can be proved up to the boundary ∂Ω. Precisely, for every vertex x ∈ ∂K opt , height r > 0, direction ξ ∈ S 1 , and opening angle θ ∈ (0, 2π] such that the intersection of the cone C(x, r, ξ, θ) with Ω is convex (the existence of a 4-tuple satisfying this condition is guaranteed by the regularity of Ω) then the set K opt ∩ C(x, r, ξ, θ) is convex as well. This can be proved simply by replacing in the proofs above disks with cones. Remark 3.7. We will see in the situation of the ring, where Ω has exactly 2 residual domains in R 2 , that the two possibilities K opt has 1 or 2 residual domains in R 2 actually happen, depending on the perimeter constraint (see Theorem 4.4 below). Now, we focus on the regularity and the geometry of the free boundary of K opt (the part of the boundary which is inside Ω).

Theorem 3.8. The free boundary of K opt is of class C ∞ , that is for every x ∈ ∂K opt ∩ Ω there exists r x > 0 such that ∂K opt ∩ B(x, r x ) is the graph of a concave C ∞ function. Moreover, for every x ∈ ∂K opt ∩ Ω the following properties hold.

(i):

If x ∈ ∂ω, with ω a residual domain of K opt in Ω and λ 1 (ω) > λ 1 (Ω\K opt ), then ∂K opt ∩ B(x, r x ) is a segment. (ii): If ∂K opt ∩ B(x, r x ) is not a segment then the optimality condition holds |∇u 1 (x)| 2 = µC(x), ( 20 
)
where u 1 is the first eigenfuction corresponding to λ 1 (Ω \ K opt ), C(x) is the curvature of the free boundary of K opt at the point x and µ > 0 is a Lagrange multiplier which may depend on the connected component of ∂K opt ∩ Ω but is the same for all the points on this connected component. (iii): If ∂K opt ∩B(x, r x ) is an arc of circle then Ω\K opt is a ring. In particular, if K opt is a disk then Ω is a disk concentric to K opt .

Proof. Fix x ∈ ∂K opt ∩ Ω and let γ := ∂K opt ∩ B(x, r x ) be the graph of a concave function for some fixed radius r x > 0. This is always possible thanks to item (i) of Theorem 3.5. The regularity of γ is quite classical: this follows by using a Schauder's regularity result with a bootstrap argument (see, e.g., [START_REF] Chambolle | C ∞ regularity of the free boundary for a two-dimensional optimal compliance problem[END_REF] or also the proof of Theorem 2.2 in [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF]). In our problem (by contrast with what happens in [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF]) the domain is not convex but is the complement of a locally convex set inside Ω. Nonetheless, classical regularity results in the plane imply that |∇u 1 | 2 ∈ L p (γ) for some p > 1 (see for instance [START_REF] Jerison | The inhomogeneous Dirichlet problem in Lipschitz domains[END_REF]). This is enough to start the bootstrap argument and to follow the same line as in [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF] to get the regularity of the free boundary. For (i) if it is not the case then γ is strictly convex somewhere and it is possible to decrease the perimeter of this connected component without changing the eigenvalue λ 1 (Ω \ K opt ) contradicting item (ii) in Theorem 3.5.

To prove (ii), by the previous point (i), observe that the point x ∈ ∂ω for some residual domain ω of K opt in Ω with λ 1 (ω) = λ 1 (Ω \ K opt ). Now, assume that γ is modified by a regular vector field x ∈ R 2 → I(x) + tV (x) where t > 0, I is the identity map from R 2 to R 2 while V ∈ C 2 (R 2 ; R 2 ) has compact support inside B(x, r x ). Then by [START_REF] Villa | On the outer Minkowski content of sets[END_REF]Proposition 4.13] we can use the shape derivative of the classical perimeter [START_REF] Henrot | Variation et optimisation de formes[END_REF]Corollary 5.4.16] to obtain that

SM ((I + tV )(K opt )) = SM(K opt ) + t γ C V.n dH 1 + o(t), as t → 0,
where n is the normal to γ pointing toward Ω \ K opt (which exists everywhere by regularity of γ). Since by assumption the curvature C is positive over a subset of γ we can always consider vector fields V decreasing the total perimeter of K opt , namely so that

γ C V.n dH 1 ≤ 0. (21) 
On the other hand, the shape derivative of the first eigenvalue [17, Theorem 5.7.1] implies the following expansion

λ 1 ((I + tV )(ω)) = λ 1 (ω) + t γ |∇u 1 | 2 V.n dH 1 + o(t), as t → 0, (22) 
here the + in the linear term is due to the definition of the normal n as exterior to γ (i.e., it points toward ω).

Let us now consider all the other residual domains {ω i } of K opt in Ω, if they exist, such that λ 1 (ω i ) = λ 1 (Ω \ K opt ). Inside each of these components ω i we can add a small segment to K opt by preserving the total perimeter (similarly to the proof of (ii) in Theorem 3.5). Since the first eigenvalue of each of these components increases, by optimality of K opt we must have

λ 1 (Ω \ (I + tV )(K opt )) = λ 1 ((I + tV )(ω)) so that (22) yields γ |∇u 1 | 2 V.n dH 1 ≤ 0. (23) 
In other words, for any vector field V such that (21) holds it follows the inequality [START_REF] Lamboley | Regularity and singularities of optimal convex shapes in the plane[END_REF]. This shows that the two linear forms V → γ C V.n dH 1 and V → γ |∇u 1 | 2 V.n dH 1 are proportional and the optimality condition (20) holds. The assertion (iii) follows from the optimality condition [START_REF] Jerison | The inhomogeneous Dirichlet problem in Lipschitz domains[END_REF] in the same way as in [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF] (see also [START_REF] Henrot | Minimizing the second eigenvalue of the Laplace operator with Dirichlet boundary conditions[END_REF]) where a similar statement has been proved for the second eigenvalue of the Laplacian. More precisely, if the boundary contains an arc of circle γ centered at the origin, introducing the function w := x∂u 1 /∂y -y∂u 1 /∂x (i.e., the derivative of u 1 with respect to the angular coordinate) we can prove using (20) that w satisfies -∆w = λw in Ω \ K opt with w = ∂w ∂n = 0 on γ. By Hölmgren uniqueness theorem (see [START_REF] Taylor | Partial Differential Equations I[END_REF]Proposition 4.3]) and analyticity, this implies that w ≡ 0 in Ω \ K opt . But this means that u 1 is radially symmetric in Ω \ K opt and then Ω \ K opt has to be a ring. Remark 3.9. The optimality condition [START_REF] Jerison | The inhomogeneous Dirichlet problem in Lipschitz domains[END_REF] shows that the curvature of the free boundary is positive everywhere and expresses, in a quantitative way, the fact that a maximizer of (4) has to be locally convex inside Ω, see (i) in Theorem 3.5 (cf. with the optimality conditions obtained in [START_REF] Bucur | Minimization of λ 2 (Ω) with a perimeter constraint[END_REF][START_REF] Mazzoleni | Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets[END_REF]).

In the next section, we will study more in detail item (iii) for specific domains Ω. These include the cases where Ω is a disk, a ring or more generally a disk with convex holes. In these situations, we will identify the maximizer for certain values of L (actually for all values of L when Ω is itself a disk).

The intuition may lead to think that a maximizer of (4) must always stay inside Ω, see for example the situation described in [START_REF] Harrell | On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue[END_REF] where the maximizing position is at the center of the domain while only in the minimizing positions the obstacle touches the boundary. This is probably true when Ω is convex, but we were not able to prove it. On the other hand, when Ω is not convex, we prove that it is never the case when L is large enough and that K opt must touch the boundary of Ω. To show this we rely on an object that measure the largest perimeter one can reach by means of convex subsets of Ω.

Proposition 3.10. The following quantity

L * (Ω) := max{SM(K) : K ⊆ Ω, K closed and convex} (24) 
is well defined and

L * (Ω) ≤ SM(Ω),
where the equality holds if and only if Ω is convex.

Proof. Let {K n } be a maximizing sequence of problem [START_REF] Mazzoleni | Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets[END_REF], so that

SM(K n ) → sup{SM(K) : K ⊆ Ω, K closed and convex},
as n → ∞. From the Blaschke selection theorem, we infer the existence of a compact set K * ⊂ Ω and a subsequence, not relabelled, such that K n → H K * . Moreover, since the Hausdorff convergence preserves convexity (see [START_REF] Bucur | Variational methods in shape optimization problems[END_REF]) the limit K * is also convex in Ω. Therefore, using [START_REF] Bucur | Variational methods in shape optimization problems[END_REF] with the continuity of the classical perimeter with respect to the Hausdorff convergence of convex sets we obtain the existence of a solution to [START_REF] Mazzoleni | Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets[END_REF] and L * (Ω) = SM(K * ). Now, K * is a convex set included in hull(Ω) thus H 1 (∂K * ) ≤ H 1 (∂hull(Ω)). Therefore, by (5) again, with Corollary 2.6 we obtain SM(K * ) ≤ SM(Ω), and the equality holds whenever Ω is convex. Theorem 3.11. If L ∈ L * (Ω), SM(Ω) with L * (Ω) defined by [START_REF] Mazzoleni | Convex combinations of low eigenvalues, Fraenkel asymmetries and attainable sets[END_REF], then every maximizer K opt of (4) touches the boundary ∂Ω, i.e., K opt ∩ ∂Ω = ∅.

Proof. Let us assume, for a contradiction, that K opt ∩ ∂Ω = ∅ so that K opt ⊂ Ω. Then (i) of Theorem 3.5 implies that the set K opt is locally convex inside R 2 and by Theorem 3.3 K opt is convex. This with item (ii) in Theorem 3.5 would contradict the assumption L > L * (Ω).

Optimal obstacles in specific domains

We study problem (4) for specific domains Ω: circular, annular, and perforated domains. For these domains we prove symmetry and, in some cases non symmetry results, identifying the unique solution.

4.1. Circular domains. We identify the maximizer of (4) in the case the domain Ω is a disk. Our argument relies on the following result obtained in the sixties by Hersch, Payne, and Weinberger (see [START_REF] Hersch | Contribution to the method of interior parallels applied to vibrating membrane[END_REF][START_REF] Hersch | The method of interior parallels applied to polygonal or multiply connected membranes[END_REF][START_REF] Payne | Some isoperimetric inequalities for membrane frequencies and torsional rigidity[END_REF] and also [START_REF] Henrot | Extremum problems for eigenvalues of elliptic operators[END_REF]Section 3.5] for a concise explanation of these papers). In the theorem above the competitors have free both the inner and outer boundaries, but perimeter and area are strongly constrained. In our problem (4) the exterior boundary is fixed and only the interior boundary is free to move but there is no constraint on the area of K. We develop a purely geometrical argument in order to fit into the hypothesis of the Hersch, Payne, and Weinberger result: as a consequence we identify the explicit solution to (4) when Ω is a disk. Theorem 4.2. Let Ω = B(r 0 ) be an open disk of radius r 0 > 0, and L ∈ (0, 2πr 0 ). Then problem (4) has a unique solution: the maximizer K opt is given by the closed disk B(r) concentric to B(r 0 ) of radius r = L/(2π).

Proof. We look for a solution to (4) only among convex sets with SM(K) = L, since non-convex sets and sets with outer Minkowski content less than L are ruled out by items (i) and (ii) in Theorem 3.5. Therefore, it suffices to prove that for every closed and convex set K contained in B(r 0 ) with SM(K) = L, different from the disk B(r) concentric to B(r 0 ) and with perimeter L, it holds

λ 1 (B(r 0 ) \ K) < λ 1 (B(r 0 ) \ B(r)). (26) 
We prove this inequality by exploring four cases, according to the shape and the location of the convex set K. Case 1: K is a disk not concentric to B(r 0 ). In this case the inequality ( 26) is an easy consequence of (iii) in Theorem 3.8

Case 2: K is neither a disk nor a segment and it is contained in B(r 0 ). Now we use Theorem 4.1. Clearly for the disk B(r 0 ) the condition (2πr 0 ) 2 = 4πL(B(r 0 )) holds. Moreover, for the set K, by recalling (5), the isoperimetric inequality implies that L 2 = H 1 (∂K) 2 > 4πL(K), which combined with the previous equality for B(r 0 ) yields

(2πr 0 ) 2 -L 2 < 4πL(B(r 0 ) \ K). (27) 
This means that we can not apply Theorem 4.1 to the doubly connected domain D = B(r 0 ) \ K with L 0 = 2πr 0 and L 1 = L, since the equality condition ( 25) is not satisfied. However it is possible to modify the set B(r 0 ) \ K, increasing its outer perimeter L 0 and decreasing its area L(B(r 0 ) \ K) until the equality in ( 27) is reached. More precisely, starting from the disk B(r 0 ), we consider a smooth domain B ⊂ R 2 such that (i) the perimeter increases: H 1 (∂B(r 0 )) < H 1 (∂ B); (ii) the set is smaller: B(r 0 ) ⊃ B;

(iii) the equality condition holds:

H 1 (∂ B) 2 -L 2 = 4πL( B \ K).
An explicit construction of the set B can be obtained, for instance by perturbing the whole boundary of the disk B(r 0 ) with an inward pointing vector field that continuously increases the perimeter and decreases the set (in the sense of set inclusion). Moreover, it is not difficult to see that the perimeter in point (i) can be made arbitrarily large until point (iii) is satisfied (and of course point (ii) contributes in this direction). Therefore, from point (ii) and the strict monotonicity of the first eigenvalue with respect to set inclusion, we obtain the estimate

λ 1 (B(r 0 ) \ K) < λ 1 ( B \ K). (28) 
Thanks to (iii) we can now apply Theorem 4.1 to the set

D = B \ K with L 0 = H 1 (∂ B) and L 1 = L so that λ 1 ( B \ K) < λ 1 (B( r 0 ) \ B(r)), (29) 
where B( r 0 ) is the open disk concentric to B(r 0 ) (and in particular to B(r)) of radius r 0 so that 2π r 0 = H 1 (∂ B). This with point (i) implies that r 0 > r 0 , thus the strict inclusion B(r 0 ) ⊂ B( r 0 ) holds. Recalling again the strict monotonicity of the first eigenvalue yields

λ 1 (B( r 0 ) \ B(r)) < λ 1 (B(r 0 ) \ B(r)), (30) 
which combined with ( 28) and ( 29) implies [START_REF] Payne | Some isoperimetric inequalities for membrane frequencies and torsional rigidity[END_REF].

Case 3: K is neither a disk nor a segment and it is not contained in B(r 0 ). We use an approximation argument. For every δ > 0, we consider the disk B(r 0 + δ) and notice that (27) still holds with r 0 replaced by r 0 + δ. Since the set K is contained in the open disk B(r 0 + δ) we can follow the same strategy adopted in the previous Case 2 with the disk B(r 0 ) replaced by B(r 0 + δ) and consider a set B δ satisfying the three items listed above. Without loss of generality, in the item (ii) we can also require that B δ ⊃ B(r 0 ) so that, by items (ii) and (iii) r δ ≥ r 0 , where r δ by definition satisfy 2π r δ = H 1 (∂ B δ ) and r 0 as in Case 2. Therefore, similar inequalities to ( 28) and ( 29) yields

λ 1 (B(r 0 + δ) \ K) < λ 1 (B( r δ ) \ B(r)) ≤ λ 1 (B( r 0 ) \ B(r)).
Letting δ → 0, from the Sverak continuity result [START_REF] Šverák | On optimal shape design[END_REF] we obtain

λ 1 (B(r 0 ) \ K) ≤ λ 1 (B( r 0 ) \ B(r)),
which combined with (30) implies the strict inequality [START_REF] Payne | Some isoperimetric inequalities for membrane frequencies and torsional rigidity[END_REF].

Case 4: K is a segment. We use again an approximation argument, but now on the set K. For a (small) real number δ > 0, consider the rectangle K δ with a longest side onto K of length (1 -δ)L/2 and smallest sides of length δL/2 to be contained in B(r 0 ). By definition, K δ belongs to Case 2 and H 1 (∂K δ ) = L. Therefore, from ( 28) and ( 29) we have

λ 1 (B(r 0 ) \ K δ ) < λ 1 (B( r δ ) \ B(r)),
where 2π r δ = H 1 (∂ B δ ) for some B δ satisfying the three items in Case 2 (in particular (iii) with K δ in place of K). Letting δ → 0, since K δ → H K and r δ → r for some r > r 0 . Then by the Sverak continuity result and (30) we arrive to the inequality (26) also when K is a segment. Remark 4.3. Theorem 4.2 generalizes a result contained in [START_REF] Harrell | On the placement of an obstacle or a well so as to optimize the fundamental eigenvalue[END_REF], about the maximization of the first Dirichlet eigenvalue of the Laplacian with circular shaped obstacles.

4.2. Annular domains. We discuss the symmetry of a solution to (4) in the case the domain Ω is a ring. Due to topological reasons, every maximizer of (4) can not be radially symmetric, whenever L is less than twice the perimeter of the inner disk (recall that by (iii) of Theorem 3.8 it cannot be a disk). Surprisingly this symmetry breaking appears for other values of the perimeter constraints L, namely for those close to the perimeter of the inner disk. However, for large values of the constraint, namely for those close to the perimeter of the ring, the solution is provided by a set with full symmetry. Theorem 4.4. Let Ω = B(r 0 ) \ B(r 1 ) be a ring, where B(r 0 ) and B(r 1 ) are concentric open disks of radii 0 < r 1 < r 0 . According to the value of the parameter L ∈ (0, 2π(r 0 + r 1 )) the following properties hold.

(i): There exists α 0 > 0 such that if L > 2π(r 0 + r 1 ) -α 0 then problem (4) has a unique solution: the maximizer K opt is given by the ring B(r) \ B(r 1 ) concentric to Ω of radius r = L/(2π) -r 1 . (ii): There exists α 1 > 0 such that if L < 4πr 1 + α 1 then every maximizer K opt of problem (4) is not radially symmetric.

Proof. (i) Let {L n } be a sequence of real numbers with L n ↑ 2π(r 0 + r 1 ) as n → ∞. Consider a sequence of maximizers {K n } of problem (4) associated to the length constraints {L n } such that SM(K n ) → H 1 (∂Ω) and λ 1 (Ω \ K n ) ↑ ∞ as n → ∞, and in particular K n → H Ω. Firstly we claim the existence of n 0 ∈ N such that for every n > n 0 the set K n has two residual domains in R 2 , each of which contains one of Ω. If not, by (iii) of Theorem 3.5, K n has only one residual domain in R 2 with ∂K n connected and therefore we may assume the existence of a curve γ joining ∂B(r 0 ) to ∂B(r 1 ) with H 1 (γ) ≥ r 0 -r 1 > 0 and H 1 (γ ∩ ∂Ω) = 0 so that K n ⊂ Ω \ γ for every n. This inclusion implies the convergence, up to subsequences (not relabelled), ∂K n → H J where J is a continuum with J ⊃ ∂Ω ∪ γ. The inclusion J ⊃ ∂Ω is a consequence of K n → H Ω; while J ⊃ γ follows from the fact that for every x ∈ γ there exists a sequence of points {x n } with x n ∈ ∂K n (since K n is closed) such that x n → x (for every > 0 if n is large enough the set Ω\K n can not contain the open enlargement {x ∈ Ω : d γ (x) < }, otherwise the eigenvalue would remain uniformly bounded). By the additivity and monotonicity properties of H 1 with the Go lab theorem and Corollary 2.7 we have

H 1 (∂Ω) + H 1 (γ) ≤ H 1 (J) ≤ lim inf n H 1 (∂K n ) ≤ lim inf n SM(K n ) = H 1 (∂Ω).
This implies H 1 (γ) = 0 a contradiction and the claim at the beginning of the proof holds. Now we claim that, for every n > n 0 with n 0 given by the previous claim, the bounded residual domain ω of K n in R 2 is B(r 1 ) and, moreover, that its outer boundary is the boundary of a convex set. If not, the set hull(K n ) \ B(r 1 ) would be a better competitor contradicting the optimality of K n . Indeed, let ω 0 be the unbounded residual domain of K n in R 2 . Since H 1 (∂hull(K n )) < H 1 (∂ω 0 ) and H 1 (∂B(r 1 )) < H 1 (∂ω), by Theorem 3.8 and Corollary 2.7 we have SM(hull(K n ) \ B(r 1 )) = H 1 (∂(hull(K n ) \ B(r 1 ))) = H 1 (∂hull(K n )) + H 1 (∂B(r 1 ))

< H 1 (∂ω 0 ) + H 1 (∂ω) = H 1 (∂K n ) ≤ SM(K n ).
The previous claims implies that for every n > n 0 , we may look for the solution of problem (4) only among sets K n enclosing the internal disk B(r 1 ), satisfying SM(K n ) = SM(K n ∪ B(r 1 )) + SM(B(r 1 )). This allows to work with K n ∪ B(r 1 ) as unknown, to apply Theorem 4.2 to this set with perimeter constraint L -2πr 1 and to obtain the thesis on the radial symmetry.

(ii) By items (ii) and (iii) of Theorem 3.5 and (iii) of Theorem 3.8 if a maximizer is radially symmetric then it is necessarily a ring of perimeter L containing the interior disk B(r 1 ). Obviously, the symmetry breaking holds true whenever L < 4πr 1 (because there are no rings containing the interior disk). In the case L = 4πr 1 the unique possibility for K opt to be radially symmetric would be ∂B(r 1 ), but this is clearly not a maximizer. We call K 1 the maximizer corresponding to this perimeter constraint. Clearly λ 1 (Ω \ K 1 ) > λ 1 (Ω). Now, we assume L > 4πr 1 and write L = 4πr 1 + 2πα for some 0 < α ≤ r 0 -r 1 . Moreover, we choose the largest α 1 such that λ 1 Ω \ B(r 1 + α 1 ) ≤ λ 1 (Ω \ K 1 ). [START_REF] Tilli | Asymptotics of the first Laplace eigenvalue with Dirichlet regions of prescribed length[END_REF] By the Sverak continuity result [START_REF] Šverák | On optimal shape design[END_REF] and the previous point (i) we deduce that 0 < α 1 < r 0 -r 1 . Moreover, among all those rings B(s) \ B(r) with r 1 ≤ r ≤ r 0 and s := L/(2π) -r so that the total perimeter is L, from the second claim in the previous proof of point (i), it follows that the ring B(r 1 + α) \ B(r 1 ) that is glued onto the interior disk B(r 1 ) is the one which realizes the largest eigenvalue, namely This combined with [START_REF] Tilli | Asymptotics of the first Laplace eigenvalue with Dirichlet regions of prescribed length[END_REF] proves that any radially symmetric set cannot be optimal for problem (4) in the case L < 4πr + α 1 .

4.3. Perforated domains. We can collect Theorem 4.2 and Theorem 4.4 to identify explicit solutions also for more general domains Ω. Proof. The proof follows the ones of Theorem 4.2 and of Theorem 4.4 . Therefore, we only sketch the principal steps. Let {L n } be a sequence of real numbers with L n ↑ H 1 (∂Ω) as n → ∞. Consider a sequence of maximizers {K n } of problem (4) associated to the length constraints {L n } so that λ 1 (Ω \ K n ) ↑ ∞ as n → ∞, and in particular K n → H Ω. For every n large enough, the following facts hold.

-The set K n has exactly k + 1 residual domains in R 2 . Otherwise there would exist a curve γ connecting two points belonging to two different connected components of ∂Ω such that H 1 (γ) ≥ d > 0 (recall the assumption [START_REF] Tilli | Where best to place a Dirichlet condition in an anisotropic membrane?[END_REF]) and by the Go lab theorem one would reach a contradiction.

-Every bounded residual domain ω of K n in R 2 coincides with C i for i = 1, . . . , k. This is a consequence of Theorem 3.8 and Corollary 2.7, with the fact that all the sets C i are convex.

-One concludes by applying Theorem 4.2 to the sets

k i=1 C i ∪K n with perimeter constraint L - k i=1 H 1 (∂C i ).

Theorem 4 . 1 (

 41 Hersch-Payne-Weinberger). Let D be a doubly connected domain of the plane (i.e., a domain bounded between two disjoint and rectifiable Jordan curves) with outer boundary Γ 0 and inner boundary Γ 1 of length respectively L 0 and L 1 . If L 2 0 -L 2 1 = 4πL(D), (25) then the the first eigenvalue λ 1 (D) is uniquely maximized whenever D is the ring with outer boundary of length L 0 and inner boundary of length L 1 .

λ 1 Ω

 1 \ (B(s) \ B(r)) ≤ λ 1 Ω \ (B(r 1 + α) \ B(r 1 )) .

Theorem 4 . 5 .

 45 Let k ∈ N, let r 0 > 0 and let {C i } k i=1 be a family of k open convex sets that are separated and strictly contained in B(r 0 ), namely where C k+1 := ∂B(r 0 ). Let Ω = B(r 0 ) \ k i=1 C i be an open disk of radius r 0 with k convex holes. There exists α 0 > 0 such that if L > H 1 (∂Ω)-α 0 then problem (4) has a unique solution: the maximizer K opt is given by the perforated disk B(r) \ k i=1 C i with B(r) is the disk concentric to B(r 0 ) with r = L/(2π) -

k i=1 H 1 (

 1 ∂C i )/(2π).