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ABSTRACT
Nowadays data scientists have access to gigantic data, many
of them being accessible through SQL. Despite the inherent
simplicity of SQL, writing relevant and efficient SQL queries
is known to be difficult, especially for databases having a
large number of attributes or meaningless attribute names.
In this paper, we propose a “rewriting” technique to help
data scientists formulate SQL queries, to rapidly and intu-
itively explore their big data, while keeping user input at
a minimum, with no manual tuple specification or labeling.
For a user specified query, we define a negation query, which
produces tuples that are not wanted in the initial query’s an-
swer. Since there is an exponential number of such negation
queries, we describe a pseudo-polynomial heuristic to pick
the negation closest in size to the initial query, and construct
a balanced learning set whose positive examples correspond
to the results desired by analysts, and negative examples to
those they do not want. The initial query is reformulated
using machine learning techniques and a new query, more
efficient and diverse, is obtained. We have implemented a
prototype and conducted experiments on real-life datasets
and synthetic query workloads to assess the scalability and
precision of our proposition. A preliminary qualitative ex-
periment conducted with astrophysicists is also described.

CCS Concepts
•Information systems → Data mining; Query refor-
mulation; Users and interactive retrieval; •Human-centered
computing→ Interactive systems and tools; •Computing
methodologies → Machine learning;
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1. INTRODUCTION
There’s a pressing need on the discovery rate of interest-

ing knowledge to keep pace with the booming data stores, as
is the case in scientific fields like astronomy or earth obser-
vation, with their continuous advent of data-producing in-
struments and techniques. For instance, the Large Synoptic
Survey Telescope [2] (LSST) currently under construction in
Chile is projected to produce about 15 TB of imaging data
each night, and over 10 petabytes of relational data in its
10 years lifetime. Clearly, our ability to stockpile data has
long left behind our data analysis and exploitation capaci-
ties. Trying to make sense of data of the mentioned sizes
with today’s systems and techniques is an extremely diffi-
cult, if not an impossible, task, as even simple queries can
return results so large they are practically incomprehensi-
ble [3]. Data storage and throughput related issues may be
quite challenging, but problems linked with data exploration
and system usage are even more so.

Scientific data commonly appear as SQL queryable rela-
tions, with hundreds of attributes holding numerical values
from physical measurements or observations1. The attribute-
based selection criteria are not always easily expressible. In
order to formulate the right SQL query, analysts need to cor-
rectly define the appropriate attribute thresholds and make
sure no attribute condition is missing from the query, which
can be a real hurdle. Moreover, it is often the case that
scientists do not know exactly what they are searching for,
until after they find it, e.g., astrophysicists searching for in-
teresting patterns in the data. Consider an astrophysicist
exploring a huge database holding data about stars. She
wants to select stars likely to harbor planets. But the data’s
attributes are mostly related to light magnitude and am-
plitude, and the presence of planets is only confirmed for a
small number of stars. The astrophysicist can easily pose
an initial query retrieving those stars but has no idea about
another SQL query whose results would be similar, i.e., pro-

1See for example the LSST website: http://lsst-web.ncsa.
illinois.edu/schema/index.php



viding a fair number of true positives (stars with planets)
and a limited number of false positives (stars which surely
lack planets), but also introducing new stars, which are likely
to have planets.

Given the range of fields which produce or benefit from
increasingly sized data, more and more difficult to query by
a large spectrum of users, we believe it is crucial to enable
data exploration, while keeping the expertise requirements
as low as possible.

Example 1 Consider the CA (CompromisedAccounts) rela-
tion given in figure 1, inspired from the Ashley Madison data
breach2 [32]. Ashley Madison is a website targeting people
that seek out an extramarital affair. AccId is a user iden-
tifier and BossAccId is the boss of the user, only if she is
also registered online. JobRating is a job performance rat-
ing for some of the accounts and normalized to a scale of 1
to 5. MoneySpent and DailyOnlineTime refer to the money
spent on the site, and the average daily time spent online
by the owner’s account, respectively. Status tells whether
the user is a governmental employee or not. The meaning
of the other attributes is clear from context.

Assume a zealous reporter is searching for governmental
users that spend more time online than their bosses. The
reporter has built up a somewhat good background in SQL,
and poses the following query (initial query):

SELECT AccId, OwnerName, Sex
FROM CompromisedAccounts CA1
WHERE Status = ’gov’ AND
DailyOnlineTime > ANY
(SELECT DailyOnlineTime

FROM CompromisedAccounts CA2
WHERE CA1.BossAccId = CA2.AccId)

This query produces the tuples corresponding to Casanova
and PrinceCharming. But the reporter is interested in as
many government officials as possible. Clearly, the problem
of relaxing some conditions of the query to get more results
has no solution for her. Hovewer, as we will see in the paper,
the above query can be reformulated as follows:

Reformulated query:

SELECT AccId, OwnerName, Sex
FROM CompromisedAccounts
WHERE (MoneySpent >= 90000 AND JobRating >= 4.5) OR
(MoneySpent < 90000 AND DailyOnlineTime >= 9)

We notice that the reformulated query:

• is very much different from the initial one: it includes
the new attributes MoneySpent and JobRating ;

• it does not contain imbrications, therefore being more
efficient, only going once through the relation; when
the data volumes are very large, this is obviously of
major importance;

• it maintains Casanova and PrinceCharming in the re-
sult, but

2This is an example we came up with, in no way related to
real data from the breach.

• is not equivalent to the first query, introducing some
diversity in the results: tuples RhetButtler, MrDarcy
and BigBadWolf are only found in the new query’s
result.

However, the reporter does not know in advance the con-
ditions in the reformulation’s WHERE clause, which in fact
describe a pattern hidden in the data. According to this
pattern, accounts spending more than 90k and whose own-
ers do very well at work are likely to belong to cheating gov-
ernmental employees who spend more time on the website
than their bosses do. Same can be assumed about accounts
spending less than 90k, but more than one third of a day
online. A set of attributes is described based on another set
of attributes. We could uncover this pattern by feeding a
data mining tool with all these data, then go back to the
database and pose the found query. But this poor reporter
already deserves all the credit and our sympathy for digging
into databases, a field unfamiliar to her. Do we really want
to put her through the wringer of delving into the fascinat-
ing, yet complex world of data mining and machine learning?
Moreover, if on a 10 rows example one could come up with
a pattern close to the real one, this is impossible to achieve
in a realistic setting.

Problem statement.
The problem we are interested in can be formulated as

follows:

Given a database and a user-specified SQL query
that selects data based on some initial condition,
we are interested in a reformulation of the initial
query that captures the pattern revealed from the
initial query’s result data.

We do not search for an equivalent query, but for one
whose result overlaps the initial query’s result to a certain
extent, and that also introduces new tuples in its result.
The latter represents the exploratory potential of the new
query. We set out to build an interaction that allows an-
alysts to explore their data in this fashion, solely through
SQL queries.

For a user-specified SQL query Q on a database d, we can
easily define positive examples, or simply examples, based on
Q’s answer on d. They correspond to tuples that are wanted
by the analyst. One of the challenges is to define the neg-
ative examples or counter-examples, i.e., tuples the analyst
does not want to see in the result. This, in turn, raises the
question of defining a query Q that could be considered as a
negation of Q. If the generation of this query Q is possible,
we have a set of example tuples, the results of Q’s evalu-
ation, and a set of counter-example tuples, obtained from
Q’s evaluation. We can then use a data mining technique in
a supervised pattern learning approach on these two tuple
sets.

For a user-specified query Q on a database d, there is
an exponential number of possible negation queries Q that
can be defined by negating different parts of Q’s selection
condition. We aim to find the one whose answer size is
closest to Q’s answer size, i.e., the set of positive examples
and the set of negative examples are as close as possible
in size. We call it the balanced negation query. The “more”
balanced the learning set is, the higher its entropy, the better



AccId Owner
Name

Age Sex Money
Spent

Daily
Online
Time

JobRating Status BossAccId

100 Casanova 50 M 100k 5h 4.5 gov 350
200 DonJuanDeMarco 20 M 20k 1h 2.1 null null
350 PrinceCharming 28 M 90k 4h 4.8 gov 230
40 Playboy 40 M 10k 35min 2 nongov 700
700 Romeo 50 M 30k 30min 3 nongov null
90 RhetButtler 40 M 95k 4h 4.9 null null
80 Shrek 40 M 25k 1h 1 nongov 700
70 MrDarcy 35 M 97k 3h 4.6 null null
230 JackSparrow 61 M 30k 2h 3 gov null
59 BigBadWolf 31 M 70k 9h 3 null 200

Figure 1: The CompromisedAccounts (CA) relation

for the decision tree algorithm working on it. Pruning the
exponential space of negation queries boils down to solving
an heuristic based on the Knapsack problem, known to be
pseudo-polynomial.

The decision-tree algorithm automatically proposes a new
query to the data analyst. This system-generated query can
be interesting in the exploratory quest, since its results are
close to, yet different from the initial query’s results, includ-
ing new tuples that were not directly accessible before. We
propose some quality measures to evaluate the reformulated
query quality, especially with respect to its diversity in terms
of returned tuples.

We emphasize that:

• the user’s input is kept to a minimum, i.e., only a
SQL query is expected from her; she does not need to
manually label any tuples, or input actual tuple values,
an approach frequently used by alternative systems;

• even for users with a data mining background, the job
is now much easier, since they only use one system,
without any disrupting switches between various tools.

Paper contribution.
To sum up, we propose a simple but powerful approach

to deal with the above problem statement. Our main con-
tributions can be summarized as follows:

• For a class of SQL queries, we introduce the notions of
positive examples - from the answer set of a query - and
negative examples - from the answer set of a negation
query.

• Since the set of negation queries is exponential, we pro-
pose a pseudo-polynomial Knapsack-based heuristic to
identify a negation query whose size is close to the size
of the initial query answer.

• The initial query and the selected negation query al-
low building a learning set on which machine learning
techniques, derived from decision trees, are applied. A
new SQL query, called a transmuted query, is proposed
from the decision tree. Some criteria are proposed to
evaluate the quality of the transmuted query.

• We have implemented a prototype and conducted ex-
periments on real-life datasets and synthetic query work-
loads to assess the scalability and precision of our propo-
sition. A preliminary qualitative experiment conducted
with astrophysicists is also described.

Paper Organization.
The rest of this paper is organized as follows. Section

2 discusses queries and their negation queries. A heuristic
that prunes the exponential space of negation queries is fully
described. In section 3 we present our approach to data
exploration, based on automatic query rewriting. We discuss
transmuted queries and metrics that assess the quality of
the rewriting. Section 4 describes preliminary results on
an astrophysics database and the experimental setting for
a newly implemented prototype. Section 5 positions our
approach with respect to related work. Finally, section 6
concludes our paper.

2. SQL QUERIES AND THEIR NEGATION
The challenge we take on is to define the set of tuples that

do not verify a query Q, which reduces to defining a nega-
tion query Q of Q. We then explore the exponential space
of possible negation queries, and finally present a pseudo-
polynomial Knapsack-based heuristic to find the negation
query whose answer size is closest to the answer size of Q.

2.1 Preliminaries
We briefly introduce the notations used throughout this

paper (see for example [4]). Let d be a database defined
on a schema R and Q be a query on R. We denote by
ans(Q, d) the result of the evaluation of Q on d. The do-
mains of attributes are assumed to give either categorical
values or numerical values. We assume the database allows
null values. As relational languages, we consider both rela-
tional algebra for formal notations and SQL for the running
example.

2.2 Considered relational queries
For the sake of clarity, we consider a simple class of re-

lational queries, basically conjunctive queries extended with
some binary operators and a construct to check for NULL
values. Identifying a larger class of relational queries is left
for future work.

Queries in the considered class have the following form:

Q = πA1,...,An(σF (R1 ./ . . . ./ Rp))

where

• π is the projection, σ the selection and ./ the natural
join as usual

• F is a conjunction of m atomic formulas of the form
γ1 ∧ ... ∧ γm with m ≥ 1



• Each atomic formula (or predicate) γi in F has the
form A bop B, A bop a, A IS NULL, where A,B are
from R, a is a real value or a categorical one and bop ∈
{=, <,>,≤,≥}

• An atomic formula γ can be negated; its negation is
denoted by ¬(γ).

We denote by attr(F ) the set of attributes that appear in
a selection formula F . The cardinal of a set E is denoted by
|E|.

Example 2 To comply with this class of queries, the initial
query from example 1 is rewritten as:

SELECT CA1.AccId, CA1.OwnerName, CA1.Sex
FROM CompromisedAccounts CA1, CompromisedAccounts CA2
WHERE CA1.Status = ’gov’ AND

CA1.DailyOnlineTime > CA2.DailyOnlineTime AND
CA1.BossAccId = CA2.AccId

For a query Q of the above form, we consider the“reservoir
of diversity” (diversity tank) to consist of those tuples for
which:

• there exists at least one predicate γi whose evaluation
is NULL; (1)

• all the predicates in Q that do not evaluate to NULL,
evaluate to TRUE (2).

Some tuples in this diversity tank might turn out to be
interesting for the user, even if they do not appear in the
initial query’s result. Condition (1) states that, for a tu-
ple to have an exploratory potential, some data the user is
interested in about the tuple needs to be unknown. Condi-
tion (2) asks that none of Q’s predicates evaluate to false.
Otherwise, the tuple does not satisfy Q and shouldn’t be
explored at all, since the user is interested in tuples meeting
Q’s condition.

Example 3 For our running example, tuples corresponding
to employees (CA1.OwnerName) DonJuanDeMarco, Rhet-
Buttler, MrDarcy, JackSparrow and BigBadWolf form the
diversity tank (and indeed, the reformulated query’s new
tuples, RhetButtler, MrDarcy and BigBadWolf, came from
this set).

Positive examples are denoted by E+(Q) and come from
the query’s evaluation result. When the result’s size is rea-
sonable, we can consider all its tuples as examples. Oth-
erwise, we can use stratified random sampling for instance
to extract a subset of tuples as positive examples. We keep
all the possible attributes, so later on in the learning phase
we have as many as possible options to learn on. There-
fore, we eliminate the projection on A1, ..., An and obtain:
E+(Q) ⊆ σF (R1 ./ . . . ./ Rp).

Example 4 The positive tuples of query Q are those cor-
responding to employees Casanova and PrinceCharming.

2.3 The negation of queries
Let Q be a query. Its answer set is obtained by simply

evaluating Q on the database. We pose the problem of defin-
ing Q, a negation query of Q, i.e., a query whose evaluation
produces tuples we do not want to see when evaluating Q.

Intuitively, Q should not touch the same tuples of Q, i.e., the
intersection of their respective answer sets should be empty.

Since we aim to uncover dependencies between attributes
in the query rewriting process, we keep all the possible at-
tributes that might allow us to distinguish between tuples in
the learning step. As for positive examples, we eliminate the
projection from the negation queries’ definitions hereafter.

One way of computing a negation query for Q is to con-
sider its entire tuple space R1 ./ . . . ./ Rp and eliminate
those tuples that belong to Q’s answer. This is in fact the
complement of Q. We consider it to be Q’s complete nega-
tion and denote it by Qc:

Qc = (R1 ./ . . . ./ Rp) \ (σγ1∧...∧γm(R1 ./ . . . ./ Rp)) (1)

There is no guarantee on the answer size of Qc; it may
be quite different than Q’s size. We thus set out to explore
the space of alternative negation queries for Q. We consider
negation queries whose selection conditions are generated
from Q’s selection formula. In this case, we consider that a
negation query Q needs to negate at least one of Q’s predi-
cates.

We exclude foreign key join predicates from the set of
predicates that can be negated. They help narrow down
the set of tuples that can be used as examples and counter-
examples.

To simplify notations, we describe Q’s selection formula
F as Fk ∧ Fk, where Fk is the conjunction of all the foreign
key predicates in F , if any, and Fk the conjunction of all the
other predicates, i.e., the negatable predicates.

Property 1 Let Q be a query and n = |Fk|, the number

of negatable predicates. The number of negation queries Q
with respect to Q is exponential in n.

Proof. For each negatable predicate γ in Q, there are
three possibilities: (1) keep it in Q as it is, (2) take its
negation ¬(γ) or (3) do not consider it at all. Then there are
3n possible negation queries, but 2n out of them are invalid,
since they do not contain any negated predicate from Fk.
We get 3n − 2n, which is in O(2n).

We denote the set of the valid negation queries by
{
Q
}

.

All the negated γi come from Fk. We denote by attr(Fk)
all the attributes from Fk that appear in predicates that are

negated in Q.
Similarly to positive examples, the negative examples are

denoted by E−(Q) and verify the following:
E−(Q) ⊆ ans(Q, d).

Example 5 Let us denote the three predicates inQCA1.St-
atus = ’gov’ by γ1, CA1.DailyOnlineTime > CA2.Daily-
OnlineTime by γ2 and CA1.BossAccId = CA2.AccId by
γ3. In our approach there are five possible negations of Q,
with selection formulas: ¬(γ1)∧γ3, ¬(γ2)∧γ3, ¬(γ1)∧γ2∧γ3,
γ1∧¬(γ2)∧γ3 and ¬(γ1)∧¬(γ2)∧γ3. If we choose the third
one, the negation query Q is:

SELECT *
FROM CompromisedAccounts CA1, CompromisedAccounts CA2
WHERE NOT (CA1.Status = ’gov’) AND
CA1.DailyOnlineTime > CA2.DailyOnlineTime AND
CA1.BossAccId = CA2.AccId



Accounts Playboy and Shrek are thus considered to be
negative examples. Both Q and Q answer sizes are equal to
two.

2.4 Pruning the space of negation queries
In this subsection we solve the problem of finding the clos-

est negation query, in terms of its answer size, for a given
query, by proposing an heuristic based on the subset-sum
problem (related to the knapsack problem). The subset-
sum problem is known to be pseudo-polynomial (weakly
NP-complete) [7]. The additional constraints we add do not
affect the complexity of the algorithm.

Notation.
To further simplify notations, when there’s no confusion

between a query Q and its answer, we denote the latter by
Q instead of ans(Q, d). Z denotes the entire tuple space
R1 ./ . . . ./ Rp. Similarly, for a predicate γi ∈ Q, we refer
to the query σγi(Z) simply by γi. Since we only touch the
selection formula, we ignore Q’s projection attributes. We
denote the negation of a predicate γ by γ.

Assumption.
DataBase Management Systems (DBMS) maintain many

statistics for cost-based optimization of query processing.
Moreover, to estimate the size of query results and make a
decision for choosing a physical plan, data are often assumed
to be uniformly distributed. In the sequel, we borrow the
same assumptions, i.e., data is uniformly distributed in Z
and for a given query Q, an estimate of the size of its answer
|Q| is supposed to be known. We denote the probability
that a tuple in Z verifies γi by P (γi). The cardinality of γi
is |γi| ' P (γi) ∗ |Z|. The probability that a tuple satisfies
both γi and γj is P (γi∧γj) = P (γi)∗P (γj). The cardinality
of the set of rows satisfying both predicates is estimated by
|γi ∧ γj | ' P (γi) ∗ P (γj) ∗ |Z|. The probability of a negated
predicate γi is P (γi) = 1− P (γi), and P (Q ∪Qc) = 1.

We can now give a more formal description of our problem
of finding the most balanced learning set corresponding to
a query Q.

Balanced negation query.
Let us consider a query Q with n negatable predicates in

Fk and l foreign key join predicates in Fk. The problem
statement is the following:

Given such a query Q, find a negation query Q
of Q such that:

(1) its answer size |Q| is closest to |Q|, i.e., abs(|Q|−
|Q|) is minimized,

(2) Q negates at least one predicate from Fk,

(3) Q can contain any number of the rest of the
predicates from Fk, negated or not, and

(4) Q contains all the predicates from Fk.

The possible solutions to this problem have the form Q =∧n+l
i=1 ai, where ai is a predicate. Let us consider the predi-

cates for Q as a (n+l)-tuple denoted by s. The components
of s are:

(1) the predicates from Fk,

(2) any predicate from Fk, or its negation, or the“identity”

element Q∪Qc, i.e., the predicate is not considered at
all in Q.

s can be represented as: s = (a1, . . . , an+l) = (γk1 , . . . , γkl ,

e1, . . . , en) with γki ∈ Fk and ej ∈
{
γkj , γkj , Q ∪Qc

}
, for

all γkj ∈ Fk.

Therefore every negation query Q can be represented as
such a tuple s and its cardinality is estimated by |Q| = |s| =( n+l∏
i=1

P (ai)

)
∗ |Z| =

( n+l∏
i=1

|ai|
|Z|

)
∗ |Z|.

Our problem now is in fact a particular case of the subset
product problem [19, 26], known to be NP-hard [24]:

Given a set E = {e1, . . . , en} of integer values
and a number m, does there exist a subset F of

E, such that
∏
ei∈F

ei = m?

For a given query Q, we need to choose all the predicates
in Fk and one of three possible versions for the predicates in
Fk, such that the product of their probabilities multiplied
by the cardinal of the tuple space Z is as close as possible
to the size of Q, the target number.

Applying logarithms on this product, we pass from the
subset-product problem to a kind of subset-sum problem on
real numbers (the pseudo-polynomial algorithm is working
on integers). ∑

ei∈F

log(ei) = log(m)

We propose a heuristic by introducing a tolerable approxi-
mation in the precedent relation:∑

ei∈F

blog(ei) ∗ sfc = blog(m) ∗ sfc

where the scale factor sf ≥ 1 is used to reduce the approx-
imation due to rounding logarithms.

Our problem can now be expressed as a particular case of
the subset-sum problem, also known to be NP-complete:

Given a total weight |Q| and a set of n + l ai
objects, l of them with fixed weights |γki |, i =
1, . . . , l, and n of them with three possible weights

|ej | ∈
{
|γkj |, |γkj |, 1

}
, j = 1, . . . , n, choose all

the γki objects and a version for each of the ej
objects, such that: (1) the sum of the combined
weights of the chosen objects is as close as pos-
sible to |Q| and (2) at least one of the ej objects
is negated.

If s is the solution tuple, its combined weight is its car-
dinality as defined above, and condition (1) translates to
minimizing abs(|Q| − |s|).

The heuristic described in algorithm 1 solves this prob-
lem. All the objects in the fixed-weights vector fk are in the
output; the target weight w is updated accordingly (lines
2-3). Function weight calculates the weight of s, i.e., the
number of rows estimated to satisfy all the predicates cur-
rently in s. From here on out, we only work with the fk
vector of negatable objects / predicates. For each such pred-
icate (weight: lWs[i].pW ), BalancedNegation assumes
its negation (weight: lWs[i].nW ) is part of the solution. It



finds an optimal solution for the rest of the predicates and a
correspondingly updated weight (lines 5 - 15). This solution
could contain only positive objects, but the current predi-
cate is always added with its negated form, so restriction
(2) in the problem statement is met. Out of the n possible
solutions, the one that gets closer to the target weight is
chosen. We set the scale factor sf parameter value to 1000
(see experiment 2 in section 4.1).

Algorithm 1: Knapsack-based heuristic to find the bal-
anced negation of a query

1 procedure BalancedNegation (|Z|, |Q|, fk, fk, sf) ;
Input : the size of the tuple space |Z|; the target

weight |Q|; l-vector of fixed weights fk;
n-vector of negatable weights fk; scale factor
sf

Output: l + n-vector of chosen objects s; s’s weight sw
2 s := fk; sw := weight(s) ;

3 w := |Q|
sw

;

4 mW := 0 ;
5 for i← 1 to n do
6 lWs := fk ;
7 rW := lWs[i].pW ;
8 lWs.Remove(i) ;

9 tW := w∗|Z|
|Z|−rW ;

10 tW := −
⌊
ln( tW|Z| ) ∗ sf

⌋
;

11 for j ← 1 to n− 1 do

12 lWs[j].pW := −
⌊
ln( lWs[j].pW

|Z| ) ∗ sf
⌋

;

13 lWs[j].nW := −
⌊
ln( |Z|−lWs[j].pW

|Z| ) ∗ sf
⌋

;

14 end
15 SubsetSum(lWs, tW, out oObj, out oW ) ;

16 oW :=

⌊
e

(−oW )
sf ∗ |Z|

⌋
;

17 mWL :=
⌊
|Z|−rW
|Z| ∗ oW

⌋
;

18 if mWL > mW then
19 mW := mWL ;
20 CompleteSol(i, s, sw, oObj,mWL) ;

21 end

22 end

In lines 10-14 BalancedNegation transforms the input
in order to apply a classic Knapsack algorithm on it. For
each predicate, the algorithm computes its probability and
then logarithms it. Since probabilities are subunitary, all the
logarithms are negative and quite small, so they are multi-
plied by the scale factor sf , and the opposite of their integer
part is retained. The same treatment is applied to the target
weight. SubsetSum in line 15 computes an optimal solution
in vector oObj with the corresponding sum of the solution
subset in oW ≤ tW . The only difference from the classic al-
gorithm is that, if object lWs[i]’s positive version lWs[i].pW
is chosen, then its negation can not be part of the solution
and vice-versa.

The output weight oW is transformed back in line 16.
Lines 17-21 choose the best out of the n possible solutions
adding the temporarily removed object at position i with its
negated version (CompleteSol).

3. AUTOMATIC QUERY REWRITING
We now describe the machine learning stage that uncovers

relevant patterns in the data. Starting from a user’s initial
query Q, the system automatically generates its negation Q.
It then assembles a learning set from E+(Q) and E−(Q),
which is fed into an implementation of the C4.5 decision
tree learning algorithm. The output decision tree’s patterns
are forthrightly translated into a relational selection condi-
tion, yielding a new SQL query, the transmuted query of
Q. Different criteria evaluating the quality of our machine
learning-based rewriting approach are defined.

3.1 Learning set construction
Once we have the positive and the negative example sets,

we can build a learning set. As stated before, we do not
aim at producing a reformulated query that provides the
exact, precise answer of the initial query. Instead, we want
to help the analyst formulate a query that better answers
his expectations. These guesswork stages do not require
the consideration of all the data if its size is very large. A
detailed study of the guarantees we can provide for learning
is outside the scope of this paper.

Definition 1 Given a query Q and its negation Q, a learn-
ing set is defined on the schema of (R1 ./ . . . ./ Rp) \
attr(Fk) ∪ Class. Its tuples come from E+(Q) and E−(Q),
with the addition of the +, and the − value, respectively,
for the new Class attribute.

We exclude attributes in attr(Fk) from the learning set’s
schema to avoid learning (part of) the selection condition
expressed in the initial query.

Example 6 Going further with the running example, we
obtain the learning set described in Figure 2. The Status

attribute, i.e., the only attribute in attr(Fk), has been sup-
pressed and the Class attribute has been added with the
corresponding + and − values.

Decision tree-based machine learning methods construct
a tree that determines a class variable as a function of in-
put variable values. A path from its root to a leaf forms a
conjunction of conditions on the input variables. The class
of the data that fall through this path is given by the la-
bel of its leaf. The supervised model construction, i.e., tree
structure and conditions placed on internal nodes, based on
a learning set, depends on the used algorithms. We chose
the C4.5 algorithm [29]. It allows us to predict the values
of the Class attribute depending on a set of attributes from
the learning set.

3.2 Building the selection condition from a de-
cision tree

Starting from a decision tree, it’s relatively straightfor-
ward to build a relational selection condition by traversing
the tree in depth. A branch in a tree is a direct path from its
root to a leaf. A branch in the decision tree is a conjunction
of boolean conditions on a tuple’s attributes values. The
class of the tuple is the label on the leaf of the branch. The
set of branches leading to the class of positive tuples “+” can
thus be seen as a disjunction of conjunctive clauses obtained
from the branches. This disjunction can hence be used like
a new relational selection condition.



CA AccId Owner
Name

Age Sex Money
Spent

Daily
Online
Time

JobRating BossAccId Class

100 Casanova 50 M 100k 5h 4.5 350 +
350 PrinceCharming 28 M 90k 4h 4.8 230 +
40 Playboy 40 M 10k 35min 2 700 -
80 Shrek 40 M 25k 1h 1 700 -

Figure 2: Learning set built from E+(Q) and E−(Q)

Definition 2 Let lSet be a learning set obtained from a
query Q. Let decisionTree be the decision tree learned from
lSet to predict the values of the Class attribute. Let b be a
positive branch of decisionTree, i.e., from the root to a leaf
labeled +. We use the following notation for the disjunction
of conjunctions leading to positively labeled leaves:

Fnew =
∨

b∈decisionTree

∧
e∈b

e

where e has the form Ai bopv, Ai is an attribute in lSet, bop
is a usual binary operator, and v is a numerical or categorical
value.

Definition 3 Let Q be a query. The rewritten query ob-
tained from Q, denoted by tQ, is defined as follows:

tQ = πA1,...,An(σFnew (R1 ./ . . . ./ Rp)).

We call it the transmuted query thereafter.

The transmuted query has a completely new selection con-
dition that can include attributes not identified as useful in
the initial query. Moreover, tQ is obviously simpler and
quicker if the initial query is nested with, for example, the
EXISTS or bop ANY operators. The rewriting is mechanically
simplified by a single selection (a single data scan only).

Example 7 In the running example, a decision tree algo-
rithm finds the condition (MoneySpent >= 90000 AND Jo-

bRating >= 4.5) OR (MoneySpent < 90000 AND DailyOn-

lineTime >= 9) . The corresponding rewritten query tQ is:

SELECT AccId, OwnerName, Sex
FROM CompromisedAccounts
WHERE (MoneySpent >= 90000 AND JobRating >= 4.5) OR
(MoneySpent < 90000 AND DailyOnlineTime >= 9)

3.3 Quality criteria
It is difficult to make guarantees about the precise rela-

tionships between the initial query Q and its rewriting tQ,
since the latter depends on the patterns discovered in the
learning phase. We can however describe the sets of tu-
ples involved in the rewriting process and give their optimal
properties:

• Z: the entire tuple space R1 ./ . . . ./ Rp

• tuples fulfilling Fk and tuples fulfilling Fk

• ans(Q, d): the set of tuples from the initial query Q
on d, i.e., tuples that meet both Fk and Fk

• ans(Q, d): the set of tuples from the negation Q of
Q on d, i.e., tuples that meet Fk, but do not meet Fk

• E+(Q): the set of positive tuples

• E−(Q): the set of negative tuples

• ans(tQ, d): the set of tuples from the new query tQ
on d

We now explicitly define a number of criteria and metrics
that assess the quality of tQ, the query obtained from Q.

3.3.1 Representativeness of the initial data
Our objective is to obtain a query tQ whose evaluation is

representative of Q’s results. Since the supervised learning
process uses examples and counter-examples, we can expect
to obtain patterns that help meet this criterion. We con-
cretely measure it with the following formulas:

|tQ ∩Q|
|Q| =

optimal
1 (2)

|tQ ∩ πA1,...,An(Q)|
|πA1,...,An(Q)|

=
optimal

0 (3)

Equation 2 justifies the direct representativeness of the
data obtained from tQ with respect to the data obtained
from Q: optimally, we should find in tQ all the tuples of
Q. In a similar manner, equation 3 evaluates the proportion
of tuples from Q found in tQ, which should be as small as
possible.

Example 8 Criteria 2 and 3 are optimal for the transmuted
query in example 7. Indeed, this query retrieves both pos-
itive tuples Casanova and PrinceCharming, and does not
produce any of the negative tuples Playboy or Shrek.

3.3.2 Diversity with respect to the initial data
The objective of the rewriting process is to produce a

query that is similar to an initial query specified by the user
(measurable by the previous criterion), but that also answers
the user’s exploratory expectation, and thus, presents new
tuples to the user. Therefore, it is important that this set of
new tuples is not only not empty (equation 4), but also of a
suitable size: not too small with respect to the data initially
obtained by the user (equation 5), nor comparable to the
size of the entire set of tuples (equation 6). If the last con-
dition is not met, the user will most likely have difficulties
interpreting the result.

tQ ∩ (πA1,...,An(Z)− (Q ∪ πA1,...,An(Q))) 6= ∅ (4)

|tQ ∩ (πA1,...,An(Z)− (Q ∪ πA1,...,An(Q)))| 6� |Q| (5)

|tQ ∩ (πA1,...,An(Z)− (Q ∪ πA1,...,An(Q)))| � |πX(Z)| (6)



Example 9 The rewritten query tQ from example 7 pro-
duces three new tuples RhetButtler, MrDarcy and BigBad-
Wolf, so criterion 4 is fulfilled. These three tuples are nu-
merically comparable with respect to the 2 initial tuples (5),
and are less numerous than the ten possible tuples (6).

We give the compact representation of the query rewriting
approach in algorithm 2.

Algorithm 2: query rewriting

1 procedure QueryRewriting (Q, d) ;
Input : a query Q, database d
Output: the transmuted query tQ

2 let Q = πA1,...,An(σFk∧Fk
(R1 ./ . . . ./ Rp)) ;

3 SplitInTrainingAndTestSets(d, out trSet, out teSet) ;
4 E+(Q) := EvaluateQuery(Q, trSet);

5 Q := BalancedNegation(|trSet|, |Q|, Fk, Fk, 1000) ;

6 E−(Q) := EvaluateQuery(Q, trSet) ;

7 lSet := BuildLearningSet(E+(Q), E−(Q), attr(Fk)) ;
8 decisionTree := FindC45(lSet) ;
9 Fnew :=

∨
b∈decisionTree+

∧
e∈b e ;

10 return tQ = πA1,...,An(σFnew (R1 ./ . . . ./ Rp)) ;

4. IMPLEMENTATION AND EXPERIMEN-
TAL RESULTS

We have implemented the proposition made in this paper
in C# and SQL Server, with the C45Learning classifier in
the Accord.NET library [1], which implements the C4.5 algo-
rithm [29]. We have conducted experiments first to evaluate
the accuracy of the generated negation query with respect
to an optimal negation query and second, to study the effi-
ciency of the generation of negation queries. Based on pre-
vious results [13], we also have briefly described a validation
of SQL data exploration with Astrophysicists on a real-life
example.

4.1 Scalability and precision
Our proposition makes use of several existing pieces of

work (e.g. decision tree, query evaluation) which are not
detailed here. We focus on the most difficult part of our
proposition, i.e., the heuristic to identify a negation query
whose result size is similar to the size of the answer set of the
initial query. Quality criteria detailed in section 3.3 require
a cohort of users to assess the results and will be addressed
in future work.

For a given query, our Knapsack-based heuristic is evalu-
ated with respect to its accuracy, how good is the result with
respect to the best possible negation query and its efficiency.

Both accuracy and efficiency have been studied with re-
spect to different query workloads, a varying number of pred-
icates in the initial SQL query and the values of the sf pa-
rameter.

Experimental setup.
In our experiments we used two datasets:

• Iris: a small well-known dataset describing the prop-
erties of some species of iris flowers. The dataset has
150 tuples only, four numerical attributes and one cat-
egorical attribute. It was chosen to easily compute

(and understand) all the possible negation queries for
a given query.

• Exodata: a scientific dataset containing 97717 tuples
and 62 attributes (see next section for more details).

We generated a query workload as follows: for a fixed
number of predicates in a query (from 1 to 200), a pred-
icate of the form A bop value is generated by randomly
choosing an attribute A, the operator bop from a list of pos-
sibilities ({=} for categorical attributes, {<,<=, >,>=} for
numerical attributes), and the corresponding value value ∈
Dom(A) for attribute A.

We assume to have statistics available for each attribute
in the database, and hence the size of the database does not
interfere with the performance of the algorithm.

To assess the distance between the negation proposed by
our heuristic and the ”best negation” for a query, we pro-
ceeded as follows: for a given query Q, we computed all its
negations Q; it has been indeed possible since the number
of predicates remained small on our workloads.

We denote by QT the negation query closest in size to Q
and by QK our approximated negation of Q.

The distance between QK and QT is defined by

abs(|QK | − |QT |)/|Z|

where |Z| is the size of all possible tuples. The closer the
distance is to zero, the better the heuristic (and conversely,
the closer to one, the worse the heuristic).

Experiment 1.
To evaluate the impact of the number of predicates on the

accuracy and computation time of the approximated nega-
tion, we fixed the scale factor sf= 1000 and we generated a
query workload of 10 random queries with 1 to 9 predicates.

A query type is defined by its number of predicates. For
each query type, we processed 10 queries and we displayed
several values: the minimum distance, the first quartile, the
third quartile and the maximum distance via a box plot.
The average values for the distance are also given.

Figure 3 (top-left) shows the distance between the pro-
posed heuristic and the closest negation (accuracy). For
three predicates, we have a very bad result for one gener-
ated query (distance around 0.84) but, on average, the errors
are around 0.2, which remains acceptable. The results show
that the more predicates a query has, the better the heuris-
tic is, very close to the best solution. With more than 6
predicates, the heuristic turns out to be very precise. Ac-
curacy for both datasets is always excellent whenever the
number of predicates exceeds six.

Figure 3 (top-right) shows good performances for the pro-
posed heuristic on both datasets, always less than 0.2s.

Experiment 2.
The second test evaluates the impact of the scale factor

sf on the accuracy of the approximated negation. The
scale factor sf varies between 1 and 10000. As in the previ-
ous experiment, we used a query workload with 10 random
queries for each type of test defined by the number of pred-
icates (between 5 and 20) and different values of sf .

In our tests on Exodata, we observe that the accuracy
is affected by different values of sf. For the same number
of predicates, as the value of sf is increasing, the accuracy
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Figure 3: Impact of the number of predicates on the accuracy and computation time of the approximated
negation w.r.t. Iris dataset (top) and Exodata dataset (bottom).

is also improving. Whenever the value of sf exceeds 1000,
the heuristic behaves very well (distance gets closer to 0, see
figure 4-left).

Experiment 3.
As expected, the scale factor sf has an influence on the

processing time. As seen in experiment 2, a greater value
for sf allows a better approximation for the negation in
our heuristic, but the search space increases. For a large
number of predicates we execute the same tests only on
the Exodata schema in order to estimate the overhead in-
troduced by our heuristic in computing the negation for a
given query. We observe that the processing time is increas-
ing with the number of predicates in the original query and
the value of sf (figure 4-right). However the processing time
remains around 1 second for a query with 200 predicates and
sf = 10000.

4.2 Validation with astrophysicists
We describe the validation conducted on an astrophysics

database derived from the European project CoRoT3 (COn-

3http://smsc.cnes.fr/COROT/

vection, ROtation and planetary Transits), which studies
star seismology and searches for extra-solar planets. CoRoT

has observed for years the stars in our galaxy in order to
study them and to discover planets beyond our solar sys-
tem. A sample of the EXODATA4 database was extracted into
one table (EXOPL) with 97717 tuples and 62 attributes. A
tuple represented a star and attributes included the posi-
tion of the star, its magnitude at different wavelengths, the
degree of its activity, etc. A special attribute Object de-
scribed the presence of planets around the star - value p,
the absence of planets - value E, or the lack of knowledge
concerning possible revolving planets - NULL.

Most of the stars had not been classified, having the NULL

value for the Object attribute. The objective was to obtain
a set of stars that potentially harbor planets. We wanted
to identify some conditions that allow to infer the presence
of planets for stars that have not yet been studied, starting
from the stars for which the presence or absence of planets
has been confirmed. With astrophysicists, the initial query
was thus very simple to identify:

4http://cesam.lam.fr/exodat
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Figure 4: Impact of the scale factor sf on the accuracy of the approximated negation w.r.t. Exodata dataset
(left) and the computation time overhead needed to find this negation on Exodata schema (right).

SELECT DEC, FLAG, MAG_V, MAG_B, MAG_U
FROM EXOPL
WHERE OBJECT = ’p’

The negation query was straightforward to obtain (with-
out the machinery introduced in this paper), simply by chang-
ing the condition to OBJECT = ’E’ (see [13] for a detailed dis-
cussion). There were 50 positive examples (OBJECT = ’p’)
and 175 counter-examples (OBJECT = ’E’) among the 97717
tuples in the database. Discussions with astrophysicists
emphasized different magnitude and amplitude attributes
as pertinent attributes to learn on. They hold data con-
cerning observed light under a variety of wavelength fil-
ters. Starting from this expert but easily exploitable in-
formation, we tried out, in a couple of minutes, several sets
of attributes on which to learn. The expert selected at-
tributes MAG_B, AMP11, AMP12, AMP12, AMP13 and AMP14.
The learning phase was then launched and generated a de-
cision tree from which the following new condition was ex-
tracted: MAG_B > 13.425 AND AMP11 <= 0.001717, easily
leading to the following transmuted query:

SELECT *
FROM EXOPL
WHERE MAG_B > 13.425 AND AMP11 <= 0.001717

It is worth noting that such an SQL query had very lit-
tle chance of germinating in the initial stage of data explo-
ration. This new query identified 22% of the initial positive
examples, 0% of the negative examples and 1337 new tuples.
These new tuples, representing stars around which the pres-
ence of revolving planets has not been studied, could thus
be priority study targets due to their proximity, in the data
exploration space, to a subset of stars around which planet
presence has been confirmed.

The new SQL query turned out to be itself interesting:
it showed the detectability limits of current instruments:
for magnitudes greater than 13.425, i.e., for dimmer stars,
it’s mandatory to have star variability amplitudes less than
0.001717, i.e., the light emitted by the star must have a small
variability.

Astrophysics scientists have found our approach satisfac-
tory and easy to use, all of them having basic knowledge

in SQL. The proposed transmuted query was a contribu-
tion per se. The use of machine learning techniques behind
the scenes for proposing new SQL queries was completely
transparent for them and very much appreciated. Clearly,
other validations with domain experts should be conducted
to assess the interest of our approach for data exploration
in SQL, but these first results were very encouraging.

5. RELATED WORK
Data exploration is a very active research field in databases,

data mining and machine learning. This section is organized
according to several themes, namely query exploration, rec-
ommendation-based exploration, query by output and why-
not queries.

Query exploration [25] shows that the time spent to as-
semble an SQL query is significantly higher than the query’s
execution time, even for SQL experts and decent-sized data.
This is even more true in discovery-oriented applications,
where the user does not know very well neither the database
(schema / content), nor exactly what she is looking for (the
right / exact queries to pose). [25] proposes a set of prin-
ciples for a guided interaction paradigm, using the data to
guide the query construction process. The user successively
refines the query considering the results obtained at each
iteration in order to reach a satisfactory solution.

[20] theorizes a new class of exploration-driven applica-
tions, characterized by exploration sessions with several in-
terlinked queries, where the result of a query determines
the formulation of the next query. [10] also talks about
interactive data exploration applications characterized by
human-in-the-loop analysis and exploration. It advocates
the need for systems that provide session-oriented usage pat-
terns, with sequences of related queries, where each query is
the starting gate for the next one.

Query morphing [21] proposes a technique in which the
user is presented with extra data via small changes of the
initial query. By contrast, our solution exploits the examples
and counter-examples sets obtained from the user’s initial
query, to obtain a new query via rules learned from these
sets. We believe it is most of the time quite difficult to



define small modifications for a given SQL query.
Some database exploration approaches are based on man-

ual labeling of examples and counter-examples [34, 8, 30,
14, 23], on which machine learning approaches are eventu-
ally used to generate queries. Manual labeling has two main
drawbacks: it is quickly tiring for the user, reducing system
interactivity, simplicity and attractiveness; and it is far from
trivial when the user does not know the data very well (fre-
quently the case in an exploration task) or if the labeling cri-
teria are complex (again, frequently the case, otherwise the
user could probably obtain the data with a simple query).

Recommendation-based exploration [17] describes a
template-based framework that recommends SQL queries as
the user is typing in keywords. A top-k algorithm suggests
queries derived from the queryable templates identified as
relevant to the keywords provided by the user, based on a
probabilistic model. The QueRIE framework [16] uses Web
recommendation mechanisms to assist the user in formulat-
ing new queries. A query expressed by a user is compared
with similar queries in the system log and a set of recom-
mendations are proposed based on the behaviour of other
users in a similar context. [6, 5] help the user formulate
quantified, exploratory SQL queries. SnipSuggest [22] pro-
vides users with context-aware SQL query suggestions based
on a log of historical queries. [15] assists the user in the ex-
ploratory task by suggesting additional YMAL items, not
part of, but highly correlated with the results of an origi-
nal query. It exploits offline computed statistics to identify
subtuples appearing frequently in the original result, then
builds exploratory queries, guiding the user to different di-
rections in the database, not included in the original query.
While we also make use of common statistics maintained by
the optimizer, we incur no overhead by computing any other
statistics. The entire process of aiding the user formulating
her queries unfolds online.

Query by output solutions find a query that produces
the data specified by the user, no more, no less. [31] finds an
alternative path in the schema whose corresponding query
produces the same data; an initial query may or may not
be specified. The reformulated query in our approach does
overlap the initial one to some extent, but is not equivalent
to it. Similarly, [33] finds a join query, given its output,
using arbitrary graphs. By contrast, [30] searches for a min-
imal valid project-join query starting from a few example
tuples specified by the user. The generated query is ex-
pected to produce extra tuples, just like in our approach.
The approach is however based on the user manually in-
troducing example tuples. Likewise, [28] discovers queries
whose answers include user-specified examples, for sample-
driven schema mapping. [27] follows a similar approach to
[30], but generates and ranks multiple queries that can par-
tially contain the input tuples supplied by the user.

Why-not queries A database exploration approach tries
to explain why a query on a database does not return desired
tuples in the response, initially proposed in [11]. The frame-
work proposed in [11] identifies the components from the
guery evaluation plan responsible for filtering desired data
items. This approach has been studied for different types
of queries, as for reverse top-k queries [18]. As an alterna-
tive idea, the data provenance may be useful in our context
by explaining why some tuples are included in the proposed
exploration [9].

6. CONCLUSION AND DISCUSSION
In this paper we presented an approach that shows to be

very promising in tackling one of the Big Data challenges:
formulate SQL queries that correspond to what the analyst
searches for and that efficiently execute on data of huge size.
Starting from a query issued by a non-expert user, we ex-
plore the space of corresponding negation queries and we
choose the one whose result size is as close as possible to the
initial query’s result size using a Knapsack-based heuristic.
We then obtain a balanced set of examples and counter-
examples that can feed a decision tree learning process. The
learned model allows to directly rewrite the initial query us-
ing the obtained rules. This new transmuted query returns
results that are similar to the initial query’s ones, while also
producing new tuples, which again are similar to the ones
returned by the initial query. Such a form of diversity would
have been practically impossible to achieve without the help
of machine learning to formulate the query.

The user can also assess the global quality for the rewriting
of her query, using diverse criteria that compare for instance
the percentage of the new data obtained, or the number of
tuples from the initial query that are retrieved. She can thus
quickly evaluate the direction of her exploration, without
having to first interpret the data she obtains for each query.

We have implemented and conducted several experiments
to evaluate the main technical contribution of the paper,
i.e., the Knapsack-based heuristic. Results are quite promis-
ing both in term of accuracy and performance. Preliminary
validation results obtained on an astrophysics dataset with
a simpler version of our current prototype [13], that auto-
matically obtains a negation query from an initial so-called
discriminatory query, are promising and open the way for
an extensive experimental study.

The transparent integration of learning techniques with
SQL is a significant change in scientists’ way of working.
The user just explores the data by posing questions in the
golden SQL query language, both easy to use and intuitive.
The user could therefore focus on the science part instead of
the computational one. She does not have to switch between
various systems and to re-load data several times, rending
the exploration process ”seamless”.

A large number of possibilities has been opened up by this
approach. We can easily imagine its extension to other types
of SQL queries or to evaluate the scalability on very large
datasets. We can also extend this work to pattern mining
based on declarative languages like RQL [?], or, more gen-
erally, to all pattern types. For a given hypothesis (or pat-
tern or query), the notion of examples and counter-examples
seems to be relatively universal. This type of approach could
thus play an interesting role in Big Data exploration in the
years to come.
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