Joris Van Der Hoeven

Grégoire Lecerf
email: lecerf@lix.polytechnique.fr

Modular composition via complex roots

Modular composition is the problem to compute the composition of two univariate polynomials modulo a third one. For polynomials with coefficients in a finite field, Kedlaya and Umans proved in 2008 that the theoretical complexity for performing this task could be made arbitrarily close to linear. Unfortunately, beyond its major theoretical impact, this result has not led to practically faster implementations yet. In this paper, we explore the particular case when the ground field is the field of computable complex numbers. Ultimately, when the precision becomes sufficiently large, we show that modular compositions may be performed in softly linear time.

INTRODUCTION

Let 𝕂 be an effective field, and let f , g, h be polynomials in 𝕂 [x]. The problem of modular composition is to compute g ∘ f modulo h. Modular composition is an important problem in complexity theory because of its applications to polynomial factorization [START_REF] Kaltofen | Subquadratic-time factoring of polynomials over finite fields[END_REF][START_REF] Kedlaya | Fast modular composition in any characteristic[END_REF][START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF]. It also occurs very naturally whenever one wishes to perform polynomial computations over 𝕂 inside an algebraic extension of 𝕂. In addition, given two different representations 𝕂[x] / (h(x)) ≅ 𝕂[x ˜]/(h ˜(x ˜)) of an algebraic extension of 𝕂, the implementation of an explicit isomorphism actually boils down to modular composition.

Denote by M(n) the number of operations in 𝕂 required to multiply two polynomials of degree <n in 𝕂 [x]. Let f , g and h be polynomials in 𝕂[x] of respective degrees <n, <n and n. The naive modular composition algorithm takes O(n M(n)) operations in 𝕂. In 1978, Brent and Kung [START_REF] Brent | Fast algorithms for manipulating formal power series[END_REF] gave an algorithm with cost O(n √ M(n) + n 2). It uses the baby-step giant-step technique due to Paterson and Stockmeyer [START_REF] Paterson | On the number of nonscalar multiplications necessary to evaluate polynomials[END_REF], and even yields a sub-quadratic cost O(n 𝜛 + n √ M 𝕂 (n)) when using fast linear algebra (see [13, p. 185]). The constant 𝜛 > 1.5 is such that a n √ × n √ matrix over 𝕂 can be multiplied with another n √ × n rectangular matrix in time O(n 𝜛). The best current bound 𝜛 < 1.6667 is due to Huang and Pan [START_REF] Huang | Fast rectangular matrix multiplication and applications[END_REF]Theorem 10.1].

A major breakthrough has been achieved by Kedlaya and Umans [START_REF] Kedlaya | Fast modular composition in any characteristic[END_REF][START_REF] Kedlaya | Fast polynomial factorization and modular composition[END_REF] in the case when 𝕂 is the finite field 𝔽 q . For any positive 𝜀 > 0, they showed that the composition g ∘ f modulo h could be computed with bit complexity O((n log q) 1+𝜀). Unfortunately, it remains a major open problem to turn this theoretical complexity bound into practically useful implementations.

Quite surprisingly, the existing literature on modular composition does not exploit the simple observation that composition modulo a separable polynomial h ∈ 𝕂[x] that splits over 𝕂 can be reduced to the well known problems of multi-point evaluation and interpolation [START_REF] Zur Gathen | Modern computer algebra[END_REF]Chapter 10]. More precisely, assume that h = (x -𝜎 1) ⋯ (x -𝜎 n) is separable, which means that gcd(h, h') = 1. If f , g ∈ 𝕂[x] are of degree <n, then g ∘ f mod h can be computed by evaluating f at 𝜎 1 , …, 𝜎 n , by evaluating g at f (𝜎 1), …, f (𝜎 n), and by interpolating the evaluations (g ∘ f)(𝜎 1), …, (g ∘ f)(𝜎 n) to yield g ∘ f mod h.

Whenever 𝕂 is algebraically closed and a factorization of h is known, the latter observation leads to a softly-optimal algorithm for composition modulo h. More generally, if the computation of a factorization of h has a negligible or acceptable cost, then this approach leads to an efficient method for modular composition. In this paper, we prove a precise complexity result in the case when 𝕂 is the field of computable complex numbers. In a separate paper [START_REF] Van Der Hoeven | Modular composition via factorization[END_REF], we also consider the case when 𝕂 is a finite field and h has composite degree; in that case, h can be factored over suitable field extensions, and similar ideas lead to improved complexity bounds.

In the special case of power series composition (i.e. composition modulo h= x n), our approach is similar in spirit to the analytic algorithm designed by Ritzmann [START_REF] Ritzmann | A fast numerical algorithm for the composition of power series with complex coefficients[END_REF]; see also [START_REF] Van Der Hoeven | Fast composition of numeric power series[END_REF]. In order to keep the exposition as simple as possible in this paper, we only study composition modulo separable polynomials. By handling multiplicities with Ritzmann's algorithm, we expect our algorithm to extend to the general case.

The organization of the present paper is as follows. In section 2, we specify the complexity model to be used, and various standard notations. In section 3, we give a detailed version of the modular composition algorithm that we sketched above for a separable modulus that splits over 𝕂. In order to instantiate this algorithm for the field ℂ com of computable complex numbers, we need additional concepts. In section 4, we recall basic results about ball arithmetic [START_REF] Van Der Hoeven | Ball arithmetic[END_REF]. In section 5, we recall the computation model of straight-line programs [START_REF] Bürgisser | Algebraic complexity theory[END_REF]. In section 6, we introduce a new ultimate complexity model that is convenient for proving complexity results at a "sufficiently large precision". This model has the advantage that complexity results over an abstract effective field 𝕂 can naturally be turned into ultimate complexity results over ℂ com . In section 7, we apply this transfer principle to the modular composition algorithm from section 3-we expect our framework to be useful in many other situations.

One disadvantage of ultimate complexity analysis is that it does not provide us with any information about the precision from which the ultimate complexity is reached. In practical applications, the input polynomials f , g and h often admit integer or rational coefficients. In these cases, the required bit precision is expected to be of order n (l + n) in the worst case, where n = deg h and l is the largest bit size of the coefficients: in fact, this precision allows to compute all the complex roots of h efficiently using algorithms from [START_REF] Neff | An efficient algorithm for the complex roots problem[END_REF][START_REF] Pan | Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding[END_REF][START_REF] Schönhage | The fundamental theorem of algebra in terms of computational complexity[END_REF]. This precision should also be sufficient to perform the multi-point polynomial evaluations of g and f by asymptotically fast algorithms. We intend to work out more such detailed bit complexity bounds for this situation in a forthcoming paper.

PRELIMINARIES

In the sequel, we consider both the algebraic and bit complexity models for analyzing the costs of our algorithms. The algebraic complexity model expresses the running time in terms of the number of operations in some abstract ground ring or field [START_REF] Bürgisser | Algebraic complexity theory[END_REF]Chapter 4]. The bit complexity model relies on Turing machines with a sufficient number of tapes [START_REF] Papadimitriou | Computational Complexity[END_REF].

Fundamental algebraic complexity bounds. Let 𝕂 be an effective field. We write M: ℕ → ℝ > for a function that bounds the total cost of a polynomial product algorithm in terms of the number operations in 𝕂. In other words, two polynomials of degrees n in 𝕂[x] can be multiplied using at most M(n) arithmetic operations in 𝕂. The schoolbook algorithm allows us to take M(n) = O(n 2). The fastest currently known algorithm [START_REF] Cantor | On fast multiplication of polynomials over arbitrary algebras[END_REF] yields 1) g(n) (we refer the reader to [6, Chapter 25, Section 7] for technical details). In order to simplify the cost analysis of our algorithms we make the customary assumption that M(n 1) / n 1 ⩽ M(n 2) / n 2 for all 0 < n 1 ⩽ n 2 . Notice that this assumption implies the super-additivity of M, namely M(n 1) + M(n 2) ⩽ M(n 1 + n 2) for all n 1 ⩾ 0 and n 2 ⩾ 0.

M(n) = O(n log n log log n) = O ˜(n). Here, the soft-Oh notation f (n) ∈ O ˜(g(n)) means that f (n) = g(n) log O(
Fundamental bit complexity bounds. For bit complexity analyses, we consider Turing machines with sufficiently many tapes. We write I(n) for a function that bounds the bit-cost of an algorithm which multiplies two integers of bit sizes at most n, for the usual binary representation. The best known bound [START_REF] Harvey | Even faster integer multiplication[END_REF] for I(n) is O(n log n 8 log * n) = O ˜(n). Again, we make the customary assumption that I(n)/n is nondecreasing.

Multipoint evaluation and interpolation. Let 𝕂 again be an effective field. The remainder (resp. quotient) of the Euclidean division of g by h in 𝕂[x] is denoted by g rem h (resp. by g quo h). It may be computed using O(M(n)) operations in 𝕂, if g and h have degrees ⩽n. We recall that the gcd of two polynomials of degrees at most n over 𝕂 can be computed using Algorithm 11.4]. Given polynomials f and g 1 , …, g l over 𝕂 with deg f = n and deg g 1 + ⋯ + deg g l = O(n), all the remainders f rem g i may be computed simultaneously in cost O(M(n) log l) using a subproduct tree [START_REF] Zur Gathen | Modern computer algebra[END_REF]Chapter 10]. The inverse problem, called Chinese remaindering, can be solved with a similar cost O(M(n) log l), assuming that the g i are pairwise coprime. The fastest known algorithms for these tasks can be found in [1, 2, 10].

O(M(n) log n) operations in 𝕂 [6,

ABSTRACT MODULAR COMPOSITION IN THE SEPARABLE CASE

For any field 𝕂 and n ∈ ℕ, we denote

𝕂[x] <n ≔ {P ∈ 𝕂[x]: deg P < n}.
In this section, 𝕂 represents an abstract algebraically closed field of constants. Let h = x n + h n-1 x n-1 + ⋯ + h 0 ∈ 𝕂[x] be a separable monic polynomial, so h admits n pairwise distinct roots 𝜎 1 , …, 𝜎 n in 𝕂. Then we may use the following algorithm for composition modulo h:

Algorithm 1 Input. Polynomials f , g ∈ 𝕂[x] <n and pairwise distinct 𝜎 1 , …, 𝜎 n ∈ 𝕂. Output. f ∘ g rem h, where h = (x -𝜎 1) ⋯ (x -𝜎 n). 1. Compute v 1 = f (𝜎 1), …, v n = f (𝜎 n) using fast multi-point evaluation. 2. Compute w 1 = g(v 1), …, w n = g(v n) using fast multi-point evaluation. 3. Retrieve 𝜚 ∈ 𝕂[x] <n with 𝜚(𝜎 1) = v 1 , …, 𝜚(𝜎 n) = v n using fast interpolation. 4. Return 𝜚. THEOREM 1. Algorithm 1 is correct and requires O(M(n) log n) operations in 𝕂. Proof. By construction, 𝜚(𝜎 i) = (g ∘ f)(𝜎 i) = (g ∘ f rem h)(𝜎 i) for i = 1, …, n. Since deg 𝜚 < n
and the 𝜎 i are pairwise distinct, it follows that 𝜚 = g ∘ f rem h. This proves the correctness of the algorithm. The complexity bound follows from the fact that steps 1, 2 and 3 take

O(M(n) log n) operations in 𝕂. □
We wish to apply the theorem in the case when 𝕂 = ℂ. Of course, on a Turing machine, we can only approximate complex numbers with arbitrarily high precision, and likewise for the field operations in ℂ. For given numbers x and y, approximations at precision p for x + y, xy, x × y and x/y (whenever y ≠ 0) can all be computed in time O(I(p)). In view of Theorem 1, it is therefore natural to ask whether p-bit approximations of the coefficients of g ∘ f rem h may be computed in time

O(I(p) M(n) log n).
In the remainder of this paper we give a positive answer to a carefully formulated version of this question. Our first task is to make the concept of "approximations at precision p" more precise and to understand the way errors accumulate when performing a sequence of computations at precision p. We rely on "fixed point ball arithmetic" for this matter, as described in the next subsection. At a second stage, we prove a complexity bound for modular composition that holds for a fixed modulus h with known roots 𝜎 1 , …, 𝜎 n and for sufficiently large working precisions p.

The assumption that the roots 𝜎 1 , …, 𝜎 n of h are known is actually quite harmless in this context for the following reason: as soon as approximations for 𝜎 1 , …, 𝜎 n are known at a sufficiently high precision, the computation of even better approximations can be done fast using Newton's method combined with multi-point evaluation. Since we are only interested in the complexity for "sufficiently large working precisions", the computation of the initial approximations of 𝜎 1 , …,𝜎 n can therefore be regarded as a precomputation of negligible cost.

BALL ARITHMETIC AND STRAIGHT-LINE PROGRAMS

Fixed point numbers

Let a be a real number, we write ⌊a⌋ for the largest integer less or equal to a and ⌊a⌉ ≔ ⌊a + / 1 2 ⌋ for the closest integer to a.

Given a precision p ∈ ℕ, we denote by 𝔻 p = ℤ 2 -p the set of fixed point numbers with p binary digits after the dot. This set 𝔻 p is clearly stable under addition and subtraction. We can also define approximate multiplication × p on 𝔻 p using x × p y = ⌊2 p x y⌉ 2 -p , so |x × p yx y| ⩽ 2 -p-1 for all x, y ∈ 𝔻 p .

For any fixed constant K > 0 and x, y

∈ 𝔻 p ∩ [-K, K],

Fixed point ball arithmetic

Ball arithmetic is used for providing reliable error bounds for approximate computations. A ball is a set ℬ(c, r) = {z ∈ ℝ: |z -c| ⩽ r} with c ∈ ℝ and r ∈ ℝ ⩾ . From the computational point of view, we represent such balls by their centers c and radii r. We denote by 𝔹 p the set of balls with centers in 𝔻 p and radii in 𝔻 p ⩾ . Given vectors x = (x 1 , …, x n) ∈ ℝ n and 𝒙 = (𝒙 1 , …, 𝒙 n) = (ℬ(c 1 , r 1), …, ℬ(c n , r n)) ∈ 𝔹 p n we write x ∈ 𝒙 to mean x 1 ∈ 𝒙 1 ∧ ⋯ ∧ x n ∈ 𝒙 n , and we also set rad(𝒙) ≔ max (r 1 , …, r n).

Let D be an open subset of ℝ n . We say that 𝑫 p ⊆ 𝔹 p n is a domain lift at precision p if 𝒙 ⊆ D for all 𝒙 ∈ 𝑫 p . The maximal such lift is given by 𝑫 p = {𝒙 ∈ 𝔹 p n : 𝒙 ⊆ D}. Given a function f : D → ℝ m , a ball lift of f at precision p is a function 𝒇 p : 𝑫 p → 𝔹 p m , where 𝑫 p = dom 𝒇 p is a domain lift of D at precision p, that satisfies the inclusion property: for any 𝒙 = (𝒙 1 , …, 𝒙 n) ∈ 𝑫 p n and x = (x 1 , …, x n) ∈ ℝ n , we have

x ∈ 𝒙 ⟹ f (x) ∈ 𝒇 p (𝒙).
A ball lift 𝒇 of f is a computable sequence (𝒇 p) p∈ℕ of ball lifts at every precision such that for any sequence (𝒙 p) p∈ℕ with 𝒙 p ∈ dom 𝒇 p , we have

lim p→∞ rad(𝒙 p) = 0 ∧ ∩ p∈ℕ 𝒙 p ≠ ∅ ⟹ lim p→∞ rad(𝒇 p (𝒙 p)) = 0.
This condition implies the following:

lim p→∞ rad(𝒙 p) = 0 ∧ ∩ p∈ℕ 𝒙 p = {x} ⟹ ∩ p∈ℕ 𝒇 p (𝒙 p) = { f (x)}.
We say that 𝒇 is maximal if dom 𝒇 p is the maximal domain lift for each p. Notice that a function f must be continuous in order to admit a maximal ball lift.

The following formulas define maximal ball lifts ⊕ p , ⊖ p and ⊗ p at precision p for the ring operations +, -and ×:

ℬ(a, r) ⊕ p ℬ(b, s) ≔ ℬ(a + b, r + s) ℬ(a, r) ⊖ p ℬ(b, s) ≔ ℬ(a -b, r + s) ℬ(a, r) ⊗ p ℬ(b, s) ≔ ℬ(a × p b, (|a| + r) × p s + |b| × p s + 2 1-p).
The extra 2 1-p in the formula for multiplication is needed in order to counter the effect of rounding errors that might occur in the three multiplications a× p b, (|a| + r)× p s and |b| × p s. For ℬ(a, r) ∈ 𝔹 p with r < |a|, the following formula also defines a maximal ball lift 𝜾 p at precision p for the inversion:

𝜾 p (ℬ(a, r)) ≔ ℬ(𝜄 p (a), 𝜄 p (|a| -r) -𝜄 p (|a|) + 2 1-p).
For any fixed constant K > 0 and a, r, b, s ∈ 𝔻 p ∩ [-K, K], we notice that ℬ(a, r) ⊕ p ℬ(b, s), ℬ(a, r) ⊖ p ℬ(b, s), ℬ(a, r) ⊗ p ℬ(b, s) and 𝜾 p (ℬ(a, r)) can be computed in time O(I(p)).

Let 𝒇 be the ball lift of a function f : D → ℝ m with D ⊆ ℝ n . Consider a second ball lift 𝒈 of a function g: E → ℝ l with f (D) ⊆ E ⊆ ℝ m . Then we may define a ball lift 𝒈 ∘ 𝒇 of the composition g ∘ f : D → ℝ l as follows. For each precision p, we take (𝒈 ∘ 𝒇) p = 𝒈 p ∘ (𝒇 p) |D p , where (𝒇 p) |D P is the restriction of 𝒇 p to the set D p = {𝒙 ∈ dom 𝒇 p : 𝒇 p (𝒙) ∈ dom 𝒈 p }.

We shall use ball arithmetic for the computation of complex functions ℂ n → ℂ m simply through the consideration of real and imaginary parts. This point of view is sufficient for the asymptotic complexity point of view of the present paper. Of course, it would be more efficient to directly compute with complex balls (i.e. balls with a complex center and a real radius), but this would involve approximate square roots and ensuing technicalities.

The Lipschitz property

Assume that we are given the ball lift 𝒇 of a function f :D→ℝ m with D⊆ℝ n . Given a subset U ⊆D and constants 𝜆 ⩾ 0, 𝜇 ⩾ 0, we say that the ball lift 𝒇 is (𝜆, 𝜇)-Lipschitz on U if

∃p 0 ∈ ℕ, ∃𝜚 > 0, ∀p ⩾ p 0 , ∀𝒙 ∈ 𝔹 p n , 𝒙 ⊆ U ∧ rad(𝒙) ⩽ 𝜚 ⟹ 𝒙 ∈ dom 𝒇 p ∧ rad(𝒇 p (𝒙)) ⩽ 𝜆 rad(𝒙) + 𝜇 2 -p .
For instance, the ball lifts ⊕ and ⊖ of addition and subtraction are (2, 0)-Lipschitz on ℝ 2 . Similarly, the ball lift ⊗ of multiplication is (3 𝜆, 3)-Lipschitz on U = {(x, y) ∈ ℝ 2 : |x| ⩽ 𝜆, |y| ⩽ 𝜆} (by taking 𝜌 = 𝜆), whereas the ball lift 𝜾 of 𝜄 is (𝜆, 3)-Lipschitz on U = {x ∈ ℝ: 𝜆 -1/2 ⩽ |x|}.

Given 𝒇 and 𝜆 > 0, 𝜇 ⩾ 0 as above, we say that 𝒇 is locally (𝜆, 𝜇)-Lipschitz on U if 𝒇 is (𝜆, 𝜇)-Lipschitz on each compact subset of U. We define 𝒇 to be 𝜆-Lipschitz (resp. locally 𝜆-Lipschitz) on U if there exists a constant 𝜇 > 0 for which 𝒇 is (𝜆, 𝜇)-Lipschitz (resp. locally (𝜆, 𝜇)-Lipschitz). If 𝒇 is locally 𝜆-Lipschitz on U, then it is not hard to see that f is necessarily locally Lipschitz on U, with Lipschitz constant 𝜆. That is,

∀x ∈ U, ∃𝜂 > 0, ∀a, b ∈ ℬ(x, 𝜂) ∩ U, ‖ f (b) -f (a)‖ ∞ ⩽ 𝜆 ‖b -a‖ ∞ .
In fact, the requirement that a computable ball lift 𝒇 is 𝜆-Lipschitz implies that we have a means to compute high quality error bounds. We finally define 𝒇 to be Lipschitz (resp. locally Lipschitz) on U if there exists a constant 𝜆 > 0 for which 𝒇 is 𝜆-Lipschitz (resp. locally 𝜆-Lipschitz). Proof. Consider a compact subset C ⊆ U. Since this implies f (C) to be a compact subset of f (U) ⊆ V, it follows that there exists an 𝜀 > 0 such that f (C) + ℬ(0, 𝜀) ⊆ V. Let p 0 ∈ ℕ, 0 < 𝜚 < (𝜀 -𝜇 2 -p)/𝜆 and 0 < 𝜚' be such that for any p ⩾ p 0 , 𝒙 ∈ 𝔹 p n and 𝒚 ∈ 𝔹 p m , we have

𝒙 ⊆ C ∧ rad(𝒙) ⩽ 𝜚 ⟹ 𝒙 ∈ dom 𝒇 p ∧ rad(𝒇 p (𝒙)) ⩽ 𝜆 rad(𝒙) + 𝜇 2 -p < 𝜀 (𝒚 ⊆ f (C) + ℬ(0, 𝜀)) ∧ rad(𝒚) ⩽ 𝜚' ⟹ 𝒚 ∈ dom 𝒈 p ∧ rad(𝒈 p (𝒚)) ⩽ 𝜆' rad(𝒚) + 𝜇' 2 -p .
Given x ∈ 𝔹 p n with 𝒙 ⊆ C and rad(𝒙) ⩽ 𝜚, it follows that 𝒚 ≔ 𝒇 p (𝒙) satisfies rad(𝒚) < 𝜀, whence 𝒚 ⊆ f (C) + ℬ(0, 𝜀). If we also assume that rad(𝒙) ⩽ (𝜚' -𝜇 2 -p) / 𝜆, then it also follows that rad(𝒚) ⩽ 𝜚', whence 𝒚 ∈ dom 𝒈 p and rad(𝒈 p (𝒚)) ⩽ 𝜆' (𝜆 rad(𝒙) + 𝜇 2 -p) + 𝜇' 2 -p = 𝜆 𝜆' rad(𝒙) + (𝜇 𝜆' + 𝜇') 2 -p . In other words, if 𝒙⊆C and rad(𝒙)⩽min(𝜚,(𝜚' -𝜇 2 -p)/ 𝜆), then 𝒙∈dom(𝒈 p ∘𝒇 p) and rad((𝒈 p ∘ 𝒇 p)(𝒙)) ⩽ 𝜆 𝜆' rad(𝒙) + (𝜇 𝜆' + 𝜇') 2 -p . □

STRAIGHT-LINE PROGRAMS

A signature is a finite or countable set of function symbols ℱ together with an arity r f ∈ ℕ for each f ∈ ℱ. A model for ℱ is a set K together with a function f K :

U f → K with U f ⊆ K r f for each k ∈ ℱ.
If K is a topological space, then U f is required to be an open subset of K r f . Let 𝒱 be a countable and ordered set of variable symbols. A straight-line program Γ with signature ℱ is a sequence Γ 1 ,…,Γ ℓ of instructions of the form

Γ k ≡ X k ≔ f k (Y k,1 , …, Y k,r f k), where f k ∈ ℱ and X k , Y k,1 , …, Y k,r f k ∈ 𝒱, together with a subset 𝒪 Γ ⊆ {X 1 , …, X ℓ } of output variables.
Variables that appear for the first time in the sequence in the right-hand side of an instruction are called input variables. We denote by ℐ Γ the set of input variables. The number ℓ is called the length of Γ.

There exist unique sequences

I 1 < ⋯ < I n and O 1 < ⋯ < O m with ℐ Γ = {I 1 , …, I n } and 𝒪 Γ = {O 1 , …, O m }. Given a model K of ℱ we can run Γ for inputs in K, provided that the arguments Y k,1 , …, Y k,r f k are always in the domain of f k when executing the instruction Γ k . Let D Γ,K be the set of tuples I = (I 1 , …, I n) ∈ K n on which Γ can be run. Given I ∈ K n , let Γ K (I) ∈ K m denote the value of (O 1 , …, O m) at the end of the program. Hence Γ gives rise to a function Γ K : D Γ,K → K m .
Now assume that (ℝ, (f ℝ) f ∈ℱ) is a model for ℱ and that we are given a ball lift 𝒇 of f ℝ for each f ∈ ℱ. Then 𝔹 p is also a model for ℱ at each precision p, by taking f 𝔹 p = 𝒇 p for each f ∈ ℱ. Consequently, any SLP Γ as above gives rise to both a function Γ ℝ : D Γ,ℝ → ℝ m and a ball lift Γ 𝔹 p : D Γ,𝔹 p → 𝔹 p m at each precision p. The sequence (Γ 𝔹 p) p thus provides us with a ball lift 𝚪 for Γ ℝ .

PROPOSITION 3. If the ball lift 𝒇 of f ℝ is Lipschitz for each f ∈ ℱ, then 𝚪 is again Lipschitz.

Proof. For each model K of ℱ, for each variable v ∈ 𝒱 and each input I = (I 1 , …, I n) ∈ D Γ,K , let v K,k (I) denote the value of v after step k. We may regard v K,k as a function from D Γ,K to K.

In particular, we obtain a computable sequence of functions v 𝔹 p ,k that give rise to a ball lift 𝒗 (k) of v ℝ,k . Let us show by induction over k that 𝒗 (k) is Lipschitz for every v ∈ 𝒱. This is clear for k = 0, so let k > 0. If v ≠ X k , then we have 𝒗 (k) = 𝒗 (k-1) ; otherwise, we have

𝒗 (k) = 𝒇 k(𝒀 k,1 (k-1) , …, 𝒀 k,r f k (k-1)) .
In both cases, it follows from Lemma 2 that 𝒗 (k) is again a Lipschitz ball lift. We conclude by noticing that 𝚪 = (𝑶 1 (ℓ) , …, 𝑶 n (ℓ)). □

COMPUTABLE NUMBERS AND ULTIMATE COMPLEXITY

A real number x ∈ ℝ is said to be computable if there exists an approximation algorithm x ˇthat takes p ∈ ℕ on input and produces x ˇ(p) ∈ 𝔻 p on output with |xx ˇ(p)| ⩽ 2 -p (we say that x ˇ(p) is a 2 -p -approximation of x). We denote by ℝ com the field of computable real numbers. Let T(p) be a nondecreasing function. We say that a computable real number x ∈ ℝ com has ultimate complexity T(p) if it admits an approximation algorithm x ˇthat computes x ˇ(p) in time T(p + 𝛿) for some fixed constant 𝛿 ∈ ℕ. The fact that we allow x ˇ(p) to be computed in time T(p + 𝛿) and not T(p) is justified by the observation that the position of the "binary dot" is somewhat arbitrary in the approximation process of a computable number.

The notion of approximation algorithm generalizes to vectors with real coefficients: given v ∈ (ℝ com) n , an approximation algorithm for v as a whole is an algorithm v ˇthat takes p ∈ ℕ on input and returns v ˇ(p) ∈ 𝔻 p r on output with |v ˇ(p) iv i | ⩽ 2 -p for i = 1, …, n. This definition naturally extends to any other mathematical objects that can be encoded by vectors of real numbers: complex numbers (by their real and complex parts), polynomials and matrices (by their vectors of coefficients), etc. The notion of ultimate complexity also extends to any of these objects.

A ball lift 𝒇 is said to be computable if there exists an algorithm for computing 𝒇 p for all p∈ ℕ. A computable ball lift 𝒇 of a function f : D → ℝ m with D ⊆ ℝ n allows us to compute the restriction of f to D ∩ (ℝ com) n : given x ∈ D ∩ (ℝ com) n with approximation algorithm x ˇ, by taking 𝒙 p = ℬ(x ˇ(p), 2 -p) ∈ 𝔹 p n , we have ∩p∈ℕ 𝒙 p = {x}, ∩p∈ℕ 𝒇 p (𝒙 p) = { f (x)}, and lim p→∞ rad(𝒇 p (𝒙 p)) = 0. Proof. Let x ˇbe an approximation algorithm for x of complexity T(p + 𝛿), where 𝛿 ∈ ℕ. There exist p 0 ∈ ℕ and a compact ball C around x with C ⊆ dom f and such that 𝒙 p = ℬ(x ˇ(p), 2 -p) ∈ 𝔹 p n is included in C for all p ⩾ p 0 . There also exists a constant 𝛿' ∈ ℕ such that 𝒇 p (𝒙 p) can be computed in time F(p + 𝛿') for all p ⩾ p 0 . Since 𝒇 is locally Lipschitz, there exists yet another constant 𝛿'' ∈ ℕ such that rad(𝒇 p (𝒙 p)) ⩽ 2 𝛿''-p for p ⩾ p 0 . For q = p -𝛿'' ⩾ max (p 0 -𝛿'', 0) and 𝛿''' = max (𝛿, 𝛿'), this shows that we may compute a 2 -q -approximation of f (x) in time T(q + 𝛿''') + F(q + 𝛿'''

Let

(p). Let Γ = Γ 1 , …, Γ ℓ be an SLP over ℱ whose k-th instruction Γ k writes X k ≔ f k (Y k,1 , …, Y k,r f). Then, the ball lift 𝚪 of Γ ℝ has ultimate complexity F Γ (p) ≔ F f 1 (p) + ⋯ + F f ℓ (p).
Proof. This is a direct consequence of Proposition 5. □ COROLLARY 7. Let Γ be an SLP of length ℓ over ℱ = {0, 1,+, -,×, 𝜄} (where 0 and 1 are naturally seen as constant fonctions of arity zero). Then, there exists a ball lift 𝚪 of Γ ℝ with ultimate complexity O(I(p) ℓ).

Proof. We use the ball lifts of section 4 for each f ∈ {+, -, ×, 𝜄}: they are locally Lipschitz and computable with ultimate complexity O(I(p)). We may thus apply the Theorem 6 to obtain F Γ (p) = O(I(p) ℓ). □

Let us now analyze the ultimate complexity C(n, p) of our algorithm. For large p ⩾ p 1 , the algorithm essentially performs two multi-point evaluations of ultimate cost 𝜅' I(p) M(n) log n for some constant 𝜅' that does not depend on p, and a recursive call. Consequently,

C(n, p) ⩽ 𝜅' I(p) M(n) log n + C(n, ⌈𝛽 p⌉).

We finally obtain an other constant 𝜅 ⩾ 𝜅' such that C(n, p) = 𝜅 I(p) M(n) log n, by summing up the geometric progression and using the fact that I(p)/ p is nondecreasing. The conclusion now follows from Lemma 4. □ Remark 10. A remarkable feature of the above proof is that the precision p 1 at which the Newton iteration can safely be used does not need to be known in advance. In particular, the proof does not require any a priori knowledge about the Lipschitz constants.

THEOREM 11. There exists a constant 𝜅 > 0 such that the following assertion holds. Let f , g ∈ ℂ com [x] <n and let h ∈ ℂ com [x] be separable and monic of degree n. Assume that (f , g, h) has ultimate complexity T(n, p). Then 𝜚 = g ∘ f rem h has ultimate complexity T(n, p) + 𝜅 I(p) M(n) log n.

Proof. This is an immediate consequence of the combination of the two above lemmas. □

CONCLUSION AND FINAL REMARKS

With some more work, we expect that all above bounds of the form O(I(p) M(n) log n) can be lowered to O(I(n p) log n). Notice that I(n p) log n = O(I(p) n log n) for p ⩾ n, when taking I(p) = Θ(n log n 8 log * n) [START_REF] Harvey | Even faster integer multiplication[END_REF]. In order to prove this stronger bound using our framework, one might add an auxiliary operation × [n] for the product of two polynomials of degrees <n to the set of signatures ℱ. Polynomial products of this kind can be implemented for coefficients in 𝔻 p [i] with p ⩾ n using Kronecker substitution. For bounded coefficients, this technique allows for the computation of one such product in time O(I(n p)). By using Theorem 6, a standard complexity analysis should show that multi-point evaluation and interpolation have ultimate complexity O(I(n p) log n). By Theorem 11, the actual bit complexity of modular composition is of the form T(n, p + 𝛿)+ 𝜅 I(p + 𝛿) M(n) log n for some value of 𝛿 that depends on f , g, h (hence of n). An interesting problem is to get a better grip on this value 𝛿, which mainly depends on the geometric proximity of the roots of h.

If f , g, h belong to ℚ[x], then T(n, p) = O(n I(p)) and we may wish to bound 𝛿 as a function of n and the maximum bit size l of the coefficients of f , g and h. This would involve bit complexity results for root isolation [START_REF] Neff | An efficient algorithm for the complex roots problem[END_REF][START_REF] Pan | Univariate polynomials: nearly optimal algorithms for numerical factorization and root-finding[END_REF][START_REF] Schönhage | The fundamental theorem of algebra in terms of computational complexity[END_REF], for multi-point evaluation, and for interpolation. The overal complexity should then be compared with the maximal size of the output, namely g ∘ f rem h, which is in general much larger than the input size.

If h is not separable, but if a separable decomposition is known, then the techniques developed in this paper could be combined with Ritzmann's algorithm for the composition of formal power series [START_REF] Ritzmann | A fast numerical algorithm for the composition of power series with complex coefficients[END_REF]. If such a separable decomposition is not known, then it is an interesting problem to obtain a general algorithm for modular composition with a similar complexity (but this seems far beyond the scope of this paper).

BIBLIOGRAPHY

[1] D. Bernstein. Scaled remainder trees. Available from https://cr.yp.to/arith/scaledmod-20040820.pdf, 2004.

LEMMA 2 .

 2 Let 𝒇 be a locally (𝜆, 𝜇)-Lipschitz ball lift of f : D → ℝ m on an open set U. Let 𝒈 be a locally (𝜆', 𝜇')-Lipschitz ball lift of g: E → ℝ l on an open set V. If f (D) ⊆ E and f (U) ⊆ V, then 𝒈 ∘ 𝒇 is a locally (𝜆 𝜆', 𝜇 𝜆' + 𝜇')-Lipschitz ball lift of g ∘ f on U.

 we notice that x + y and xy can be computed in time O(p), whereas x × p y can be computed in time I(p) + O(p). Similarly, one may define an approximate inversion 𝜄 p on 𝔻 p

≠ ≔ 𝔻 p ∖ {0} by 𝜄 p (x) = ⌊2 p x -1 ⌉ 2 -p . For any fixed constant K > 0 and x ∈ 𝔻 p ≠ ∩ [-K, K],

we may compute 𝜄 p (x) in time O(I(p)).

 F be a nondecreasing function and assume that D is open. We say that 𝒇 has ultimate complexity F(p) if for every compact set C ⊆D, there exist constants p 0 ∈ℕ, 𝜚 >0 and 𝛿 ∈ℕ such that for any p ⩾ p 0 and 𝒙 p ∈ dom 𝒇 p with 𝒙 p ⊆ C and rad(𝒙 p) ⩽ 𝜚, we can compute 𝒇 p (𝒙 p) in time F(p + 𝛿). For instance, ⊕ and ⊖ have ultimate complexity O(p), whereas ⊗ and 𝜾 have ultimate complexity O(I(p)). PROPOSITION 4. Assume that 𝒇 is locally Lipschitz. If 𝒇 has ultimate complexity F(p) and x ∈ D ∩ (ℝ com) n has ultimate complexity T(p), then f (x) has ultimate complexity T(p) + F(p).

ULTIMATE MODULAR COMPOSITION FOR SEPARABLE MODULI

LEMMA 8. There exists a constant 𝜅 > 0 such that the following assertion holds. Let f , g ∈ ℂ com [x] <n , let 𝜎 1 , …, 𝜎 n be pairwise distinct elements of ℂ com , and let h = (x -𝜎 1) ⋯ (x -𝜎 n). Assume that (f 0 , …, f n-1 , g 0 , …, g n-1 , 𝜎 1 , …, 𝜎 n) has ultimate complexity T(n, p). Then 𝜚 = g ∘ f rem h has ultimate complexity T(n, p) + 𝜅 I(p) M(n) log n.

Proof. The algorithm for fast multi-point evaluation of a polynomial P = ∑ i=0 n-1 P i x i ∈ 𝕂[x] <n at 𝜉 1 , …, 𝜉 n ∈ 𝕂 can be regarded as an SLP over ℱ = {0, 1, +, -, ×, 𝜄} of length O(M(n) log n) that takes (P 0 , …, P n-1 , 𝜉 1 , …, 𝜉 n) ∈ 𝕂 2n on input and that produces (P(𝜉 1), …, P(𝜉 n)) ∈ 𝕂 n on output. Similarly, the algorithm for interpolation can be regarded as an SLP over ℱ of length 2n on input and that produces (P 0 , …, P n-1) ∈ 𝕂 n on output with v 1 = P(𝜉 1), …, v n = P(𝜉 n). Altogether, we may regard the entire Algorithm 1 as an

The conclusion now follows from Proposition 4. □ According to the above lemma, we notice that the time complexity for computing 𝜚 = g ∘ f rem h is T(n, p + 𝛿) for some constant 𝛿 that depends on n, f , g, and the 𝜎 i . LEMMA 9. There exists a constant 𝜅 > 0 such that the following assertion holds. Let h ∈ ℂ com [x] be separable and monic of degree n, and denote the roots of h by 𝜎= (𝜎 1 , …,𝜎 n). If h has ultimate complexity T(n, p), then 𝜎 has ultimate complexity T(n, p)

Proof. There are many algorithms for the certified computation of the roots of a separable complex polynomial. We may use any of these algorithms as a "fall back" algorithm in the case that we only need a 2 -p -approximation of 𝜎 at a low precision p determined by h only.

For general precisions p, we use the following strategy in order to compute a ball 𝝈 ∈ 𝔹 p n with 𝜎 ∈ 𝝈 and rad(𝝈) ⩽ 2 -𝛼p for some fixed threshold / 1 2 < 𝛼 < 1. For some suitable p 0 ∈ ℕ and p ⩽ p 0 , we use the fall back algorithm. For p > p 0 and for a second fixed constant / 1 2 < 𝛽 < 1, we first compute a ball enclosure 𝝉 ∈ 𝔹 q n at the lower precision q = ⌈𝛽 p⌉ using a recursive application of the method. We next compute 𝝈 using a ball version of the Newton iteration, as explained below. If this yields a ball 𝝈 with acceptable radius rad(𝝈)⩽2 -𝛼p , then we are done. Otherwise, we resort to our fall-back method. Such calls of the fall-back method only occur if the default threshold precision p 0 was chosen too low. Nevertheless, we will show that there exists a threshold p 1 such that the computed 𝝈 by the Newton iteration always satisfies rad(𝝈) ⩽ 2 -𝛼p for p ⩾ p 1 .

Let us detail how we perform our ball version of the Newton iteration. Recall that 𝝉 ∈ 𝔹 q n with 𝜎 ∈ 𝝉 and rad(𝝉) ⩽ 2 -𝛼𝛽p is given. We also assume that we computed once and for all a 2 -p -approximation of h, in the form of a ball polynomial 𝒉 p ∈ 𝔹 p [i][x] of radius 2 -p that contains h. Now we evaluate 𝒉 p and 𝒉 p ' at each of the points 𝝈 1 , …, 𝝈 n using fast multi-point evaluation. Let us denote the results by 𝒗 = 𝒉 p (𝝈) and 𝒘 = 𝒉 p ' (𝝈). Let 𝜏, v and w denote the balls with radius zero and whose centers are the same as for 𝝉, 𝒗 and 𝒘. Using vector notation, the Newton iteration now becomes:

If 𝜎 ∈ 𝝉, then it is well-known [START_REF] Krawczyk | Newton-Algorithmen zur Bestimmung von Nullstellen mit Fehler-schranken[END_REF][START_REF] Rump | Kleine Fehlerschranken bei Matrixproblemen[END_REF] that 𝜎 ∈ 𝝈. Since rad(𝝉) ⩽ 2 -𝛼𝛽p , the fact that multipoint ball evaluation (used for 𝒉 p and 𝒉 p ') is locally Lipschitz implies the existence of a constant 𝛿 > 0 with rad(𝝂) ⩽ 2 𝛿-𝛼𝛽p and rad(𝒘) ⩽ 2 𝛿-𝛼𝛽p . Since h'(𝜎 i) ≠ 0 for i = 1, …, n, there also exists a constant 𝛿' > 0 with 1 -𝜾 p (w) 𝒘 ⊆ ℬ(0, 2 𝛿'-𝛼𝛽p). Altogether, this means that there exists a constant 𝛿'' > 0 with rad(𝝈) ⩽ 2 𝛿''-2𝛼𝛽p . Let p 1 = ⌈𝛿'' / (𝛼 (2 𝛽 -1))⌉. Then for any p ⩾ p 1 , the Newton iteration provides us with a 𝝈 with rad(𝝈) ⩽ 2 -𝛼p .