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Abstract The latent block model is used to simultaneously rank the rows and
columns of a matrix to reveal a block structure. The algorithms used for estimation
are often time consuming. However, recent work shows that the log-likelihood ra-
tios are equivalent under the complete and observed (with unknown labels) models
and the groups posterior distribution to converge as the size of the data increases
to a Dirac mass located at the actual groups con�guration. Based on these obser-
vations, the algorithm Largest Gaps is proposed in this paper to perform clustering
using only the marginals of the matrix, when the number of blocks is very small
with respect to the size of the whole matrix in the case of binary data. In addition,
a model selection method is incorporated with a proof of its consistency. Thus, this
paper shows that studying simplistic con�gurations (few blocks compared to the
size of the matrix or very contrasting blocks) with complex algorithms is useless
since the marginals already give very good parameter and classi�cation estimates.
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1 Introduction

Block clustering methods aim at clustering rows and columns of a matrix simul-
taneously to form homogeneous blocks. There are a lot of applications of this
method: genomics [12, 14], recommender systems [2, 22], archeology [9], sociology
[11, 17, 25] or network [1, 4] for example. Among the methods proposed to solve
this question, the Latent Block Model (LBM) [10] provides a chessboard structure
induced by the classi�cation of the rows and the classi�cation of the columns. In
this model, it is assumed that a sample of n individuals is collected, which contains
the observation of d binary variables of the same nature. Saying that the binary
variables are of the same nature means that it is possible to encode them in the
same (and natural) way. This assumption is needed to ensure that decomposing
the dataset in a block structure makes sense and [18] shows the equivalence be-
tween searching for a classi�cation in the LBM and solving an optimal transport
problem. In the case where the rows and columns represent the same individuals,
we generally speak instead of Stochastic Block Model [1, 4, 24]. However, in the
case where the matrices are not symmetric, [15] shows that it may be more inter-
esting to use the LBM model rather than the SBM model. Although this model is
very similar, we will not discuss it in this article.

Given the number of blocks and in order to estimate the parameters, [10] sug-
gest using a variational algorithm, [16] propose an adaptation of the Stochastic
Expectation Maximisation introduced by [6] in the mixture case, [17] studied a
Bayesian version of these two algorithms and [25] propose a Bayesian algorithm
including the estimation of the number of blocks. However, each of these iterative
algorithms has a complexity at least O (ndNBlockNIter) where NBlock is the num-
ber of blocks and NIter is the number of iterations necessary for the convergence
of the algorithm. Moreover, the procedures are often associated with a model se-
lection criterion requiring the computation of maximum likelihood estimators for
all combinations of the expected number of blocks. However, the theoretical re-
sults obtained show that the distributions of the estimators (see [5, 7, 19]) are
asymptotically trivial: the log-likelihood ratios are equivalent under the complete
and observed (with unknown labels) models and the groups posterior distribution
to converge as the size of the data increases to a Dirac mass located at the actual
groups con�guration.

In this article, we propose an adaptation of the Largest Gaps (LG) algorithm
introduced by [8] in the Stochastic Block Model with a low complexity O(nd)
(Section 3) and present the conditions to obtain asymptotically a good estima-
tion (Section 4). We then prove that it provides a consistent procedure for all
inference tasks inherent in LBM: unsupervised classi�cation and estimation of the
parameters and a selection procedure for the number of blocks (the last unknown
theoretical point) is also proposed and shown to be consistent (Section 5). For ease
of reading, the proofs of the results are postponed to the appendices (Sections A, B
and C). These theoretical results are also illustrated on simulated data (Section 6).
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By proving the consistency of the LG algorithm, some features of the asymp-
totic regime of the LBM will be highlighted, in particular, the concentration of
some marginal distributions of the model. The secondary objective of the paper
is to discuss as a conclusion (Section 7) the consequence of this when �tting the
LBM to large matrices; in particular, this leads to take a step back regarding the
relevance of the model and the estimates when the number of blocks is small with
respect to the number of cells of the matrix.

2 Notations and model

The binary Latent Block Model (LBM) is as follows. Let x = (xij)i=1,...,n;j=1,...,d

be the data matrix where xij ∈ {0, 1}; observation of a random variable X. It is
assumed that there exists a partition into g row clusters z = (zik)i=1,...,n;k=1,...,g

and a partition into m column clusters w = (wjℓ)j=1,...,d;ℓ=1,...,m. The ziks (resp.

wjℓs ) are binary indicators of row i (resp. column j) belonging to row cluster
k (resp. column cluster ℓ), such that the random variables Xij are independent
conditionally on z and w with parametric density φ(·;αkℓ)

zikwjℓ , where αkℓ is the
parameter of the conditional density of the data given Zik = 1 and Wjℓ = 1. As
the binary case is studied, the density is de�ned for each x ∈ {0, 1} and α ∈ [0; 1]
by

φ(x;α) = αx (1− α)1−x .

Thus, the density of X conditionally on z and w is de�ned for each x by

f(x|z,w;α) =
n∏

i=1

d∏
j=1

g∏
k=1

m∏
ℓ=1

φ(xij ;αkℓ)
zikwjℓ

=:
∏

i,j,k,ℓ

φ(xij ;αkℓ)
zikwjℓ

where α = (αkℓ)k=1,...,g;ℓ=1,...,m.
Moreover, it is assumed that the row and column labels z and w are the

observations of two independent variables Z and W: p(z,w;π,ρ) = p(z;π)p(w;ρ)
with p(z;π) =

∏
i,k π

zik

k =
∏

k
π
z+k

k and p(w;ρ) =
∏

j,ℓ ρ
wjℓ

ℓ =
∏

ℓ
ρ
w+ℓ

ℓ , where
(πk = P(Zik = 1), k = 1, . . . , g) and (ρℓ = P(Wjℓ = 1), ℓ = 1, . . . ,m) are the

mixing proportions and z+k =
∑n

i=1 zik (resp. w+ℓ =
∑d

j=1 wjℓ) represents the
number of rows (resp. columns) in the class k (resp. ℓ). Hence, the density of X is
de�ned for every x by

f(x; θ) =
∑

(z,w)∈Z×W

p(z;π)p(w;ρ)f(x|z,w;α),

where Z and W denoting the sets of all possible row labels z and column labels
w, and θ = (π,ρ,α), with π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρm). The density of
X can be written for every x as

f(x; θ) =
∑

(z,w)∈Z×W

∏
k

π
z+k

k

∏
ℓ

ρ
w+ℓ

ℓ

∏
i,j,k,ℓ

φ(xij ;αkℓ)
zikwjℓ .
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To estimate both the classi�cation and the parameters, many algorithms exist
(for example [10], [17] or [25]) but each of these algorithms has a complexity larger
than O (ndgmNIter) where NIter is the number of iterations of the algorithm. This
makes their use on large matrices di�cult.

In the Stochastic Block Model (SBM), rows and columns are associated with
the same individuals, which allows to represent a graph, whereas LBM allows to
represent bipartite graphs. [8] suggested a fast algorithm, called LG for Lagest
Gaps, based on a marginal of the matrix x, the degrees.

3 Algorithm Largest Gaps

Before the introduction of the classi�cation algorithm Largest Gaps (LG), let us
recall the main idea, inspired by [8].

3.1 Main ideas

Conditionally on Zik = 1, meaning that row i is in class k, the probability that
the variable Xij equals 1 for any j ∈ {1, . . . , d} is

P (Xij = 1|Zik = 1) =
m∑
ℓ=1

P (Xij = 1|Zik = 1,Wjℓ = 1)P (Wjℓ = 1|Zik = 1)

=
m∑
ℓ=1

P (Xij = 1|Zik = 1,Wjℓ = 1)P (Wjℓ = 1)

=
m∑
ℓ=1

αkℓρℓ =: τk. (1)

In particular, conditionally on Zik = 1, variables of row i are independent and iden-
tically distributed Bernoulli variables with parameter τk and the sum of the cells
of any row i, denoted by Xi+, is hence a binomial distributed variable Bin (d, τk).

As a consequence of the subgaussian concentration property of binomial distri-
butions, variables Xi� =

Xi+

d fastly concentrates around the mean associated with
its own class when d tend to in�nity. The point is here: if moreover these means
τ1, . . . , τg are pairwise distinct, the set of the variables {Xi�; i = 1, . . . , n} asymp-
totically splits into clusters, separated by large gaps, and which exactly correspond
to the clusters of the model, for d large enough. In the whole paper, τ1, . . . , τg will
be assumed to be pairwise distinct (Assumption (I), see discussion in Section 4).

The middle right picture of Figure 1 shows the histogram of the variable set
{Xi�; i = 1, . . . , n} for a matrix simulated under LBM with �ve clusters. The �ve
clusters of rows can be seen, as well as the four large gaps which separate them.
The middle left picture of Figure 1 is a representation of the vector (Xi� sorted
in ascending order) and the bottom left picture of Figure 1, the size of the gaps
between two consecutive sorted values.

To classify the rows, the idea is to identify the gaps between the clusters,
which are expected to be asymptotically larger. Indeed, the internal gaps (those
between two rows of the same cluster) vanish when d tends to in�nity due to
concentration, while the external gaps (those between two rows of distinct clusters)
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do not, since the means are assumed to be distinct. Symmetrically the same holds
for the columns.

There are several strategies to identify the large gaps. In their article, [8] assume
that the number Q of clusters (the same for the rows and the columns) is known
and partition the population into Q clusters by �nding the Q − 1 largest gaps.
In order to choose Q, a model selection procedure can be �rstly done separately,
before the classi�cation. The strategy chosen in this article consists in thresholding
the gaps, to distinguish outer gaps from inner ones. It advantageously yields both
the clusters and the numbers of clusters in only one pass.

The choice of thresholds is critical. Let's comment on the beautiful con�gura-
tion of Figure 1, where the asymptotic regime has been reached, to present the
key issues. If the thresholds are too large (greater than 0.06 on that example),
the thresholding step will select only some of the four outer deviations and will
not distinguish the �ve clusters from each other. Conversely, if they are too small
(less than 0.01), the thresholding step will select all four outer gaps, but also some
undesirable inner gaps, and the algorithm will wrongly separate some clusters.

3.2 Algorithm

The algorithm Largest Gaps1 is given in Algorithm 1 and an illustration is provided
in Figure 1. The principle is to calculate the means of the values of the cells of
each row and each column, to order them and to calculate the di�erences between
two consecutive values. Once this step is done, the clusters are formed assuming
that each di�erence greater than the threshold implies a change of cluster. In the
sequel, the estimators provided by the algorithm are denoted by Ẑ, Ŵ and θ̂.

Estimator of θ⋆. For the rest of the article, θ⋆ = (π⋆,ρ⋆,α⋆) represents the
parameters to be estimated (i.e. the parameters that were used to simulate the

data). In the algorithm 1, the estimator θ̂ of θ⋆ is based on Ẑ and Ŵ. π̂k (resp. ρ̂ℓ)
is the proportion of class k (resp. ℓ) in the partition ẑ (resp. ŵ) and the estimator
α̂ is for all (k, ℓ) ∈ {1, . . . , ĝ} × {1, . . . , m̂}:

α̂kℓ =

∑n
i=1

∑d
j=1 ẑik ŵjℓxij

ẑ+k ŵ+ℓ
.

Complexity of the algorithm. On algorithm 1, the complexities of each step are
added in blue at the end of the line. In the end, the LG algorithm has a complexity
of O (max (nd [ĝ + m̂] , n logn, d log d)). As will be seen in the section 5.3, logn is
required to be much smaller than d and log d much smaller than n. In this case,
the complexity is O (nd [ĝ + m̂]).
Moreover,

∑n
i=2 Gi = X�(n)−X�(1) being smaller than 1 and for all k ∈ {1, . . . , ĝ−

1}, G(ik) being greater than Sg then, in the worst case, ĝ is smaller than 1/Sg +1.
As a conclusion, the complexity is O (nd [1/Sg + 1/Sm]) and, if the classi�cation
only is processed, the complexity is O (nd).

1 An implementation in the language R is available on the following Gitlab: https://
gricad-gitlab.univ-grenoble-alpes.fr/braultv/largest-gaps

https://gricad-gitlab.univ-grenoble-alpes.fr/braultv/largest-gaps
https://gricad-gitlab.univ-grenoble-alpes.fr/braultv/largest-gaps


6 Vincent Brault, Antoine Channarond

Fig. 1 Top-left: Initial matrix. Top-right: Example of a vector
(
X�(1), . . . , X�(d)

)
. Middle-

left: representation of the vector
(
X�(1), . . . , X�(d)

)
sorted in increasing order. Middle-right:

histograms of
(
X�(1), . . . , X�(d)

)
. Bottom-left: representation of the vector of gaps (G2, . . . , Gd)

where for all j ∈ {2, . . . , d}, Gj = X�(j) −X�(j−1). Bottom-right: reorganized matrix.

4 Identi�ability of the model: assumptions on the model parameters

In this section, the conditions for the consistency of the estimators are explained.
For the rest of the article, g⋆ and m⋆ represent the true number of clusters in rows
and columns and, as mentioned in the section 3.2, θ⋆ = (π⋆,ρ⋆,α⋆) corresponds to
the true parameters. Moreover, z⋆ and w⋆ are the unobserved partition matrices,
resulting from the laws M (1;π⋆) and M (1;ρ⋆), used to simulate the data.
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Input: data matrix x, threshold for row Sg and for column Sm.

// Computation of gaps
for i ∈ {1, . . . , n} do

Computation of Xi� =
xi+

d
.

// O(nd)

Ascending sort of
(
X(1)�, . . . , X(n)�

)
. // O(n logn)

for i ∈ {2, . . . , n} do
Computation of the gaps Gi = X(i)� −X(i−1)�.

// O(n)

// Computation of ĝ
Selection of i1 < . . . < iĝ−1 such that (Gi1 , . . . , Giĝ−1

) are every greater than Sg .

// O(n)

// Computation of Ẑ
for i ∈ {(1), . . . , (n)} do

De�nition of ẑ
(i)k

= 1 if and only if (ik−1) < (i) ≤ (ik) with i0 = 0 and iĝ = n.

// O(n)

// Computation of m̂ and Ŵ
Do the same on the columns. // O(max(dn, d log d))

// Computation of θ̂

for k ∈ {1, . . . , ĝ} do
Computation of π̂k =

ẑ+k

n
.

// O(n/Sg)

for ℓ ∈ {1, . . . , m̂} do
Computation of ρ̂ℓ =

ŵ+ℓ

d
.

// O(d/Sm)

Computation of α̂ =
(
Ẑ
)

TxŴ/
[
π̂k (ρ̂ℓ )

T
]
× nd. // O (nd [1/Sg + 1/Sm])

Output: Numbers of clusters ĝ and m̂, matrices Ẑ and Ŵ and parameter θ̂.

Algorithm 1: Algorithm Largest Gaps. The complexity of each step is high-
lighted in blue.

Notations 1 Key model parameters:
Let us de�ne π⋆

min and ρ⋆min the smallest class proportions:

π⋆
min = min

1≤k≤g⋆
π⋆
k and ρ⋆min = min

1≤ℓ≤m⋆
ρ⋆ℓ

and the smallest distance between any two conditional expectations of the normal-
ized degrees (called model smallest gaps):

δπ⋆ = min
1≤k ̸=k′≤g⋆

∣∣τ⋆
k − τ⋆

k′
∣∣ and δρ⋆ = min

1≤ℓ ̸=ℓ′≤m⋆

∣∣ξ⋆ℓ − ξ⋆ℓ′
∣∣

where τ ⋆ = ρ⋆α⋆T and ξ⋆ = π⋆α⋆ are the proportions of the binomial distribu-
tions de�ned in Equation (1).

Cluster identi�ability by the LG algorithm is possible under the following
su�cient conditions:
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Assumptions 1 (I) The proportion of each row class (respectively column class)
is non-negative, and conditional expected degrees of row (resp. column) clusters
(τk)1≤k≤g⋆ (resp. (ρℓ)1≤ℓ≤m⋆) are all distinct, which respectively amounts to:

π⋆
minρ

⋆
min > 0 and δπ⋆δρ⋆ > 0. (I)

These assumptions will be always made in the sequel of this article. They are
equivalent to the su�cient conditions of identi�ability of LBM given in [17] but
stronger than the conditions of [5] or the identi�ability conditions in the case where
(g,m) = (2, 2) in the [17].

The �rst assumption, π⋆
minρ

⋆
min > 0, is classical in mixture models (for example,

see [5, 13, 20]); without this assumption, the probability of having the right number
of clusters is null. Thus the mixture model would be degenerated, as clusters with
proportion zero would be always empty and the number of actually present clusters
would be improper.

The second one, δπ⋆δρ⋆ > 0, ensures that not only the distribution of x is
identi�able, but also that of (Xi+)1≤i≤n, which is a marginal distribution of x.
This is critical in order to recover all clusters with the LG algorithm, which actually
infers the clusters only from the set of variables {Xi�; i = 1, . . . , n}. More precisely,
it ensures that the distribution of Xi+ is a proper mixture with the same number
of clusters as the distribution of Xij . For example, Assumption (I) excludes the
following typical case (yet identi�able according to [17]):

g = 2, m = 2, π = (1/2, 1/2)

and α =

(
a b
b a

)
where a, b ∈]0, 1[.

Indeed, it gives τ1 = τ2 = a+b
2 , and hence δπ⋆ = 0. Conditionally on either zi1 = 1

or zi2 = 1, the distribution of Xi+ is the same: Bin
(
d, a+b

2

)
, and therefore the two

clusters cannot be distinguished just with the vector (Xi+)1≤i≤n. The distribution
of Xi+ is not a proper mixture with two distinct clusters, it is a simple binomial
distribution. Thus with our approach this model would be confused with the model
g = 1, π = 1, α = a+b

2 . Note that the set of parameters such that δπ⋆δρ⋆ = 0 has
zero Lebesgue measure.

5 Consistency

This section presents the main result (Theorem 2), namely the consistency of
estimators. Here, consistency means that the numbers of clusters and classi�cations
are correct and that the distance between the estimates and the model parameters
is smaller at any t > 0 with a probability tending towards one, when the size of
the matrix (n, d) tends towards in�nity. Before stating this theorem, we introduce
some notations, especially related to the label switching problem.
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5.1 Distance on the parameters and the label switching issue

For any two parameters θ = (π,ρ,α) with (g,m) clusters and θ′ = (π′,ρ′,α′),
with (g′,m′) clusters, we de�ne their distance as follows:

d∞
(
θ, θ′) =

{∥∥θ − θ′∥∥
∞ if g = g′, m = m′

+∞ otherwise,

where ∥·∥∞ denotes the norm de�ned for any y ∈ Rg by ∥y∥∞ = max1≤k≤g |yk|.
We assume that two matrices z, z′ ∈ Mn×g ({0, 1}) are equivalent, denoted

z ≡Z z′, if there exists a permutation s ∈ S ({1, . . . , g}) such that for all (i, k) ∈
{1, . . . , n} × {1, . . . , g}, z′i,s(k) = zik. By convention, we assume that two matrices
with di�erent numbers of columns are not equivalent. We introduce the similar
notation ≡W for the matrix w.
For all parameter θ = (π,ρ,α) with (g,m) clusters and for all permutions
(s, t) ∈ S ({1, . . . , g})× S ({1, . . . ,m}), we denote θs,t = (πs,ρt,αs,t), by:

πs =
(
πs(1), . . . , πs(g)

)
, ρt =

(
ρt(1), . . . , ρt(m)

)
and αs,t =

(
αs(1),t(1), αs(1),t(2), . . . , αs(1),t(m), αs(2),t(1), . . . , αs(g),t(m)

)
.

Like all mixture models, the LBM is a�ected by the label switching problem:
clusters are de�ned up to a permutation. The algorithm can therefore �nd the
right clusters but at a permutation of the labels. This also a�ects the parameters
of the model, because the order of their coordinates depends on the labeling. The
comparison of two classi�cations, and two parameter estimates, must then be done
carefully: the distance between two parameter estimates must be calculated after
permutation of their coordinates, using the permutation transforming the label
allocation of the classi�cation algorithm into the original label allocation of the
model. Moreover, such a permutation exists and is unique when the classi�cation
is correct, i.e. when Ẑ ≡Z z⋆ (respectively Ŵ ≡W w⋆). This permutation will

thus be noted sZ (resp. tW) on the event {Ẑ ≡Z z⋆} (resp. Ŵ ≡W w⋆). Thus,
the consistency of the parameter estimators amounts to proving that the following
quantity disappears in probability when (n, d) tends to in�nity:

∀t > 0,P
[
d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t

∣∣∣ Ẑ ≡Z z⋆,Ŵ ≡W w⋆
]

−→
n,d→+∞

0.

Outside of the event {Ẑ ≡Z z⋆} (resp. Ŵ ≡W w⋆), sZ (resp. tW) will be de�ned
as any arbitrary permutation in S ({1, . . . , ĝ}) (resp. S ({1, . . . , m̂})), the identity
for instance.

5.2 A non-asymptotic upper bound

This paragraph presents the main technical tool for obtaining consistency: a non-
asymptotic upper bound from which the consistency results will be derived.
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Theorem 1 (Concentration inequality) Under identi�ability assumptions (I),
and if Sg ∈]0, δπ⋆ [ and Sm ∈]0, δρ⋆ [ for n, d large enough, then we have for all
t > 0:

P
(
ĝ ̸= g⋆ or m̂ ̸= m⋆ or Ẑ ̸≡Z z⋆ or Ŵ ̸≡W w⋆ or d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t

)
≤ 2n exp

(
−d

2
min(δπ⋆ − Sg, Sg)

2

)
+ g⋆

(
1− π⋆

min

)n
+2d exp

(
−n

2
min(δρ⋆ − Sm, Sm)2

)
+m⋆ (1− ρ⋆min

)d
+2g⋆m⋆

[
1− π⋆

minρ
⋆
min

(
1− e−2t2

)]nd
+ 2g⋆e−2nt2 + 2m⋆e−2dt2 .

The proof (in Appendix A) is made in two steps, emphasizing the originality
of the method in comparison with EM-like algorithms: here the classi�cation is
completely done �rst, and parameters are then estimated afterwards. Thus an up-
per bound on classi�cations and selection of class numbers will be �rst established
(Proposition 1), and secondly an upper bound on the parameter estimators, given
that both classi�cations and class numbers are right (Proposition 2).

If n and d increase at the same speed, the larger the size, the smaller the bound.
We �nd the importance that Sg and Sm are small enough to detect the real jumps
but not so small that there are only them. Moreover, the larger π⋆

min and ρ⋆min are,
the more likely it is to have at least one representative of each cluster.

In addition to showing the consistency of the LG algorithm's estimators (see
section 5.3), the bound of theorem 1 quanti�es how (very) easy a con�guration is:
given a con�guration (θ, n, d), it is possible to estimate the probability that the
algorithm Largest Gaps �nds the right con�guration. In the case of a con�guration
obtained by another algorithm, this bound can be calculated and if it is (very)
small, it means that a study of the marginals would have been su�cient; if the
Largest Gaps algorithm does not �nd the same results at all, a doubt can be cast
on the results (estimation or relevance of the use of a LBM) by precaution.

Remark 1 In the proof, the Hoe�ding inequality is used. In the case where the
parameters are very close to 0 or 1, Bernstein's inequality allows to improve the
bound. This is particularly interesting if the parameters evolve with n and d (see
Section 5.4).

5.3 Consistency of the estimators

The following theorem provides su�cient assumptions on the threshold sequences
(Sn,d

g , Sn,d
m )n,d to ensure the consistency of the inference method based on the LG

algorithm when n, d tend to in�nity. Note that this result is therefore asymptotic
only, and it does not provide any guarantee for �xed (n, d). Nevertheless the rates
can be used as a suggestion to choose the thresholds, as even though it must be
carefully used, because it is anyway impossible to know whether the asymptotic
regime is reached or not.
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Theorem 2 (Consistency) Under identi�ability assumptions (I) and the follow-
ing assumptions:

Sn,d
g −→

n,d→+∞
0, Sn,d

m −→
n,d→+∞

0,

lim
n,d→+∞

Sn,d
g

√
d

logn >
√
2 and lim

n,d→+∞
Sn,d
m

√
n

log d >
√
2,

(TA)

where lim is the lower limit; then classi�cations, model selection and estimators
are consistent, that is, for all t > 0:

P
(
ĝ ̸= g⋆ or m̂ ̸= m⋆ or Ẑ ̸≡Z z⋆ or Ŵ ̸≡W w⋆

or d∞
(
θ̂
sZ ,tW

, θ⋆
)
> t

)
−→

n,d→+∞
0.

The proof of this result is available in Appendix B.
The LG algorithm has two input parameters, the (Sg, Sm) thresholds, which

must be set correctly to discover all clusters. Recall that the purpose of gap thresh-
olding is to distinguish between external and internal gaps (see comments in sec-
tion 3.1). First, the thresholds must be smaller than the smallest gaps in the model,
Sn,d
g < δπ⋆ and Sn,d

m < δρ⋆ , for n and d su�ciently large; otherwise, some clus-
ters will consist of mixed clusters. Since δπ⋆ and δρ⋆ are not known a priori, we
assume that the thresholds decrease with respect to n and d, to ensure that they
are asymptotically small enough. On the other hand, if the threshold sequences
decrease too fast, the thresholds will be asymptotically too small and at least
one class will be split into several clusters by the algorithm. More technically, the
convergence rate given in the theorem guarantees that the upper bound of the
theorem 1 tends to 0 which implies consistency. If the sequences disappear faster,
coherence is no longer guaranteed.

Consistency can thus be obtained whatever the sequences Sn,d
g and Sn,d

m taken
provided that they verify the conditions (TA); nevertheless, if we couple with
the condition that Sn,d

g < δπ⋆ and Sn,d
m < δρ⋆ of Theorem 1, we see that it is

preferable that the thresholds decrease rapidly. For example, the threshold Sn,d
g =√

2 log(n)/d(1+ε) with ε > 0 can be used. Moreover, once a �rst con�guration has
been found, it is possible to estimate δπ⋆ and δρ⋆ and to re-estimate the partitions

with the thresholds δ̂π⋆/2 and δ̂ρ⋆/2 in order to see if a better con�guration is
obtained.

Remark 2 The assumption (TA) of the theorem implies that n/ log d and d/ logn
tend to +∞ ; this assumption is found in the results on the consistency of the
maximum likelihood estimator (see [5]). Therefore, x is allowed to have an oblong
shape. For example, d = nγ with γ > 0 satis�es the assumption.

Remark 3 The roles of the rows and columns are symmetric: the result remains
true if the transpose of X is studied rather than the matrix X.

5.4 Consistency when model parameters vary

Finally varying model parameters are also considered in this paragraph. Indeed
when n and d increase, it can be reasonable to assume that new clusters arise:
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in this paragraph g⋆n,d and m⋆n,d are hence assumed to be growing to in�nity
when n, d tend to +∞. The consequence of this assumption is the convergence
to zero of both the proportions of the smallest clusters and the model smallest
gaps: π⋆

min, ρ
⋆
min, δπ⋆ , δρ⋆ tend to 0 when n, d tend to in�nity. For example, since

the parameters τ ⋆ = (τ⋆
k )1≤k≤g⋆ are probabilities, the following inequalities are

obtained:

(g⋆ − 1)δπ⋆ ≤
g⋆−1∑
k=1

(τ⋆
(k+1) − τ⋆

(k)) = τ⋆
(g⋆) − τ⋆

(1) ≤ 1

and (m⋆ − 1)δρ⋆ ≤
m⋆−1∑
l=1

(ξ⋆(l+1) − ξ⋆(l)) ≤ 1,

where τ⋆
(1) < · · · < τ⋆

(g⋆) (resp. ξ⋆(1) < · · · < ξ⋆(m⋆)) are the (τ⋆
k )1≤k≤g⋆ (resp.

(ξ⋆ℓ )1≤l≤m⋆) sorted in increasing order. In the other side, g⋆ is bounded by 1/π⋆
min

by the following inequality:

g⋆π⋆
min ≤

g⋆∑
k=1

π⋆
k = 1.

In particular, it is possible that one of these parameters tend to zero while the
number of groups does not change (for example, in the case of increasingly sparse
matrices). In this framework, admissible convergence rates of the model parameters
are provided, as well as the corresponding admissible convergence rates of the
thresholds. It thus tells how robust the consistency is.

Theorem 3 (Consistency in sparse case) Under the assumptions of the pre-
vious theorem ( (I) and (TA)) and the following additional assumptions :

� Assumptions on δn,d
π⋆ and Sn,d

g (resp. δn,d
ρ⋆ and Sn,d

m ):

lim
n,d→+∞

δn,d
π⋆

Sn,d
g

> 2, and lim
n,d→+∞

δn,d
ρ⋆

Sn,d
m

> 2. (MA.1)

� Assumptions on π⋆ n,d
min and ρ⋆ n,d

min :

nπ⋆ n,d
min −→

n,d→+∞
+∞ and dρ⋆ n,d

min −→
n,d→+∞

+∞ (MA.2)

then classi�cations, model selection and estimators are also consistent.

The proof of this result is available in Appendix C.
Theorem 3 shows that the estimates remain consistent even with sparse matri-

ces. On the other hand, for an optimal result and if a number of non-zero cells is
�xed, the estimation will be all the easier if the latter are well distributed between
the classes, for example, in a staircase shape.

Remark 4 As π⋆ n,d
min ≤ 1/g⋆n,d and ρ⋆ n,d

min ≤ 1/m⋆n,d, the assumptions (MA.2)
imply that

nd

N⋆ nd
block

−→
n,d→+∞

+∞

where N⋆ nd
block = g⋆n,dm⋆n,d is the number of blocks. In particular, the number of

blocks can therefore increase with n and d but not too quickly.
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6 Simulations

In this section, simulations to test the quality of the bounds obtained in the pre-
vious theorems and to compare the computing times with classical procedures are
presented2.

6.1 Estimation of the number of clusters

We use an experimental design to illustrate the results of Theorem 2. As the
number of row (resp column) clusters is the basis of the other estimations, this
is the only parameter studied in this section. The experimental design is de�ned
with g⋆ = 5 and m⋆ = 4 and the following parameters

α⋆ =


ε ε ε ε

1− ε ε ε ε
1− ε 1− ε ε ε
1− ε 1− ε 1− ε ε
1− ε 1− ε 1− ε 1− ε


with ε ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}. For ε = 0.05, the values of the Bernoulli
parameters are 0.05 (resp. 0.95) and the associated blocks contain essentially white
(resp. black) cases. At the opposite, for ε = 0.3, the block are more homogeneous
and more di�cult to distinguish. For the class proportions, we suppose two possi-
bilities

� Balanced proportions:

π⋆ =
(
0.2 0.2 0.2 0.2 0.2

)
and ρ⋆ =

(
0.25 0.25 0.25 0.25

)
with the following parameters

π⋆
min = 0.2 and δπ⋆ = 0.25− 0.5ε.

� Arithmetic proportions:

π⋆ =
(
0.1 0.15 0.2 0.25 0.3

)
and ρ⋆ =

(
0.1 0.2 0.3 0.4

)
with the following parameters

π⋆
min = 0.1 and δπ⋆ = 0.1− 0.2ε.

The number of rows n and the number of columns d vary between 20 and 4000 by
step 20 and for each con�guration, 100 matrices were simulated. For the choice of
the thresholds Sg, we studied four cases:

1. We �rst propose a constant oracle threshold to illustrate the Theorem 1, which
suggests that any constant threshold strictly between 0 and δπ⋆ gives the con-
sistency:

S1 = δπ⋆/2.

2 For the sake of repeatability, all codes are available on the following Gitlab: https://
gricad-gitlab.univ-grenoble-alpes.fr/braultv/largest-gaps

https://gricad-gitlab.univ-grenoble-alpes.fr/braultv/largest-gaps
https://gricad-gitlab.univ-grenoble-alpes.fr/braultv/largest-gaps
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2. In practice, there is mostly no reason why the parameter δπ⋆ could be known.
In this case, Theorem 2 claims that we need to use a varying threshold Sn,d

g

instead, such that Sn,d
g tends to 0 but not too fast (slower than

√
2 logn/d). If

the threshold decreases too slowly, it may be larger than δπ⋆ and the smallest
gaps could be undetected. On the opposite, if the threshold decreases too fast,
we may detect too many gaps. In the simulation, we studied three possibilities:
(a) Faster threshold:

Sn,d
2 =

√
2 log(n)/d

(
1 + 10−10

)
.

(b) Middle threshold: Sn,d
3 = 2

√
2 log(n)/d.

(c) Slower threshold: Sn,d
4 = (log(n)/d)1/4.

Figures 2 and 3 show the proportions of bad estimations of g⋆ following the
parameters ε (in rows) as function of the number of rows n, the numbers of columns
d and the thresholds used (columns). For each �gure, the number of columns (d)
increases on the x-axis and the number of rows (n) increases on the y-axis. The
red color corresponds to a bad estimate while the blue color corresponds to a good
estimate (the more blue it is, the better).

As expected, it appears that the best threshold is the oracle S1 = δπ⋆/2 but
this threshold cannot be used in practice because δπ⋆ is unknown. For the scaled
thresholds, Sn,d

2 =
√

2 logn/d
(
1 + 10−10

)
is the best.

We can see that the larger the number of rows n is, the worse the estimation is
and the larger the number of columns d is, the better the estimation is. In the case
of n = d, the quality of the estimation increases with n. In particular, the model
selection can be generalized for the case of [8] and the results would be similar.
π⋆
min has a weak e�ect because it is rare to have an empty class but the e�ect of

δπ⋆ seems to be greater.

6.2 Estimation of the parameters

To illustrate the convergence of the the estimation θ̂ to the true parameter θ⋆, the
same experimental design is chosen with the number of rows n and the number of
columns d vary between 40 and 4000 by step 40 and, for each con�guration, 100
matrices were simulated. To estimate the quality of the estimation, the distance
d∞ introduced in Section 5.1 is calculated. As the distance equals +∞ when the
number of clusters of θ̂ is di�erent of its of θ⋆, we chose to represent the mean of
the �nite values with the size of the point corresponding at the number of �nite
values (see Figure 4 for the balanced case and Figure 7 for the arithmetic case).

We observe that the error decreases with the number of observations and the
results are identical when the numbers of clusters are correctly estimated. The
optimization of the LG algorithm thus depends on the choice of the threshold. In
particular, we �nd that the oracle threshold (S1) �nds the right number of clusters

faster than the evolutionary thresholds. In particular,the threshold Sn,d
4 does not

appear on the graphic because it underestimates the number of blocks.

6.3 Comparison of computing times

To conclude the part of the simulations, the computation times are estimated and
compared with a classical procedure. For that, the plan presented previously is
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Fig. 2 Proportions of bad estimations of g⋆ for the parameter ε ∈ {0.05, . . . , 0.3} (in rows)
following the thresholds (in columns) used for the balanced case: for each graphic, the number
of rows n (y-axis) and the number of columns d (x-axis) varies between 20 and 4000.

taken again by taking only the square matrices (n=d) with n ∈ {100, 200, . . . , 1 400}
for the balanced case and n ∈ {100, 200, . . . , 1 300} for the arithmetic. Six proce-
dures are studied:

� the algorithm LG with the four previous threshold: S1, S
n,d
2 , Sn,d

3 and Sn,d
4 ;

� the algorithm variational Bayes with the hyperparameters (4, 4) as proposed
by [17] knowing the true number of parameters g⋆ and m⋆ (named Simple
VBayes for the next);

� as the number of blocks is usually unknown, the combination of the algorithm
variational Bayes and the Integrated Complete-data Likelihood (see [3, 17])
is studied with the hyperparameters (4, 4) on a 2 × 7 square grid (named
VBayes+ICL for the next).

For the implementation, the R package blockcluster (version 4.5.1; see [23]) with
the function coclusterBinary is used. For each con�guration, 20 matrices are
simulated and procedures are evaluated on two criteria:
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Fig. 3 Proportions of bad estimations of g⋆ for the parameter ε ∈ {0.05, . . . , 0.3} (in rows)
following the thresholds (in columns) used for the arithmetic case: for each graphic, the number
of rows n (y-axis) and the number of columns d (x-axis) varies between 20 and 4000.

� the mean computation times with 10 runs; for this, the package microbenchmark
(version 1.4.9; see [21]) with the function microbenchmark is used and plans
are launched on a cluster3.

� the estimation quality of the number of clusters per row after an estimation of
each matrix (except for Simple VBayes as the number is assumed be known);
results are averaged over the 20 matrices.

The results are displayed in the Figures 5 (balanced case) and 6 (arithmetic
case) where the computation times (in seconds with logarithmic scale; on the top)
and the quality of the estimations (averaged for each ε on over the 20 matrices;
on the bottom) have been grouped by matrix size (regardless of the values of ε).
A detailed version for each ε is available on the Figures 8, 9, 10 and 11 in supple-

3 Cluster Luke44, 28 cores, 128Go RAM, GPU 2xK40m, 2xIntel Xeon E5-2680 2.40 GHz;
more informations on the url https://scalde.gricad-pages.univ-grenoble-alpes.fr/web/
pages/presentation.html

https://scalde.gricad-pages.univ-grenoble-alpes.fr/web/pages/presentation.html
https://scalde.gricad-pages.univ-grenoble-alpes.fr/web/pages/presentation.html
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Fig. 4 Average estimate of the distance d∞
(
θ⋆, θ̂

)
between the true parameters and the

estimated parameters following ε (rows) in the balanced case: for each graphic, the threshold
is represented by di�erent symbols (• for S1, ▲ for Sn,d

2 , ■ for Sn,d
3 and + for Sn,d

3 ) and the
size for the number of �nite values used; the number of rows n varies between 40 and 4000
and d is supposed equal n.

mentary material. Moreover, the means and standard deviations (in milliseconds)
are represented in the Tables 1 and 2.

On the quality, the procedure VBayes+ICL estimates better than the other
the number of clusters in rows and the di�erences between the four threshold are
the same than the section 6.1.

For the computing times, the order of Largest Gaps is that of the millisec-
ond while that of VBayes+ICL is of the second (and the minute after n = 300).
Moreover, the computing time for the Largest Gaps seems to increase linearly
with n (the side length of the square matrix) as stated in the section 3.2 while
VBayes+ICL increases much faster than linearly. Moreover, Largest Gaps does
not seem to be impacted by the con�guration while the convergence time of
VBayes+ICL (and even Simple VBayes who knows the right number of clusters)
is larger for the case of arithmetic proportions. And �nally, the computation time
of VBayes+ICL depends on the maximum choice of the number of clusters (�xed
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Fig. 5 On the top, boxplots of the computing times (in seconds; logarithmic scale) for each
procedure (colour) in function of the numbers of rows and columns (n = d) over the 1200
simulations (200 per ε) for the balanced case. On the bottom, boxplots of quality of estimations
averaged over the 20 matrices for each ε for each procedure (colour) in function of the numbers
of rows and columns (n = d) for the balanced case.

here quite close to the true result) but unknown in practice while Largest Gaps
does not need this kind of parameter and the time is almost independent of the
number of blocks.

7 Conclusion and discussion

First of all, Largest Gaps is a co-clustering algorithm, which has nice theoretical
properties: its computational cost is much lower than most known algorithms. And
it provides a consistent procedure under the Latent Block Model, for all inference
tasks: model selection, classi�cation and estimation of the model parameters. Since
the algorithm is simple, the consistency is rather easy to obtain. Note that in
this article, only binary matrices have been studied, but the model as well as
the method and the proofs can be directly extended for distributions which have
the same concentration properties, for example compactly-supported distributions,
where the support is known.

As a consistent algorithm, the advantage of the LG algorithm is the simplicity:
it is a simple and original way to exploit the concentration of the marginal dis-
tributions of the matrix x under LBM. But it lacks robustness: a single outlier in
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Fig. 6 On the top, boxplots of the computing times (in seconds; logarithmic scale) for each
procedure (colour) in function of the numbers of rows and columns (n = d) over the 1200 sim-
ulations (200 per ε) for the arithmetic case. On the bottom, boxplots of quality of estimations
averaged over the 20 matrices for each ε for each procedure (colour) in function of the numbers
of rows and columns (n = d) for the balanced case.

the marginal distribution can a�ect the whole classi�cation, which is not desirable
by the use on real-world datasets. Moreover, the procedure is essentially based on
the choice of threshold and simulations have shown that there is still room for im-
provement in this choice. Many other algorithms, also based on this nice feature,
could be used instead and might be better in practice, but harder to analyze from
a theoretical point of view. For example, �tting a binomial mixture model on the
variables X(1)�, . . . X(n)� with an EM-algorithm, could be fruitful as well.

The contribution of this article actually goes beyond the LG algorithm. It
shows special features of the latent structure of the LBM, and their consequences.
In particular, when the asymptotic regime of the model is reached, the latent
structure is almost obvious, and moreover it can be pick either one but not the
two from a summary of the data. Indeed even basic algorithms like LG can re-
trieve the latent clusters from variables X(1)�, . . . X(n)� (sums of the rows and of
the columns of the matrix x), whereas most known classi�cation algorithms are
unusable, because of their complexity.

A consequence of this remark is that the LBM should be used sparingly on
very large real data sets: if the number of clusters requested is too small and if the
blocks are su�ciently contrasted then the marginals should highlight the clusters.
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Table 1 Computing times for the di�erent procedures in columns (LG with the four threshold,
VBayes with the true number of clusters and VBayes coupled with the ICL criterion on a
2× 7 square grid) following the number of rows and columns (in rows) for the balanced case.
Each cell represents the average (in milliseconds) and the standard deviation (in parenthesis)
over the 1200 simulations (200 per ε).

S1 Sn,d
2 Sn,d

3 Sn,d
4 Simple VBayes VBayes+ICL

n=100
2 2 2 2 171 12765

(0.9) (0.1) (0.1) (0.8) (71.5) (2180.1)

n=200
3 3 3 3 468 37193

(0.4) (0.3) (0.3) (0.3) (102) (4385.4)

n=300
6 6 6 6 930 71594

(0.5) (0.4) (0.9) (0.4) (204.1) (8711.8)

n=400
8 8 8 8 1789 123632

(0.6) (1) (1) (1.4) (461.6) (18941.2)

n=500
13 12 12 12 2934 187319
(0.8) (0.6) (0.6) (1.2) (846.2) (29995)

n=600
16 16 16 16 4597 280348
(1.4) (1) (1.8) (2.1) (2044) (57861.3)

n=700
21 21 21 21 5724 356932
(1.5) (2) (2) (2.6) (1718.6) (61458.8)

n=800
23 22 22 22 8050 490034
(1.6) (1.3) (1.4) (1.9) (2900.3) (107033.6)

n=900
31 30 30 30 11057 629238
(1.9) (2.3) (1.9) (1.8) (4469.8) (136921.4)

n=1000
37 37 37 37 13357 761629
(3.6) (4) (3.9) (4) (5909.4) (189071.3)

n=1100
49 48 49 48 17068 977295
(5.3) (4.6) (5) (4.6) (6931.2) (212403.4)

n=1200
52 52 52 52 21133 1206144
(4.8) (4.9) (5.4) (5.3) (7826.5) (300568.7)

n=1300
66 65 65 65 27259 1427121
(6.5) (6.3) (7.2) (6.6) (10467) (278186.1)

n=1400
75 75 73 74 30831 1601915
(6) (6.2) (6.5) (6.4) (12370.8) (346575)

If this is not the case, the use of the LBM should be questioned. The bound of the
theorem 1 would give an estimate of the quality of the use of this model.

Finally, it appears in the simulations that the estimate of the number of clus-
ters is underestimated. Moreover, the distribution of marginals from real-world
data rarely has such obvious deviations as assumed by the model asymptotic. To
overcome this problem, it would be interesting to estimate the row clusters with a
mixture model on the variables (X(1)�, . . . , X(n)�); this will be the subject of future
work.
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Table 2 Computing times for the di�erent procedures in columns (LG with the four threshold,
VBayes with the true number of clusters and VBayes coupled with the ICL criterion on a
2× 7 square grid) following the number of rows and columns (in rows) for the arithmetic case.
Each cell represents the average (in milliseconds) and the standard deviation (in parenthesis)
over the 1200 simulations (200 per ε).

S1 Sn,d
2 Sn,d

3 Sn,d
4 Simple VBayes VBayes+ICL

n=100
2 2 2 2 530 20819

(0.9) (0.7) (0.7) (1.2) (302.3) (7768.3)

n=200
4 4 4 4 1677 58494

(1.4) (1.4) (1.4) (1.4) (693.7) (18294.9)

n=300
7 7 7 7 3183 117450

(2.4) (2.4) (2.4) (2.4) (1145.8) (34865.2)

n=400
10 10 10 9 5637 203479
(3.2) (3.7) (3.2) (3.3) (2119) (55356.2)

n=500
14 14 13 13 8503 304668
(3.9) (4) (3.9) (3.9) (2862.3) (76486.8)

n=600
18 18 18 18 12423 435626
(5.2) (5.5) (5.9) (5.3) (3889.1) (100281.1)

n=700
25 24 24 24 17794 622631
(6.5) (6.6) (7) (6.8) (7596.6) (180216.9)

n=800
27 26 25 25 18475 684012
(2.1) (2.9) (2.6) (2.5) (3680) (94177.3)

n=900
36 35 35 35 22635 828716
(3.2) (3.3) (3.2) (3.8) (4697.3) (106707.4)

n=1000
41 41 41 40 31799 1130163
(2.8) (3) (3.4) (2.2) (13840.7) (371089.7)

n=1100
47 47 47 46 32203 1226172
(4.4) (5.5) (5.7) (4.6) (11270.2) (290324.2)

n=1200
47 46 47 47 34399 1295896
(3.3) (3.6) (3.6) (4.2) (6683.5) (167982.4)

n=1300
72 72 72 71 45497 1673698

(21.2) (21.3) (21.8) (21) (11230.9) (353671.7)

A Proof of Theorem 1

In this appendix, we present demonstrations of the concentration inequality. We �rst estimate
the probability of having the right number of clusters and then the right classi�cation knowing
that we have the right number of clusters. Finally, we evaluate the quality of the parameter
estimates.

First of all, note that {Ẑ ≡Z z⋆} ⊂ {ĝ = g⋆} and {Ŵ ≡W w⋆} ⊂ {m̂ = m⋆}, hence :

P
(
ĝ ̸= g⋆ or m̂ ̸= m⋆ or Ẑ ̸≡Z z⋆ or Ŵ ̸≡W w⋆ or d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t
)

= P
(
Ẑ ̸≡Z z⋆ or Ŵ ̸≡W w⋆ or d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t
)

= P
(
Ẑ ̸≡Z z⋆ or Ŵ ̸≡W w⋆

)
+ P

({
d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t
}∖{

Ẑ ̸≡Z z⋆ or Ŵ ̸≡W w⋆
})

= P
(
Ẑ ̸≡Z z⋆ or Ŵ ̸≡W w⋆

)
+ P

(
d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t, Ẑ ≡Z z⋆,Ŵ ≡W w⋆

)
≤ P

(
Ẑ ̸≡Z z⋆

)
+ P

(
Ŵ ̸≡W w⋆

)
+P
(
d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)
P
(
Ẑ ≡Z z⋆,Ŵ ≡W w⋆

)
≤ P

(
Ẑ ̸≡Z z⋆

)
+ P

(
Ŵ ̸≡W w⋆

)
+ P

(
d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)
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To complete the proof, we then need to bound from above the terms of this inequality.
The two �rst terms are bounded using Proposition 1 in Appendix A.1, and the last term is
bounded with Proposition 2 in Appendix A.2.

A.1 Concentration inequality on Ẑ

Let us �rst de�ne the following events.

� There is at least one individual in each row class, denoted by

Ag⋆ =

g⋆⋂
k=1

{
Z⋆
+k ̸= 0

}
.

� Denoting D the random variable equal to the maximal distance between Xi� and the center
of the class of row i:

D = max
1≤k≤g⋆

sup
1≤i≤n

with z⋆
i,k

=1

∣∣Xi� − τk
∣∣ ,

we also de�ne:

ASg = {2D < Sg < δπ⋆ − 2D} and Aid = Ag⋆ ∩ASg .

Lemma 1 (Interesting event)

Aid ⊂ {ĝ = g⋆} ∩ {Ẑ ≡Z z⋆}

Proof On the event ASg , for any two rows i ̸= i′ ∈ {1, . . . , n}, we have two possibilities:

� Either the rows i and i′ are in the same class k, and then on ASg , we have:∣∣Xi� −Xi′�

∣∣ ≤ ∣∣Xi� − τk
∣∣+ ∣∣Xi′� − τk

∣∣ ≤ 2D < Sg .

� Or row i is in the class k and row i′ in the class k′ ̸= k, and on the event ASg , we have:∣∣Xi� −Xi′�

∣∣ = ∣∣Xi� − τk′ −
(
Xi′� − τk′

)∣∣
≥
∣∣Xi� − τk′

∣∣− ∣∣Xi′� − τk′
∣∣

≥
∣∣Xi� − τk′

∣∣−D

≥ |τk − τk′ | −
∣∣Xi� − τk

∣∣−D

≥ δπ⋆ − 2D

> Sg .

Therefore, Gi = X(i)� −X(i−1)� is less than Sg if and only if both rows (i− 1) and (i) are
in the same class. On ASg , the algorithm hence �nds the true classi�cation. Moreover, on Ag⋆ ,
there is at least one row in each class, then the algorithm �nds the true number of classes. As
a conclusion, on Aid, both ĝ = g⋆ and Ẑ ≡Z z⋆ are satis�ed.

Lemma 2 (Concentration inequality for Aid) Under Assumption (I) and if Sg ∈]0, δπ⋆ [ and Sm ∈
]0, δρ⋆ [ for n, d large enough:

P
(
Aid

)
≤ 2n exp

(
−
d

2
min(δπ⋆ − Sg , Sg)

2

)
+ g⋆ (1− π⋆

min)
n

where Aid is the complementary of the event Aid.
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Proof Using an union bound, we �rst obtain:

P
(
Aid

)
≤ P

(
Ag⋆

)
+ P

(
ASg

)
Now we bound from above each of these terms. Again with an union bound:

P
(
Ag⋆

)
= P

 g⋆⋃
k=1

{
Z⋆
+k ̸= 0

}
≤

g⋆∑
k=1

P
({

Z⋆
+k ̸= 0

})

≤
g⋆∑
k=1

P
(
Z⋆
+k = 0

)

≤
g⋆∑
k=1

n∏
i=1

P
(
Z⋆
i,k = 0

)

≤
g⋆∑
k=1

n∏
i=1

(1− π⋆
k)

≤
g⋆∑
k=1

n∏
i=1

(1− π⋆
min)

≤ g⋆ (1− π⋆
min)

n ,

which gives the upper bound of the �rst term. Secondly:

ASg = {2D < Sg < δπ⋆ − 2D}
= {2D < Sg , 2D < δπ⋆ − Sg}

=

{
D <

1

2
min(δπ⋆ − Sg , Sg)

}
.

Denoting t = min(δπ⋆ − Sg , Sg),

P
(
ASg

)
= P

(
D ≥

t

2

)

= P

 g⋆⋃
k=1

⋃
i|z⋆

i,k
=1

{∣∣Xi� − τk
∣∣ ≥ t

2

}
≤

g⋆∑
k=1

∑
i|z⋆

i,k
=1

P
(∣∣Xi� − τk

∣∣ ≥ t

2

)
.

Moreover for all i ∈ {1, . . . , n}, given z⋆i,k = 1, Xi+ has a binomial distribution Bin (d, τk).
The concentration properties of this distribution are then exploited through the Hoe�ding
inequality:

P
(∣∣Xi� − τk

∣∣ ≥ t

2

)
= P

(
|Xi+ − dτk| ≥

dt

2

)
≤ 2e−

1
2
dt2 .

And as a conclusion, the bound of the second term is:

P
(
ASg

)
≤

g⋆∑
k=1

∑
i|z⋆

i,k
=1

2e−
1
2
dt2 = 2ne−

1
2
dt2 .



24 Vincent Brault, Antoine Channarond

With these two lemmas, the following proposition is obtained

Proposition 1 Under Assumption (I) and if Sg ∈]0, δπ⋆ [ and Sm ∈]0, δρ⋆ [ for n, d large

enough:

P
(
Ẑ ̸≡Z z⋆

)
≤ 2n exp

(
−
d

2
min(δπ⋆ − Sg , Sg)

2

)
+ g⋆ (1− π⋆

min)
n .

P
(
Ŵ ̸≡W w⋆

)
≤ 2d exp

(
−
n

2
min(δρ⋆ − Sm, Sm)2

)
+m⋆ (1− ρ⋆min)

d .

Proof Lemma 1 tells that whenever the event Aid is satis�ed, then both true number of row
classes and their true classi�cation are obtained. Lemma 2 provides an upper bound of P

(
Aid

)
.

From these lemmas, it is directly deduced that:

P
(
Ẑ ̸≡Z z⋆

)
≤ P

(
Aid

)
≤ 2n exp

(
−
d

2
min(δπ⋆ − Sg , Sg)

2

)
+ g⋆ (1− π⋆

min)
n ,

which is Proposition 1.

A.2 Concentration inequality on d∞
(
θ̂
sZ ,tW

, θ⋆
)
> t

In this part, the proof of the inequality on d∞
(
θ̂
sZ ,tW

, θ⋆
)
> t is detailled.

Proposition 2 For all t > 0, we have:

P
(
d∞

(
θ̂
sZ ,tW

, θ⋆
)
> t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)

≤ 2g⋆m⋆
[
1− π⋆

minρ
⋆
min

(
1− e−2t2

)]nd
+ 2g⋆e−2nt2 + 2m⋆e−2dt2

The proof consists in obtaining three bounds: one for each parameter. The inequalities on
π and ρ are an application of the Hoe�ding inequality and are similar to [8] for the row class
proportions. To obtain the inequality for α, it is necessary to study the conditional probability,
given the true partition (z⋆,w⋆). Apart from the problem of two asymptotic behaviors, the
proof is similar to [8].

In the sequel, and for ease of reading, we remove the superscripts sZ and tW . Therefore,
for all t > 0:

P
(
d∞

(
θ̂, θ⋆

)
> t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)

= P
(
max

(
∥π̂ − π⋆∥∞ , ∥ρ̂ − ρ⋆∥∞ , ∥α̂ − α⋆∥∞

)
> t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)

≤ P
(
∥π̂ − π⋆∥∞ > t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)
+ P

(
∥ρ̂ − ρ⋆∥∞ > t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)

+P
(
∥α̂ − α⋆∥∞ > t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)

≤
g⋆∑
k=1

P
(
|π̂k − π⋆

k| > t
∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆

)
+

m⋆∑
ℓ=1

P
(
|ρ̂ℓ − ρ⋆ℓ | > t

∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆
)
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+

g⋆∑
k=1

m⋆∑
ℓ=1

P
(
|α̂kℓ − α⋆

kℓ| > t
∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆

)
.

The upper bounds of the �rst and second terms are the same as [8]; only the last term is
di�erent. For α̂kℓ , �rst note that when Ẑ ≡Z z⋆ and Ŵ ≡W w⋆

α̂kℓ = α̃kℓ =
1

z⋆+kw
⋆
+ℓ

∑
(i,j)

∣∣∣z⋆i,kw⋆
j,ℓ

=1

Xij

and given (z⋆,w⋆), the Hoe�ding inequality gives for all t > 0:

P
(
|α̂kℓ − α⋆

kℓ| > t
∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆

)
= P

(
|α̃kℓ − α⋆

kℓ| > t
∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆

)
≤ P (|α̃kℓ − α⋆

kℓ| > t)

≤ EZ⋆,W⋆ [P (|α̃kℓ − α⋆
kℓ| > t|Z⋆,W⋆)]

≤ EZ⋆,W⋆

[
2e−2Z⋆

+kW
⋆
+ℓt

2
]
.

But, as Z⋆
+k =

∑n
i=1 Z

⋆
i,k and W ⋆

+ℓ =
∑d

j=1 W
⋆
jℓ and the variables are independents, the

expectation is:

EZ⋆,W⋆

[
2e−2Z⋆

+kW
⋆
+ℓt

2
]
= 2EZ⋆,W⋆

exp
−2

n∑
i=1

Z⋆
i,k

d∑
j=1

W ⋆
jℓt

2


= 2EZ⋆,W⋆

 n∏
i=1

exp

−2Z⋆
i,k

d∑
j=1

W ⋆
jℓt

2


= 2

n∏
i=1

EZ⋆,W⋆

exp
−2Z⋆

i,k

d∑
j=1

W ⋆
jℓt

2


= 2

n∏
i=1

d∏
j=1

EZ⋆,W⋆

[
exp

(
−2Z⋆

i,kW
⋆
jℓt

2
)]

Since, for all i ∈ {1, . . . , n}, j ∈ {1, . . . , d}, k ∈ {1, . . . , g⋆} and ℓ ∈ {1, . . . ,m⋆}, the variable
Z⋆
i,kW

⋆
jℓ is a Bernoulli of parameter π⋆

kρ
⋆
ℓ , then:

EZ⋆,W⋆

[
exp

(
−2z⋆i,kw

⋆
j,ℓt

2
)]

= π⋆
kρ

⋆
ℓ exp

(
−2× 1× t2

)
+ (1− π⋆

kρ
⋆
ℓ ) exp

(
−2× 0× t2

)
= π⋆

kρ
⋆
ℓ exp

(
−2t2

)
+ 1− π⋆

kρ
⋆
ℓ

= 1− π⋆
kρ

⋆
ℓ

(
1− e−2t2

)
.

Finally, the inequality is:

P
(
|α̂kℓ − α⋆

kℓ| > t
∣∣∣Ẑ ≡Z z⋆,Ŵ ≡W w⋆

)
≤
[
1− π⋆

kρ
⋆
ℓ

(
1− e−2t2

)]nd

≤
[
1− π⋆

minρ
⋆
min

(
1− e−2t2

)]nd

and the result is obtained by the sum on each cluster.
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B Proof of Theorem 2: consistency

The proof is based on Theorem 1, as n → +∞ and d → +∞ and by the assumption (I), the
following limits are obtained for every t > 0:

g⋆ (1− π⋆
min)

n +m⋆ (1− ρ⋆min)
d −→

n,d→+∞
0

and g⋆e−2nt2 +m⋆e−2dt2 −→
n,d→+∞

0.

For the same reasons, as soon as t is positive, 0 < π⋆
minρ

⋆
min

(
1− e−2t2

)
< 1 and

g⋆m⋆
[
1− π⋆

minρ
⋆
min

(
1− e−2t2

)]nd
−→

n,d→+∞
0.

For the last terms, the assumption (TA) gives that

n

log(d)
−→

n,d→+∞
+∞ and

d

log(n)
−→

n,d→+∞
+∞

which results in

ne−
1
2
dδ2π⋆ + de

− 1
2
nδ2ρ⋆ −→

n,d→+∞
0

and, as Sn,d
g tends to zero,

ne−d

(
δπ⋆−S

n,d
g

)2
2 −→

n,d→+∞
0.

Thanks the same Assumption (TA), there exists a positive constant C >
√
2 such that for n

and d large enough

Sn,d
g

√
d

logn
> C =⇒

Sn,d
g√
2

√
d

logn
>

C
√
2
> 1

ne−d
S
n,d
g

2

2 = exp

[
logn− d

Sn,d
g

2

2

]

= exp

logn
1−

(√
d

logn

Sn,d
g√
2

)2


≤ exp

logn
(
1−

C
√
2

)
︸ ︷︷ ︸

<0


−→

n,d→+∞
0.

C Proof of Theorem 3: consistency in the sparse case

First, if π⋆ n,d
min tends to zero (and as g⋆n,d ≤ 1/π⋆ n,d

min ), the series expansion of t 7→ log(1− t)
is used

g⋆n,d
(
1− π⋆ n,d

min

)n
= exp

[
log g⋆n,d + n log

(
1− π⋆ n,d

min

)]
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≤ exp

{
n

[
1

n
log

(
1

π⋆ n,d
min

)
+ log

(
1− π⋆ n,d

min

)]}

≤ exp

{
n

[
−

1

n
log
(
π⋆ n,d
min

)
− π⋆ n,d

min + o
(
π⋆ n,d
min

)]}
≤ exp

{
n
[
−π⋆ n,d

min + o
(
π⋆ n,d
min

)]}
≤ exp

[
−nπ⋆ n,d

min + o
(
nπ⋆ n,d

min

)]

and, by the assumption (MA.2), nπ⋆ n,d
min tends to in�nity and

g⋆n,d
(
1− π⋆ n,d

min

)n
−→

n,d→+∞
0.

For the same reasons, for all t > 0

m⋆n,d
(
1− ρ⋆ n,d

min

)n
−→

n,d→+∞
0

and g⋆m⋆
[
1− π⋆

minρ
⋆
min

(
1− e−2t2

)]nd
−→

n,d→+∞
0.

Moreover, as

g⋆n,de−2nt2 = exp
(
log g⋆n,d − 2nt2

)
≤ exp

{
−n

[
1

n
log
(
π⋆ n,d
min

)
+ 2t2

]}
≤ exp

[
−n2t2 + o (n)

]
.

then
g⋆n,de−2nt2 −→

n,d→+∞
0 and m⋆n,de−2dt2 −→

n,d→+∞
0.

Finally, the assumption (MA.1) implies that there exists a positive constant C > 2 such that
for n and d large enough

δn,d
π⋆

Sn,d
g

> C ⇔ δn,d
π⋆ > Sn,d

g C

⇔ δn,d
π⋆ > Sn,d

g (C − 1) + Sn,d
g

⇔ δn,d
π⋆ − Sn,d

g > Sn,d
g (C − 1)︸ ︷︷ ︸

>1

> Sn,d
g

and, for n and d large enough, min
(
δn,d
π⋆ − Sn,d

g , Sn,d
g

)
is Sn,d

g and the assumptions (I)

and (TA) allow to conclude.

D Supplementary Material

In this supplementary material, additional �gures from the experiments in the section 6 are
presented.
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Fig. 7 Average estimate of the distance d∞
(
θ⋆, θ̂

)
between the true parameters and the

estimated parameters following ε (rows) in the arithmetic case: for each graphic, the threshold
is represented by di�erent symbols (• for S1, ▲ for Sn,d

2 , ■ for Sn,d
3 and + for Sn,d

3 ) and the
size for the number of �nite values used; the number of rows n varies between 40 and 4000
and d is supposed equal n.
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