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Abstract: In this paper, the algorithm Largest Gaps is introduced, for

simultaneously clustering both rows and columns of a matrix to form ho-

mogeneous blocks. The de�nition of clustering is model-based: clusters and

data are generated under the Latent Block Model. In comparison with al-

gorithms designed for this model, the major advantage of the Largest Gaps
algorithm is to cluster using only some marginals of the matrix, the size of

which is much smaller than the whole matrix. The procedure is linear with

respect to the number of entries and thus much faster than the classical

algorithms. It simultaneously selects the number of classes as well, and the

estimation of the parameters is then made very easily once the classi�ca-

tion is obtained. Moreover, the paper proves the procedure to be consistent

under the LBM, and it illustrates the statistical performance with some

numerical experiments.
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1. Introduction

Block clustering methods aim at clustering rows and columns of a matrix si-
multaneously to form homogeneous blocks. There are a lot of applications of
this method: genomics [8, 9], recommendation system [1, 13], archeology [5] or
sociology [7, 11, 14] for example. Among the methods proposed to solve this
question, the Latent Block Model or LBM [6] provides a chessboard structure
induced by the classi�cation of the rows and the classi�cation of the columns.
In this model, we suppose that a population of n observations described with d
binary variables of the same nature is available. Saying that the binary variables
are of the same nature means that it is possible to code them in the same (and
natural) way. This assumption is needed to ensure that decomposing the dataset
in a block structure makes sense.

Given the number of blocks and in order to estimate the parameters, Govaert
and Nadif [6] suggest to use a variational algorithm, Keribin et al. [10] propose
an adaptation of the Stochastic Expectation Maximisation introduced by Celeux
et al. [2] in the mixture case, Keribin et al. [11] studied a bayesian version of
these two algorithms and Wyse and Friel [14] propose a bayesian algorithm
including the estimation of the number of blocks. However, these algorithms
have a complexity in O

(
ndN2

BlockNAlgo
)
with NBlock is the maximal supposed

number of blocks and NAlgo is the number of iterations for each algorithm.
Moreover, the asymptotic behavior of the estimators is not well understood yet
(although there exist some results under stronger conditions, see Celisse et al.
[3], Mariadassou and Matias [12]).

In this article, we propose an adaptation of the Largest Gaps algorithm
introduced by Channarond et al. [4] in the Stochastic Block Model with a
complexity in O(nd) (Section 3) and prove that the estimators of each parameter
are consistent (Section 4) and we illustrate these results on simulated data
(Section 5). For ease of reading, the proofs are made available in the appendices.

2. Notations and model

The Latent Block Model (LBM) is as follows. Let x = (xij)i=1,...,n;j=1,...,d be

the data matrix where xij ∈ {0, 1}.
It is assumed that there exists a partition into g row clusters

z = (zik)i=1,...,n;k=1,...,g and a partition into m column clusters
w = (wj`)j=1,...,d;`=1,...,m. The ziks (resp. wj`s ) are binary indicators of row
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i (resp. column j) belonging to row cluster k (resp. column cluster `), such
that the random variables xij are independent conditionally on z and w with
parametric density ϕ(xij ;αk`)

zikwj` , where αk` is the parameter of the condi-
tional density of the data given zik = 1 and wj` = 1. Thus, the density of x
conditionally on z and w is

f(x|z,w;α) =

n∏
i=1

d∏
j=1

g∏
k=1

m∏
`=1

ϕ(xij ;αk`)
zikwj` =:

∏
i,j,k,`

ϕ(xij ;αk`)
zikwj`

where α = (αk`)k=1,...,g;`=1,...,m. Moreover, it is assumed that the row and
column labels are independent: p(z,w) = p(z)p(w) with p(z) =

∏
i,k π

zik
k and

p(w) =
∏
j,` ρ

wj`
` , where (πk = P(zik = 1), k = 1, . . . , g) and (ρ` = P(wj` =

1), ` = 1, . . . ,m) are the mixing proportions. Hence, the density of x is

f(x;θ) =
∑

(z,w)∈Z×W

p(z;π)p(w;ρ)f(x|z,w;α),

where Z and W denoting the sets of all possible row labels z and column labels
w, and θ = (π,ρ,α), with π = (π1, . . . , πg) and ρ = (ρ1, . . . , ρm). The density
of x can be written as

f(x;θ) =
∑
z,w

∏
i,k

πzikk

∏
j,`

ρ
wj`
`

∏
i,j,k,`

ϕ(xij ;αk`)
zikwj` (2.1)

=
∑
z,w

∏
k

π
z+,k
k

∏
`

ρ
w+,`

`

∏
i,j,k,`

ϕ(xij ;αk`)
zikwj`

where z+,k =
∑n
i=1 zik ( resp. w+,` =

∑d
j=1 wj`) represent the number of rows

(resp. columns) in the class k (resp. `).
The LBM involves a double missing data structure, namely z and w, which

makes the statistical inference more di�cult than for standard mixture models.
Finally, as we study the binary case, we have

ϕ(xij ;α) = xαij (1− xij)
1−α

.

To estimate the parameters, many algorithms exist (for example [6], [11] or
[14]) but these algorithms have a complexity larger than O (ndgmNalgo) where
Nalgo is the number of iterations associated to each algorithm. This makes their
use on large matrices di�cult.

In the Stochastic Block Model (SBM), rows and columns are associated with
the same individuals, which allows to represent a graph, whereas LBM allows
to represent digraphs. Channarond et al. [4] suggested a fast algorithm, called
LG, based on a marginal of the matrix x, the degrees.

3. Algorithm Largest Gaps

Before the introduction of the algorithm Largest Gaps (LG), let us recall the
concept.
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3.1. Concept

Assume that the class of the row i is known (for example, k). In this case, we
have for every j ∈ {1, . . . , d}

P (Xij = 1|zik = 1) =

m∑
`=1

P (Xij = 1|zik = 1, wj` = 1)P (zik = 1|wj` = 1)

=

m∑
`=1

αk`πk =: τk. (3.1)

This equation implies that the sum of the cells of row i, denoted by Xi,+, is
binomially distributed Bin (d, τk) conditionally on zik = 1. Therefore by condi-
tional independences, the distribution of Xi,+ is a mixture of binomial distribu-
tions. It appears that the mixture can be identi�ed if and only if the components
of the vector τ = (τ1, . . . , τg) are distinct. Under this assumption, variables Xi,+

fastly concentrate around the mean associated with their class, and asymptoti-
cally form groups separated by large gaps. The idea consists in identifying those
large gaps and thus the classes.

In their article, Channarond et al. [4] assume that the number Q of classes
is known and partition the population into Q clusters by �nding the Q − 1
largest gaps. In order to choose Q, a model selection procedure could be made
separately and before the classi�cation. Here our alternative algorithm directly
yields both the clusters and the numbers of classes. Instead of selecting the g−1
(resp. m − 1) largest gaps for some g (resp. m), it selects the gaps larger than
a properly chosen threshold the paper provides.

On the middle right picture of Figure 1, an example of histogram of Xi,+ for
a simulated matrix is displayed; the �ve classes can be clearly seen. The middle
left picture of Figure 1 display the corresponding values sorted in ascending
order and the bottom left picture of Figure 1, the jumps between all successive
sorted values.

3.2. Algorithm

The algorithm Largest Gaps is given in Table 1 and a illustration is provided in
Figure 1. In the sequel, the estimators provided by the algorithm are denoted
by ẑ, ŵ and θ̂.

Estimator of θ. In the algorithm 1, the estimator θ̂ of θ? is based on ẑ and
ŵ. π̂k (resp. ρ̂`) is the proportion of class k (resp. `) in the partition ẑ (resp.
ŵ). And the estimator of α̂ is for all (k, `) ∈ {1, . . . , ĝ} × {1, . . . , m̂}:

α̂k` =

∑n
i=1

∑d
j=1 ẑik ŵj`xij

ẑ+k ŵ+`
.
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Input: data matrix x, threshold for row Sg and for column Sm.

// Computation of jumps

for i ∈ {1, . . . , n} do
Computation of Xi� =

xi+
d

.

// O(nd)

Ascending sort of
(
X(1)�, . . . , X(n)�

)
. // O(n logn)

for i ∈ {2, . . . , n} do
Computation of the jumps Gi = X(i)� −X(i−1)�.

// O(n)
// Computation of ĝ
Selection of i1 < . . . < iĝ−1 such that (Gi1 , . . . , Giĝ−1

) are every greater than Sg .

// O(n)
// Computation of ẑ
for i ∈ {(1), . . . , (n)} do

De�nition of ẑ
(i)k

= 1 if and only if (ik−1) < (i) ≤ (ik) with i0 = 0 and iĝ = n.

// O(n)
// Computation of m̂ and ŵ
Do the same on the columns. // O(dn+ d log d)

// Computation of θ̂

for k ∈ {1, . . . , ĝ} do
Computation of π̂k =

ẑ+k
n

.

// O(ĝn)
for ` ∈ {1, . . . , m̂} do

Computation of ρ̂` =
ŵ+`

d
.

// O(m̂d)

Computation of α̂ = (ẑ) Txŵ/
[
π̂k (ρ̂` )

T
]
× nd. // O (nd [ĝ + m̂])

Output: Numbers of classes ĝ and m̂, matrices ẑ and ŵ and parameter θ̂.
Algorithm 1: Algorithm Largest Gaps.
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Figure 1. Top-left: Initial matrix. Top-right: Example of a vector
(
X�(1), . . . , X�(d)

)
.

Middle-left: representation of the vector
(
X�(1), . . . , X�(d)

)
sorted in increasing order. Middle-

right: Histograms of
(
X�(1), . . . , X�(d)

)
. Bottom-left: representation of the vector of jumps

(G2, . . . , Gd) where for all j ∈ {2, . . . , d}, Gj = X�(j) − X�(j−1). Bottom-right: reorganized
matrix.

Remark 3.1. Complexity of the algorithm

As we will see in the section 4, log n is required to be much smaller than d and

log d much smaller than n. In this case, the complexity is O (nd [ĝ + m̂]).
Moreover, we know that

∑n
i=2Gi = 1 and for all k ∈ {1, . . . , ĝ − 1}, Gik > Sg

then, in the worst case, we have ĝ < 1/Sg + 1.
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Conclusion, the complexity is O (nd [1/Sg + 1/Sm]) and, if only the classi�cation
is wanted, the complexity is O (nd).

4. Consistency

This section presents the main result (Theorem 4.2), that is the consistency
of the method. Before stating this theorem, some notations are introduced, in
particular related to the label switching problem, and assumptions are done on
the model parameters and on the algorithm thresholds (Sg, Sm), in order to
ensure consistency of the method.

4.1. Distance on the parameters and the label switching issue

For any two parameters θ = (π,ρ,α) with (g,m) classes and θ′ = (π′,ρ′,α′),
with (g′,m′) classes, we de�ne their distance as follows:

d∞ (y,y′) =

{
max {‖π − π′‖∞ , ‖ρ− ρ′‖∞ , ‖α−α′‖∞} if g = g′, m = m′

+∞ otherwise,

where ‖·‖∞ denotes the norm de�ned for any y ∈ Rg by ‖y‖∞ = max1≤k≤g |yk|.
We assume that two matrices z, z′ ∈ Mn×g ({0, 1}) are equivalent, denoted

z ≡Z z′, if there exists a permutation s ∈ S ({1, . . . , g}) such that for all
(i, k) ∈ {1, . . . , n}×{1, . . . , g}, zi,s(k) = zik. By convention, we assume that two
matrices with di�erent numbers of columns are not equivalent. We introduce
the similar notation ≡W for the matrix w.
For all parameter θ = (π,ρ,α) with (g,m) classes and for all permutions (s, t) ∈
S ({1, . . . , g})×S ({1, . . . ,m}), we denote θs,t = (πs,ρt,αs,t), by:

πs =
(
πs(1), . . . , πs(g)

)
, ρt =

(
ρt(1), . . . , ρt(m)

)
and αs,t =

(
αs(1),t(1), αs(1),t(2), . . . , αs(1),t(m), αs(2),t(1), . . . , αs(g),t(m)

)
.

As classes are de�ned up to a permutation (known as label switching issue),
the distance between two parameters must be calculated after permuting their
coordinates, from the actual label allocation done by the classi�cation algorithm
to the original label allocation of the model. Moreover such a permutation exists
and is unique when the classi�cation is right, that is, when ẑ ≡Z z? (respec-
tively ŵ ≡W w?). This permutation will be thus denoted by sZ (resp. tW)
on the event {ẑ ≡Z z?} (resp. {ŵ ≡W w?}). Thus the consistency of the pa-
rameter estimators amounts to proving that the following quantity vanishes in
probability when (n, d) tends to in�nity:

d∞
(
θ̂
sZ ,tW

,θ?
)
.

Outside of the event {ẑ ≡Z z?} (resp. ŵ ≡W w?), sZ (resp. tW) will be de-
�ned as any arbitrary permutation in S ({1, . . . , ĝ}) (resp. S ({1, . . . , m̂})), the
identity for instance.
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4.2. Assumptions

Assumptions on the model

Notation 4.1. Key parameters

Let us de�ne πmin and ρmin the minimal probabilities of being member of a class:

πmin = min
1≤k≤g?

π?k and ρmin = min
1≤`≤m?

ρ?` .

and the minimal distance between any two conditional expectations of the nor-

malized degrees:

δπ = min
1≤k 6=k′≤g?

|τ?k − τ?k′ | and δρ = min
1≤` 6=`′≤m?

|ξ?` − ξ?`′ |

where τ ? = α?ρ? and ξ? = π?Tα? are the proportions of the binomial distribu-

tions de�ned in Equation (3.1).

Some assumptions on the model are needed to obtain the consistency:
Assumption M.1 Each row class (respectively column class) has a positive

probability to have at least one member:

πmin > 0 and ρmin > 0. (M.1)

Assumption M.2 Conditional expected degrees are all distinct:

δπ > 0 and δρ > 0. (M.2)

The �rst assumption is classical in mixture models: proportions of all classes
are positive. Otherwise, classes with proportion zero would be actually nonexis-
tent. The second one is more original: it ensures the separability of the classes in
the degree distribution. Otherwise, the conditional distributions of the degrees
of at least two classes would be equal and these classes would be concentrated
around the same expected value. Note that the set of parameters such that two
conditional expected degrees are equal has zero-measure. These two assumptions
are another formulation of the su�cient conditions of Keribin et al. [11].

Assumptions on the algorithm

The algorithm has two threshold parameters, (Sg, Sm) which must be properly
chosen to obtain consistency. Two assumption sets will be considered in this
paragraph: both parameters and thresholds �xed (Assumption (AL.1)) or van-
ishing thresholds and �xed parameters (Assumption (AL.2)). They both ensure
consistency but play distinct roles.
Assumption AL.1

(Sg, Sm) �xed and Sg ∈]0, δπ[ and Sm ∈]0, δρ[. (AL.1)
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Assumption AL.2

Sn,dg −→
n,d→+∞

0, Sn,dm −→
n,d→+∞

0,

lim
n,d→+∞

Sn,dg

√
n

log d >
√
2 and lim

n,d→+∞
Sn,dm

√
d

logn >
√
2.

(AL.2)

The �rst one is only theoretical: in practice, it cannot be checked that it is
satis�ed because it would require unknown key parameters of the model δπ and
δρ. This assumption is used essentially to establish intermediate results like non-
asymptotic bounds (Proposition A.1 and Theorem 4.1). On the contrary, the
second one is designed for practical cases (Theorem 4.2). Instead of being �xed,
thresholds are assumed to be vanishing, in order to be small enough asymptot-
ically. More precisely, the assumption provides the admissible convergence rate
of the thresholds to guarantee consistency.

Assumptions on admissible convergence rates when parameters vary

Finally, we also consider varying model parameters, and provide admissible con-
vergence rates in this case for both parameters and thresholds. It thus tells how
robust the consistency is. For example, δπ and δρ are allowed to vanish when
(n, d) tends to in�nity, which makes the classi�cation even harder. Assumption
(MA) gives a range of convergence rates such that the classi�cation is neverthe-
less consistent (stated in Theorem 4.2).
Assumption MA.

Condition on δn,dπ (resp. δn,dρ ):

lim
n,d→+∞

δn,dπ

Sn,dg
> 2, and lim

n,d→+∞

δn,dρ

Sn,dm
> 2.

Conditions on g?n,d, πn,dmin, m
?n,d and ρn,dmin:(

πn,dminρ
n,d
min

)2
min(n, d) −→

n,d→+∞
+∞ and lim

n,d→+∞

(πn,dminρ
n,d
min)

2
min(n,d)

log(g?n,dm?n,d)
> 1.

(MA)

4.3. Consistency of the method with �xed thresholds

This paragraph presents the main theoretical result: a non-asymptotic upper
bound when thresholds (Sg, Sm) are �xed (Assumption (AL.1)), which directly
implies the strong consistency of the method in that case.

Theorem 4.1. Concentration inequality

Under Assumption (AL.1), we have for all t > 0:

P
(
ĝ 6= g? or m̂ 6= m? or ẑ 6≡Z z? or ŵ 6≡W w? or d∞

(
θ̂
sZ ,tW

,θ?
)
> t
)
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≤ 4n exp

(
−d
2
min(δπ − Sg, Sg)2

)
+ 2g? (1− πmin)

n

+4d exp
(
−n
2
min(δρ − Sm, Sm)2

)
+ 2m? (1− ρmin)

d

+2g?m?

[
e−πminρminndt

2

+ 2e−
(πminρmin)2n

8 + 2e−
(πminρmin)2d

8

]
+2g?e−2nt

2

+ 2m?e−2dt
2

.

The proof (in Appendix A.1) is made in two steps, emphasizing the original-
ity of the method in comparison with EM-like algorithms: here the classi�cation
is completely done �rst, and parameters are then estimated afterwards. Thus
an upper bound on classi�cations and selection of class numbers will be �rst
established (Proposition A.1), and secondly an upper bound on the parameter
estimators, given that both classi�cations and class numbers are right (Propo-
sition A.2).

4.4. Main result: consistency of the method

Theorem 4.1 cannot be used in practice: since δπ and δρ are unknown, the
thresholds (Sg, Sm) cannot be chosen properly. Theorem 4.2 provides a proce-
dure to choose the thresholds as functions of (n, d) only. Two assumption sets
are proposed: in the �rst one, model parameters are �xed, and in the second
one, they are allowed to vary with respect to (n, d) in the manner described in
Assumption (MA). See Subsection 4.2 for further comments and details.

Theorem 4.2. Consistency of the method

Under these assumption sets:

• θ is �xed with respect to (n, d) and (M.1), (M.2), (AL.2);
• θ depends on (n, d) and (M.1), (M.2), (AL.2) and (MA);

classi�cations, model selection and estimators are consistent, that is, for all

t > 0:

P
(
ĝ 6= g? or m̂ 6= m? or ẑ 6≡Z z? or ŵ 6≡W w? or d∞

(
θ̂
sZ ,tW

,θ?
)
> t
)

−→
n,d→+∞

0.

Remark 4.1. The assumption (AL.2) of the theorem implies that n/ log d and

d/ log n tend to +∞. Therefore, x is allowed to have an oblong shape.

The proof is available in Appendix B.

5. Simulations

We use an experimental design to illustrate the results of Theorem 4.2. As the
number of row classes (resp. column classes) is the basis of the other estimations,
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this is the only parameter studied in this section. The experimental design is
de�ned with g? = 5 and m? = 4 and the following parameters

α? =


ε ε ε ε

1− ε ε ε ε
1− ε 1− ε ε ε
1− ε 1− ε 1− ε ε
1− ε 1− ε 1− ε 1− ε


with ε ∈ {0.05, 0.1, 0.15, 0.2, 0.25}. For the class proportions, we suppose two
possibilities

• Balanced proportions:

π? =


0.2
0.2
0.2
0.2
0.2

 and ρ? =


0.25
0.25
0.25
0.25


with the following parameters

πmin = 0.2 and δπ = 0.25− 0.5ε.

• Arithmetic proportions:

π? =


0.1
0.15
0.2
0.25
0.3

 and ρ? =


0.1
0.2
0.3
0.4


with the following parameters

πmin = 0.1 and δπ = 0.1− 0.2ε.

The number of rows n and the number of columns d �uctuate between 20 and
4000 by step 20 and for each con�guration, 1000 matrices were simulated. For
the choice of the thresholds, we studied four cases:

1. Constant threshold: S1 = δπ/2.

2. Lower limit threshold: Sn,d2 =
√
2 log n/d+ 10−10.

3. Middle limit threshold: Sn,d3 = 2
√
2 log n/d.

4. Upper limit threshold: Sn,d4 = (log n/d)
1/4

.

Figures 2 and 3 display the proportions of true estimations of g? following the
parameter ε, the number of rows n, the numbers of columns d and the thresholds
used. It appears that the best threshold is S1 = δπ/2 but this threshold can
not be used in practice because of δπ is unknown. For the scalable thresholds,
Sn,d2 =

√
2 log n/d+ 10−10 is the best.
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We can see that the larger the number of rows n, the worse the estimation
and the larger the number of columns d, the better the estimation. In the case
of n = d (case of Channarond et al. [4]), the quality of the estimation increases
with n. πmin has a weak e�ect because it is rare to have an empty class but the
e�ect of δπ is greater.

6. Conclusion

The Largest Gaps algorithm gives a consistent estimation of each parameter of
the Latent Block Model with a complexity much lower than the other existing
algorithms. Moreover, it appears that the substantial part of the complexity is
the computation of the vector (X(1)�, . . . , X(n)�).
However, it appears in the simulations that the estimation of the number of
classes is underestimated and it would be interesting to estimate the class in
row with a mixture model on the variables (X(1)�, . . . , X(n)�); this will be the
subject of a future work. The tricky part will be to deal with the dependences
between these variables.
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Figure 2. Proportions of true estimations of g? following the parameter ε (rows) and the
thresholds used (columns) for the balanced case: for each graphic, the number of rows n and
the number of columns d �uctuate between 20 and 4000 by step 20.
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Figure 3. Proportions of true estimations of g? following the parameter ε (rows) and the
thresholds used (columns) for the arithmetic case: for each graphic, the number of rows n and
the number of columns d �uctuate between 20 and 4000 by step 20.
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Appendix A: Main theoretical results

A.1. Proof of Theorem 4.1

First of all, note that {ẑ ≡Z z?} ⊂ {ĝ = g?} and {ŵ ≡W w?} ⊂ {m̂ = m?},
hence :

P
(
ĝ 6= g? or m̂ 6= m? or ẑ 6≡Z z? or ŵ 6≡W w? or d∞

(
θ̂
sZ ,tW

,θ?
)
> t
)

= P
(
ẑ 6≡Z z? or ŵ 6≡W w? or d∞

(
θ̂
sZ ,tW

,θ?
)
> t
)

= P (ẑ 6≡Z z? or ŵ 6≡W w?)

+P
({
d∞
(
θ̂
sZ ,tW

,θ?
)
> t
}
\ {ẑ 6≡Z z? or ŵ 6≡W w?}

)
= P (ẑ 6≡Z z? or ŵ 6≡W w?)

+P
(
d∞
(
θ̂
sZ ,tW

,θ?
)
> t, ẑ ≡Z z?, ŵ ≡W w?

)
≤ P (ẑ 6≡Z z?) + P (ŵ 6≡W w?)

+P
(
d∞
(
θ̂
sZ ,tW

,θ?
)
> t, ẑ ≡Z z?, ŵ ≡W w?

)
To complete the proof, we then need to bound from above the terms of this

inequality. The two �rst terms are bounded using Proposition A.1, proved in
Appendix A.2, and the last term is bounded with Proposition A.2, proved in
Appendix A.3.

Proposition A.1. Under Assumptions (M.1), (M.2) and (AL.1):

P (ĝ 6= g? or ẑ 6≡Z z?) ≤ 2n exp

(
−d
2
min(δπ − Sg, Sg)2

)
+ g? (1− πmin)

n
.

P (m̂ 6= m? or ŵ 6≡W w?) ≤ 2d exp
(
−n
2
min(δρ − Sm, Sm)2

)
+m? (1− ρmin)

d
.

Proposition A.2. For all t > 0, we have:

P
(
d∞
(
θ̂
sZ ,tW

,θ?
)
> t, ẑ ≡Z z?, ŵ ≡W w?

)
≤ 2g?m?

[
e−πminρminndt

2

+ 2e−
(πminρmin)2n

8 + 2e−
(πminρmin)2d

8

]
+2g?e−2nt

2

+ 2m?e−2dt
2

A.2. Proof of Proposition A.1

Let us �rst de�ne the following events.
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• There is at least one individual in each row class, denoted by

Ag? =

g?⋂
k=1

{
z?+k 6= 0

}
.

• Denoting D the maximal distance between Xi� and the center of the class
of row i:

D = max
1≤k≤g?

sup
1≤i≤n

with z?
i,k

=1

∣∣Xi� − τk
∣∣ ,

we also de�ne:

ASg = {2D < Sg < δπ − 2D} and Aid = Ag? ∩ASg .

Then Proposition A.1 will be a consequence of the two following lemmas:

Lemma A.1.

Aid ⊂ {ĝ = g?} ∩ {ẑ ≡Z z?}

Lemma A.2.

P
(
Aid
)
≤ 2n exp

(
−d
2
min(δπ − Sg, Sg)2

)
+ g? (1− πmin)

n

Lemma A.1 tells that whenever the event Aid is satis�ed, then both true
number of row classes and their true classi�cation are obtained. Lemma A.2
provides an upper bound of P

(
Aid
)
. From these lemmas, it is directly deduced

that:

P ({ĝ 6= g?} ∪ {ẑ 6≡Z z?}) ≤ P
(
Aid
)

≤ 2n exp

(
−d
2
min(δπ − Sg, Sg)2

)
+ g? (1− πmin)

n
,

which is Proposition A.1. Now, let us move on to the proofs of the lemmas.

Proof of Lemma A.1 On the event ASg , for any two rows i 6= i′ ∈ {1, . . . , n},
we have two possibilities:

• Either the rows i and i′ are in the same class k, and then on ASg , we have:∣∣Xi� −Xi′�

∣∣ ≤ ∣∣Xi� − τk
∣∣+ ∣∣Xi′� − τk

∣∣ ≤ 2D < Sg.

• Or row i is in the class k and row i′ in the class k′ 6= k, and on the event
ASg , we have: ∣∣Xi� −Xi′�

∣∣ =
∣∣Xi� − τk′ −

(
Xi′� − τk′

)∣∣
≥

∣∣Xi� − τk′
∣∣− ∣∣Xi′� − τk′

∣∣
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≥
∣∣Xi� − τk′

∣∣−D
≥ |τk − τk′ | −

∣∣Xi� − τk
∣∣−D

≥ δπ − 2D

> Sg.

Therefore, Gi = X(i)�−X(i−1)� is less than Sg if and only if both rows (i− 1)
and (i) are in the same class. On ASg , the algorithm hence �nds the true clas-
si�cation. Moreover, on Ag? , there is at least one row in each class, then the
algorithm �nds the true number of classes. As a conclusion, on Aid, both ĝ = g?

and ẑ ≡Z z? are satis�ed.

Proof of Lemma A.2 Using an union bound, we �rst obtain:

P
(
Aid
)
≤ P

(
Ag?

)
+ P

(
ASg

)
Now we bound from above each of these terms. Again with an union bound:

P
(
Ag?

)
= P

 g?⋃
k=1

{
z?+k 6= 0

}
≤

g?∑
k=1

P
({
z?+k 6= 0

})
=

g?∑
k=1

P
(
z?+k = 0

)
=

g?∑
k=1

n∏
i=1

P
(
z?i,k = 0

)
=

g?∑
k=1

n∏
i=1

(1− πk)

≤
g?∑
k=1

n∏
i=1

(1− πmin)

≤ g? (1− πmin)
n
,

which gives the upper bound of the �rst term. Secondly:

ASg = {2D < Sg < δπ−2D} = {2D < Sg, 2D < δπ−Sg} =
{
D <

1

2
min(δπ − Sg, Sg)

}
.

Denoting t = min(δπ − Sg, Sg),

P
(
ASg

)
= P

(
D ≥ t

2

)
= E

[
P
(
D ≥ t

2

∣∣∣∣ z?)]

= E

P
 g?⋃
k=1

⋃
i|zik=1

{∣∣Xi� − τk
∣∣ ≥ t

2

}∣∣∣∣∣∣ z?


≤ E

 g?∑
k=1

∑
i|zik=1

P
(∣∣Xi� − τk

∣∣ ≥ t

2

∣∣∣∣ z?)
 .
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Moreover for all i ∈ {1, . . . , n}, given z?i,k = 1, Xi,+ has a binomial distri-
bution Bin (d, τk). The concentration properties of this distribution are then
exploited through the Hoe�ding inequality:

P
(∣∣Xi� − τk

∣∣ ≥ t

2

∣∣∣∣ z?) = P
(
|Xi,+ − dτk| ≥

dt

2

∣∣∣∣ z?) ≤ 2e−
1
2dt

2

.

And as a conclusion, the bound of the second term is:

P
(
ASg

)
≤ E

 g?∑
k=1

∑
i|zik=1

2e−
1
2dt

2

 = 2ne−
1
2dt

2

.

A.3. Proof of Proposition A.2

The proof consists in obtaining three bounds: one for each parameter. The in-
equalities on π and ρ are an application of the Hoe�ding inequality and are
similar to Channarond et al. [4] for the row class proportions. To obtain the
inequality for α, it is necessary to study the conditional probability, given the
true partition (z?,w?). Apart from the problem of two asymptotic behaviors,
the proof is similar to Channarond et al. [4].

In the sequel, and for ease of reading, we remove the superscripts sZ and tW .
Therefore, for all t > 0:

P
(
d∞
(
θ̂,θ?

)
> t, ẑ ≡Z z?, ŵ ≡W w?

)
= P (max (‖π̂ − π?‖∞ , ‖ρ̂ − ρ?‖∞ , ‖α̂ −α?‖∞) > t, ẑ ≡Z z?, ŵ ≡W w?)

≤ P (‖π̂ − π?‖∞ > t, ẑ ≡Z z?, ŵ ≡W w?)

+P (‖ρ̂ − ρ?‖∞ > t, ẑ ≡Z z?, ŵ ≡W w?)

+P (‖α̂ −α?‖∞ > t, ẑ ≡Z z?, ŵ ≡W w?)

≤
g?∑
k=1

P (|π̂k − π?k| > t, ẑ ≡Z z?, ŵ ≡W w?)

+

m?∑
`=1

P (|ρ̂` − ρ?` | > t, ẑ ≡Z z?, ŵ ≡W w?)

+

g?∑
k=1

m?∑
`=1

P (|α̂k` − α?k`| > t, ẑ ≡Z z?, ŵ ≡W w?) .

The upper bounds of the �rst and second terms are the same as Channarond
et al. [4]; only the last term is di�erent. For α̂k` , �rst note that when ẑ ≡Z z?

and ŵ ≡W w?

α̂k` = α̃k` =
1

z?+kw
?
+`

∑
(i,j)|z?i,kw?j,`=1

Xij
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and given (z?,w?), the Hoe�ding inequality gives for all t > 0:

P (|α̂k` − α?k`| > t, ẑ ≡Z z?, ŵ ≡W w?) = P (|α̃k` − α?k`| > t, ẑ ≡Z z?, ŵ ≡W w?)

≤ P (|α̃k` − α?k`| > t)

≤ E [P (|α̃k` − α?k`| > t| z?,w?)]

≤ E
[
2e−2z

?
+kw

?
+`t

2
]
.

For every sequence rn,d > 0, we have:

E
[
2e−2z

?
+kw

?
+`t

2
]

= E
[
2e−2z

?
+kw

?
+`t

2

1{|z?+kw?+`−π?kρ?`nd|≤rn,d}

+2 e−2z
?
+kw

?
+`t

2︸ ︷︷ ︸
≤1

1{|z?+kw?+`−π?kρ?`nd|>rn,d}
]

≤ E
[
2e−2z

?
+kw

?
+`t

2

1{−rn,d≤z?+kw?+`−π?kρ?`nd≤rn,d}
]

+2P
(∣∣z?+kw?+` − π?kρ?`nd∣∣ > rn,d

)
≤ E

[
2e−2t

2(π?kρ
?
`nd−rn,d)

]
+ 2P

(∣∣∣∣z?+kw?+`nd
− π?kρ?`

∣∣∣∣ > rn,d
nd

)
≤ 2e

−2t2rn,d
(
πminρminnd

rn,d
−1
)
+ 2P

(∣∣∣∣z?+kw?+`nd
− π?kρ?`

∣∣∣∣ > rn,d
nd

)
.

For the second term, a new decomposition is necessary:

P
(∣∣∣∣z?+kw?+`nd

− π?kρ?`
∣∣∣∣ > rn,d

nd

)
= P

(∣∣∣∣(z?+kn − π?k
)
w?+`
d

+

(
w?+`
d
− ρ?`

)
π?k

∣∣∣∣ > rn,d
nd

)
≤ P

(∣∣∣∣(z?+kn − π?k
)∣∣∣∣ w?+`d >

rn,d
2nd

)
+ P

(∣∣∣∣w?+`d − ρ?`
∣∣∣∣π?k > rn,d

2nd

)
≤ P

(∣∣∣∣(z?+kn − π?k
)∣∣∣∣ > rn,d

2nd

)
+ P

(∣∣∣∣w?+`d − ρ?`
∣∣∣∣ > rn,d

2nd

)
≤ 2 exp

[
−2n

(rn,d
2nd

)2]
+ 2 exp

[
−2d

(rn,d
2nd

)2]
≤ 2 exp

[
−
r2n,d
2nd2

]
+ 2 exp

[
−
r2n,d
2n2d

]
.

Finally, for every sequence rn,d > 0, we have:

P (|α̃k` − α?k`| > t) ≤ 2e
−2t2rn,d

(
πminρminnd

rn,d
−1
)
+ 4e−

r2n,d

2nd2 + 4e−
r2n,d

2n2d .
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As we want the bound to tend to 0 when n and d tend to in�nity, we have the
following condition:

lim
n,d→+∞

πminρminnd

rn,d
> 1,

r2n,d
nd2

−→
n,d→+∞

+∞ and
r2n,d
n2d

−→
n,d→+∞

+∞.

For example, we can take

rn,d =
πminρminnd

2
.

Remark A.1. In fact, every sequence rn,d = Cπminρminnd with C ∈]0, 1[ can
be used and the other results remain equally true but the optimal constant C has

not a closed form ; to do this we take C = 1/2. However, we see that for each

C > 0,

2e
−2t2Cπminρminnd

(
πminρminnd

rn,d
−1
)

= 2e−2t
2πminρminnd(1−C)

= o
(
2e−(Cπminρmin)

2n + 2e−(Cπminρmin)
2d
)
,

the strongest term is 2e−(Cπminρmin)
2n+2e−(Cπminρmin)

2d. Therefore, the optimal

constant Cn,d tends to 1 with n and d.

Appendix B: Proof of Theorem 4.2: consistency

The proof is based on Theorem 4.1, as n → +∞ and d → +∞ and by the
Assumption (M.1), we have on the one hand

g? (1− πmin)
n
+m? (1− ρmin)

d −→
n,d→+∞

0

and on the other hand

g?m?
[
e−πminρminndt

2

+ 2e−
1
8 (πminρmin)

2n + 2e−
1
8 (πminρmin)

2d
]

−→
n,d→+∞

0,

g?e−2nt
2

+m?e−2dt
2

−→
n,d→+∞

0.

By the assumption (M.2), we also have:

ne−
1
8dδ

2
π + de−

1
8nδ

2
ρ −→

n,d→+∞
0.

For the last terms, we use Assumption (AL.2): there exists a positive constant
C >

√
2 such that for n and d large enough

Sn,dg

√
d

log n
> C =⇒

Sn,dg√
2

√
d

log n
>

C√
2
> 1
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ne−d
S
n,d
g

2

2 = exp

[
log n− d

Sn,dg
2

2

]

= exp

log n
1−

(√
d

log n

Sn,dg√
2

)2


≤ exp

log n
(
1− C√

2

)
︸ ︷︷ ︸

<0


−→

n,d→+∞
0.

With the same reasoning and by the remark 4.1, we obtain

ne−d
(δπ−Sn,dg )

2

2 −→
n,d→+∞

0.

That concludes the proof.
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