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ABSTRACT
Modular composition is the problem to compose two uni-
variate polynomials modulo a third one. For polynomials
with coe�cients in a �nite �eld, Kedlaya and Umans proved
in 2008 that the theoretical bit complexity for performing
this task could be made arbitrarily close to linear. Unfor-
tunately, beyond its major theoretical impact, this result
has not led to practically faster implementations yet. In
this paper, we study the more speci�c case of composition
modulo the power of a polynomial. First we extend pre-
viously known algorithms for power series composition to
this context. We next present a fast direct reduction of our
problem to power series composition.

Keywords
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1. INTRODUCTION
Let K be an e�ective �eld and let f ; g; h be polynomials

in K[x] of degrees 6n. The problem of modular composi-
tion is to compute f � g modulo h. This is a fundamental
problem in complexity theory because of its applications to
polynomial factorization [16, 17, 18].
From a theoretical point of view, Kedlaya and Umans

achieved a major breakthrough by showing that modular
compositions over a finite field Fq can be computed in
time (n log q)1+o(1). Unfortunately, the practical impact
of these results has been limited so far. The best cur-
rent implementations still admit nearly quadratic complexi-
ties in n. More precisely, over a field K, denoting by
MK(n) the cost to multiply two polynomials in K[x] of
degrees 6n, Brent and Kung [3] gave an algorithm with
cost O( n

p
MK(n)+ n2). It uses the baby-step giant-step

technique due to Paterson�Stockmeyer [21] and even yields
a sub-quadratic cost when using fast linear algebra (see [15,
p. 185] and our Theorem 2 below).
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In the special case when h = xn, composition modulo h
corresponds to the composition of truncated power series
at order n. Better practical algorithms are known for this
particular situation. Brent and Kung gave an algorithm [3]
with complexity O( n

p
MK(n) log1/2 n) under the condi-

tions that g 0(0) is invertible and that the characteristic is at
least d n log n

p
e. A variant proposed by van der Hoeven [11,

Section 3.4.3] removes the condition on g 0(0). For �elds of
small positive characteristic, Bernstein [1] proposed an algo-
rithm that is softly linear in the precision n but linear in
the characteristic. Series with integer, rational or �oating
point coe�cients can often be composed in quasi-linear time
as well in suitable bit complexity models, as shown by Ritz-
mann [22]; see also [12].
In this paper, we focus on the intermediate case between

power series and general modular compositions. More pre-
cisely, we assume h to be a power ~m of some polynomial ~.
Composition modulo ~m can also be regarded as a special
�base� case of composition modulo a polynomial h that can
be factored into h= h1 ��� hm. Using Chinese remaindering,
one may reduce composition modulo such h to compositions
modulo powers of irreducible polynomials. In a separate
paper [13], we exploit this observation for the design of fast
practical (although not fully general) algorithms for mod-
ular composition over �nite �elds.
We develop two main approaches for fast composition

modulo h=~m. In section 3, we generalize Brent and Kung's
and Bernstein's algorithms. We achieve a complexity expo-
nent close to /3 2, but only under the condition that n is
much larger than deg~. In section 4, we directly reduce com-
position modulo h to truncated power series composition.
Our main result is Theorem 11: one composition modulo h
is essentially reduced to m+1 compositions modulo ~ and
one power series composition in K[z] / (~(z))[y] / (ym). An
important ingredient of this reduction is a softly optimal
algorithm for converting between K[x] / (h(x)) and K[z] /
(~(z))[y] / (ym) where x is sent to y + z. Potential appli-
cations of these conversions might also concern algebraic
algorithms for plane curves such as integral basis computa-
tions and Puiseux expansions, which usually require several
Taylor expansions at roots of discriminants.
Our paper is organized as follows. In section 2, we

introduce basic notations and recall several well known com-
plexity results. We also specify the complexity model that
we work with. Further technical complexity results are gath-
ered in the appendix. In sections 3 and 4, we present our
main algorithms. For testing purposes, our algorithms are
implemented in the Mathemagix language within the fac-
torix library (www.mathemagix.org, revision 10538).

www.mathemagix.org
www.mathemagix.org
www.mathemagix.org
www.mathemagix.org
www.mathemagix.org


2. PRELIMINARIES

2.1 Costs of elementary operations
Recall that an e�ective ring is a ring A with unity whose

elements can be represented on a computer and such that we
have algorithms for performing the ring operations. E�ec-
tive �elds K and e�ective algebras over an e�ective ring are
de�ned similarly.

Given an effective ring A, algebraic complexity models
express running times in terms of the number of ring oper-
ations in A. Unless otherwise stated, we will analyze the
costs of the algorithms in this paper in this way. More pre-
cisely, our results both apply for the straight-line program
and computation tree models [4, Chapter 4].

LetA be an e�ective ring with unity, let n2N, and denote

A[x]<n = fP 2A[x]: deg P <ng:

We write MA: N ! R> for a cost function such that two
polynomials in A[x]<n can be multiplied using MA(n) oper-
ations in A. It will be convenient to assume that MA(n)/n
is a nondecreasing function in n. Notice that this assump-
tion implies the super-additivity of MA, namely MA(n1) +
MA(n2)6MA(n1+n2) for all n1> 0 and n2> 0.
The schoolbook algorithm allows us to take MA(n) =

O(n2). The fastest currently known algorithm [5] yields
MA(n) = O(n log n log log n). If K is a �eld of �nite
characteristic, then we even have MK(n)=O(n logn 8log

�n),
where log�n=min fi2N: (log � :::i� � log)(n)6 1g [10].

The constant ! > 2 represents a feasible exponent for the
multiplication cost of matrices: two square matrices of size
n � n can be multiplied using O(n!) operations in their
coe�cient ring. The constant$>1.5 is de�ned similarly but
for multiplying a n

p
� n
p

matrix by a n
p

�n rectangular
one. The best known bound !<2.3729 is due to Le Gall [19].
This naturally yields $ 6 (! + 1) / 2 < 1.6845. However
the latter bound does not improve upon the earlier bound
$< 1.6667 due to Huang and Pan [14, Theorem 10.1].

2.2 Problems related to modular composition
If f and g are polynomials in A[x], then f rem g represents

the remainder in the division of f by g. Let A be an e�ective
ring and B be an e�ective A-algebra. We introduce the
following cost functions:

� SA(n): the cost of computing the power series composi-
tion f � g rem xn, where f ; g 2A[x]<n.

� SB/A(n): the cost of computing the power series compo-
sition f � g rem xn in terms of operations in A, where f ;
g 2B[x]<n.

� CA(n): the cost of computing the modular composition
f � g rem h, where h 2 A[x] is a monic polynomial of
degree n and f ; g 2A[x]<n.

� QA(n): the cost of computing the characteristic polyno-
mial � of g 2 A[x]<n modulo a monic polynomial h 2
A[x] of degree n. This is the characteristic polynomial
�2A[x] of the multiplication endomorphism by gmodh
in A[x]/(h(x)).

� PA(n): the cost of modular power projections , i.e. the
cost to compute '(1); '(g); :::; '(gn¡1 rem h), where
h 2A[x] is monic of degree n and ' is a linear form on
A[x]<n.

Let us recall a few known results about these functions.
For a 2 R, we denote bac = max fb 2 Z: b 6 ag and
dae=min fb2Z: b> ag.

Theorem 1. Let K be a �eld of characteristic p.

a) [ 3] If p=0 or p> d n log n
p

e, then we may take SK(n)=

O(MK(n) n log n
p

).

b) [ 1] If p> 0, then SK(n)=O
�
pn+

p

log p
MK(n) log n

�
.

Theorem 2. Let h be a monic polynomial of degree n over
a ring A and let f ; g 2 A[x]<n. The composed polynomial
f � g rem h may be computed with

a) O(nMA(n)) operations in A, or

b) O(n$+n1/2MA(n)) or O(n$) operations in A.

Proof. The �rst bound is immediate. The proof of the
second bound is detailed in [8, Section 12.2]. The bound
O(n$) follows from $> 1.5 by taking MA(n)=n1+o(1). �

For a �xed monic polynomial h in A[x] of degree n, the
modular composition f � g rem h is a linear operation in
f , for f and g in A[x]<n. The corresponding transposed
application is precisely the operation of modular power
projections : it corresponds to computing '(1); '(g); :::;
'(gn¡1 rem h), where ' is a linear form on A[x]<n. If
a modular composition algorithm with cost CA(n) can be
transposed in the sense of [2], then this leads to a power
projection algorithm with cost PA(n)=CA(n)+O(n).

Theorem 3. Let h be a monic polynomial of degree n over
a ring A and let g 2A[x]<n. The characteristic polynomial
� of g modulo h can be computed using

a) O(MA(n
2) log n + n MA(n) log2 n) operations in A,

including divisions in A (the partial division in A is
supposed to be implemented), or

b) O(MA(n
2) log n) operations in A, if A is a �eld, or

c) O(n MA(n) log n) operations in A, if A is a �eld with
>n elements, or

d) PA(n) + MA(n) operations in A, if there exist given
inverses of 2; 3; :::; n in A.

Proof. The �rst two bounds directly rely on the formula
�(x)=Resz(g(z)¡x; h(z)) by using [20, Corollary 29]. The
third bound is obtained by computing Resz(g(z)¡ a; h(z))
for n + 1 values of a in A, from which � is interpolated
using O(MA(n) log n) additional operations in A. We refer
to Appendix A.1 for the fourth bound. �

For the particular kind of moduli h=~m that interest us in
here, the problem of computing characteristic polynomials
quite easily reduces to the case when m=1:

Proposition 4. Let ~ be of degree d in K[x], let h= ~m
with n=md, and let g be in K[x]<n. Then the characteristic
polynomial � of g modulo h can be computed using QK(d)+
O(MK(n)) operations in K.



Proof. The characteristic polynomial � is simply the m-
th power of the characteristic polynomial of g modulo ~. �

3. EXTENDING KNOWN ALGORITHMS
From now on, we assume the modulus h to be the m-

th power of a polynomial ~ of degree d. In this section
we extend the two fast known algorithms for power series
composition from Theorem 1 to composition modulo h. We
directly state and prove the generalized algorithms. For
more explanations we refer to the original papers [1, 3]
and [11, Section 3.4.3].

3.1 Extension of Bernstein's algorithm
If K has positive characteristic p > 0, then Bernstein's

algorithm [1] exploits the Frobenius map in order to recur-
sively reduce the degrees of the polynomials to be composed
by a factor p.

Algorithm 1

Input. ~; h2K[x], f ; g 2K[x]<n, where n= deg h.
Output. f � g rem h.
Assumptions. charK= p, h= ~m, deg ~= d=n/m.
1. If m=1, then return f � g rem h, computed by a gen-

eral modular composition algorithm of cost CK(d).

2. Split f into polynomials f~0; :::; f~p¡1 such that f(x)=P
i=0

p¡1
f~i(x

p) xi. Letm~ =dm/ pe and g~, ~~ be such that
~~(xp)=~(x)p and g~(xp)= g(x)p rem ~~(xp)m.

3. Recursively compute u~i= f~i � g~rem ~~
m for all 06 i6

p¡ 1.
4. Return

P
i=0

p¡1
u~i(x

p) g(x)i rem h(x).

Proposition 5. Algorithm 1 is correct and takes

pmCK(d)+O
�

p

log p MK(n) logm
�
operations in K.

Proof. Since (dm¡1)/ p<dm~ , the degrees of g~ and the
f~i are at most dm~ ¡ 1. Now u~i= f~i � g~ rem ~~

m implies

u~i(xp)= f~i(g~(x
p)) rem ~~(xp)m= f~i(g(x)

p) rem ~(x)pm;

which ensures the correctness of the algorithm.
In step 2 we need: O(n log p) operations in K to com-

pute all the necessary p-th powers, O(MK(d m~ )) for ~~m,
and O(MK(n)) for the division to obtain g~. In step 4, by [8,
Exercise 9.16], the computation of u~i(xp) rem h(x) for i =
0; :::; p¡ 1 may be done in time

O

�
p dm~ +

�
pm~

m

�
MK(n)

�
= O

�
d (m+ p)+

�
1+

p

m

�
MK(n)

�
=O(pMK(n)):

The remaining calculations of step 4 amount to O(pMK(n))
operations in K.
Let T(m) be the time complexity for precision m and let

e2N be such that pe¡1<m6 pe. By what precedes, we have

T(m)6 pT(dm/pe)+ c pMK(dm);

for all m > 1 and a su�ciently large constant c. Unrolling
this inequality e¡ 1=O(logpm) times, we obtain

T(m)6 peT(dm/pee)+ c p
X
i=0

e¡1

piMK(d dm/pie):

Using pi dm / pie 6 m + pi ¡ 1 and the super-additivity
of MK, we conclude that

T(m)= pmCK(d)+O(pMK(n) logpm): �

3.2 Extension of Brent and Kung's algorithm
We now extend Brent and Kung's series composition algo-

rithm to composition modulo h = ~m. This method uses
Taylor series expansion in order to reduce the degrees of the
polynomials to be composed. For a given polynomial u, we
write u(l) for its l-th derivative. Algorithm 2 is a sub-algo-
rithm that is used when the arguments of the composition
both have small degree.

Algorithm 2

Input. u; g; h2K[x], where u has degree t.
Output. u � g rem h.
1. If t6 0 then return u(0).

2. Split u(x) = u0(x) + xdt/2e u1(x) with deg u0< dt/2e
and deg u1= t¡dt/2e.

3. Recursively compute vi=ui � g rem h for i2f0; 1g,
4. Return (v1+ gdt/2e v2) rem h.

Algorithm 3

Input. ~; h2K[x], f ; g 2K[x]<n, where n=deg h.
Output. f � g rem h.
Assumption. K has characteristic p > k, where l =�

m/(d log n)
p �

and k = dm/ le; h = ~m, ~ is sepa-
rable and irreducible, deg ~= d=n/m.

1. Compute g1= g rem ~l and g2= g¡ g1.
2. If g1=/ 0 then compute the valuation v of g10 in ~ and

the modular inverse u=(g1
0 /~v)¡1mod ~m¡l.

3. Compute r0= f � g1 rem h using Algorithm 2.

4. If g1 = 0 then compute ri = f (i)(0) for all i from 1
to k ¡ 1. Otherwise, for i from 0 to k ¡ 2, compute
ri+1=u (ri

0 quo ~v) rem ~m¡(i+1)l.
5. Return

P
i=0

k¡1 ri
i!
g2
i rem ~m.

Proposition 6. Algorithm 3 is correct and takes
O( n
p

MK(n) log1/2n) operations in K if d=O(m/ log n).

Proof. The main ingredient of the proof is the following
Taylor expansion:

f(g1(x)+ g2(x))=
X
i=0

k¡1
f (i)(g1(x))

i!
g2
i mod ~m;

which makes use of val~ g2 > l and k l > m. If g1 = 0
then ri = f (i)(g1(x)) holds for all i, so the algorithm is
correct. Otherwise we may write g1 = a(x) ~w mod ~w+1
with 0 6 w < l and a =/ 0 of degree <d, which implies
g1
0(x) = w a(x) ~0(x) ~w¡1 mod ~w. Since p > w and ~

separable, it follows that 0 6 v 6 l ¡ 2, whence u is well
de�ned.
Let us show that ri= f (i)(g1(x))mod~m¡il, by induction

on i. This is clear for i=0. Assume that the identity holds
for some i> 0. From f (i+1) � g1=(f (i) � g1)0/g10 we see that
the valuation of (f (i) � g1)0 in ~ is necessarily >v and that
u (ri

0 quo ~v) = (f (i) � g1)0 mod ~m¡il¡v¡1. The induction
hypothesis is thus satis�ed for i + 1 because i l + v + 1 6
(i+1) l. We are done with the correctness.



The ~-adic expansion of g takes O(MK(n) log n) oper-
ations and dominates the cost of steps 1 and 2. Steps 4
and 5 amount to O

¡m
l

MK(n)
�
= O( n

p
MK(n) log1/2 n)

operations. As to step 3, we enter Algorithm 2 with u= f .
Let T(t) be the cost function of Algorithm 2. The degrees

of u1 � g1, u2 � g1 and g1
dt/2e are 6d l dt/2e, so that

T(t)6 2T
�l

t

2

m�
+ cMK

�
min

�
d l

l
t

2

m
; n

��
;

for some constant c. Let e be the largest integer such that
d l dn/2ee>n. Unrolling e¡ 1 times the inequality for T(t)
and t=n, we obtain

T(n) 6 2eT(dn/2ee)+ c
X
i=0

e¡1

2iMK(n)

= 2eT(dn/2ee)+O(2eMK(n)):

In a similar way we obtain T(dn / 2ee) = O(MK(n) log n).
Consequently, T(n) = O(2e MK(n) log n). The conclusion
follows from 2e=O(d l)=O

¡
n/ log n

p �
. �

Corollary 7. Let ~ be of degree d in K[x], let h = ~m
be of degree n = m d, and let f ; g be in K[x]<n. If d =
O(m / log n), then the modular composition f � g rem h
may be computed using m n

p
CK(d) + O( n

p
MK(n) log n)

operations in K.

Proof. If p = O( n
p

), then we may use Algorithm 1,
which requires m n

p
CK(d) + O( n

p
MK(n) log n) opera-

tions in K. Otherwise, we use Algorithm 3. �
Notice that for �xed d, this corollary gives a cost n1.5+o(1),

independently of the characteristic.

4. REDUCTION TO SERIES COMPOSITION

Recall that the modulus h is the m-th power of a poly-
nomial ~ of degree d. From now on, we assume that ~ is sepa-
rable. So far, our algorithms for composition modulo h relied
on extensions of known algorithms dedicated to power series.
In this section, we investigate the other natural approach: we
design algorithms that reduce one composition modulo ~m
to one series composition of order m over a suitable exten-
sion of the ground �eld. We set L=K[z]/(~(z)) and write �
for the residue class of z in L. The associated trace func-
tion is denoted by TrL/K. This function naturally extends
to a map TrL/K:L[x]!K[x] in a coe�cientwise fashion.

4.1 Case of small moduli
The �rst method we study is rather elementary. It works

well for any characteristic, but it is only e�cient when d is
much smaller than n. We compute (f � g)(y) rem (y ¡ �)m

for all roots � of ~ and recover f � g rem ~m by Chinese
remaindering. The simultaneous computation with all roots
of ~ is emulated via standard algebraic techniques.
Since ~ is not assumed to be irreducible, L is not nec-

essarily a �eld. We will compute inverses in L using the
technique of dynamic evaluation , which is brie�y recalled
in Appendix A.2. For convenience of the reader, we use the
auxiliary variable y for power series and keep the variable x
for polynomials.

Algorithm 4

Input. ~; h2K[x], f ; g 2K[x]<n, where n=deg h.
Output. f � g rem h.
Assumptions. h=~m, ~ is separable, deg~=d=n/m.
1. Compute G(y)= g(y+�)¡ g(�) in L[y].

2. Compute F (y)= f(y+ g(�)) in L[y].
3. Perform the power series composition
R(y)= (F �G)(y) in L[y]/(ym).

4. Compute H(x)=h(x)/(x¡�)m in L[x].
5. With the algorithm underlying Corollary 20, compute

the modular inverse I(x)=H¡1(x)mod (x¡�)m.
6. Compute Q(x)=H(x) I(x)

and then P (x)=R(x¡�)Q(x).
7. Return TrL/K(P (x)) rem h(x).

Proposition 8. Algorithm 4 is correct and takes

O(SL/K(m)+MK(d)MK(n) log d log n)

operations in K.

Proof. For a root � of ~ in some algebraic closureK� ofK,
we write �� for the homomorphism from L to K� that sends �
to �. This homomorphism extends coe�cientwise into a map
��:L[x]!K� [x]. One veri�es that TrL/K(P (x)) equalsX
~(�)=0

��(R(x¡�))��(Q(x))

=
X
~(�)=0

�
((f � g)(x) rem (x¡ �)m)

h(x)

(x¡ �)m

�
��

h(x)

(x¡ �)m

�¡1
mod (x¡ �)m

��
;

so TrL/K(P (x)) rem (x¡ �)m equals (f � g)(x) rem (x¡ �)m
for all roots � of ~. This proves the correctness of the algo-
rithm thanks to the Chinese remainder theorem.
For the complexity analysis, step 3 amounts to SL/K(m)

operations in K. In step 5, we use Corollary 20 to compute
I(x) with O(MK(d) MK(n) log d log n) operations in K.
Steps 1, 2, 4, and 6 require O(ML(n) log n) additional ring
operations in L. In step 7, the row matrix of TrL/K may be
computed with O(MK(d)) operations in K by formula (20),
so each trace takes O(d) operations in K. Therefore step 7
amounts to O(MK(d)+MK(n)+d n) operations in K, which
is negligible. �
When d is much smaller than m, we may directly bene�t

from fast power series composition. But overall this does
not improve much on Corollary 7. In the rest of this section,
we aim at decreasing the dependency in d in complexity
bounds.

4.2 Fast reduction to series composition
In order to improve on Algorithm 4, we shall use a better

way to expand g(y + �) and f(y + g(�)) modulo ym. For
this purpose we introduce the K-algebra homomorphism

�~;m: K[x]/(~(x)m) ! L[y]/(ym)

u(x) 7! u(y+�):



We regard �~;m and �~;m
¡1 as conversions that we respectively

call the untangling and tangling mappings.

Lemma 9. For all separable polynomial ~ and all m> 1,
the map �~;m is a K-algebra isomorphism.

Proof. �~;m is clearly a homomorphism between K-alge-
bras of equal dimensions, so we need to prove its injectivity
when ~ is separable. We consider the ~-adic expansion
u0(x) + u1(x) ~(x) + ���+ um¡1(x) ~(x)m¡1 of u(x) modulo
~(x)m, where all the ui have degrees <deg ~, and we assume
that �~;m(u) = 0. It is immediate that u0 = 0. We may
thus suppose, by induction on i > 1, that uj = 0 for all
0 6 j 6 i ¡ 1. From ~(y + �) = ~0(�) y + O(y2) we
obtain u(y + �) = ui(�) ~0(�)i yi + O(yi+1). Since ~0(�)
is invertible, it follows that ui(�) = 0, whence ui= 0. This
completes the induction. �
Remark. The separability assumption on ~ is necessary:

if ~(x)=x2 and m=2, then we have �~;m(x3)= 0.

Algorithm 5

Input. ~; h2K[x], f ; g 2K[x]<n, where n= deg h.
Output. f � g rem h.
Assumptions. h=~m, ~ is separable, deg ~=d=n/m.
1. Compute G=�~;m(g)¡ g(�).
2. Let g�= g rem ~ and compute the characteristic poly-

nomial �� of g� modulo ~.
3. Compute F�=���;m(f).

4. Write F�(y) = F�0(�) + F�1(�) y + ���+ F�m¡1(�) y
m¡1,

where � is the class of z in K[z]/(��(z)), and the F�i
have degrees <d. For each i2f0; :::;m¡ 1g, compute
Fi=F�i � g�rem~ and let F (y)=F0(�)+F1(�) y+ ���+
Fm¡1(�) ym¡12L[y].

5. Perform the power series composition R(y) = (F �
G)(y) in L[y]/(ym).

6. Return �~;m
¡1 (R).

From now on, in cost analyses, the expression PK(d; m)
(resp. PK

� (d; m)) represents a cost function for computing
the direct image (resp. the preimage) of �~;m. If good algo-
rithms are known for �~;m and �~;m

¡1 , for characteristic poly-
nomials and for compositions modulo ~, then we observe
that Algorithm 5 boils down to one power series compo-
sition at precision m over L.

Proposition 10. Algorithm 5 is correct and it requires

HK(dm) = 2 PK(d; m) + PK
� (d; m) + QK(d) +m CK(d) +

SL/K(m)+O(dm)

operations in K.

Proof. The homomorphism K[z] / (��(z)) ! L that
sends � to g(�) is well de�ned, so applying it coe�cient-
wise to F�(y) = f(y + �) 2K[z]/(��(z))[y] we obtain f(y +
g(�)) mod ym = F (y). Therefore we have (F � G)(y) =
(f � g)(y + �) mod ym = �~;m(f � g rem h), which ensures
the correctness of the algorithm. The cost directly follows
from the de�nitions. �
The rest of this section is devoted to algorithms with

softly linear costs for computing �~;m and its inverse. More
precisely, we will prove that we may take PK(d; m) and
PK
� (d; m) to be O(MK(d m) log2 m + MK(d) log d) in

the latter proposition. This leads to our main theorem:

Theorem 11. Let ~; h = ~m 2 K[x] and f ; g 2 K[x]<n,
where n=deg h, such that ~ is separable of degree d=n/m.
Then, we can compute f � g rem h using

HK(d;m) = SL/K(m)+mCK(d)+QK(d)+

O(MK(dm) log2m+MK(d) log d)

operations in K.

4.3 Untangling in characteristic zero
The following lemma is elementary, but we shall refer to

it several times.
Lemma 12. Given integers 0 6 k < l and a polynomial

v 2K[x], we have (v ~l)(k)(�)= 0.

Proof. We have (v ~l)(k) =
P

i=0

k �
k
i

�
v(i) (~l)(k¡i) by

Leibnitz formula, showing that (v ~l)(k) is divisible by ~. �
We begin with the easiest situation when the character-

istic p of K is zero or su�ciently large and achieve softly
linear time for P(d;m).

Algorithm 6
Input. ~; h2K[x], u2K[x]<n.

Output. u(�); u0(�); :::; u(m¡1)(�).
Assumptions. h=~m, ~ is separable, deg~=d=n/m.
1. If m=1 then return u(�), otherwise let l= bm/2c.
2. Recursively apply the algorithm to u rem ~l, giving
u(�); u0(�); :::; u(l¡1)(�).

3. Recursively apply the algorithm to u(l) rem ~m¡l,
giving u(l)(�); u(l+1)(�); :::; u(m¡1)(�).

4. Return u(�); u0(�); :::; u(m¡1)(�).

Proposition 13. Algorithm 6 is correct and takes
O(MK(n) log m) operations in K. If p = 0 or p > m,
then, given u 2 K[x]<n, one may compute �~;m(u) using
O(MK(n) logm) operations in K.

Proof. The correctness follows from Lemma 12 which
ensures that u(k)(�) = (u rem ~l)(k)(�) for all 06 k < l

and u(l+k)(�) = (u(l) rem ~m¡l)(k)(�) for all 06 k <m¡ l.
The cost analysis is straightforward. Finally, to deduce
�~;m(u), thanks to the assumption on the characteristic,
we may simply use the Taylor expansion u(y + �) =P

i=0

i=m¡1
u(i)(�)

yi

i!
+O(ym). �

4.4 Untangling in positive characteristic
In order to handle the case p<m, we need to pay attention

to vanishing coe�cients when computing Taylor expansions
using higher order derivatives. For this, we rely on the fol-
lowing adaptation of the Taylor expansion of u:

u(y+�)=
X
i>0

D(i)(u)(�) yi:

The polynomial D(l)(u) is called the l-th order Hasse deriva-
tive of u. The operator D(l) is linear and we may compute it
as follows: if u=xi is a monomial and l>i, then D(l)(xi)=0;
otherwise

D(l)(xi)=
�
i
l

�
xi¡l:

Lemma 14. For all integers k and l, we have D(k)�D(l)=�
k+ l
k

�
D(k+l).



Proof. Let i > k + l. A straightforward calculation in
characteristic zero yields

D(k) �D(l)(xi) =
�
i¡ l
k

��
i
l

�
xi¡l¡k

=
�

i
k+ l

�¡1�i¡ l
k

��
i
l

�
D(k+l)(xi)

=
�
k+ l
k

�
D(k+l)(xi):

Now if the characteristic p > 0 divides the integer
�

i
k+ l

�
,

then it also divides
�
i¡ l
k

� �
i
l

�
, and the lemma remains cor-

rect. �
It is convenient to also introduce the Pochhammer symbol

(i)j= i (i¡ 1) ��� (i¡ j+1):

The next lemma expresses conditions to compute Hasse
derivatives from ones of lower orders, in positive charac-
teristic.

Lemma 15. Let l > p be an integer power of p > 0, let s
be an integer such that valp s > valp l, and let a < b be two
integers in f0; :::; p¡1g. Then, for any polynomial u2K[x],
we may compute D(s+bl)(u) from D(s+al)(u) =

P
i>0 �i x

i

using the formula

D(s+bl)(u)=
X

c>b¡a

(c)b¡a
(b)b¡a

X
cl6i<(c+1)l

�ix
i¡(b¡a)l: (1)

Proof. The previous lemma implies that D(s+bl) =�
s+ b l
(b¡ a) l

�¡1 D((b¡a)l) � D(s+al). Now in characteristic zero,
we have �

s+ b l
(b¡ a) l

�¡1
D((b¡a)l)(xi)

=
�
s+ b l
(b¡ a) l

�¡1� i
(b¡ a) l

�
xi¡(b¡a)l

=
(i)(b¡a)l

(s+ b l)(b¡a)l
xi¡(b¡a)l

for all i> (b¡ a) l. In positive characteristic, we claim that

the ratios (i)(b¡a)l

(s+ b l)(b¡a)l
have non-negative valuations in p.

Let us �rst consider the case when b = a + 1. If i = c l,
with c > 1, then valp i > valp l = valp(s+ b l). If 0 < j < l,
then valp(i ¡ j) = valp j = valp(s + b l ¡ j). This shows
that (i)l/(s+ b l)l= c/bmod p is well de�ned and may be
computed in K whenever i is a multiple of l.
At a second stage, we make the induction hypothesis that

(i)l/(s+ b l)l has been computed in K for i> c l such that
i+1< (c+1) l. The value for i+1 may then be obtained via

(i+1)l
(s+ b l)l

=
i+1

i+1¡ l
(i)l

(s+ b l)l
=
c

b
mod p;

since valp(i+ 1)> valp(i+ 1¡ l). This deals with the case
when b= a+1.
Finally, for any b >a, the ratio (i)(b¡a)l/(s+ b l)(b¡a)l is

also well de�ned since it rewrites into
(i)(b¡a)l

(s+ b l)(b¡a)l

=
(i)l

(s+ b l)l

(i¡ l)l
(s+(b¡ 1) l)l

��� (i¡ (b¡ a¡ 1) l)l
(s+(a+1) l)l

=
c (c¡ 1) ��� (c¡ (b¡a¡ 1))

b (b¡ 1) ��� (a+1)
mod p;

which concludes the proof. �
We are now in a position to adapt the �divide and conquer�

Algorithm 6 to the case when K has small positive charac-
teristic p.

Algorithm 7

Input. ~ 2 K[x] of degree d; integers s; l ; a; b;
D(s+al)(u) rem ~(b¡a)l.

Output. D(s+kl)(u) rem ~l, for all k 2fa; :::; b¡ 1g.
Assumption. K has positive characteristic p; l is a

power of p, 16valp l<valps; 06a<b6 p; u2K[x]<n.
1. If b= a+1, then return D(s+al)(u) rem ~l.
2. Let c= d(a+ b)/2e.
3. Compute D(s+al)(u) rem ~(c¡a)l.
4. By using formula (1), compute D(s+cl)(u) rem ~(b¡c)l

from D(s+al)(u) rem ~(c¡a)l .
5. Recursively apply the algorithm to u;~, s, l, a, c, and
D(s+al)(u) rem ~(c¡a)l. This yields D(s+kl)(u) rem ~l
for all k 2fa; :::; c¡ 1g.

6. Recursively apply the algorithm to u, ~, s, l, c, b, and
D(s+cl)(u) rem ~(b¡c)l. This yields D(s+kl)(u) rem ~l,
for all k 2fc; :::; b¡ 1g.

7. Return D(s+kl)(u) rem ~l, for all k 2 fa; :::; b¡ 1g.

Proposition 16. Algorithm 7 is correct and takes
O(MK((b¡ a) d l) log(b¡ a)) operations in K.

Proof. The correctness follows from Lemmas 12 and 15;
the cost analysis is straightforward. �

Algorithm 8

Input. ~; h 2K[x] with d= deg ~, deg h= n= d m; an
integer s; D(s)(u) rem ~m.

Output. D(s)(u)(�); :::;D(s+m¡1)(u)(�).
Assumptions. K has positive characteristic p; h=~m;

pvalp s>m; u2K[x]<n.
1. If m 6 p, then use Algorithm 6 to compute
�~;m(D

(s)(u))=
P

i=0

m¡1
(D(i)�D(s))(u)(�) yi+O(ym)

and return D(s)(u)(�); :::; (D(m¡1) �D(s))(u)(�).
2. Let e be minimal with pe > m, let l = pe¡1, and
k= bm/lc.

3. Compute D(s+il)(u) rem ~l for all i 2 f0; :::; k ¡ 1g
using Algorithm 7 (called with s, l, a=0 and b= k).

4. If k l <m, then compute D(s+kl)(u) rem ~m¡kl from
D(s)(u) rem ~m with formula (1).

5. For all i 2 f0; :::; k ¡ 1g, use the algorithm recur-
sively with D(s+il)(u) rem ~l in order to obtain
D(s+il)(u)(�); :::;D(s+(i+1)l¡1)(u)(�).

6. If k l < m then use the algorithm recursively
with D(s+kl)(u) rem ~m¡kl in order to obtain
D(s+kl)(u)(�); :::;D(s+m¡1)(u)(�).

7. Return D(s)(u)(�); :::; D(s+m¡1)(u)(�).

Proposition 17. Algorithm 8 is correct and takes

PK(d;m) = O(MK(dm) logm)

operations in K.



Proof. Let us first examine the case when m 6 p.
We need to show that (D(j) � D(s))(u)(�) coincides with
D(s+j)(u)(�) for all j 2 f0; :::; m ¡ 1g. From Lemma 14,
we have D(s+j) =

�
s+ j
j

�¡1D(j) �D(s). Since valp s > 1,
it follows that

�
s+ j
j

�
=1mod p.

Now we suppose that m > p. We have e > 2, so l is
a power of p, we have k6 p, and the assumption pvalp s>m
is preserved through recursive calls. The conditions of Algo-
rithm 7 are satis�ed, whence the correctness of step 3 by
Proposition 16. Step 4 is a consequence of Lemmas 12
and 15. We are done with the correctness.
Step 1 costs O(MK(dm) logm) by Proposition 13. Step 3

costs O(MK(k d l) log p) = O(MK(d m) log p) by Proposi-
tion 16 and step 4 takes O(MK(dm)) operations in K. The
total cost function T(m) of the algorithm satis�es

T(m)6 k T(l)+T(m¡ k l)+ cMK(dm) log p;

where c is a sufficiently large constant and T(m) 6
c MK(d m) log m when m 6 p. This leads to T(m) =
O(MK(dm) logm+MK(dm) log p logpm). �

4.5 Tangling
The next algorithm is independent of the characteristic.

It relies on the untangling algorithms from the previous sub-
sections, by using the �divide and conquer� strategy. For
a polynomial or series f in x and a 6 b, we denote fa;b =P

a6i<b fi x
i¡a and f;b= f0;b. For convenience, we assume

that PK(d;m)/m is a nondecreasing function of m.

Algorithm 9

Input. ~ 2 K[x] of degree d; an integer m 2 2N; � 2
L[y] / (ym), where L = K[z] / (~(z)); (w(y)2i);2i for
16 2i6m/2 where w(y)= (y/~(y+�));m.

Output. �~;m
¡1 (�).

1. If m=1, then let u(z) be the preimage of �(0) in K[z]
and return u(x).

2. Let l =m/2 and compute v0(x) = �~;l
¡1(�;l), v1(x) =

(�¡�~;m(v0(x))))l;m.
3. Return v0(x)+ ~(x)l�~;m¡l¡1 ((w(y)l v1(y));m¡l).

Lemma 18. Algorithm 9 is correct and takes time
PK(d;m) log m + MK(d m) log m + MK(d) log d. In par-
ticular, for any m, we have

PK
� (d;m)=O(MK(dm) log2m+MK(d) log d):

Proof. The computation is clear when m=1. Otherwise
we verify that

�~;m(v0(x)+ ~(x)l�~;m¡l¡1 ((w(y)l v1(y));m¡l))

= �~;m(v0(x))+�~;m(~(x))l (w(y)l v1(y));m¡l+O(ym)

= �~;m(v0(x))+ ~(y+�)l (w(y)l v1(y));m¡l+O(ym)

= �~;m(v0(x))+ yl v1(y)+O(ym)

= �0;l(y)+ yl�~;m(v0(x))l;m+ yl (�¡�~;m(v0(x)))l;m
= �(y):

Kronecker substitution [8, Chapter 8, Section 4] allows us
to multiply two series in L[[y]] at precision O(ym) using
O(MK(dm)) operations in K.

The computation of w(y) requires one inversion in L
that takes O(MK(d) log d) operations in K, together with
O(MK(d m)) operations for the series inversion. The other
(w(y)2

i

);2i amount to O(MK(d m)) more operations in K.
The cost function T(m) satis�es

T(m)6 2T(m/2)+PK(d;m)+ cMK(dm);

for some constant c, which leads to T(m) =O((PK(d; m) +
MK(d m)) log m + MK(d) log d). The �nal bound of the
lemma follows from Proposition 17. �

APPENDIX A
A.1 Trace and Newton–Girard identities
Let h be a monic polynomial in A[x] of degree n, let '

be a linear form on A[x]<n, and let g 2A[x]<n. We study
the modular power projection problem, which corresponds
to computing '(1); '(g); :::; '(gn¡1 rem h).
Let B represent A[x] / (h(x)). If we take '(u) =

TrB/A(g u), where TrB/A denotes the usual trace function
of B over A, then the latter power projections write as

TrB/A(g);TrB/A(g2 rem h); :::;TrB/A(gn rem h):

It is well known that these traces are related to the char-
acteristic polynomial of g modulo h by the Newton�Girard
identities :

¡�~
0(x)

�~(x)
= TrB/A(g)+TrB/A(g2 rem h)x+ ���

+TrB/A(gn rem h)xn¡1+O(xn);

where �~(x) = xn �(1 / x) is the reverse polynomial of �.
If there exist given inverses of 2; 3; :::; n in A, then it is
possible to integrate the latter di�erential equation in �
with O(MA(n)) operations in A, which directly leads to an
algorithm to compute � from the power sums of the roots
of � (see for instance [9, Section 2] for details, which also
cover the case when A is a �nite �eld).
First, let us explain how to compute ' e�ciently. Recall

that h~(x)=xnh(1/x). In the basis 1; x; :::; xn¡1, the linear
form TrB/A may be computed as

¡h
~0(x)

h~(x)
= TrB/A(x)+TrB/A(x2)x+ ��� (2)

+TrB/A(xn)xn¡1+O(xn);

which uses O(MA(n)) operations in A. If 
 represents the
multiplication endomorphism by g in B, then we can write
' = TrB/A � 
 and therefore '> = 
> � TrB/A> . By trans-
posing the modular multiplication by g with the techniques
from [2, Sections 4 and 5], the computation of '> requires
O(MA(n)) operations in A.

A.2 Modular inversions
Let K be a �eld. Often in computer algebra, we are led

to compute in monogen algebras such as L=K[z]/(�(z)),
where � is separable of degree d, but not necessarily irre-
ducible. Ring operations in L require O(MK(d)) operations
in K. Algorithms such as the determinant are often slower
over rings than their counterparts over fields. For this
reason, we often like to conduct our computations as if L
were a �eld. From the programming point of view, this is
easy to achieve: whenever we need to invert an element a2L



or test whether a=0, we factor �=�0 �1, where a=0mod�0
and a is invertible modulo �1. We then restart the relevant
part of the computations with �0 and/or �1 in the role of �.
This approach is known as the dynamic evaluation prin-
ciple in computer algebra [6, 7]. We borrow the following
complexity result for extended gcds from Dahan et al. [6]:

Proposition 19. Let � be a separable polynomial of
degree d over K and let A and B be univariate poly-
nomials over L = K[z] / (�(z)) of degrees 6n. Using
O(MK(d) MK(n) log d log n) operations in K, one can
compute a factorization �1 ��� �s of � and triples of poly-
nomials (Gi; Ui; Vi) respectively over K[z] / (�i(z)), such
that deg �i > 1, Gi is monic, Gi generates the extension
of the ideal (A,B) to K[z] / (�i(z)), and the Bézout rela-
tion Gi = Ai Ui + Bi Vi holds with deg Ui < deg Bi and
deg Vi< degAi, for all i2f1; :::; sg.

Proof. This statement rephrases [6, Propositions 2.4 and
4.1], where we replace the assumption �� is square-free over
a perfect �eld� by �� is separable�. In fact all arguments
of [6] apply in this setting mutatis mutandis . An alternative
point of view is to apply [6, Propositions 2.4 and 4.1] over
the algebraic closure of K, while noticing that all actual
computations are really done over K. �

Corollary 20. Let � be a separable polynomial of degree
d over K and let A and B be univariate polynomials over
L=K[z]/(�(z)) of degrees 6n, such that B is monic and A
is invertible modulo B. Then the inverse of A modulo B may
be computed using O(MK(d) MK(n) log d log n) operations
in K.

Proof. The triples (Gi;Ui;Vi) of the previous proposition
satisfy Gi= 1=AUimodB over K[z]/(�i(z)). We recover
the inverse U of A modulo B from the Ui using the Chinese
remainder theorem. �
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