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OPTIMIZING THE FIRST DIRICHLET EIGENVALUE OF

THE LAPLACIAN WITH AN OBSTACLE

ANTOINE HENROT AND DAVIDE ZUCCO

Abstract. Inside a fixed bounded domain Ω of the plane, we look for the best

compact connected set K, of given perimeter, in order to maximize the first
Dirichlet eigenvalue λ1(Ω \K). We discuss some of the qualitative properties

of the maximizers, moving toward existence, regularity and geometry. Then

we study the problem in specific domains: disks, rings, and, more generally,
disks with convex holes. In these situations, we prove symmetry and in some

cases non symmetry results, identifying the solution.

We choose to work with the outer Minkowski content as the “good” notion
of perimeter. Therefore, we are led to prove some new properties for it as its

lower semicontinuity with respect to the Hausdorff convergence and the fact

that the outer Minkowski content is equal to the Hausdorff lower semicontin-
uous envelope of the classical perimeter.
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1. Introduction

A shape optimization problem is composed by three prime ingredients: the cost
functional, the class of admissible sets and the constraints. One also has to decide
whether to tackle the minimization problem or the maximization problem. Often,
only one of these is relevant.

A well studied cost functional is the one which models the principal frequency
of vibration of a membrane. A shape optimization problem for this quantity has a
long history going back at least to 1877 when Lord Rayleigh observed and conjec-
tured that among all membranes of given area, the disk has the minimum principal
frequency. This conjecture was solved by Faber in 1923 and, independently, by
Krahn in 1924, and many other contributions to similar problems for the princi-
pal frequency appeared during the 20th and 21st centuries, see [14], [15]. In 1963
Hersch, using the work of Payne and Weinberger [26], proved that of all doubly
connected membranes of given area and perimeter, the ring has the maximal prin-
cipal frequency (see [18, 19] and also Theorem 4.1 of this paper for the precise
statement).

The principal frequency of a membrane fixed along its boundary is mathemat-
ically described by the first eigenvalue of the Laplacian λ1 of a bounded domain
Ω in the plane with Dirichlet boundary conditions on ∂Ω. In this paper we dis-
cuss various shape optimization problems in the plane for the first eigenvalue of
the Laplacian with Dirichlet boundary conditions on a domain with an obstacle:
inside a given bounded domain Ω ⊂ R2 our goal is to find the best compact set K
(the obstacle) so as to optimize the first Dirichlet eigenvalue of the open set Ω \K,
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2 ANTOINE HENROT AND DAVIDE ZUCCO

namely

opt{λ1(Ω \K) : K ⊂ Ω, K closed and subjects to additional constraints}.

We recall the variational characterization of λ1(Ω \ K) as the minimum of the
Rayleigh quotient among all non zero functions in the Sobolev space H1

0 (Ω \ K),
that is

λ1(Ω \K) := min
u∈H1

0 (Ω\K)
u6=0

∫
Ω\K |∇u(x)|2 dx∫

Ω\K u(x)2 dx
.

Essentially, we are imposing the Dirichlet condition over ∂Ω and over a supplemen-
tary region K, of possibly positive measure, and we look for the best obstacle, both
in shape and location, which optimizes this eigenvalue. Similar problems in this
spirit were tackled by Ramm and Shivakumar in [27], Harrel, Kröger and Kurata
in [13], Kesavan in [21], and by El Soufi and Kiwan in [10]. However, in these
papers the authors considered obstacles of fixed shape, trying to optimize the first
eigenvalue only by means of rigid motions, translating or rotating the obstacle. Of
course, the results that can be obtained dealing with a wider class of admissible
obstacles, whose shapes can vary, are weaker than those obtained in the previous
papers and it is hopeless to expect a universal solution (in general the shape and
the location of an optimal obstacle depends on the domain Ω). More recently, Tilli
and Zucco have treated in [31, 32] a related problem for the first eigenvalue of
an elliptic operator in divergence form, in the restricted class of one-dimensional
obstacles (i.e., sets of finite one-dimensional Hausdorff measure).

As additional constraints, in the optimization problem above, we are interested
in area or perimeter. For the area we use the Lebesgue measure, while for the
perimeter we must choose it careful. Indeed, since objects of positive capacity but
of Lebesgue measure zero influence the first eigenvalue but are not seen by the
classical perimeter (as defined by De Giorgi), we need to choose another notion
of perimeter, more sensitive to one-dimensional objects. We want to work with a
perimeter that

(a) coincides with the classical notion of perimeter on regular sets;
(b) measures twice the length of one-dimensional objects;
(c) is lower semicontinuous with respect to some convergence.

Item (a) is natural and allows to use results available on the classical perimeter.
Item (b) rules out thin competitors (for instance it penalizes segments), helping
for the identification of solutions in specific domains. Item (c) is crucial for the
existence in the optimization problems with perimeter constraint. Therefore, we
are led to consider the following quantity (see [1]).

Definition 1.1 (Outer Minkowski content). Let K ⊂ R2 be a closed set. The upper
and lower outer Minkowski contents SM∗(K) and SM∗(K) of K are defined,
respectively, as

SM∗(K) := lim inf
ε→0

L(K⊕ε \K)

ε
and SM∗(K) := lim sup

ε→0

L(K⊕ε \K)

ε
,

where K⊕ε := {x ∈ R2 : dK(x) ≤ ε} is the ε-tubular neighborhood of K through the
distance function dK to K. If SM∗(K) = SM∗(K) their common value is denoted
by SM(K) and called outer Minkowski content of K.



OPTIMIZING THE FIRST DIRICHLET EIGENVALUE 3

In Section 2 we prove that the outer Minkowski content of any compact, con-
nected and non empty set of the plane always exists and that satisfies the three
items listed above. Notice that, while items (a) and (b) are well-known to be sat-
isfied by the outer Minkowski content (see [1]), this is not the same for the third
one (we have not found any proof in the literature). More specifically, we prove the
lower semicontinuity of the outer Minkowski content with respect to the Hausdorff
convergence. Moreover, we use this result to answer a question posed by Cerf in
[8]: we show that the outer Minkowski content is equal to the Hausdorff lower
semicontinuous envelope of the classical perimeter.

We are now ready to formulate four relevant problems for the first Dirichlet
eigenvalue on a bounded domain Ω ⊂ R2, depending on the type of optimization
(minimization or maximization) and the kind of constraint (area or perimeter); the
class of admissible obstacles will be chosen accordingly to guarantee existence of
solutions. Then, in the rest of the paper, we will focus on the last of these four
problems. Notice that we do not require any regularity of the boundary ∂Ω.

Problem 1: minimizing the first eigenvalue with an obstacle of given area.
For a fixed A ∈ (0,L(Ω)), with L the Lebesgue measure, consider the minimization
problem

min{λ1(Ω \K) : K ⊂ Ω, K closed, L(K) = A}. (1)

This problem is related to the minimization of the first eigenvalue among open sets
constrained to lie in a given box (and also with a given area), see [14, Section
3.4]. Indeed, passing to the complementary set O = Ω \ K problem (1) becomes
equivalent to the minimization of λ1(O) among open sets O ⊆ Ω of area L(Ω)−A
(in this framework Ω represents the box). Therefore, from what is known on the
minimizers contained into a box, we infer the existence of a solution of (1) and
some of its qualitative properties. We have to distinguish two cases, depending on
the existence of disks of area L(Ω)−A that are contained inside Ω (to this aim we
introduce the inradius ρ(Ω) of Ω).

- Let A ≥ L(Ω) − πρ(Ω)2. Thanks to the Faber-Krahn inequality, a closed
set Kopt minimizes (1) if and only if Kopt = Ω \B with the open set B that

is (up to sets of capacity zero) any disk in Ω of area L(Ω)−A. This imply
that, in general, problem (1) does not have a unique solution.

- Let A < L(Ω) − πρ(Ω)2. By [14, Theorem 3.4.1], [4] and [16], every min-
imizer Kopt of (1) touches the boundary of Ω, its free boundary (i.e., the
part of the boundary of Kopt which is inside Ω) is analytic and does not
contain any arc of circle.

Problem 2: maximizing the first eigenvalue with an obstacle of given area.
The corresponding maximization problem of (1) has no solutions. Indeed, one
can construct a sequence of closed sets Kn ⊂ Ω of Lebesgue measure A so that
λ1(Ω\Kn) ↑ ∞ as n→∞ (for instance by taking Kn as the union of a given closed
set in Ω of area A with a curve filling Ω as n increases, see [31, 32] where the limit
distribution in Ω of such curves is studied in detail). To guarantee the existence
of a maximizer one needs to prevent maximizing sequences to spread out over Ω.
This can be achieved by imposing stronger geometrical constraints on the class of
admissible obstacles (notice that connectedness is still not sufficient). Therefore,
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for a fixed A ∈ (0,L(Ω)), we are led to consider the maximization problem

max{λ1(Ω \K) : K ⊂ Ω, K closed and convex, L(K) = A}. (2)

Now, the existence of a maximizer in the restricted class of convex sets is straight-
forward (see [5, 14]). Moreover, as convexity seems necessary for the existence, it is
natural to expect every solution of (2) to saturate the convexity constraint, in the
sense that the boundary of any solution should contain non-strictly convex parts.
In particular, it would be interesting to know whether this maximization problem
has only polygonal sets as solutions, see [22], [23] for results in this direction for
shape optimization problems with convexity constraints.

Problem 3: minimizing the first eigenvalue with an obstacle of given
perimeter. The corresponding minimization problem of (1) with the area con-
straint replaced by a perimeter constraint (whatever notion of perimeter one would
consider) is in general not well-posed. Indeed, for every L > 0, one can construct a
sequence of smooth connected and closed sets Kn ⊂ Ω of perimeter L approaching a
subset of ∂Ω so that λ1(Ω\Kn) ↓ λ1(Ω) as n→∞ (notice that by regularity there is
no doubt on the notion of perimeter of Kn). Therefore, as in Problem 2, we restrict
the class of admissible obstacles to convex sets. For a fixed L ∈ (0,SM(Ω)) (the
existence of SM(Ω) will be provided by Lemma 2.2), consider the minimization
problem

min{λ1(Ω \K) : K ⊂ Ω, K closed and convex, SM(K) = L}. (3)

The existence of a minimizer is a consequence of the compactness of the class of
convex sets and of the continuity of SM w.r.t Hausdorff convergence of convex sets
(see [5, 14] and recall (5) with (6) of this paper). Notice that, for particular domains
Ω and small values L, it is still possible to have trivial solutions. For example, if
the boundary ∂Ω contains a segment and if L is smaller than twice the length of
such a segment, then every segment contained in ∂Ω of outer Minkowski content L
minimizes (3). On the other hand, if L is large enough, every minimizer has positive
Lebesgue measure, since minimizing sequences will not be able to degenerate to a
segment. In any case, one expects that every minimizer of (3) touches the boundary
∂Ω.

Problem 4: maximizing the first eigenvalue with an obstacle of given
perimeter. This is the problem that we analyze in detail in this paper. For a
fixed L ∈ (0,SM(Ω)) (the existence of SM(Ω) will be provided by Lemma 2.2) we
study the maximization problem

max{λ1(Ω \K) : K ⊆ Ω, K continuum, SM(K) ≤ L}, (4)

where, as usual, the word continuum (continua for the plural) stands for a compact,
connected and non empty set. Notice that the class of admissible obstacles is very
wide: a generic obstacle can be split into two pieces, a part of positive Lebesgue
measure (the body) and a part of Lebesgue measure zero (the tentacles). Here
connectedness of the admissible obstacles combined with the perimeter constraint,
prevents maximizing sequences to spread out over Ω and it is sufficient for the
existence of a solution (compare with Problem 2). Moreover, the assumption L <
SM(Ω), prevents to have non trivial solutions, otherwise by (5) one could take
K = Ω and λ1(∅) =∞. Notice that we have chosen the inequality in the perimeter
constraint, even though in the case of equality existence holds as well.
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In Section 3, for general bounded domains Ω, we discuss some of the qualitative
properties of the maximizers of (4), moving toward existence, regularity and geom-
etry. Clearly any solution of (4) depends on the geometry of the domain Ω and this
is the reason why it is hard to find explicit solutions. However, when the domain
Ω has a specific shape, such as a disk, a ring, or more generally, a disk with convex
holes, we are able to go beyond qualitative results. In Section 4 we prove symmetry
and, in some cases non symmetry results, identifying the solution for certain values
of the constraint (actually for all values when the domain is itself a disk). It is
worth mentioning that when Ω is a ring appears the not so common phenomenon
of symmetry breaking : for certain values of the constraint every maximizer is not
radially symmetric.

Aknowledgements. The authors want to warmly thank the anonymous referee
whose great work allows to significantly improve the preliminary version of this pa-
per. The work of Antoine Henrot is supported by the project ANR-12-BS01-0007-
01-OPTIFORM Optimisation de formes financed by the French Agence Nationale
de la Recherche (ANR). The work of Davide Zucco is supported by the project
2015 Fenomeni Critici nella Meccanica dei Materiali: un Approccio Variazionale
financed by the INdAM-GNAMPA. This work has been developed at the Insti-
tut Élie Cartan de Lorraine and at the Scuola Internazionale Superiore di Studi
Avanzati di Trieste: these institutions are kindly acknowledged for their warm hos-
pitality.

2. Some new properties of the outer Minkowski content

In this section we prove some new properties of the outer Minkowski content
(see Definition 1.1) on continua (i.e., compact, connected, non empty sets) of the
plane, such as its lower semicontinuity with respect to the Hausdorff convergence
and the fact that it is equal to the Hausdorff lower semicontinuous envelope of the
classical perimeter.

We start by fixing the notation and recalling some preliminary facts. Given a set
U ⊂ R2 we denote by int(U), ∂U and U , respectively, the interior, the boundary
and the closure of U . We will use Kn →H K to denote a sequence {Kn} of closed
sets converging with respect to the Hausdorff convergence to a closed set K as
n → ∞. Recall that the Hausdorff convergence preserves both connectedness and
convexity (see [3, 17] for other facts about the Hausdorff convergence). A residual
domain of K in a set U ⊂ R2 is a connected component of U \ K. We recall
that every residual domain of a continuum in R2 is simply connected and has a
connected boundary (see [8]). This implies that if a continuum K has k residual
domains (with k ∈ N) then ∂K has at most k connected components.

Now we recall the link of the outer Minkowski content of regular continua with
more classical quantities, such as the De Giorgi perimeter P, the Hausdorff measure
H1 and the Minkowski contentM (defined as its outer counterpart in Definition 1.1
but computing the limits as ε → 0 of the ratio L(K⊕ε)/(2ε)). Let K ⊂ R2 be
compact.

(a) If K is Lipschitz (i.e., K is locally the subgraph of a Lipschitz function near
every boundary point of K) then

SM(K) = P(K) = H1(∂K) < +∞. (5)
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(b) If K is 1-rectifiable (i.e., K is the image of a compact subset of the real line
through a Lipschitz function from R to R2) then

SM(K) = 2M(K) = 2H1(∂K) < +∞. (6)

Item (a) has been proved in [1, Corollary 1] (see also [2]). The first equality in
item (b) is trivial since SM and 2M, by definition, differs only on sets of positive
Lebesgue measure; the second equality has been proved in [11, p. 275].

The lower semicontinuity of the outer Minkowski content with respect to the
Hausdorff convergence is more tricky. We dedicate the rest of this section for its
proof with some of its consequences, since it is interesting on its own and, to the
best of our knowledge, new. To prove this result we adapt some ideas developed in
[7] that were tailored for the so-called density perimeter.

Lemma 2.1. Let K ⊂ R2 be a continuum. Then there exists a sequence of continua
{Kn} such that Kn is a finite union of segments and Kn →H K.

Proof. We recall the construction given in the proof of [7, Theorem 4.1]). Take a
covering of K given by open disks of radius 1/n. By compactness the covering can
be provided by a finite number of disks. Moreover, by connectedness this family
of open disks can be considered connected. Then define the continuum Kn as the
family of all the segments connecting any two centers of those disks of this covering
with non-empty intersection. By definition, Kn satisfied what claimed. �

We will need the following characterization of the outer Minkowski content.

Lemma 2.2. Let K ⊂ R2 be a continuum. Then the outer Minkowski content of
K exists and

SM(K) = sup
ε>0

[
L(K⊕ε \K)

ε
− πε

]
. (7)

Proof. To prove (7) it is sufficient to show that the quantity inside the sup is non-
increasing with respect to ε, namely that for every 0 < ε < δ

L(K⊕δ \K)

δ
− πδ ≤ L(K⊕ε \K)

ε
− πε. (8)

Indeed in this case the sup in (7) is a limit and guarantees the existence of the limit
in the definition of SM. We prove (8) by an approximation argument. Let ε > 0
and δ > 0 be fixed. By Lemma 2.1 there exists a sequence of continua {Kn} such
that Kn is a finite union of segments and Kn →H K. Since both L(Kn) = 0 and
L(∂K⊕εn ) = 0 from the inequality (12) in [7] for every set Kn of the approximating
sequence we have

L(K⊕δn \Kn)

δ
− πδ ≤ L(K⊕εn \Kn)

ε
− πε.

Therefore, by the continuity of the measure on increasing sequences of sets, for a
fixed η > 0 there exists µ ∈ (0, ε) so that

L(K⊕δn \K⊕µn )

δ
− πδ ≤ L(K⊕εn \K⊕µn )

ε
− πε+ η. (9)

Now, by definition of the Hausdorff convergence, there exists nµ such that Kn ⊂
K⊕µ and K ⊂ K⊕µn for every n > nµ. Then K⊕εn ⊂ K⊕(µ+ε), and (9) becomes

L(K⊕δn \K⊕µn )

δ
− πδ ≤ L(K⊕(µ+ε) \K)

ε
− πε+ η. (10)
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Using again the definition of the Hausdorff convergence, for all ξ and θ with 0 <
µ < ξ < θ < δ, there exists nξ,θ such that K⊕θ ⊂ K⊕δn and K⊕µn ⊂ K⊕ξ for every
n > nξ,θ. Then for n > max{nµ, nξ,θ} the inequality (10) becomes

L(K⊕θ \K⊕ξ)
δ

− πδ ≤ L(K⊕(µ+ε) \K)

ε
− πε+ η.

Since⋃
µ>0

⋃
ξ,θ

µ<ξ<θ<δ

K⊕θ \K⊕ξ = int(K⊕δ) \K and
⋂
µ>0

K⊕(µ+ε) \K = K⊕ε \K

the continuity of the measure on monotone (in the sense of set inclusion) sequences
of sets with the fact that L(∂K⊕δ) = 0 gives

L(K⊕δ \K)

δ
− πδ ≤ L(K⊕ε \K)

ε
− πε+ η.

By the arbitrariness of η we obtain (8). This gives (7) and then it follows the
existence of the limits in Definition 1.1. �

The lower semicontinuity of the outer Minkowski content with respect to the
Hausdorff convergence is an immediate consequence of Lemma 2.2.

Theorem 2.3. Let {Kn} be a sequence of continua in R2 such that Kn →H K.
Then K ⊂ R2 is a continuum and

SM(K) ≤ lim inf
n→∞

SM(Kn).

Proof. By [17, Proposition 2.2.17] the Hausdorff convergence preserves connected-
ness. Let ε > 0 be fixed. By definition of the Hausdorff convergence, for every
δ ∈ (0, ε) there exists nδ such that Kn ⊂ K⊕δ and K ⊂ K⊕δn for every n > nδ.
This with (7) implies that

L(K⊕ε \K⊕δ)
ε

− πε ≤
(
L(K

⊕(ε+δ)
n \Kn)

ε+ δ
− π(ε+ δ)

)
ε+ δ

ε
+
πδ(2ε+ δ)

ε

≤ ε+ δ

ε
SM(Kn) +

πδ(2ε+ δ)

ε
,

and taking the limit as n→∞ gives

L(K⊕ε \K⊕δ)
ε

− πε ≤ ε+ δ

ε
lim inf
n→∞

SM(Kn) +
πδ(2ε+ δ)

ε

Letting δ → 0, since
⋃
δ>0(K⊕ε \K⊕δ) = K⊕ε \K, the continuity of the measure

on increasing sequences of sets yields

L(K⊕ε \K)

ε
− πε ≤ lim inf

n→∞
SM(Kn).

Taking the supremum in ε > 0, by Lemma 2.2 we obtain the thesis. �

We use Theorem 2.3 to answer a question posed by Cerf in [8], where the following
quantity has been studied in detail.

Definition 2.4 (Hausdorff lower semicontinuous envelope of the perimeter). Let
K ⊂ R2 be a continuum. The Hausdorff lower semicontinuous envelope of the
classical perimeter S(K) of the set K is defined as

S(K) := inf
{

lim inf
n→∞

H1(∂Kn) : Kn Lipschitz continuum in R2, Kn →H K
}
.
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In [8] the Hausdorff lower semicontinuous envelope of the classical perimeter has
been characterized as follows:

S(K) = sup
U

∑
U∈U

∑
O∈C(K,U)

H1(∂O \ ∂U),

where C(K,U) is the collection of all residual domains of K in U and the supremum
is taken over all families U of pairwise disjoint domains of R2. In the introduction
of [8] Cerf pointed out the interesting question of compare S with other classical
quantities, like for instance the De Giorgi perimeter or the Minkowski content. In
the following corollary we show that it coincides with the outer Minkowski content
on continua of the plane.

Corollary 2.5. Let K ⊂ R2 be a continuum. Then the following equality holds:

S(K) = SM(K).

Proof. Let {Kn} be a sequence of Lipschitz continua in R2 with Kn →H K. By
Theorem 2.3 and (5) it follows that

SM(K) ≤ lim inf
n→∞

SM(Kn) = lim inf
n→∞

H1(∂Kn).

By taking the infimum among all sequences {Kn} of Lipschitz continua in R2 with
Kn →H K, recalling Definition 2.4, we obtain the inequality SM(K) ≤ S(K).

For the reverse inequality we may assume SM(K) to be finite, otherwise the
inequality is trivial. Then by the coarea formula and Fatou’s lemma (see (2.74)
and Theorem 1.20 in [2]) we have

SM(K) = lim
ε→0

1

ε

∫ ε

0

H1({dK = t}) dt ≥
∫ 1

0

lim inf
ε→0

H1({dK = tε}) dt

≥ lim inf
ε→0

H1({dK = ε}) ≥ lim inf
ε→0

H1(∂K⊕ε),

(11)

where the last inequality is a consequence of the inclusion ∂K⊕ε ⊆ {dK = ε}. For
every ε > 0 the set K⊕ε ⊂ R2 is a continuum (the connectedness follows from the
one of K) and K⊕ε →H K as ε → 0. If the sets K⊕ε were Lipschitz then the
inequality would follow by Definition 2.4, but in general they are not. Nevertheless,
we can conclude the proof by a diagonal argument, approximating, in the Hausdorff
convergence, each set K⊕ε by means of smooth sets (we adapt the proof of [2,
Theorem 3.42] to our contest where a similar approximation has been provided, but
with a different topology). Indeed, from [2, Sect. 3.5] we haveH1(∂K⊕ε) ≥ P(K⊕ε)
and similar to [2, Theorem 3.42] we can build a sequence {Kε

n} of Lipschitz continua
such that P(Kε

n)→ P(K⊕ε) as n→∞ (here we can deal with closed instead open
sets since the perimeter P of a set E does not change by modifying E with a set
of Lebesgue measure zero and from (11) L(∂K⊕ε) = 0 while from the regularity of
Kε
n it holds L(∂Kε

n) = 0). Therefore, if we prove that Kε
n →H K⊕ε as n → ∞,

by a standard diagonal argument (by the Blaschke selection theorem [3, Theorem
4.4.15] the Hausdorff convergence over closed sets is metrizable), there exists a
subsequence {Kεj

nj} of Lipschitz continua with K
εj
nj →H K as j → ∞ such that

(11) and Definition 2.4 yield

SM(K) ≥ lim inf
j→∞

H1(∂Kεj
nj ) ≥ S(K),

where we also used (5) to say that P(K
εj
nj ) = H1(∂K

εj
nj ).
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To conclude it remains to prove the convergence of smooth sets to K⊕ε. Let
ε > 0 be fixed. Similar to [2, Theorem 3.42], we can choose the closed counterpart
Kε
n := {χK⊕ε ∗ ρn ≥ t} where ρn is a mollifier with support in the ball B(0, 1/n)

and t is a suitable fixed real number with t ∈ (0, 1). Relying on this definition we
can prove that Kε

n →H K⊕ε as n → ∞, namely that for every δ > 0 there exists
nδ such that for every n > nδ the inclusions Kε

n ⊂ (K⊕ε)⊕δ and K⊕ε ⊂ (Kε
n)⊕δ

hold. Fix δ > 0 and let nδ = d1/δe. For the former inclusion, since χK⊕ε ∗ ρn is a
non-negative function, for every n > nδ we have

Kε
n ⊂ supp(χK⊕ε ∗ ρn) ⊂ supp(χK⊕ε) + supp(ρn) = (K⊕ε)⊕1/n ⊂ (K⊕ε)⊕δ,

where supp denotes the support of a function and + the Minkowski sum. For the
latter inclusion let s = 1 − t and notice that 1 − χK⊕ε ∗ ρn = (1 − χK⊕ε) ∗ ρn is
again a non-negative function. Then, similarly to the previous inclusions

R2 \Kε
n ⊂ supp((1− χK⊕ε) ∗ ρn) ⊂ supp(1− χK⊕ε) + supp(ρn) = (R2 \K⊕ε)⊕1/n.

Since (R2 \K⊕ε)⊕1/n ⊂ R2 \K⊕(ε−1/n) by passing to the complementary sets and
enlarging of δ we obtain (Kε

n)⊕δ ⊃ (K⊕(ε−1/n))⊕δ. If n > nδ it is easy to see that
(K⊕(ε−1/n))⊕δ ⊃ K⊕ε and the latter inclusion above is also proved. This concludes
the proof of the corollary. �

This corollary may serve as a translator of similar results independently estab-
lished for the Hausdorff lower semicontinuous envelope of the perimeter S in [8]
and for the outer Minkowski content SM in [33]. In particular, from Corollary 2.5
one could deduce that, if K ⊂ R2 is a continuum then

S(K) = P(K) + 2H1(∂K ∩K0),

where K0 is the set of points where K has null density (see [8, 33]).
In the following we use Corollary 2.5 to show that the convex hull diminishes the

outer Minkowski content of a continuum in the plane and moreover that the outer
Minkowski content controls the Hausdorff measure.

Corollary 2.6. Let K ⊂ R2 be a continuum and hull(K) be the convex hull of K.
Then

SM(hull(K)) ≤ SM(K).

Proof. For a Lipschitz continuum of the plane, it is well-known that the convex
hull diminishes the perimeter (see [12] and recall (5)). For a general continuum, we
proceed by approximation using the characterization of the outer Minkowski content
provided in Corollary 2.5. Indeed, for every η > 0 we may consider a sequence of
Lipschitz continua {Kn} such that Kn →H K and lim infnH1(∂Kn) ≤ SM(K)+η.
Since the convex hull is stable with respect to the Hausdorff convergence, that is
hull(Kn) →H hull(K) (see [17, Exercise 2.5]), by Corollary 2.5 and Definition 2.4
we obtain

SM(hull(K)) ≤ lim inf
n→∞

H1(∂hull(Kn)) ≤ lim inf
n→∞

H1(∂Kn) ≤ SM(K) + η.

We get the thesis by the arbitrariness of η . �

Corollary 2.7. Let K ⊂ R2 be a continuum with a finite number of residual
domains in R2. Then

H1(∂K) ≤ SM(K).
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Proof. Let η > 0 and denote by k ∈ N the number of residual domains of K in
R2. From Corollary 2.5 there exists a sequence of Lipschitz continua {Kn} with
Kn →H K and

lim
n→∞

H1(∂Kn) ≤ SM(K) + η. (12)

(we choose a subsequence for which the lim inf is a limit). From the assumption
on K each set Kn of the approximating sequence can be chosen to have at most k
residual domains in R2. This implies that ∂Kn has at most k connected components
as well (otherwise its perimeter would be larger). Now, the sequence of closed sets
{∂Kn} converges, up to subsequences (not relabelled), to a closed set J with at
most k connected components and so that ∂K ⊆ J ⊆ K (the first inclusion follows
from Kuratowski convergence, the second one since the inclusion is continuous
with respect to the Hausdorff convergence). Therefore, by the monotonicity of the
Hausdorff measure and by applying the Go lab theorem [3, Theorem 4.4.17] to each
connected component of ∂Kn, we obtain that

H1(∂K) ≤ H1(J) ≤ lim inf
n→∞

H1(∂Kn).

Combining this inequality with (12), by the arbitrariness of η, we get the thesis. �

3. Optimal obstacles: toward existence, regularity and geometry.

We start by proving the existence of a solution to problem (4). Then, we analyze
some qualitative properties satisfied by such a solution.

Theorem 3.1. Let L ∈ (0,SM(Ω)). Then there exists a maximizer Kopt of (4).

Proof. The existence follows from the direct methods of the Calculus of Variations.
Let {Kn} be a maximizing sequence of problem (4), so that

λ1(Ω \Kn)→ sup{λ1(Ω \K) : K ⊆ Ω, K continuum, SM(K) ≤ L}, (13)

as n→∞. By the Blaschke selection theorem there exists a compact set Kopt ⊂ Ω
and a subsequence, not relabelled, such that Kn →H Kopt. Moreover, by The-
orem 2.3, the set Kopt is a continuum with SM(Kopt) ≤ L and thus it is an
admissible competitor in (4). Then, by the Sverak continuity result (see [28])
λ1(Ω \ Kn) → λ1(Ω \ Kopt) as n → ∞. This with (13) implies that Kopt solves
problem (4). �

Before giving the first properties of a solution to (4), let us introduce the notion
of local convexity.

Definition 3.2 (Local convexity). A continuum K ⊂ Ω is said to be locally convex

inside Ω if for every x ∈ ∂K∩Ω there exists rx > 0 such that K∩B(x, rx) is convex.

Notice that if this definition is satisfied for some radius rx > 0 then it is also
satisfied for all smaller radius 0 < r < rx. Moreover, for points in (K \ ∂K) ∩ Ω
there always exists such a radius rx. An interesting result relating local to global
convexity goes back to 1928 (see [30, 25]).

Theorem 3.3 (Tietze-Nakajima). Let K ⊂ R2 be a continuum that is locally convex
inside R2. Then K is convex.

We also need the following lemma.
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Lemma 3.4. Let L > 0 and let K ⊂ Ω be a Lipschitz continuum with H1(∂K) ≤ L.

Let x ∈ Ω and let r > 0 such that B(x, r) ∩ Ω is convex. Then there exists a

continuum K̂ with the following properties:

- K̂ ⊂ Ω, K̂ ⊃ K and H1(∂K̂) ≤ H1(∂K);

- K̂ ∩B(x, r/2) is the union of N convex continua with N ≤ bL/rc.

Proof. The first condition is trivially satisfied if K̂ = K, but the second one is not

in general. Therefore, we construct a set K̂ satisfying both conditions by taking
suitable convex hulls of subsets of K. Let {Ki} be the family of those connected

components of K ∩ B(x, r) with non empty intersection with the disk B(x, r/2).
We first notice that, for any index i, the set H := K ∪Hi where Hi := hull(Ki) is
a continuum such that

H ⊂ Ω, H ⊃ K, H1(∂H) ≤ H1(∂K). (14)

The inclusions follow from the fact that Ki ⊂ Hi ⊂ B(x, r)∩Ω. For the inequality
on the Hausdorff measure, by writing ∂Ki = (∂Ki \ ∂Hi) ∪ (∂Ki ∩ ∂Hi) and
∂Hi = (∂Hi \∂Ki)∪ (∂Hi∩∂Ki), since H1(∂Hi) ≤ H1(∂Ki) (see [12]), we deduce
that

H1(∂Hi \ ∂Ki) ≤ H1(∂Ki \ ∂Hi). (15)

Similarly, we write ∂K = (∂K\∂H)∪(∂K∩∂H) and ∂H = (∂H \∂K)∪(∂H∩∂K).
Since Ki ⊂ Hi and K ⊂ H we obtain

∂Ki \ ∂Hi = ∂Ki ∩ int(Hi) ⊂ ∂K ∩ int(Hi) ⊂ ∂K ∩ int(H) = ∂K \ ∂H,

and the monotonicity of H1 with (15) yield

H1(∂Hi \ ∂Ki) ≤ H1(∂Ki \ ∂Hi) ≤ H1(∂K \ ∂H). (16)

The inclusion ∂H \ ∂K ⊂ ∂Hi \ ∂Ki holds. Indeed, let x ∈ ∂H \ ∂K, that is
x ∈ K ∪Hi but x /∈ int(K ∪Hi) and x /∈ ∂K. Then x /∈ int(K) and x /∈ int(Hi).
These facts imply that x ∈ ∂Hi and moreover that x /∈ ∂Ki. Therefore, using
again the monotonicity of H1 yields H1(∂H \∂K) ≤ H1(∂Hi \∂Ki) that combined
with the inequality (16) gives (14).

Now, by using the monotonicity and the additivity properties of H1 with the
connectedness of each component we deduce that the cardinality N of the family

{Ki} is at most bL/rc. Therefore, setting K̂ :=
⋃N
i=1H

i∪K provides a continuum
satisfying the properties listed in the statement of theorem. Indeed, the first point
of the list follows by induction from (14). For the second one, notice that

K̂ ∩B(x, r/2) =
( N⋃
i=1

Hi ∪Ki
)
∩B(x, r/2) =

N⋃
i=1

Hi ∩B(x, r/2),

that is a finite union of convex continua. �

Theorem 3.5. Let L ∈ (0,SM(Ω)) and let Kopt be a maximizer of (4). Then the
following properties hold.

(i): Kopt is locally convex inside Ω. Moreover, if Ω is convex then Kopt is
convex as well.

(ii): The perimeter constraint is saturated, namely SM(Kopt) = L.

(iii): If Ω has k residual domains in R2 with k ≥ 1 then Kopt has at most k
residual domains in R2.
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Proof. In the proofs of the three items we proceed by contradiction.

For (i) assume Kopt to be not locally convex inside Ω. This guarantees the

existence of a point x ∈ ∂Kopt∩Ω for which the closed setKopt∩B(x, r) is not convex

for all r > 0. Then fix some r so small so that B(x, r)∩Ω is convex. The strategy of
the proof consists in considering as competitor the continuum Kopt∪hull(K1) where

K1 is the connected component of Kopt∩B(x, r/2) containing x. If Kopt∪hull(K1)
were admissible then, by monotonicity of the first eigenvalue, it would contradict
the optimality of Kopt. However, due to the subadditivity of the outer Minkowski
content, it is not immediate to reach a contradiction. To overcome this difficulty,
by approximation and the technical lemma above, we deduce more information on
the set Kopt ∩ B(x, r/2) that garantee to have additivity of the outer Minkowski
content.

Let η > 0. From Corollary 2.5 and the estimate SM(Kopt) ≤ L, there exists a
sequence of Lipschitz continua {Kn} such that Kn →H Kopt and

H1(∂Kn) ≤ L+ η,

for every n large enough. Without loss of generality, by optimality of Kopt and

Lemma 3.4 we can assume Kn ∩ B(x, r/2) to be the union of at most b(L+ η)/rc
convex continua (notice that this bound is uniform with respect to n). Then, since
convexity is preserved by Hausdorff convergence, it turns out that the set Kopt ∩
B(x, r/2) is the union of a finite number of convex continua and, possibly, a non
empty subset of ∂B(x, r/2) (this represent the set of those limit points x for which

there exists a sequence {xn} such that xn ∈ Kn \ B(x, r/2) and x = limn→∞ xn).

Now, let K1 be the connected component of Kopt ∩B(x, r/2) containing x and let
K2 := Kopt ∩ hull(K1) \ K1, that is the intersection of the remaining connected
components with hull(K1). Since hull(K1) \ K1 ⊂ B(x, r/2) we deduce that K2

has a finite number of connected components, thus is compact and the quantity

d := min
x∈K1, y∈K2

|x− y| > 0. (17)

By choosing the radius ε in the definition of SM∗(K1 ∪ K2) (see Definition 1.1)
smaller than the number d as defined in (17) and by using Lemma 2.2 we obtain
the additivity of SM∗

SM∗(Kopt ∩ hull(K1)) = SM∗(K1 ∪K2) = SM(K1) + SM∗(K2). (18)

Now, we notice that K1 can not be convex (otherwise for r < d the set Kopt ∩
B(x, r) = K1 ∩ B(x, r) would be convex, a contradiction with the assumption at

the beginning of the proof). Therefore, the set K̂ := Kopt ∪ hull(K1) strictly

contains Kopt and by monotonicity of the first eigenvalue λ1(Ω\ K̂) > λ1(Ω\Kopt).

By convexity of B(x, r) ∩ Ω the inclusion hull(K1) ⊂ B(x, r) ∩ Ω holds so that

K̂ ⊂ Ω, and this implies that SM(K̂) > SM(Kopt) (otherwise K̂ would be a
better competitor contradicting the optimality of Kopt). Plugging this inequality
into the strong subadditivity of SM (that can be proved similarly to [1, p. 739]))

SM(K̂) + SM∗(Kopt ∩ hull(K1)) ≤ SM(Kopt) + SM(hull(K1)), (19)

yields SM∗(Kopt ∩ hull(K1)) < SM(hull(K1)). This inequality with (18) and
Corollary 2.6 applied to K1 gives SM∗(K2) < 0, a contradiction. The set Kopt

must be locally convex inside Ω.
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The second statement in the case Ω convex follows directly from Corollary 2.6:
Kopt must be convex otherwise by convexity of Ω the continuum hull(K) would
contradict the optimality of Kopt.

For (ii) let us now assume SM(Kopt) < L. Consider a segment γ so that Kopt∪γ
is connected and 0 < SM(γ \Kopt) ≤ L−SM(Kopt) (this is always possible thanks
to (6)).Then, by the subadditivity of SM with respect to union of sets (similar to
(19)) we deduce that SM(Kopt ∪ γ) ≤ L while λ1(Ω \ (Kopt ∪ γ)) > λ1(Ω \Kopt).
This contradicts the optimality of Kopt and so every maximizer of (4) saturates the
perimeter constraint.

At last for (iii) let us assume that Kopt has more than k residual domains in

R2. Since at most k different residual domains of Kopt can contain those of Ω, all
the other ones must be contained in Ω. Let ω ⊂ Ω be such a residual domain of
Kopt and define the continuum K̂ = Kopt ∪ ω. Then K̂ ⊂ Ω, K̂ ⊃ Kopt and since

(K̂⊕ε \ K̂) ⊂ (K⊕εopt \ Kopt), we also have SM(K̂) ≤ SM(Kopt). This provides a
better competitor in (4) contradicting the optimality of Kopt. Therefore, Kopt has
at most k residual domains. �

Remark 3.6. If Ω is Lipschitz then the local convexity of Kopt can be proved up to
the boundary ∂Ω. Precisely, for every vertex x ∈ ∂Kopt, height r > 0, direction ξ ∈
S1, and opening angle θ ∈ (0, 2π] such that the intersection of the cone C(x, r, ξ, θ)
with Ω is convex (the existence of a 4-tuple satisfying this condition is guaranteed

by the regularity of Ω) then the set Kopt ∩ C(x, r, ξ, θ) is convex as well. This can
be proved simply by replacing in the proofs above disks with cones.

Remark 3.7. We will see in the situation of the ring, where Ω has exactly 2 residual
domains in R2, that the two possibilities Kopt has 1 or 2 residual domains in R2

actually happen, depending on the perimeter constraint (see Theorem 4.4 below).

Now, we focus on the regularity and the geometry of the free boundary of Kopt

(the part of the boundary which is inside Ω).

Theorem 3.8. The free boundary of Kopt is of class C∞, that is for every x ∈
∂Kopt ∩ Ω there exists rx > 0 such that ∂Kopt ∩ B(x, rx) is the graph of a concave
C∞ function. Moreover, for every x ∈ ∂Kopt ∩ Ω the following properties hold.

(i): If x ∈ ∂ω, with ω a residual domain of Kopt in Ω and λ1(ω) > λ1(Ω\Kopt),

then ∂Kopt ∩B(x, rx) is a segment.

(ii): If ∂Kopt ∩B(x, rx) is not a segment then the optimality condition holds

|∇u1(x)|2 = µC(x), (20)

where u1 is the first eigenfuction corresponding to λ1(Ω \Kopt), C(x) is the
curvature of the free boundary of Kopt at the point x and µ > 0 is a Lagrange
multiplier which may depend on the connected component of ∂Kopt ∩Ω but
is the same for all the points on this connected component.

(iii): If ∂Kopt∩B(x, rx) is an arc of circle then Ω\Kopt is a ring. In particular,
if Kopt is a disk then Ω is a disk concentric to Kopt.

Proof. Fix x ∈ ∂Kopt ∩ Ω and let γ := ∂Kopt ∩ B(x, rx) be the graph of a concave
function for some fixed radius rx > 0. This is always possible thanks to item
(i) of Theorem 3.5. The regularity of γ is quite classical: this follows by using a
Schauder’s regularity result with a bootstrap argument (see, e.g., [9] or also the
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proof of Theorem 2.2 in [6]). In our problem (by contrast with what happens in
[6]) the domain is not convex but is the complement of a locally convex set inside Ω.
Nonetheless, classical regularity results in the plane imply that |∇u1|2 ∈ Lp(γ) for
some p > 1 (see for instance [20]). This is enough to start the bootstrap argument
and to follow the same line as in [6] to get the regularity of the free boundary.

For (i) if it is not the case then γ is strictly convex somewhere and it is possi-
ble to decrease the perimeter of this connected component without changing the
eigenvalue λ1(Ω \Kopt) contradicting item (ii) in Theorem 3.5.

To prove (ii), by the previous point (i), observe that the point x ∈ ∂ω for some
residual domain ω of Kopt in Ω with λ1(ω) = λ1(Ω \ Kopt). Now, assume that γ
is modified by a regular vector field x ∈ R2 7→ I(x) + tV (x) where t > 0, I is
the identity map from R2 to R2 while V ∈ C2(R2;R2) has compact support inside
B(x, rx). Then by [33, Proposition 4.13] we can use the shape derivative of the
classical perimeter [17, Corollary 5.4.16] to obtain that

SM ((I + tV )(Kopt)) = SM(Kopt) + t

∫
γ

C V.n dH1 + o(t), as t→ 0,

where n is the normal to γ pointing toward Ω \Kopt (which exists everywhere by
regularity of γ). Since by assumption the curvature C is positive over a subset of
γ we can always consider vector fields V decreasing the total perimeter of Kopt,
namely so that ∫

γ

C V.n dH1 ≤ 0. (21)

On the other hand, the shape derivative of the first eigenvalue [17, Theorem 5.7.1]
implies the following expansion

λ1 ((I + tV )(ω)) = λ1(ω) + t

∫
γ

|∇u1|2 V.n dH1 + o(t), as t→ 0, (22)

here the + in the linear term is due to the definition of the normal n as exterior to
γ (i.e., it points toward ω).

Let us now consider all the other residual domains {ωi} of Kopt in Ω, if they exist,
such that λ1(ωi) = λ1(Ω \Kopt). Inside each of these components ωi we can add a
small segment to Kopt by preserving the total perimeter (similarly to the proof of (ii)
in Theorem 3.5). Since the first eigenvalue of each of these components increases,
by optimality of Kopt we must have λ1(Ω \ (I + tV )(Kopt)) = λ1 ((I + tV )(ω)) so
that (22) yields ∫

γ

|∇u1|2 V.n dH1 ≤ 0. (23)

In other words, for any vector field V such that (21) holds it follows the inequal-
ity (23). This shows that the two linear forms V 7→

∫
γ
C V.n dH1 and V 7→∫

γ
|∇u1|2 V.n dH1 are proportional and the optimality condition (20) holds.

The assertion (iii) follows from the optimality condition (20) in the same way
as in [6] (see also [16]) where a similar statement has been proved for the second
eigenvalue of the Laplacian. More precisely, if the boundary contains an arc of
circle γ centered at the origin, introducing the function w := x∂u1/∂y − y∂u1/∂x
(i.e., the derivative of u1 with respect to the angular coordinate) we can prove using
(20) that w satisfies −∆w = λw in Ω \Kopt with w = ∂w

∂n = 0 on γ. By Hölmgren
uniqueness theorem (see [29, Proposition 4.3]) and analyticity, this implies that
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w ≡ 0 in Ω \Kopt. But this means that u1 is radially symmetric in Ω \Kopt and
then Ω \Kopt has to be a ring. �

Remark 3.9. The optimality condition (20) shows that the curvature of the free
boundary is positive everywhere and expresses, in a quantitative way, the fact that
a maximizer of (4) has to be locally convex inside Ω, see (i) in Theorem 3.5 (cf.
with the optimality conditions obtained in [6, 24]).

In the next section, we will study more in detail item (iii) for specific domains
Ω. These include the cases where Ω is a disk, a ring or more generally a disk with
convex holes. In these situations, we will identify the maximizer for certain values
of L (actually for all values of L when Ω is itself a disk).

The intuition may lead to think that a maximizer of (4) must always stay inside
Ω, see for example the situation described in [13] where the maximizing position
is at the center of the domain while only in the minimizing positions the obstacle
touches the boundary. This is probably true when Ω is convex, but we were not
able to prove it. On the other hand, when Ω is not convex, we prove that it is never
the case when L is large enough and that Kopt must touch the boundary of Ω. To
show this we rely on an object that measure the largest perimeter one can reach by
means of convex subsets of Ω.

Proposition 3.10. The following quantity

L∗(Ω) := max{SM(K) : K ⊆ Ω, K closed and convex} (24)

is well defined and

L∗(Ω) ≤ SM(Ω),

where the equality holds if and only if Ω is convex.

Proof. Let {Kn} be a maximizing sequence of problem (24), so that

SM(Kn)→ sup{SM(K) : K ⊆ Ω, K closed and convex},

as n→∞. From the Blaschke selection theorem, we infer the existence of a compact
set K∗ ⊂ Ω and a subsequence, not relabelled, such that Kn →H K∗. Moreover,
since the Hausdorff convergence preserves convexity (see [5]) the limit K∗ is also
convex in Ω. Therefore, using (5) with the continuity of the classical perimeter
with respect to the Hausdorff convergence of convex sets we obtain the existence
of a solution to (24) and L∗(Ω) = SM(K∗).

Now, K∗ is a convex set included in hull(Ω) thus H1(∂K∗) ≤ H1(∂hull(Ω)).
Therefore, by (5) again, with Corollary 2.6 we obtain SM(K∗) ≤ SM(Ω), and the
equality holds whenever Ω is convex. �

Theorem 3.11. If L ∈
(
L∗(Ω),SM(Ω)

)
with L∗(Ω) defined by (24), then every

maximizer Kopt of (4) touches the boundary ∂Ω, i.e., Kopt ∩ ∂Ω 6= ∅.

Proof. Let us assume, for a contradiction, that Kopt ∩ ∂Ω = ∅ so that Kopt ⊂ Ω.
Then (i) of Theorem 3.5 implies that the set Kopt is locally convex inside R2 and by
Theorem 3.3 Kopt is convex. This with item (ii) in Theorem 3.5 would contradict
the assumption L > L∗(Ω). �
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4. Optimal obstacles in specific domains

We study problem (4) for specific domains Ω: circular, annular, and perforated
domains. For these domains we prove symmetry and, in some cases non symmetry
results, identifying the unique solution.

4.1. Circular domains. We identify the maximizer of (4) in the case the domain
Ω is a disk. Our argument relies on the following result obtained in the sixties
by Hersch, Payne, and Weinberger (see [18, 19, 26] and also [14, Section 3.5] for a
concise explanation of these papers).

Theorem 4.1 (Hersch-Payne-Weinberger). Let D be a doubly connected domain
of the plane (i.e., a domain bounded between two disjoint and rectifiable Jordan
curves) with outer boundary Γ0 and inner boundary Γ1 of length respectively L0

and L1. If
L2

0 − L2
1 = 4πL(D), (25)

then the the first eigenvalue λ1(D) is uniquely maximized whenever D is the ring
with outer boundary of length L0 and inner boundary of length L1.

In the theorem above the competitors have free both the inner and outer bound-
aries, but perimeter and area are strongly constrained. In our problem (4) the
exterior boundary is fixed and only the interior boundary is free to move but there
is no constraint on the area of K. We develop a purely geometrical argument in
order to fit into the hypothesis of the Hersch, Payne, and Weinberger result: as a
consequence we identify the explicit solution to (4) when Ω is a disk.

Theorem 4.2. Let Ω = B(r0) be an open disk of radius r0 > 0, and L ∈ (0, 2πr0).
Then problem (4) has a unique solution: the maximizer Kopt is given by the closed

disk B(r) concentric to B(r0) of radius r = L/(2π).

Proof. We look for a solution to (4) only among convex sets with SM(K) = L,
since non-convex sets and sets with outer Minkowski content less than L are ruled
out by items (i) and (ii) in Theorem 3.5. Therefore, it suffices to prove that for

every closed and convex set K contained in B(r0) with SM(K) = L, different from

the disk B(r) concentric to B(r0) and with perimeter L, it holds

λ1(B(r0) \K) < λ1(B(r0) \B(r)). (26)

We prove this inequality by exploring four cases, according to the shape and the
location of the convex set K.

Case 1: K is a disk not concentric to B(r0). In this case the inequality (26) is
an easy consequence of (iii) in Theorem 3.8

Case 2: K is neither a disk nor a segment and it is contained in B(r0). Now we
use Theorem 4.1. Clearly for the disk B(r0) the condition (2πr0)2 = 4πL(B(r0))
holds. Moreover, for the set K, by recalling (5), the isoperimetric inequality implies
that

L2 = H1(∂K)2 > 4πL(K),

which combined with the previous equality for B(r0) yields

(2πr0)2 − L2 < 4πL(B(r0) \K). (27)

This means that we can not apply Theorem 4.1 to the doubly connected domain
D = B(r0) \ K with L0 = 2πr0 and L1 = L, since the equality condition (25) is
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not satisfied. However it is possible to modify the set B(r0) \ K, increasing its
outer perimeter L0 and decreasing its area L(B(r0) \K) until the equality in (27)
is reached. More precisely, starting from the disk B(r0), we consider a smooth

domain B̂ ⊂ R2 such that

(i) the perimeter increases: H1(∂B(r0)) < H1(∂B̂);

(ii) the set is smaller: B(r0) ⊃ B̂;

(iii) the equality condition holds: H1(∂B̂)2 − L2 = 4πL(B̂ \K).

An explicit construction of the set B̂ can be obtained, for instance by perturbing
the whole boundary of the disk B(r0) with an inward pointing vector field that
continuously increases the perimeter and decreases the set (in the sense of set
inclusion). Moreover, it is not difficult to see that the perimeter in point (i) can be
made arbitrarily large until point (iii) is satisfied (and of course point (ii) contributes
in this direction).

Therefore, from point (ii) and the strict monotonicity of the first eigenvalue with
respect to set inclusion, we obtain the estimate

λ1(B(r0) \K) < λ1(B̂ \K). (28)

Thanks to (iii) we can now apply Theorem 4.1 to the set D = B̂ \ K with L0 =

H1(∂B̂) and L1 = L so that

λ1(B̂ \K) < λ1(B(r̂0) \B(r)), (29)

where B(r̂0) is the open disk concentric to B(r0) (and in particular to B(r)) of

radius r̂0 so that 2πr̂0 = H1(∂B̂). This with point (i) implies that r̂0 > r0, thus
the strict inclusion B(r0) ⊂ B(r̂0) holds. Recalling again the strict monotonicity
of the first eigenvalue yields

λ1(B(r̂0) \B(r)) < λ1(B(r0) \B(r)), (30)

which combined with (28) and (29) implies (26).

Case 3: K is neither a disk nor a segment and it is not contained in B(r0). We
use an approximation argument. For every δ > 0, we consider the disk B(r0 + δ)
and notice that (27) still holds with r0 replaced by r0 + δ. Since the set K is
contained in the open disk B(r0 + δ) we can follow the same strategy adopted in
the previous Case 2 with the disk B(r0) replaced by B(r0 + δ) and consider a set

B̂δ satisfying the three items listed above. Without loss of generality, in the item

(ii) we can also require that B̂δ ⊃ B(r0) so that, by items (ii) and (iii) r̂δ ≥ r̂0,

where r̂δ by definition satisfy 2πr̂δ = H1(∂B̂δ) and r̂0 as in Case 2. Therefore,
similar inequalities to (28) and (29) yields

λ1(B(r0 + δ) \K) < λ1(B(r̂δ) \B(r)) ≤ λ1(B(r̂0) \B(r)).

Letting δ → 0, from the Sverak continuity result [28] we obtain

λ1(B(r0) \K) ≤ λ1(B(r̂0) \B(r)),

which combined with (30) implies the strict inequality (26).

Case 4: K is a segment. We use again an approximation argument, but now
on the set K. For a (small) real number δ > 0, consider the rectangle Kδ with
a longest side onto K of length (1 − δ)L/2 and smallest sides of length δL/2 to
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be contained in B(r0). By definition, Kδ belongs to Case 2 and H1(∂Kδ) = L.
Therefore, from (28) and (29) we have

λ1(B(r0) \Kδ) < λ1(B(r̂δ) \B(r)),

where 2πr̂δ = H1(∂B̂δ) for some B̂δ satisfying the three items in Case 2 (in par-
ticular (iii) with Kδ in place of K). Letting δ → 0, since Kδ →H K and r̂δ → r̂
for some r̂ > r0. Then by the Sverak continuity result and (30) we arrive to the
inequality (26) also when K is a segment. �

Remark 4.3. Theorem 4.2 generalizes a result contained in [13], about the max-
imization of the first Dirichlet eigenvalue of the Laplacian with circular shaped
obstacles.

4.2. Annular domains. We discuss the symmetry of a solution to (4) in the case
the domain Ω is a ring. Due to topological reasons, every maximizer of (4) can not
be radially symmetric, whenever L is less than twice the perimeter of the inner disk
(recall that by (iii) of Theorem 3.8 it cannot be a disk). Surprisingly this symmetry
breaking appears for other values of the perimeter constraints L, namely for those
close to the perimeter of the inner disk. However, for large values of the constraint,
namely for those close to the perimeter of the ring, the solution is provided by a
set with full symmetry.

Theorem 4.4. Let Ω = B(r0) \ B(r1) be a ring, where B(r0) and B(r1) are
concentric open disks of radii 0 < r1 < r0. According to the value of the parameter
L ∈ (0, 2π(r0 + r1)) the following properties hold.

(i): There exists α0 > 0 such that if L > 2π(r0 + r1) − α0 then problem (4)

has a unique solution: the maximizer Kopt is given by the ring B(r)\B(r1)
concentric to Ω of radius r = L/(2π)− r1.

(ii): There exists α1 > 0 such that if L < 4πr1 + α1 then every maximizer
Kopt of problem (4) is not radially symmetric.

Proof. (i) Let {Ln} be a sequence of real numbers with Ln ↑ 2π(r0 +r1) as n→∞.
Consider a sequence of maximizers {Kn} of problem (4) associated to the length
constraints {Ln} such that SM(Kn) → H1(∂Ω) and λ1(Ω \Kn) ↑ ∞ as n → ∞,
and in particular Kn →H Ω.

Firstly we claim the existence of n0 ∈ N such that for every n > n0 the set Kn

has two residual domains in R2, each of which contains one of Ω. If not, by (iii)
of Theorem 3.5, Kn has only one residual domain in R2 with ∂Kn connected and
therefore we may assume the existence of a curve γ joining ∂B(r0) to ∂B(r1) with
H1(γ) ≥ r0 − r1 > 0 and H1(γ ∩ ∂Ω) = 0 so that Kn ⊂ Ω \ γ for every n. This
inclusion implies the convergence, up to subsequences (not relabelled), ∂Kn →H J
where J is a continuum with J ⊃ ∂Ω ∪ γ. The inclusion J ⊃ ∂Ω is a consequence
of Kn →H Ω; while J ⊃ γ follows from the fact that for every x ∈ γ there exists a
sequence of points {xn} with xn ∈ ∂Kn (since Kn is closed) such that xn → x (for
every ε > 0 if n is large enough the set Ω\Kn can not contain the open enlargement
{x ∈ Ω : dγ(x) < ε}, otherwise the eigenvalue would remain uniformly bounded).
By the additivity and monotonicity properties of H1 with the Go lab theorem and
Corollary 2.7 we have

H1(∂Ω) +H1(γ) ≤ H1(J) ≤ lim inf
n
H1(∂Kn) ≤ lim inf

n
SM(Kn) = H1(∂Ω).
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This implies H1(γ) = 0 a contradiction and the claim at the beginning of the proof
holds.

Now we claim that, for every n > n0 with n0 given by the previous claim, the
bounded residual domain ω of Kn in R2 is B(r1) and, moreover, that its outer
boundary is the boundary of a convex set. If not, the set hull(Kn) \ B(r1) would
be a better competitor contradicting the optimality of Kn. Indeed, let ω0 be the
unbounded residual domain of Kn in R2. Since H1(∂hull(Kn)) < H1(∂ω0) and
H1(∂B(r1)) < H1(∂ω), by Theorem 3.8 and Corollary 2.7 we have

SM(hull(Kn) \B(r1))=H1(∂(hull(Kn) \B(r1)))= H1(∂hull(Kn)) +H1(∂B(r1))

< H1(∂ω0) +H1(∂ω) = H1(∂Kn) ≤ SM(Kn).

The previous claims implies that for every n > n0, we may look for the solution
of problem (4) only among sets Kn enclosing the internal disk B(r1), satisfying
SM(Kn) = SM(Kn ∪B(r1)) + SM(B(r1)). This allows to work with Kn ∪B(r1)
as unknown, to apply Theorem 4.2 to this set with perimeter constraint L − 2πr1

and to obtain the thesis on the radial symmetry.
(ii) By items (ii) and (iii) of Theorem 3.5 and (iii) of Theorem 3.8 if a maximizer is

radially symmetric then it is necessarily a ring of perimeter L containing the interior
disk B(r1). Obviously, the symmetry breaking holds true whenever L < 4πr1

(because there are no rings containing the interior disk). In the case L = 4πr1

the unique possibility for Kopt to be radially symmetric would be ∂B(r1), but
this is clearly not a maximizer. We call K1 the maximizer corresponding to this
perimeter constraint. Clearly λ1(Ω \K1) > λ1(Ω). Now, we assume L > 4πr1 and
write L = 4πr1 + 2πα for some 0 < α ≤ r0 − r1. Moreover, we choose the largest
α1 such that

λ1

(
Ω \B(r1 + α1)

)
≤ λ1(Ω \K1). (31)

By the Sverak continuity result [28] and the previous point (i) we deduce that

0 < α1 < r0 − r1. Moreover, among all those rings B(s) \ B(r) with r1 ≤ r ≤ r0

and s := L/(2π)− r so that the total perimeter is L, from the second claim in the

previous proof of point (i), it follows that the ring B(r1 + α) \ B(r1) that is glued
onto the interior disk B(r1) is the one which realizes the largest eigenvalue, namely

λ1

(
Ω \ (B(s) \B(r))

)
≤ λ1

(
Ω \ (B(r1 + α) \B(r1))

)
.

This combined with (31) proves that any radially symmetric set cannot be optimal
for problem (4) in the case L < 4πr + α1. �

4.3. Perforated domains. We can collect Theorem 4.2 and Theorem 4.4 to iden-
tify explicit solutions also for more general domains Ω.

Theorem 4.5. Let k ∈ N, let r0 > 0 and let {Ci}ki=1 be a family of k open convex
sets that are separated and strictly contained in B(r0), namely

d := min
1≤i<j≤k+1

min
x∈Ci,y∈Cj

|x− y| > 0, (32)

where Ck+1 := ∂B(r0). Let Ω = B(r0)\
⋃k
i=1 Ci be an open disk of radius r0 with k

convex holes. There exists α0 > 0 such that if L > H1(∂Ω)−α0 then problem (4) has

a unique solution: the maximizer Kopt is given by the perforated disk B(r)\
⋃k
i=1 Ci

with B(r) is the disk concentric to B(r0) with r = L/(2π)−
∑k
i=1H1(∂Ci)/(2π).
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Proof. The proof follows the ones of Theorem 4.2 and of Theorem 4.4 . Therefore,
we only sketch the principal steps. Let {Ln} be a sequence of real numbers with
Ln ↑ H1(∂Ω) as n → ∞. Consider a sequence of maximizers {Kn} of problem (4)
associated to the length constraints {Ln} so that λ1(Ω \Kn) ↑ ∞ as n → ∞, and
in particular Kn →H Ω. For every n large enough, the following facts hold.

- The set Kn has exactly k + 1 residual domains in R2. Otherwise there would
exist a curve γ connecting two points belonging to two different connected com-
ponents of ∂Ω such that H1(γ) ≥ d > 0 (recall the assumption (32)) and by the
Go lab theorem one would reach a contradiction.

- Every bounded residual domain ω of Kn in R2 coincides with Ci for i = 1, . . . , k.
This is a consequence of Theorem 3.8 and Corollary 2.7, with the fact that all the
sets Ci are convex.

- One concludes by applying Theorem 4.2 to the sets
⋃k
i=1 Ci∪Kn with perimeter

constraint L−
∑k
i=1H1(∂Ci). �
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