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Modular composition is the problem to compute the composition of two univariate polynomials
modulo a third one. For polynomials with coefficients in a finite field, Kedlaya and Umans
proved in 2008 that the theoretical complexity for performing this task could be made arbi-
trarily close to linear. Unfortunately, beyond its major theoretical impact, this result has not
led to practically faster implementations yet. In this paper, we explore the particular case when
the ground field is the field of computable complex numbers. Ultimately, when the precision
becomes sufficiently large, we show that modular compositions may be performed in softly
linear time.

1. INTRODUCTION

Let 𝕂 be an effective field, and let f , g, h be polynomials in 𝕂[x]. The problem of modular
composition is to compute g ∘ f modulo h. Modular composition is an important problem in
complexity theory because of its applications to polynomial factorization [14, 15, 16]. It also
occurs very naturally whenever one wishes to perform polynomial computations over 𝕂 inside
an algebraic extension of 𝕂. In addition, given two different representations 𝕂[x] / (h(x)) ≅
𝕂[x̃]/(h̃(x̃)) of an algebraic extension of 𝕂, the implementation of an explicit isomorphism actu-
ally boils down to modular composition.

Denote by M(n) the number of operations in 𝕂 required to multiply two polynomials of
degree <n in 𝕂[x]. Let f , g and h be polynomials in 𝕂[x] of respective degrees <n, <n and n.
The naive modular composition algorithm takes O(n M(n)) operations in 𝕂. In 1978, Brent and
Kung [3] gave an algorithm with cost O( n√ M(n)+n2). It uses the baby-step giant-step technique
due to Paterson and Stockmeyer [21], and even yields a sub-quadratic cost O(n𝜛 + n√ M𝕂(n))
when using fast linear algebra (see [13, p. 185]). The constant 𝜛 > 1.5 is such that a n√ × n√
matrix over 𝕂 can be multiplied with another n√ × n rectangular matrix in time O(n𝜛). The
best current bound 𝜛<1.6667 is due to Huang and Pan [12, Theorem 10.1].

A major breakthrough has been achieved by Kedlaya and Umans [15, 16] in the case when 𝕂
is the finite field 𝔽q. For any positive 𝜀 > 0, they showed that the composition g ∘ f modulo h
could be computed with bit complexity O((n log q)1+𝜀). Unfortunately, it remains a major open
problem to turn this theoretical complexity bound into practically useful implementations.

Quite surprisingly, the existing literature on modular composition does not exploit the simple
observation that composition modulo a separable polynomial h∈𝕂[x] that splits over 𝕂 can be
reduced to the well known problems of multi-point evaluation and interpolation [6, Chapter 10].
More precisely, assume that h=(x −𝜎1)⋯(x−𝜎n) is separable, which means that gcd(h,h')=1.
If f ,g∈𝕂[x] are of degree <n, then g∘ f modh can be computed by evaluating f at 𝜎1,…,𝜎n, by
evaluating g at f (𝜎1),…, f (𝜎n), and by interpolating the evaluations (g∘ f )(𝜎1),…,(g∘ f )(𝜎n) to
yield g∘ f modh.
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Whenever 𝕂 is algebraically closed and a factorization of h is known, the latter observation
leads to a softly-optimal algorithm for composition modulo h. More generally, if the computation
of a factorization of h has a negligible or acceptable cost, then this approach leads to an efficient
method for modular composition. In this paper, we prove a precise complexity result in the case
when 𝕂 is the field of computable complex numbers. In a separate paper [11], we also consider
the case when 𝕂 is a finite field and h has composite degree; in that case, h can be factored over
suitable field extensions, and similar ideas lead to improved complexity bounds.

In the special case of power series composition (i.e. composition modulo h=xn), our approach
is similar in spirit to the analytic algorithm designed by Ritzmann [22]; see also [8]. In order
to keep the exposition as simple as possible in this paper, we only study composition modulo
separable polynomials. By handling multiplicities with Ritzmann's algorithm, we expect our algo-
rithm to extend to the general case.

The organization of the present paper is as follows. In section 2, we specify the complexity
model to be used, and various standard notations. In section 3, we give a detailed version of
the modular composition algorithm that we sketched above for a separable modulus that splits
over 𝕂. In order to instantiate this algorithm for the field ℂcom of computable complex numbers,
we need additional concepts. In section 4, we recall basic results about ball arithmetic [9]. In sec-
tion 5, we recall the computation model of straight-line programs [4]. In section 6, we introduce
a new ultimate complexity model that is convenient for proving complexity results at a “suffi-
ciently large precision”. This model has the advantage that complexity results over an abstract
effective field 𝕂 can naturally be turned into ultimate complexity results over ℂcom. In section 7,
we apply this transfer principle to the modular composition algorithm from section 3—we expect
our framework to be useful in many other situations.

One disadvantage of ultimate complexity analysis is that it does not provide us with any
information about the precision from which the ultimate complexity is reached. In practical appli-
cations, the input polynomials f , g and h often admit integer or rational coefficients. In these
cases, the required bit precision is expected to be of order n (l + n) in the worst case, where
n = deg h and l is the largest bit size of the coefficients: in fact, this precision allows to com-
pute all the complex roots of h efficiently using algorithms from [18, 19, 24]. This precision
should also be sufficient to perform the multi-point polynomial evaluations of g and f by asymp-
totically fast algorithms. We intend to work out more such detailed bit complexity bounds for
this situation in a forthcoming paper.

2. PRELIMINARIES

In the sequel, we consider both the algebraic and bit complexity models for analyzing the costs
of our algorithms. The algebraic complexity model expresses the running time in terms of the
number of operations in some abstract ground ring or field [4, Chapter 4]. The bit complexity
model relies on Turing machines with a sufficient number of tapes [20].

Fundamental algebraic complexity bounds. Let 𝕂 be an effective field. We write M:ℕ→ℝ>

for a function that bounds the total cost of a polynomial product algorithm in terms of the number
operations in 𝕂. In other words, two polynomials of degrees n in 𝕂[x] can be multiplied using at
most M(n) arithmetic operations in 𝕂. The schoolbook algorithm allows us to take M(n)=O(n2).
The fastest currently known algorithm [5] yields M(n) = O(n log n log log n) = Õ(n). Here,
the soft-Oh notation f (n) ∈ Õ(g(n)) means that f (n) = g(n) logO(1) g(n) (we refer the reader
to [6, Chapter 25, Section 7] for technical details). In order to simplify the cost analysis of our
algorithms we make the customary assumption that M(n1) /n1 ⩽ M(n2) /n2 for all 0 < n1 ⩽ n2.
Notice that this assumption implies the super-additivity of M, namely M(n1)+M(n2)⩽M(n1+n2)
for all n1⩾0 and n2⩾0.

2 MODULAR COMPOSITION VIA COMPLEX ROOTS



Fundamental bit complexity bounds. For bit complexity analyses, we consider Turing
machines with sufficiently many tapes. We write I(n) for a function that bounds the bit-cost of
an algorithm which multiplies two integers of bit sizes at most n, for the usual binary repre-
sentation. The best known bound [7] for I(n) is O(n log n 8log∗n) = Õ(n). Again, we make the
customary assumption that I(n)/n is nondecreasing.
Multipoint evaluation and interpolation. Let 𝕂 again be an effective field. The remainder
(resp. quotient) of the Euclidean division of g by h in 𝕂[x] is denoted by g rem h (resp. by
g quo h). It may be computed using O(M(n)) operations in 𝕂, if g and h have degrees ⩽n.
We recall that the gcd of two polynomials of degrees at most n over 𝕂 can be computed using
O(M(n) log n) operations in 𝕂 [6, Algorithm 11.4]. Given polynomials f and g1, …, gl over 𝕂
with deg f =n and degg1+⋯+deggl=O(n), all the remainders f remgi may be computed simul-
taneously in cost O(M(n) log l) using a subproduct tree [6, Chapter 10]. The inverse problem,
called Chinese remaindering, can be solved with a similar cost O(M(n) log l), assuming that the gi
are pairwise coprime. The fastest known algorithms for these tasks can be found in [1, 2, 10].

3. ABSTRACT MODULAR COMPOSITION IN THE SEPARABLE CASE

For any field 𝕂 and n∈ℕ, we denote

𝕂[x]<n ≔ {P∈𝕂[x]: degP<n}.

In this section, 𝕂 represents an abstract algebraically closed field of constants. Let h = xn +
hn−1 xn−1+⋯+h0∈𝕂[x] be a separable monic polynomial, so h admits n pairwise distinct roots
𝜎1,…,𝜎n in 𝕂. Then we may use the following algorithm for composition modulo h:

Algorithm 1
Input. Polynomials f ,g∈𝕂[x]<n and pairwise distinct 𝜎1,…,𝜎n∈𝕂.
Output. f ∘g remh, where h=(x−𝜎1)⋯(x−𝜎n).
1. Compute v1= f (𝜎1),…,vn= f (𝜎n) using fast multi-point evaluation.
2. Compute w1=g(v1),…,wn=g(vn) using fast multi-point evaluation.
3. Retrieve 𝜚∈𝕂[x]<n with 𝜚(𝜎1)=v1,…,𝜚(𝜎n)=vn using fast interpolation.
4. Return 𝜚.

THEOREM 1. Algorithm 1 is correct and requires O(M(n) logn) operations in 𝕂.

Proof. By construction, 𝜚(𝜎i) = (g ∘ f )(𝜎i) = (g ∘ f rem h)(𝜎i) for i = 1, …, n. Since deg 𝜚 < n
and the 𝜎i are pairwise distinct, it follows that 𝜚=g ∘ f remh. This proves the correctness of the
algorithm. The complexity bound follows from the fact that steps 1, 2 and 3 take O(M(n) log n)
operations in 𝕂. □

We wish to apply the theorem in the case when 𝕂=ℂ. Of course, on a Turing machine, we
can only approximate complex numbers with arbitrarily high precision, and likewise for the field
operations in ℂ. For given numbers x and y, approximations at precision p for x+y, x−y, x×y and
x/y (whenever y≠0) can all be computed in time O(I(p)). In view of Theorem 1, it is therefore
natural to ask whether p-bit approximations of the coefficients of g∘ f remh may be computed in
time O(I(p)M(n) logn).

In the remainder of this paper we give a positive answer to a carefully formulated version of
this question. Our first task is to make the concept of “approximations at precision p” more pre-
cise and to understand the way errors accumulate when performing a sequence of computations
at precision p. We rely on “fixed point ball arithmetic” for this matter, as described in the next
subsection. At a second stage, we prove a complexity bound for modular composition that holds
for a fixed modulus h with known roots 𝜎1,…,𝜎n and for sufficiently large working precisions p.
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The assumption that the roots 𝜎1,…,𝜎n of h are known is actually quite harmless in this con-
text for the following reason: as soon as approximations for 𝜎1,…,𝜎n are known at a sufficiently
high precision, the computation of even better approximations can be done fast using Newton's
method combined with multi-point evaluation. Since we are only interested in the complexity for
“sufficiently large working precisions”, the computation of the initial approximations of 𝜎1,…,𝜎n
can therefore be regarded as a precomputation of negligible cost.

4. BALL ARITHMETIC AND STRAIGHT-LINE PROGRAMS

4.1. Fixed point numbers
Let a be a real number, we write ⌊a⌋ for the largest integer less or equal to a and ⌊a⌉≔⌊a+ /1 2⌋ for
the closest integer to a.

Given a precision p ∈ ℕ, we denote by 𝔻p = ℤ 2−p the set of fixed point numbers with p
binary digits after the dot. This set 𝔻p is clearly stable under addition and subtraction. We can
also define approximate multiplication ×p on 𝔻p using x×p y=⌊2p x y⌉2−p, so |x×p y − x y| ⩽2−p−1

for all x,y∈𝔻p.
For any fixed constant K > 0 and x, y ∈𝔻p ∩ [−K, K], we notice that x + y and x − y can be

computed in time O(p), whereas x ×p y can be computed in time I(p) + O(p). Similarly, one
may define an approximate inversion 𝜄p on 𝔻p

≠≔𝔻p∖ {0} by 𝜄p(x)= ⌊2p x−1⌉ 2−p. For any fixed
constant K>0 and x∈𝔻p

≠∩[−K,K], we may compute 𝜄p(x) in time O(I(p)).

4.2. Fixed point ball arithmetic
Ball arithmetic is used for providing reliable error bounds for approximate computations. A ball
is a set ℬ(c, r)={z∈ℝ: |z−c|⩽ r} with c∈ℝ and r∈ℝ⩾. From the computational point of view,
we represent such balls by their centers c and radii r. We denote by 𝔹p the set of balls with centers
in 𝔻p and radii in 𝔻p

⩾. Given vectors x = (x1, …, xn) ∈ ℝn and 𝒙 = (𝒙1, …, 𝒙n) = (ℬ(c1, r1), …,
ℬ(cn, rn)) ∈ 𝔹p

n we write x ∈ 𝒙 to mean x1 ∈ 𝒙1 ∧ ⋯ ∧ xn ∈ 𝒙n, and we also set rad(𝒙) ≔
max(r1,…, rn).

Let D be an open subset of ℝn. We say that 𝑫p ⊆𝔹p
n is a domain lift at precision p if 𝒙⊆D

for all 𝒙 ∈ 𝑫p. The maximal such lift is given by 𝑫p = {𝒙 ∈ 𝔹p
n: 𝒙 ⊆ D}. Given a function f :

D→ℝm, a ball lift of f at precision p is a function 𝒇p: 𝑫p →𝔹p
m, where 𝑫p =dom 𝒇p is a domain

lift of D at precision p, that satisfies the inclusion property: for any 𝒙 = (𝒙1, …, 𝒙n) ∈ 𝑫p
n and

x=(x1,…,xn)∈ℝn, we have

x∈𝒙 ⟹ f (x)∈𝒇p(𝒙).

A ball lift 𝒇 of f is a computable sequence (𝒇p)p∈ℕ of ball lifts at every precision such that for
any sequence (𝒙p)p∈ℕ with 𝒙p∈dom𝒇p, we have

lim
p→∞

rad(𝒙p)=0 ∧ ∩
p∈ℕ

𝒙p≠∅ ⟹ lim
p→∞

rad(𝒇p(𝒙p))=0.

This condition implies the following:

lim
p→∞

rad(𝒙p)=0 ∧ ∩
p∈ℕ

𝒙p={x} ⟹ ∩
p∈ℕ

𝒇p(𝒙p)={ f (x)}.

We say that 𝒇 is maximal if dom 𝒇p is the maximal domain lift for each p. Notice that a function
f must be continuous in order to admit a maximal ball lift.

The following formulas define maximal ball lifts ⊕p, ⊖p and ⊗p at precision p for the ring
operations +, − and ×:

ℬ(a, r)⊕pℬ(b, s) ≔ ℬ(a+b, r+ s)
ℬ(a, r)⊖pℬ(b, s) ≔ ℬ(a−b, r+ s)
ℬ(a, r)⊗pℬ(b, s) ≔ ℬ(a×pb, (|a|+ r)×p s+ |b| ×p s+21−p).
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The extra 21−p in the formula for multiplication is needed in order to counter the effect of rounding
errors that might occur in the three multiplications a×pb, (|a|+r)×ps and |b|×ps. For ℬ(a, r)∈𝔹p
with r < |a|, the following formula also defines a maximal ball lift 𝜾p at precision p for the inver-
sion:

𝜾p(ℬ(a, r)) ≔ ℬ(𝜄p(a), 𝜄p(|a|− r)− 𝜄p(|a|)+21−p).

For any fixed constant K > 0 and a, r, b, s ∈ 𝔻p ∩ [−K, K], we notice that ℬ(a, r) ⊕p ℬ(b, s),
ℬ(a, r)⊖pℬ(b, s), ℬ(a, r)⊗pℬ(b, s) and 𝜾p(ℬ(a, r)) can be computed in time O(I(p)).

Let 𝒇 be the ball lift of a function f : D → ℝm with D ⊆ ℝn. Consider a second ball lift 𝒈 of
a function g:E→ℝl with f (D)⊆E⊆ℝm. Then we may define a ball lift 𝒈∘𝒇 of the composition
g ∘ f :D→ℝl as follows. For each precision p, we take (𝒈 ∘ 𝒇 )p=𝒈p ∘ (𝒇p)|Dp, where (𝒇p)|DP is the
restriction of 𝒇p to the set Dp={𝒙∈dom𝒇p: 𝒇p(𝒙)∈dom𝒈p}.

We shall use ball arithmetic for the computation of complex functions ℂn→ℂm simply
through the consideration of real and imaginary parts. This point of view is sufficient for the
asymptotic complexity point of view of the present paper. Of course, it would be more efficient
to directly compute with complex balls (i.e. balls with a complex center and a real radius), but
this would involve approximate square roots and ensuing technicalities.

4.3. The Lipschitz property
Assume that we are given the ball lift 𝒇 of a function f :D→ℝm with D⊆ℝn. Given a subset U⊆D
and constants 𝜆⩾0,𝜇⩾0, we say that the ball lift 𝒇 is (𝜆,𝜇)-Lipschitz on U if

∃p0∈ℕ, ∃𝜚>0, ∀p⩾ p0, ∀𝒙∈𝔹p
n,

𝒙⊆U ∧ rad(𝒙)⩽𝜚 ⟹ 𝒙∈dom𝒇p ∧ rad(𝒇p(𝒙))⩽𝜆rad(𝒙)+𝜇2−p.

For instance, the ball lifts ⊕ and ⊖ of addition and subtraction are (2, 0)-Lipschitz on ℝ2. Simi-
larly, the ball lift ⊗ of multiplication is (3𝜆, 3)-Lipschitz on U ={(x, y)∈ℝ2: |x| ⩽𝜆, |y| ⩽𝜆} (by
taking 𝜌=𝜆), whereas the ball lift 𝜾 of 𝜄 is (𝜆,3)-Lipschitz on U={x∈ℝ:𝜆−1/2⩽|x|}.

Given 𝒇 and 𝜆 > 0, 𝜇 ⩾ 0 as above, we say that 𝒇 is locally (𝜆, 𝜇)-Lipschitz on U if 𝒇 is
(𝜆, 𝜇)-Lipschitz on each compact subset of U. We define 𝒇 to be 𝜆-Lipschitz (resp. locally 𝜆-
Lipschitz) on U if there exists a constant 𝜇 > 0 for which 𝒇 is (𝜆, 𝜇)-Lipschitz (resp. locally
(𝜆,𝜇)-Lipschitz). If 𝒇 is locally 𝜆-Lipschitz on U, then it is not hard to see that f is necessarily
locally Lipschitz on U, with Lipschitz constant 𝜆. That is,

∀x∈U, ∃𝜂>0, ∀a,b∈ℬ(x, 𝜂)∩U, ‖ f (b)− f (a)‖∞⩽𝜆‖b−a‖∞.

In fact, the requirement that a computable ball lift 𝒇 is 𝜆-Lipschitz implies that we have a means
to compute high quality error bounds. We finally define 𝒇 to be Lipschitz (resp. locally Lipschitz)
on U if there exists a constant 𝜆>0 for which 𝒇 is 𝜆-Lipschitz (resp. locally 𝜆-Lipschitz).

LEMMA 2. Let 𝒇 be a locally (𝜆, 𝜇)-Lipschitz ball lift of f :D→ℝm on an open set U. Let 𝒈 be
a locally (𝜆', 𝜇')-Lipschitz ball lift of g:E →ℝl on an open set V. If f (D)⊆E and f (U)⊆V, then
𝒈∘𝒇 is a locally (𝜆𝜆',𝜇𝜆'+𝜇')-Lipschitz ball lift of g∘ f on U.

Proof. Consider a compact subset C ⊆ U. Since this implies f (C) to be a compact subset of
f (U) ⊆ V , it follows that there exists an 𝜀 > 0 such that f (C) + ℬ(0, 𝜀) ⊆ V . Let p0 ∈ ℕ,
0<𝜚<(𝜀−𝜇2−p)/𝜆 and 0<𝜚' be such that for any p⩾ p0, 𝒙∈𝔹p

n and 𝒚∈𝔹p
m, we have

𝒙⊆C∧rad(𝒙)⩽𝜚 ⟹ 𝒙∈dom𝒇p∧rad(𝒇p(𝒙))⩽𝜆rad(𝒙)+𝜇2−p<𝜀
(𝒚⊆ f (C)+ℬ(0,𝜀))∧ rad(𝒚)⩽𝜚' ⟹ 𝒚∈dom𝒈p∧rad(𝒈p(𝒚))⩽𝜆' rad(𝒚)+𝜇'2−p.
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Given x ∈ 𝔹p
n with 𝒙 ⊆ C and rad(𝒙) ⩽ 𝜚, it follows that 𝒚 ≔ 𝒇p(𝒙) satisfies rad(𝒚) < 𝜀, whence

𝒚 ⊆ f (C) + ℬ(0, 𝜀). If we also assume that rad(𝒙) ⩽ (𝜚' − 𝜇 2−p)/𝜆, then it also follows that
rad(𝒚) ⩽ 𝜚', whence 𝒚 ∈ dom 𝒈p and rad(𝒈p(𝒚)) ⩽ 𝜆' (𝜆 rad(𝒙) + 𝜇 2−p) + 𝜇' 2−p = 𝜆 𝜆' rad(𝒙) +
(𝜇 𝜆'+𝜇') 2−p. In other words, if 𝒙⊆C and rad(𝒙)⩽min(𝜚,(𝜚'−𝜇 2−p)/𝜆), then 𝒙∈dom(𝒈p∘𝒇p)
and rad((𝒈p∘𝒇p)(𝒙))⩽𝜆𝜆' rad(𝒙)+(𝜇𝜆'+𝜇')2−p. □

5. STRAIGHT-LINE PROGRAMS

A signature is a finite or countable set of function symbols ℱ together with an arity r f ∈ℕ for
each f ∈ℱ. A model for ℱ is a set K together with a function fK:U f →K with U f ⊆Kr f for each
k ∈ ℱ. If K is a topological space, then U f is required to be an open subset of Kr f . Let 𝒱 be
a countable and ordered set of variable symbols.

A straight-line program Γ with signature ℱ is a sequence Γ1,…,Γℓ of instructions of the form

Γk ≡ Xk≔ fk(Yk,1,…,Yk,r fk
),

where fk ∈ ℱ and Xk, Yk,1, …, Yk,r fk
∈ 𝒱, together with a subset 𝒪Γ ⊆ {X1, …, Xℓ} of output

variables. Variables that appear for the first time in the sequence in the right-hand side of an
instruction are called input variables. We denote by ℐΓ the set of input variables. The number ℓ
is called the length of Γ.

There exist unique sequences I1 < ⋯ < In and O1 < ⋯ < Om with ℐΓ = {I1, …, In} and
𝒪Γ = {O1, …, Om}. Given a model K of ℱ we can run Γ for inputs in K, provided that the
arguments Yk,1, …, Yk,r fk

are always in the domain of fk when executing the instruction Γk. Let
DΓ,K be the set of tuples I =(I1,…, In)∈Kn on which Γ can be run. Given I ∈Kn, let ΓK(I)∈Km

denote the value of (O1, …, Om) at the end of the program. Hence Γ gives rise to a function
ΓK:DΓ,K →Km.

Now assume that (ℝ, ( fℝ) f ∈ℱ) is a model for ℱ and that we are given a ball lift 𝒇 of fℝ for
each f ∈ℱ. Then 𝔹p is also a model for ℱ at each precision p, by taking f𝔹p=𝒇p for each f ∈ℱ.
Consequently, any SLP Γ as above gives rise to both a function Γℝ:DΓ,ℝ→ℝm and a ball lift Γ𝔹p:
DΓ,𝔹p→𝔹p

m at each precision p. The sequence (Γ𝔹p)p thus provides us with a ball lift 𝚪 for Γℝ.

PROPOSITION 3. If the ball lift 𝒇 of fℝ is Lipschitz for each f ∈ℱ, then 𝚪 is again Lipschitz.

Proof. For each model K of ℱ, for each variable v ∈ 𝒱 and each input I = (I1, …, In) ∈ DΓ,K,
let vK ,k(I) denote the value of v after step k. We may regard vK ,k as a function from DΓ,K to K.
In particular, we obtain a computable sequence of functions v𝔹p,k that give rise to a ball lift 𝒗(k)
of vℝ,k. Let us show by induction over k that 𝒗(k) is Lipschitz for every v∈𝒱. This is clear for
k=0, so let k>0. If v≠Xk, then we have 𝒗(k)=𝒗(k−1); otherwise, we have

𝒗(k)=𝒇k(𝒀k,1
(k−1),…,𝒀k,r fk

(k−1)).
In both cases, it follows from Lemma 2 that 𝒗(k) is again a Lipschitz ball lift. We conclude by
noticing that 𝚪=(𝑶1

(ℓ),…,𝑶n
(ℓ)). □

6. COMPUTABLE NUMBERS AND ULTIMATE COMPLEXITY

A real number x ∈ℝ is said to be computable if there exists an approximation algorithm x̌ that
takes p∈ℕ on input and produces x̌(p)∈𝔻p on output with |x − x̌(p)| ⩽ 2−p (we say that x̌(p) is
a 2−p-approximation of x). We denote by ℝcom the field of computable real numbers.

Let T(p) be a nondecreasing function. We say that a computable real number x ∈ℝcom has
ultimate complexity T(p) if it admits an approximation algorithm x̌ that computes x̌(p) in time
T(p + 𝛿) for some fixed constant 𝛿∈ℕ. The fact that we allow x̌(p) to be computed in time
T(p + 𝛿) and not T(p) is justified by the observation that the position of the “binary dot” is
somewhat arbitrary in the approximation process of a computable number.
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The notion of approximation algorithm generalizes to vectors with real coefficients: given
v ∈ (ℝcom)n, an approximation algorithm for v as a whole is an algorithm v̌ that takes p ∈ℕ on
input and returns v̌(p) ∈𝔻p

r on output with |v̌(p)i − vi| ⩽ 2−p for i= 1,…, n. This definition natu-
rally extends to any other mathematical objects that can be encoded by vectors of real numbers:
complex numbers (by their real and complex parts), polynomials and matrices (by their vectors
of coefficients), etc. The notion of ultimate complexity also extends to any of these objects.

A ball lift 𝒇 is said to be computable if there exists an algorithm for computing 𝒇p for all p∈ℕ.
A computable ball lift 𝒇 of a function f :D→ℝm with D⊆ℝn allows us to compute the restriction
of f to D ∩ (ℝcom)n: given x ∈ D ∩ (ℝcom)n with approximation algorithm x̌, by taking 𝒙p =
ℬ(x̌(p), 2−p)∈𝔹p

n, we have ∩p∈ℕ𝒙p={x}, ∩p∈ℕ 𝒇p(𝒙p)={ f (x)}, and limp→∞ rad(𝒇p(𝒙p))=0.
Let F be a nondecreasing function and assume that D is open. We say that 𝒇 has ultimate

complexity F(p) if for every compact set C⊆D, there exist constants p0∈ℕ, 𝜚>0 and 𝛿∈ℕ such
that for any p⩾ p0 and 𝒙p ∈dom 𝒇p with 𝒙p ⊆ C and rad(𝒙p) ⩽ 𝜚, we can compute 𝒇p(𝒙p) in time
F(p+𝛿). For instance, ⊕ and ⊖ have ultimate complexity O(p), whereas ⊗ and 𝜾 have ultimate
complexity O(I(p)).

PROPOSITION 4. Assume that 𝒇 is locally Lipschitz. If 𝒇 has ultimate complexity F(p) and x ∈
D∩(ℝcom)n has ultimate complexity T(p), then f (x) has ultimate complexity T(p)+F(p).

Proof. Let x̌ be an approximation algorithm for x of complexity T(p+𝛿), where 𝛿∈ℕ. There
exist p0∈ℕ and a compact ball C around x with C⊆dom f and such that 𝒙p=ℬ(x̌(p),2−p)∈𝔹p

n

is included in C for all p ⩾ p0. There also exists a constant 𝛿' ∈ ℕ such that 𝒇p(𝒙p) can be
computed in time F(p + 𝛿') for all p ⩾ p0. Since 𝒇 is locally Lipschitz, there exists yet another
constant 𝛿'' ∈ ℕ such that rad(𝒇p(𝒙p)) ⩽ 2𝛿''−p for p ⩾ p0. For q = p − 𝛿'' ⩾ max (p0 − 𝛿'', 0)
and 𝛿''' = max (𝛿, 𝛿'), this shows that we may compute a 2−q-approximation of f (x) in time
T(q+𝛿''')+F(q+𝛿'''). □

PROPOSITION 5. Assume that 𝒇 and g are two locally Lipschitz ball lifts of f and g that can be
composed. If 𝒇 and g have respective ultimate complexities F(p) and G(p), then 𝒈∘𝒇 has ultimate
complexity F(p)+G(p).

Proof. In a similar way as in the proof of Lemma 2, the evaluation of (𝒈∘ 𝒇 )p(𝒙p) for 𝒙p∈dom𝒇p
with 𝒙p ⊆ C and rad(𝒙p) ⩽ 𝜚 boils down to the evaluation of 𝒇p at 𝒙p and the evaluation of 𝒈p
at 𝒚p≔ 𝒇p(𝒙p)⊆C'≔ f (C)+ℬ(0, 𝜀) with rad(𝒚p)⩽𝜚'. Modulo a further lowering of 𝜚 and 𝜚' if
necessary, these evaluations can be done in time F(p+𝛿) and G(p+𝛿') for suitable 𝛿,𝛿'∈ℕ and
sufficiently large p. □

THEOREM 6. Assume that ℝ is a model for the function symbols ℱ, and that we are given a
computable ball lift 𝒇 of fℝ for each f ∈ℱ. For each f ∈ℱ, assume in addition that 𝒇 is locally
Lipschitz, and let F f be a nondecreasing function such that 𝒇 has ultimate complexity F f (p). Let
Γ=Γ1,…,Γℓ be an SLP over ℱ whose k-th instruction Γk writes Xk≔ fk(Yk,1,…,Yk,r f ). Then, the
ball lift 𝚪 of Γℝ has ultimate complexity

FΓ(p) ≔ F f1(p)+⋯+F fℓ(p).

Proof. This is a direct consequence of Proposition 5. □

COROLLARY 7. Let Γ be an SLP of length ℓ over ℱ={0,1,+,−,×, 𝜄} (where 0 and 1 are naturally
seen as constant fonctions of arity zero). Then, there exists a ball lift 𝚪 of Γℝ with ultimate
complexity O(I(p)ℓ).

Proof. We use the ball lifts of section 4 for each f ∈ {+, −, ×, 𝜄}: they are locally Lipschitz
and computable with ultimate complexity O(I(p)). We may thus apply the Theorem 6 to obtain
FΓ(p)=O(I(p)ℓ). □
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7. ULTIMATE MODULAR COMPOSITION FOR SEPARABLE MODULI

LEMMA 8. There exists a constant 𝜅 > 0 such that the following assertion holds. Let f , g ∈
ℂcom[x]<n, let 𝜎1, …, 𝜎n be pairwise distinct elements of ℂcom, and let h = (x − 𝜎1) ⋯ (x − 𝜎n).
Assume that ( f0, …, fn−1, g0,…,gn−1, 𝜎1, …, 𝜎n) has ultimate complexity T(n, p). Then 𝜚 =
g∘ f remh has ultimate complexity T(n, p)+𝜅 I(p)M(n) logn.

Proof. The algorithm for fast multi-point evaluation of a polynomial P = ∑i=0
n−1 Pi xi ∈ 𝕂[x]<n

at 𝜉1, …, 𝜉n ∈ 𝕂 can be regarded as an SLP over ℱ= {0, 1, +, −, ×, 𝜄} of length O(M(n) log n)
that takes (P0, …, Pn−1, 𝜉1, …, 𝜉n) ∈𝕂2n on input and that produces (P(𝜉1), …, P(𝜉n)) ∈𝕂n on
output. Similarly, the algorithm for interpolation can be regarded as an SLP over ℱ of length
O(M(n) logn) that takes (𝜉1,…,𝜉n,v1,…,vn)∈𝕂2n on input and that produces (P0,…,Pn−1)∈𝕂n

on output with v1=P(𝜉1),…,vn=P(𝜉n). Altogether, we may regard the entire Algorithm 1 as an
SLP Γ over ℱ of length O(M(n) log n) that takes ( f0,…, fn−1, g0,…, gn−1, 𝜎0, …, 𝜎n−1)∈𝕂3n on
input and that produces (𝜚0,…,𝜚n−1)∈𝕂n on output with 𝜌=g∘ f remh=∑i=0

n−1𝜌i xi∈𝕂[x]<n. It
follows from Corollary 7 that Γℝ admits a ball lift 𝚪 of ultimate complexity O(I(p)M(n) log n).
The conclusion now follows from Proposition 4. □

According to the above lemma, we notice that the time complexity for computing 𝜚 =
g∘ f remh is T(n, p+𝛿) for some constant 𝛿 that depends on n, f , g, and the 𝜎i.

LEMMA 9. There exists a constant 𝜅>0 such that the following assertion holds. Let h∈ℂcom[x]
be separable and monic of degree n, and denote the roots of h by 𝜎=(𝜎1,…,𝜎n). If h has ultimate
complexity T(n, p), then 𝜎 has ultimate complexity T(n, p)+𝜅 I(p)M(n) logn.

Proof. There are many algorithms for the certified computation of the roots of a separable com-
plex polynomial. We may use any of these algorithms as a “fall back” algorithm in the case that
we only need a 2−p-approximation of 𝜎 at a low precision p determined by h only.

For general precisions p, we use the following strategy in order to compute a ball 𝝈∈𝔹p
n with

𝜎∈𝝈 and rad(𝝈)⩽2−𝛼p for some fixed threshold /1 2<𝛼<1. For some suitable p0∈ℕ and p⩽ p0,
we use the fall back algorithm. For p > p0 and for a second fixed constant /1 2 < 𝛽 < 1, we first
compute a ball enclosure 𝝉∈𝔹q

n at the lower precision q=⌈𝛽p⌉ using a recursive application of
the method. We next compute 𝝈 using a ball version of the Newton iteration, as explained below.
If this yields a ball 𝝈 with acceptable radius rad(𝝈)⩽2−𝛼p, then we are done. Otherwise, we resort
to our fall-back method. Such calls of the fall-back method only occur if the default threshold
precision p0 was chosen too low. Nevertheless, we will show that there exists a threshold p1 such
that the computed 𝝈 by the Newton iteration always satisfies rad(𝝈)⩽2−𝛼p for p⩾ p1.

Let us detail how we perform our ball version of the Newton iteration. Recall that 𝝉 ∈ 𝔹q
n

with 𝜎 ∈ 𝝉 and rad(𝝉) ⩽ 2−𝛼𝛽p is given. We also assume that we computed once and for all
a 2−p-approximation of h, in the form of a ball polynomial 𝒉p ∈ 𝔹p[i][x] of radius 2−p that
contains h. Now we evaluate 𝒉p and 𝒉p' at each of the points 𝝈1, …, 𝝈n using fast multi-point
evaluation. Let us denote the results by 𝒗 = 𝒉p(𝝈) and 𝒘 = 𝒉p' (𝝈). Let 𝜏, v and w denote the
balls with radius zero and whose centers are the same as for 𝝉, 𝒗 and 𝒘. Using vector nota-
tion, the Newton iteration now becomes:

𝝈 = (𝜏⊖p𝜾p(w)⊗p v)⊕p (1⊖p𝜾p(w)⊗p𝒘)⊗p (𝝉⊖p𝜏).

If 𝜎 ∈ 𝝉, then it is well-known [17, 23] that 𝜎 ∈ 𝝈. Since rad(𝝉) ⩽ 2−𝛼𝛽p, the fact that multi-
point ball evaluation (used for 𝒉p and 𝒉p' ) is locally Lipschitz implies the existence of a constant
𝛿>0 with rad(𝝂)⩽2𝛿−𝛼𝛽p and rad(𝒘)⩽2𝛿−𝛼𝛽p. Since h'(𝜎i)≠0 for i=1,…,n, there also exists
a constant 𝛿' > 0 with 1 − 𝜾p(w) 𝒘 ⊆ ℬ(0, 2𝛿'−𝛼𝛽p). Altogether, this means that there exists a
constant 𝛿'' > 0 with rad(𝝈) ⩽ 2𝛿''−2𝛼𝛽p. Let p1 = ⌈𝛿''/(𝛼 (2 𝛽 − 1))⌉. Then for any p ⩾ p1, the
Newton iteration provides us with a 𝝈 with rad(𝝈)⩽2−𝛼p.
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Let us now analyze the ultimate complexity C(n, p) of our algorithm. For large p ⩾ p1, the
algorithm essentially performs two multi-point evaluations of ultimate cost 𝜅' I(p)M(n) log n for
some constant 𝜅' that does not depend on p, and a recursive call. Consequently,

C(n, p) ⩽ 𝜅' I(p)M(n) logn+C(n, ⌈𝛽p⌉).

We finally obtain an other constant 𝜅⩾𝜅' such that

C(n, p) = 𝜅 I(p)M(n) logn,

by summing up the geometric progression and using the fact that I(p)/ p is nondecreasing. The
conclusion now follows from Lemma 4. □

Remark 10. A remarkable feature of the above proof is that the precision p1 at which the Newton
iteration can safely be used does not need to be known in advance. In particular, the proof does
not require any a priori knowledge about the Lipschitz constants.

THEOREM 11. There exists a constant 𝜅 > 0 such that the following assertion holds. Let f , g ∈
ℂcom[x]<n and let h∈ℂcom[x] be separable and monic of degree n. Assume that ( f ,g,h) has ulti-
mate complexity T(n, p). Then 𝜚=g∘ f remh has ultimate complexity T(n, p)+𝜅 I(p)M(n) logn.

Proof. This is an immediate consequence of the combination of the two above lemmas. □

8. CONCLUSION AND FINAL REMARKS

With some more work, we expect that all above bounds of the form O(I(p) M(n) log n) can
be lowered to O(I(n p) log n). Notice that I(n p) log n = O(I(p) n log n) for p ⩾ n, when taking
I(p) = Θ(n log n 8log∗n) [7]. In order to prove this stronger bound using our framework, one
might add an auxiliary operation ×[n] for the product of two polynomials of degrees <n to the
set of signatures ℱ. Polynomial products of this kind can be implemented for coefficients in
𝔻p[i] with p ⩾ n using Kronecker substitution. For bounded coefficients, this technique allows
for the computation of one such product in time O(I(n p)). By using Theorem 6, a standard
complexity analysis should show that multi-point evaluation and interpolation have ultimate com-
plexity O(I(np) logn).

By Theorem 11, the actual bit complexity of modular composition is of the form T(n, p+𝛿)+
𝜅 I(p + 𝛿) M(n) log n for some value of 𝛿 that depends on f , g, h (hence of n). An interesting
problem is to get a better grip on this value 𝛿, which mainly depends on the geometric proximity
of the roots of h.

If f , g,h belong to ℚ[x], then T(n, p)=O(n I(p)) and we may wish to bound 𝛿 as a function
of n and the maximum bit size l of the coefficients of f , g and h. This would involve bit com-
plexity results for root isolation [18, 19, 24], for multi-point evaluation, and for interpolation.
The overal complexity should then be compared with the maximal size of the output, namely
g∘ f remh, which is in general much larger than the input size.

If h is not separable, but if a separable decomposition is known, then the techniques developed
in this paper could be combined with Ritzmann's algorithm for the composition of formal power
series [22]. If such a separable decomposition is not known, then it is an interesting problem to
obtain a general algorithm for modular composition with a similar complexity (but this seems far
beyond the scope of this paper).
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