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Sensibilité de capacité dans les canaux continus

Résumé : Dans ce rapport de recherche, un nouveau cadre basé sur la notion de la sensibilité
de capacité est présenté a�n d'étudier la capacité des canaux point-à-point continus sans mémoire.
La sensibilité de capacité re�ète comment la capacité varie en fonctions des petites perturbations
de l'un des paramètres décrivant le canal, même si l'expression explicite de la capacité n'est pas
connue. Cela inclut les perturbations des contraintes de coût sur la distribution en entrée du
canal ainsi que sur la distribution du canal. Ce cadre est basé sur la continuité de la capacité,
qui est démontrée pour une classe de perturbations des contraintes de coût et la distribution du
canal. La continuité forme ainsi la base pour obtenir les bornes sur la sensibilité de la capacité.
Pour illustrer tout ça, la borne sur sensibilité de la capacité est appliquée a�n d'obtenir des lois
de mise à l'échelle quand le support du bruit additif α-stable est tronqué.

Mots-clés : sensibilité de capacité, canaux point-à-point continus sans mémoire, bruit non
gaussien
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1 Introduction

In a wide class of communication systems, the channel capacity characterizes the cuto� rate
beyond which the probability of error cannot be made arbitrarily close to zero. For the class of
discrete memoryless channels the capacity is now well understood [1]. However, generalizing to
continuous channels has proven non-trivial, with the important exception of the linear additive
white Gaussian noise (AWGN) channel subject to a power constraint [1, Theorem 18].

Due to the di�culty in deriving closed-form expressions for the capacity and the optimal input
distribution of continuous channels, the focus has shifted to determining structural properties
of the optimal input distribution, as well as bounds and numerical methods to compute the
capacity. By adopting this approach, a range of continuous channels have been considered
including: non-linear or non-deterministic input-output relationships; general input constraints;
and non-Gaussian noise. Early work in this direction was initiated by Smith [2] and more
recently, Fahs and Abou-Faycal [3] have proven conditions for the discreteness and compactness
of the optimal input distribution, which applies to a wide range of continuous channels. This
provides a means to numerically compute the capacity, without resorting to the Blahut-Arimoto
algorithm [4, 5].

Despite the progress in characterizing the optimal input distribution, there has been limited
success in obtaining general closed-form characterizations of the capacity. Aside from the theo-
retical interest in such characterizations, it is also problematic for system design in the presence
of non-Gaussian noise or input constraints beyond the power control�a problem for systems
that experience impulsive noise [6, 7] or encode information in the timing of the signal [8].

An alternative approach to characterize the capacity of continuous channels is to focus on the
sensitivity of the capacity, or how the capacity changes when any of the parameters describing the
channel are varied. Along these lines, the e�ect of the input alphabet support has been studied
in [9, 10]. In particular, it was shown that the gap between the capacity of the unit-variance
discrete-input Gaussian memoryless channel converges exponentially fast to the capacity of the
unit-variance continuous-input memoryless AWGN channel. The key to this approach is the
continuity of the capacity with respect to parameters such as the input alphabet support or the
value of the cost constraint.

In this research report, we introduce a general framework to study the capacity sensitivity by
exploiting the theory of stability and sensitivity of optimization problems [11]. As a �rst step,
we identify a large class of memoryless channels where the capacity is continuous with respect to
parameters in the cost constraint or the channel distribution. This class includes channels with
familiar cost constraints such as power and amplitude and Gaussian noise, as well as channels
with many other constraints (including channels with multiple constraints) and non-Gaussian
noise.

An important implication of the continuity of the capacity is that if two channels are �close�,
in a sense that will be clari�ed later, one channel can be used to approximate the capacity of the
other. To this end, we derive new bounds to quantify the capacity sensitivity in two key classes
of perturbations: the constraint cost; and the noise distribution when it is absolutely continuous
with respect to the Lebesgue measure. We illustrate our framework by deriving a scaling law for
the capacity sensitivity in truncated α-stable noise.

The remainder of this paper is organized as follows. Section 2 consists of a formulation of the
capacity sensitivity problem. Sections 3 and 4 specialize the capacity sensitivity to perturbations
of the input constraint and the noise distribution, respectively. Section 5 applies our main results
to characterize the capacity sensitivity in truncated Gaussian and α-stable. Section 6 discusses
challenges of the general capacity sensitivity problem and outlines future directions.

RR n° 9012
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2 The Capacity Sensitivity Problem

We are concerned with real-valued point-to-point memoryless channels. Consider the linear
additive noise channel with output Y of the form

Y = X +N, (1)

where the input X has an alphabet X ⊆ R and the noise N has a distribution function on R,
denoted by FN . In the case the noise has a probability density function on R, it is denoted by
pN . Note that since the channel is linear and additive, when the noise has a probability density
function the channel law can be written as

pY |X(y|x) = pN (y − x). (2)

As a consequence of the noisy channel coding theorem, when the capacity of (1) exists it is
obtained by optimizing the mutual information subject to any constraints on the input X. Let
B(R) be the Borel σ-algebra on R and let P denote the collection of Borel probability measures
on (R,B(R)) equipped with the topology of weak convergence, which is metrized by the Lévy-
Prokhorov metric [12]. The capacity of (1) is then the solution to the optimization problem

sup
µ∈P

I(X;Y )

subject to µ ∈ Λ,
(3)

where Λ is a compact subset of probability measures on (R,B(R)). Key examples of the set Λ
are the p-th order constraints (p > 0), de�ned by

Λp = {µ : Eµ[|X|p] ≤ b}, (4)

where b > 0. Here, the second-order power constraint Eµ[X2] ≤ b, arising in power-limited wired
and wireless communications [1] corresponds to p = 2; and the �rst-order constraint E[|X|] ≤ b,
arising in timing channels [8] corresponds to p = 1.

In the case in which N ∼ N (0, σ2), it is well-known that subject to a power constraint b, the
capacity is given by [1, Theorem 18]

C =
1

2
log

(
1 +

b

σ2

)
. (5)

However, this result is an anomaly: in general, it is not possible to obtain a simple closed-form
representation of the capacity of (1) subject to arbitrary constraints. In fact, even the capacity
of the AWGN channel is not well understood with constraint sets Λp for p 6= 2.

Our focus in this paper is to characterize the capacity sensitivity. In the most general for-
mulation, we can view the capacity as a map from the input alphabet X , the output alphabet
Y, the noise distribution FN , and the constraint set Λ to R+. That is, (X ,Y, FN ,Λ) 7→ C. We
de�ne the capacity sensitivity as follows.

De�nition 1. Let K = (X ,Y, FN ,Λ) and K̂ = (X̂ , Ŷ, F̂N , Λ̂) be two tuples of channel parameters.
The capacity sensitivity due to a perturbation from channel K to the channel K̂ is de�ned as

CK→K̂
∆
= |C(K)− C(K̂)|. (6)

RR n° 9012
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The capacity sensitivity problem is a special case of analyzing the sensitivity of nonlinear
optimization problems, where we identify the capacity as the value function. Clearly, the problem
of computing the capacity sensitivity is trivial when the capacity is available in closed-form (such
as the case of Gaussian noise with a power constraint). However, the problem is signi�cantly more
challenging in the usual situation in which the only explicit characterization of the capacity is
(3) under general channel perturbations. As such, we will focus on two special classes of channel
perturbations: the constraint set Λ and the noise distribution FN .

3 Constraint Perturbations

In this section, we consider the capacity of channels subject to constraints of the form

Λ(b) = {µ : Eµ[fi(|X|)] ≤ bi, i = 1, 2, . . . ,m}, (7)

where µ is an input probability measure, fi : R→ R, i = 1, 2, . . . ,m are positive, non-decreasing
functions with fi(| · |) lower semicontinuous, and bi ∈ R+, i = 1, 2, . . . ,m. Moreover, we assume
that Eµ[fi(|X|)] is weakly continuous for each i = 1, 2, . . . ,m. Note that this class of constraints
includes the constraint sets Λp as special cases whenX is also restricted to have compact support.

In the case of constraints of the form in (7), de�ne the capacity function as

C(b) = sup
µ∈Λ(b)

I(X;Y ), (8)

where b = [b1, . . . , bm]T . We seek to characterize the capacity sensitivity for perturbations of b.
More precisely, let b, b̃ ∈ Rm. Then, the capacity sensitivity for perturbations of b is given by

Cb→b̃ = |C(b)− C(b̃)|. (9)

3.1 Continuity of C(b)

The �rst step to characterizing the capacity sensitivity Cb→b̃ is to establish continuity of C(b).
Consider the following conditions.

(C1) Λ(b) in (7) is non-empty and compact.

(C2) I(X;Y ) is weakly continuous on Λ(b).

Theorem 1. Suppose that conditions (C1) and (C2) hold. Then, C(b) in (8) is continuous at
b.

Proof. See Appendix A.

Observe that Theorem 1 relies on the weak continuity of the mutual information. The mutual
information is weakly continuous for the case of discrete probability measures [13] but not in
general for the continuous case. Despite this, a range of continuous channels have been shown to
satisfy weak continuity; including the Gaussian channel with a power constraint [9]. In particular,
this implies that the capacity C(b) of the Gaussian channel with a power constraint is continuous,
which is clearly consistent with (5). General conditions for the weak continuity of the mutual
information have recently been provided in [14, Theorem 5].

RR n° 9012
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3.2 Characterization of Cb→b̃

We now bound the capacity sensitivity Cb→b̃. By virtue of Theorem 1, C(b) in (8) is continuous.
It then follows that if the directional derivative exists, we can apply the multivariate form of
Taylor's theorem to quantify the e�ect of perturbing b to b̃. More precisely, Taylor's theorem
yields

C(b̃) = C(b) +DdC(b) + o(‖b̃− b‖), (10)

where the direction d is given by d = b̃− b and DdC(b) is the derivative of the capacity C in
(8) in the direction d evaluated at the point b.

Observe that (10) provides a means of obtaining �rst-order estimates of the capacity at a
point b̃ given that the capacity is known at b. Aside from providing a general characterization
of the capacity sensitivity, our approach can also be used to simplify numerical approximations
of the capacity. In particular, suppose that it is challenging to obtain a large number of capacity
points corresponding to di�erent choices of b, then (10) forms a basis for the computation of
piecewise linear approximations.

The problem that remains is to ensure the existence of DdC(b). To this end, recall that the
capacity problem in (8) is convex and consider the dual of the problem in (8), given by

inf
λ≥0

sup
µ∈P

I(X;Y )−
m∑
i=1

λi
(
Eµ[fi(|X|)]− bi

)
, (11)

with Lagrangian

L(µ,λ;b) = I(X;Y )−
m∑
i=1

λi
(
Eµ[fi(|X|)]− bi

)
. (12)

Consider the following condition.

(C3) There exists a unique optimal input probability measure µ∗ for the problem (8).

We then have the following characterization of the directional derivative.

Lemma 1. Let L(b) be the set of Lagrange multipliers λ that optimize (11). Suppose that
conditions (C1)-(C3) hold. Then, the directional derivative DdC(b) exists and is given by

DdC(b) = inf
λ∈L(b)

DdL(µ∗,λ;b)

= inf
λ∈L(b)

m∑
i=1

λidi, (13)

where d = [d1, . . . , dm] and λ = [λ1, . . . , λm]

Proof. See Appendix C.

A bound for the capacity sensitivity with respect to b in (7) then follows immediately by
applying the triangle inequality to (10) and using Lemma 1.

Theorem 2. Suppose the conditions (C1)-(C3) hold. Then, the capacity sensitivity Cb→b̃ is
upper bounded by

|C(b)− C(b̃)| ≤ ‖λ∗‖ ‖b̃− b‖+ |o(‖b̃− b‖)|, (14)

where λ∗ is the Lagrange multiplier that optimizes (13).

RR n° 9012
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4 Noise Distribution Perturbations

In this section, we turn to the capacity sensitivity to perturbations in the noise distribution FN .
Throughout this section, we assume that FN corresponds to an absolutely continuous probability
measure with respect to the Lebesgue measure. Therefore there exists a noise probability density
function pN and the capacity sensitivity to perturbations of pN is denoted by Cp0N→p1N , given by

Cp0N→p1N = |C(p0
N )− C(p1

N )|. (15)

Consider a sequence {piN}∞i=1 with ‖piN − p0
N‖TV → 0. We �rst establish conditions on the

sequence {piN}∞i=1 such that limi→∞ C(piN ) = C(p0
N ). Using this result, we then derive an upper

bound on Cp0N→p1N in terms of ‖p0
N − p1

N‖TV .
Note that the mutual information functional is completely determined by the input probability

measure µ and the noise probability density function pN . As such, we adopt the notation
I(X;Y ) = I(µ, pN ) to make the dependence explicit.

4.1 Convergence of C(piN)

Consider a convergent sequence of probability density functions {pi}∞i=1 in an appropriate sense
(i.e., pointwise, in total variation, in Kullback-Leibler divergence, or weakly) with pi → p. It is
not true in general that the di�erential entropy converges [14, 15]; i.e., limi→∞ h(pi) 6= h(p). As
a consequence, in order to ensure convergence of the mutual information and the capacity in (3)
it is necessary to place restrictions on the sequence of probability density functions {pi}∞i=1 .

In order to prove convergence of C(piN ), it is therefore also necessary to place restrictions on
the sequence of noise probability density functions {piN}∞i=1. The following convergence theorem
is obtained by using the fact that the constraint set Λ is independent of the choice of pN and
applying a variation of Berge's maximum theorem [16].

Theorem 3. Let {piN}∞i=1 be a pointwise convergent sequence with limit p0
N . Let Λ be a compact

set of probability measures not dependent on pN , and {µi}∞i=1 be a weakly convergent sequence of
probability measures in Λ with limit µ0. Suppose the following conditions hold:

(C4) The mutual information I(µ, pN ) is weakly continuous on Λ.

(C5) For the convergent sequence {piN}∞i=1 and all weakly convergent sequences {µi}∞i=1 in Λ,

lim
i→∞

I(µi, p
i
N ) = I(µ0, p

0
N ). (16)

(C6) There exists an optimal input probability measure µ∗i for each noise probability density piN .

Then, limi→∞ C(piN ) = C(p0
N ).

Proof. See Appendix D.

4.2 Characterization of Cp0N→p1N

Theorem 3 provides conditions on the sequence of probability density functions {piN}∞i=1 to ensure
that the capacity C(piN ) converges; however, it does not provide an explicit characterization of
the capacity sensitivity Cp0N→p1N . We address the capacity sensitivity in the following theorem.

Theorem 4. Let {piN}∞i=1 be a convergent sequence in total variation distance of noise probability
density functions with limit p0

N . Suppose that the conditions (C4)-(C6) in Theorem 3 hold.
Further, suppose that the following condition holds:

RR n° 9012
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(C7) Let 0 ≤ θ ≤ 1 and for all piN de�ne

qiN (θ) = (1− θ)p0
N + θpiN . (17)

For each i, suppose there exists Mi <∞ and Ni <∞ such that∣∣∣∣ lim
θ→0+

I(µ∗0, q
i
N )− I(µ∗0, p

0
N )

θ‖p0
N − piN‖TV

∣∣∣∣ = Mi,∣∣∣∣ lim
θ→0+

I(µ∗1, p
0
N )− I(µ∗1, q

i
N )

θ‖p0
N − piN‖TV

∣∣∣∣ = Ni, (18)

M = supiMi <∞ and N = supiNi <∞.

Then for any i ≥ 1,

Cp0N→qiN (θ) ≤ max{M,N}θ‖p0
N − piN‖TV + o(θ). (19)

Proof. See Appendix E.

Observe that Theorem 4 is bounded in terms of the total variation distance ‖p0
N −piN‖TV . In

particular, the theorem implies that Cp0N→piN = O(‖p0
N −piN‖TV ). In contrast with other metrics

on spaces of probability density functions, the total variation distance can often be computed or
bounded. In the following section, we apply Theorem 4 to investigate the e�ect of truncating
symmetric α-stable noise probability density functions via the capacity sensitivity Cp0N→piN .

5 Capacity Sensitivity in α-Stable Noise

In this section, we characterize the capacity sensitivity Cp0N→p1N in the case of truncated α-stable
noise using the results in the previous section. The class of α-stable noise includes Gaussian
noise (α = 2) and Cauchy noise (α = 1) as special cases. More generally, α-stable noise (0 <
α < 2) is often used as a model for impulsive noise and arises in wireless [6] and molecular [17]
communication systems. We focus on the subclass of symmetric α-stable noise with 0 < α < 2,
which has a characteristic function

Φ(t) = e−σ
α|t|α , (20)

where σ > 0 is the scale parameter. In general, symmetric α-stable noise does not have a
closed-form probability density function. As such, the characteristic function plays an important
role.

To proceed, let p0
N be a symmetric α-stable probability density function and pTN be a trun-

cation of level T > 0 of p0
N de�ned by

pTN (x) =

{
p0N (x)
κT

, |x| ≤ T
0, otherwise

(21)

where the normalization constant is given by

κT =

∫
|y|≤T

p0
N (y)dy. (22)

We assume that the constraint set Λ = {µ : Eµ[|X|r] ≤ c} with 0 < r < α.

RR n° 9012
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Our goal is to show that the conditions (C4)-(C7) in Theorem 3 and Theorem 4 hold, which
implies that the capacity converges as ‖p0

N − p1
N‖TV → 0 and the sensitivity is bounded by (19).

Veri�cation of (C4): Observe that the sequence {pnN}∞n=1 converges pointwise and in total
variation distance by the de�nition in (21). Moreover, the constraint set Λ = {µ : Eµ[|X|r] ≤ c}
for 0 < r < α is compact in the topology of weak convergence. For a �xed pnN , by [14, Theorem
2] it follows that I(µ, pnN ) is weakly continuous on Λ.

Veri�cation of (C5): We need to show that for the sequence {pnN} and all weakly convergent
sequences {µn}, we have limn→∞ I(µn, p

n
N ) = I(µ0, p

0
N ). By [14, Theorem 1], since {pnN} con-

verges pointwise to p0
N and has �nite fractional moments it follows that the di�erential entropy

−
∫ ∞
−∞

pnN (x) log pnN (x)dx
n→∞→ −

∫ ∞
−∞

p0
N (x) log p0

N (x)dx. (23)

Let Yn = Xn + Nn, where Xn is a random variable corresponding to the input probability
measure µn and Nn is the noise random variable with probability density function pnN . We now
show that the di�erential entropy h(Yn)→ h(Y0). Since pnN is absolutely continuous for each n,
it follows that

pYn(y) =

∫ ∞
−∞

pnN (y − x)dµn(x). (24)

The characteristic function of Yn, denoted by Φ(Yn), is then given by

ΦYn(t) = ΦXn(t)ΦNn(t), (25)

where ΦXn and ΦNn are the characteristic functions of Xn and Nn, respectively. As µn converges
weakly and pnN converges pointwise, we then have

lim
n→∞

ΦYn(t) = lim
n→∞

ΦXn(t)ΦNn(t)

= ΦX0(t)ΦN0(t) = ΦY0(t). (26)

This implies that Yn converges weakly and hence pYn(y) converges pointwise. Again applying [14,
Theorem 1], it follows that h(Yn) → h(Y0). This completes the proof that limn→∞ I(µn, p

n
N ) =

I(µ0, p
0
N ).

Veri�cation of (C6): By [14, Theorem 2], there exists a unique optimal input probability
measure µ∗n.

As the conditions in Theorem 3 are satis�ed, it follows that limn→∞ C(pnN ) = C(p0
N ). In

other words, the capacity converges as the truncation level T → ∞. One implication of this
result is that numerical approximations of the capacity based on truncations of the support of
symmetric α-stable noise converge as T →∞.

In order to obtain an estimate of the capacity sensitivity CpN0→pN,T , we seek to use Theo-
rem 4. As conditions (C4)-(C6) are satis�ed, all that remains is to show that condition (C7)
also holds, which is veri�ed in Appendix F.

Having shown that conditions (C4)-(C7) hold, we now evaluate the bound in Theorem 4 for
the cases of truncated symmetric α-stable noise. In general, the capacity of symmetric α-stable
noise channels under constraints of the form Eµ[|X|r] ≤ c are not known. To understand the
e�ect of the truncation on the capacity sensitivity, we investigate the asymptotic scaling law
|C(p0

N )− C(pnN )| = O(‖p0
N − pnN‖TV ), which is a consequence of Theorem 4. Observe that∫
|x|≤n

|p0
N (x)− pnN (x)|dx

=

∣∣∣∣1− 1

κn

∣∣∣∣
(

1−
∫
|x|>n

p0
N (x)dx

)
= 1− κn. (27)

RR n° 9012
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Similarly, ∫
|x|>n

|p0
N (x)− pnN (x)|dx =

∫
|x|>n

p0
N (x)dx = 1− κn, (28)

from which it follows that ‖p0
N − pnN‖TV = 1

2 (1− κn) with κn as de�ned in (22).
Now, the asymptotic probability density function tail representation for the symmetric α-

stable random variable N0 corresponding to p0
N , given by [18, Eq. (1.2.10)]

P(N0 > λ) = σαCαλ
−α, (29)

where Cα is a constant only depending on α. As such, 1 − κn = O(n−α). Applying this result
to Theorem 4, then implies that the capacity sensitivity for a truncation level T = n is given by

|C(p0
N )− C(pnN )| = O(n−α). (30)

6 Conclusions

With the important exception of Gaussian point-to-point channels subject to an average power
constraint, there has been limited success in characterizing the capacity of continuous channels.
In this paper, we have approached this problem using a framework based on the new notion
of capacity sensitivity. In particular, we provided general conditions to guarantee continuity of
the capacity with respect to parameters describing the channel. The continuity then formed the
foundations to obtain bounds on the capacity sensitivity. The sensitivity bound was applied to
obtain scaling laws for the capacity when the support is truncated for Gaussian and α-stable
noise distributions.

From a more general perspective, the capacity sensitivity framework provides a new means
of understanding how channel parameters a�ect the capacity. Beyond the perturbations we
have considered, there are many other parameters of the channel that are of interest. Some
of the open questions beyond the scope of this paper include what is the in�uence of more
general perturbations of the constraint set on the capacity? More concretely, how is the capacity
in�uenced by changes from a power constraint to low order fractional moment constraints?
Another open question is whether or not it is possible to obtain closed-form bounds on the
capacity sensitivity for truncated α-stable noise distributions? More generally, is it possible to
characterize the e�ect of perturbing noise distributions of mixed type?
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Appendices

A Proof of Theorem 1

Throughout this appendix, we use the following notation. Let b,b′ ∈ Rm, m ∈ N, then b > b′

implies that bi > b′i for all i = 1, 2, . . . ,m. We now turn to the proof of Theorem 1, which relies
on the following lemma, proven in Appendix B.

Lemma 2. Suppose that Λ(b) is non-empty and denote the strict interior as Ib = {µ :

Eµ[fi(|X|)] < bi, i = 1, 2, . . . ,m}. Further, suppose that I(X;Y ) is weakly continuous, there

exists a b̃ > b such that Λ(b̃) is compact, and the closure of the strict interior cl(Ib) = Λ(b).

Then, the capacity C(b) is continuous at b.

To use Lemma 2, the following are proven: (a) there exists b̃ > b such that Λ(b̃) and (b) the
closure condition cl(Ib) = Λ(b) holds.

We begin by proving (a). Let b̃ ∈ Rm+ . To proceed, we �rst show that Λ(b̃) is compact by

applying Prokhorov's theorem [12]. In particular, we need to show that Λ(b̃) is tight and closed.
Observe that for any ε > 0 and i ∈ {1, 2, . . . ,m}, there exists an ai,ε > 0 such that for all

µ ∈ Λ(b̃),

P(|X| ≥ ai,ε) ≤
Eµ[fi(|X|)]

ai,ε
≤ bi
ai,ε

< ε, (31)

which follows from the Markov inequality and the fact that each fi is a positive, non-decreasing
function. Choose Kε = [−a∗,ε, a∗,ε], where a∗,ε = maxi ai,ε. Hence, Kε is compact on R and

µ(Kε) ≥ 1− ε for all µ ∈ Λ(b̃). Recall that Λ(b̃) is tight if for all probability measures µ ∈ Λ(b̃)
there exists a compact subset Kε of Rm such that µ(Kε) > 1− ε. We have therefore shown that
Λ(b̃) is tight.

To show that Λ(b̃) is closed, let {µn}∞n=1 be a convergent sequence in Λ(b̃) with limit µ0.
Recall that fi(|x|) is lower semicontinuous and bounded from below. By a consequence of the
Portmanteau theorem [12], for each i = 1, 2, . . . ,m we have

Eµ0 [fi(|X|)] =

∫ ∞
−∞

fi(|x|)dµ0

≤ lim inf
n→∞

∫ ∞
−∞

fi(|x|)dµn(x) ≤ bi. (32)

The inequality in (32) means that the convergent sequence {µn}∞n=1 converges to a probability
measure in Λ(b̃). Since the inequality in (32) holds for all i = 1, 2, . . . ,m, it follows that
µ0 ∈ Λ(b̃). As our choice of convergent sequence was arbitrary, it also follows that Λ(b̃) is closed
and hence Λ(b̃) is compact.

Note that since our choice of b̃ was arbitrary, for any given b ∈ Rm+ we can �nd a choice of

b̃ such that b̃ > b and Λ(b̃) is compact, which completes the proof of step (a).
We now prove step (b) to complete the proof. To show that cl(Ib) = Λ(b), we require that

the limit point of any convergent sequence in Ib lies in Λ(b). This follows immediately from
same argument as in (32).
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B Proof of Lemma 2

To prove Lemma 2, we extend the results of Evans and Gould [19] to the case of probability
measures on (R,B(R)) equipped with the topology of weak convergence. The key to the extension
is that fact that the topology of weak convergence is metrized by the Lévy-Prokhorov metric,
denoted by ρ, which means that a similar argument can be applied. To make this report self-
contained, we provide the details of the proof.

De�ne B as the set of points b such that Λ(b) is non-empty. Denote 1
n = [ 1

n , . . . ,
1
n ]T ∈

Rm, n ≥ 1. Further, de�neNε(µ) as an ε-ball centered at µ and let ρ(µ,Λ(b)) = inf µ̂∈Λ(b) ρ(µ, µ̂).

De�nition 2. Suppose b ∈ B and ε > 0. An ε-neighborhood of Λ(b), denoted by ηε(Λ(b)) is
de�ned by

ηε(Λ(b)) = {µ : ρ(µ,Λ(b)) < ε} = ∪µ∈Λ(b)Nε(µ). (33)

The �rst notion of continuity is upper hemicontinuity, which is de�ned as follows.

De�nition 3. Suppose Λ(b) is compact. The point-to-set map Λ is upper hemicontinuous at b
if ∀ε > 0, there exists δ > 0 such that ‖b− b‖ < δ implies that Λ(b) ⊆ ηε(Λ(b)). Equivalently,
Λ is upper hemicontinuous at b if whenever bn ∈ B and bn → b there exists an n0 ∈ N such
that Λ(bn) ⊆ ηε(Λ(b)) for all n > n0.

The second notion of continuity is lower hemicontinuity.

De�nition 4. Suppose Λ(b) is compact. The point-to-set map Λ is lower hemicontinuous at b
if ∀ε > 0, there exists δ > 0 such that ‖b− b‖ < δ implies that Λ(b) ⊆ ηε(Λ(b)). Equivalently,
Λ is lower hemicontinuous at b if whenever b(n) ∈ B and b(n) → b there exists an n0 ∈ N such
that Λ(b) ⊆ ηε(Λ(b(n))) for all n > n0.

It is important to not to confuse upper and lower hemicontinuity of point-to-set maps with
upper and lower semicontinuity of functions. Intuitively, upper hemicontinuity can be viewed
as constraining the size of expansions of the set Λ(b), in the presence of small changes to b.
Conversely, lower hemicontinuity can be viewed as constraining the size of contractions. When
both upper and lower hemicontinuity hold for a map Λ(b) at the point b, the map is said to be
hemicontinuous at b.

We begin the proof of Lemma 2 by showing that Λ(b) is upper hemicontinuous. The following
lemma is instrumental in the proof.

Lemma 3. Suppose Λ(b̃) is compact for some b̃ > b. Then, for each ε > 0 there is a b∗ > b
such that Λ(b∗) ⊆ ηε(Λ(b)).

Proof. Consider the sequence b + 1
n . For n su�ciently large, b + 1

n < b̃ and by the weak

continuity of Eµ[fi(|X|)], Λ(b + 1
n ) is closed and hence compact. Let µn be a point in Λ(b + 1

n )

that is at a maximum distance from Λ(b). Since the terms of the sequence µn eventually lie in
a compact set, there is a convergent sequence µnj → µ0. We then have Eµnj [fi(|X|)] ≤ b + 1

nj

for each i = 1, 2, . . . ,m. Since Eµnj [fi(|X|)] is weakly continuous, Eµnj [fi(|X|)]→ Eµ0 [fi(|X|)],
hence µ0 ∈ Λ(b). For nj su�ciently large, µnj is within ε of µ0 and hence the entire set Λ(b+ 1

nj
)

is within ε of Λ(b). Taking b∗ = b + 1
nj

completes the proof.

We are now state the following theorem.

Theorem 5. The map Λ is upper hemicontinuous at b if and only if there exists b̃ > b such
that Λ(b̃) is compact.
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Proof. By Lemma 3, there exists b∗ > b such that Λ(b∗) ⊆ ηε(Λ(b)). Suppose that there exists
b̃ > b such that Λ(b̃) is compact. Set δ = mini{b∗i − bi} and suppose that b(n) → b. Then,

eventually b
(n)
i < bi + δ, i = 1, 2, . . . ,m which implies that eventually b(n) < b∗. Hence, there

exists n0 ∈ N such that n > n0 implies that

Λ(b(n)) ⊆ Λ(b∗) ⊆ ηε(Λ(b)). (34)

To prove the other direction, suppose that Λ is upper hemicontinuous at b. Consider the
sequence b + 1

n → b. Since Λ is upper hemicontinuous, Λ(b + 1
n ) ⊆ ηε(Λ(b)) for n su�ciently

large and some ηε(Λ(b)) is bounded, there exists b̃ > b such that Λ(b̃) is compact.

We now turn to obtaining conditions under which the point-to-set map Λ is lower hemicon-
tinuous. We �rst require the notion of the δ-shrinkage.

De�nition 5. Suppose Λ(b) is compact and let Λ̂(b) = {µ ∈ Λ(b) : Eµ[fj(|X|)] = bj , for some j}.
Let δ > 0 and de�ne the δ-shrinkage of Λ(b) as

Λδ(b) = {µ ∈ Λ(b) : ρ(µ, Λ̂(b)) ≥ δ}, (35)

where ρ is the Lévy-Prokhorov metric.

To prove lower hemicontinuity of Λ, the �rst step is to obtain a characterization of the sets
ηε(Λ(b(n))).

Lemma 4. Suppose Λ(b) is compact. Ib 6= ∅, cl(Ib) = Λ(b). Then, given ε > 0, there exists

δ > 0 such that Λ(b) ⊆ ηε(Λδ(b)).

Proof. Denote ∂A as the boundary of the set A. Cover Λ̂(b) with a �nite number of ε/4 radius
spheres, each sphere centered on a point in Λ̂(b). Call the j-th sphere Nj . Note that Nj ∩Ib 6= ∅
since cl(Ib) = Λ(b). Let µj ∈ Nj ∩ Ib, δj = ρ(µj , Λ̂(b)), δ = minj δj . Observe that 0 ≤ δ ≤ ε/4.

Now suppose that µ0 ∈ Λ̂(b). Then, µ0 ∈ Nj for some j. Since ρ(µj , Λ̂(b)) = δj ≥ δ,
µj ∈ Λδ(b). Either µj ∈ ∂Λδ(b) or the line from µj to the center of Nj must pierce ∂Λδ(b).
In either case, there exists µ′j ∈ Nj such that µ′j ∈ ∂Λδ(b). Since both µ0 and µ′j are in the

same ε/4-sphere, an ε-sphere about µ′j contains µ0. Since Λδ(b) is closed, ∂Λδ(b) ⊆ Λδ(b) and

it follows that Λ̂(b) ⊆ ηε(∂Λδ(b)) ⊆ ηε(Λδ(b)).
To complete the proof, suppose that µ0 ∈ Ib. If ρ(µ0, Λ̂(b)) ≥ δ, µ0 ∈ Λδ(b), and hence

µ0 ∈ ηε(Λδ(b)). Suppose ρ(µ0, Λ̂(b)) < δ. Then there exists µ̂ ∈ Λ̂(b) such that ρ(µ0, µ̂) < δ.
The point µ̂ must be covered by some Nj , and there is also a µ′j ∈ Nj where µj ∈ ∂Λδ(b). Then,

ρ(µ′j , µ0) ≤ ρ(µ′j , µ̂) + ρ(µ̂, µ0) ≤ ε/2 + δ < ε. It then follows that µ0 ∈ ηε(∂Λδ(b)) ⊆ ηε(Λδ(b))

and hence Ib ⊆ ηε(Λδ(b)).

We now prove conditions under which Λ is lower hemicontinuous.

Theorem 6. Suppose Λb is compact and Ib 6= ∅. Then the mapping Λ is lower hemicontinuous

at b if and only if cl(Ib) = Λ(b).

Proof. Suppose cl(Ib) = Λ(b). By Lemma 4, there exists a δ such that Λ(b) ⊆ ηε(Λδ(b)). De�ne

J1 = {j : Eµ[fj(|X|)] = bj , some µ ∈ Λ(b)}
J2 = {j : Eµ[fj(|X|)] < bj , all µ ∈ Λ(b)}. (36)
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Then, J1 ∪ J2 = {1, 2, . . . ,m}. Consider the convergent sequence b(n) → b with n > 0, and let

Λnj = {µ : Eµ[fj(|X|)] ≤ b(n)
j }.

Consider the case j ∈ J1. Note that Λδ(b) is compact and Λδ(b) ⊆ Ib ⊆ Λ(b). De�ne

b∗j = maxµ∈Λδ(b) Eµ[fj(|X|)]. Since Λδ(b) ⊆ Ib, b∗j < bj . Let Λ∗j = {µ : Eµ[fj(|X|)] ≤ b∗j}. It

then follows that µ ∈ Λδ(b), which implies that Eµ[fj(|X|)] ≤ b∗j for each j ∈ J1, so Λδ(b) ⊆
∩j∈J1Λ∗j . But since b(n) → b, for all n su�ciently large, Λδ(b) ⊆ ∩j∈J1Λnj .

Now consider j ∈ J2 and de�ne b∗j = maxµ∈Λ(b) Eµ[fj(|X|)]. By the de�nition of J2, b
∗
j < bj

for each j ∈ J2 and hence Λ(b) ⊆ ∩j∈J2Λ∗j . Since b
(n) → b, for n su�ciently large bnj > b∗j and

hence Λ∗j ⊆ Λnj for each j ∈ J2. As such, Λδ(b) ⊆ Λ(b) ⊆ ∩j∈J2Λ∗j ⊆ ∩j∈J2Λnj . This means
that

Λδ(b) ⊆ ∩j∈J1∪J2Λnj = Λ(b(n)) (37)

for all n su�ciently large and hence eventually Λ(b) ⊆ ηε(Λ(b(n))) and Λ is lower hemicontinuous
at b.

Conversely, suppose Λ is lower hemicontinuous at b. Clearly, cl(Ib) ⊆ Λ(b). It therefore

remains to show that Λ(b) ⊆ cl(Ib). Let µ ∈ Λ(b). If µ ∈ Ib, then µ ∈ cl(Ib). Suppose µ 6∈ Ib
and select ε > 0. Since Ib 6= ∅, there exists a sequence b − 1

n which eventually lies in B. Since
Λ is lower hemicontinuous at b, Λ(b) ⊆ ηε(Λ(b− 1

n )), n > n0. This means that there exists a

µ′ ∈ Nε(µ), and since µ′ ∈ Λ(b− 1
n ), µ′ is also in Ib. As such, in every neighborhood of µ, there

exists µ′ ∈ Ib, which implies that µ ∈ cl(Ib).

Finally, we require the following theorem from [19].

Theorem 7. If I(X;Y ) is weakly upper semicontinuous and Λ is upper hemicontinuous at b,
then the capacity C in (8) is weakly upper semicontinuous at b. Similarly, if I(X;Y ) is weakly
lower semicontinuous and Λ is lower hemicontinuous at b, then the capacity C in (8) is weakly
lower semicontinuous at b.

The desired result then follows by applying Theorem 5 and Theorem 6 in Theorem 7.

C Proof of Lemma 1

Consider the class of optimization problems denoted by (Pu) in the form

min
x∈X

f(x, u)

subject to x ∈ Φ(u),
(38)

where X is a Banach space and u lies in a metric space U . The constraint set is restricted to
have the �nitely constrained form

Φ(u) = {x : gi(x) ≤ u, i = 1, 2, . . . , q}. (39)

We denote the set of solutions to (Pu) as S(u).
Our proof relies on the following theorem given in [11, Theorem 4.3], which applies to problem

(38).
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Theorem 8. Let u0 ∈ U . Suppose that (i) the problem (Pu0) is convex, (ii) the optimal set S(u0)
is non-empty and compact, (iii) the directional regularity condition holds for all x0 ∈ S(u0), and
(iv) for su�ciently small t > 0 the program (Pu0+td) possesses an o(t)-optimal solution x(t)
such that dist(x(t), S(u0)) → 0 as t → 0+. Then the optimal value function is directionally
di�erentiable at u0 in the unit direction d and

v′(u0, d) = inf
x∈S(u0)

sup
λ∈Λ(u0)

DuL(x, λ, u0)d. (40)

It follows that if we can show that Theorem 8 holds for the capacity optimization problem,
then we obtain the desired result. To proceed, note that the mutual information is a convex
functional of the input probability measure µ and that the constraint set Λ(b) is a convex set,
which ensures that the condition (i) is satis�ed. Moreover, the optimal input probability measure
µ∗ exists and is unique by assumption, which yields condition (ii).

To prove condition (iii), we use the fact that if Slater's condition for the problem (Pu0), then
the directional regularity condition is guaranteed to hold [11, pg. 17]. In our setting, Slater's
condition states that there exists a probability measure µ ∈ Λ(b) such that Eµ[fi(|X|)] < bi, i =
1, 2, . . . ,m. Clearly, Slater's condition holds as each fi is positive and non-decreasing.

Condition (iv) is a consequence of the fact that the constraint perturbations are �nitely con-
strained and [11, Theorem 4.2]. The result then follows from using the identity DdL(µ∗, λ;b) =
∇L(µ∗, λ;b) · d.

D Proof of Theorem 3

We apply the same argument as in the proof of Berge's maximum theorem, restricted to the
sequence {piN}∞i=1. Let Λ∗(piN ) be the set of optimal input distributions corresponding to a
noise probability density function piN . To prove C is continuous at p0

N , consider the sequence
{piN}∞i=1 which converges to p0

N . We wish to show that C(piN ) → C(p0
N ). Observe that C(piN )

has a subsequence C(pikN ) → lim supi→∞ C(piN ). Now pick any µik ∈ Λ∗(pikN ) so that C(pikN ) =

I(µik , p
ik
N ) for each ik. Since Λ∗ is compact valued and upper hemicontinuous at µ∗0, we can �nd

a subsequence of (µ∗ik) that converges to a point µ∗0 in Λ∗(p0
N ). Using condition (C5), then

C(pikN ) = I(µ∗ik , p
ik
N )

ik→∞→ I(µ∗0, p
0
N ) = C(p0

N ) (41)

which proves that C(p0
N ) = lim supi→∞ C(piN ). But the same argument also shows that C(p0

N ) =
lim infi→∞ C(piN ), which completes the proof.

E Proof of Theorem 4

We seek an upper bound on |C(p0
N )− C(p1

N )|. To this end, observe that

C(p0
N )− C(p1

N ) = I(µ∗0, p
0
N )− I(µ∗1, p

1
N )

= I(µ∗0, p
0
N )− I(µ∗0, p

1
N ) + I(µ∗0, p

1
N )− I(µ∗1, p

1
N )

≤ I(µ∗0, p
0
N )− I(µ∗0, p

1
N ), (42)

which follows from the fact that µ∗1 maximizes the mutual information for the noise distribution
p1
N . Similarly,

C(p0
N )− C(p1

N ) = I(µ∗0, p
0
N )− I(µ∗1, p

0
N ) + I(µ∗1, p

0
N )− I(µ∗1, p

1
N )

≥ I(µ∗1, p
0
N )− I(µ∗1, p

1
N ). (43)
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It then follows that

|C(p0
N )− C(p1

N )| ≤ max{|I(µ∗0, p
0
N )− I(µ∗0, p

1
N )|, |I(µ∗1, p

0
N )− I(µ∗1, p

1
N )|}. (44)

Let 0 ≤ θ ≤ 1 and de�ne qiN (θ) = (1− θ)p0
N + θpiN . By hypothesis, we then have for each i,

Mi <∞ and Ni <∞ such that∣∣∣∣ lim
θ→0+

I(µ∗0, q
i
N )− I(µ∗0, p

0
N )

θ‖p0
N − piN‖TV

∣∣∣∣ = Mi,∣∣∣∣ lim
θ→0+

I(µ∗1, p
0
N )− I(µ∗1, q

i
N )

θ‖p0
N − piN‖TV

∣∣∣∣ = Ni, (45)

This implies that

|I(µ∗0, q
i
N )− I(µ∗0, p

0
N )| = Miθ‖p0

N − piN‖TV + o(θ)

|I(µ∗1, p
0
N )− I(µ∗1, q

i
N )| = Niθ‖p0

N − piN‖TV + o(θ). (46)

Since M = supiMi <∞ and N = supiNi <∞, it then follows that for all i

|I(µ∗0, q
i
N )− I(µ∗0, p

0
N )| ≤Mθ‖p0

N − piN‖TV + o(θ)

|I(µ∗1, p
0
N )− I(µ∗1, q

i
N )| ≤ Nθ‖p0

N − piN‖TV + o(θ). (47)

The result then follows by using the above inequalities with (44).

F Veri�cation of (C7) for Truncated α-Stable Noise

We verify that condition (C7) in Theorem 4 holds for the channels in Section 5; namely, truncated
α-stable noise channels subject to a fractional moment constraint Eµ[|X|r] ≤ c with 0 < r < α.
Fix the parameters α, γ and choose the sequence of probability density functions {piN}∞i=1 to be
the sequence of level i truncations de�ned in (20), where p0

N is the probability density function
of symmetric α-stable noise with scale parameter γ.

We proceed in two steps. First, we establish the existence of certain Gâteaux di�erentials
which in turn guarantee Mi and Ni in Theorem 4 are �nite for �xed i. We then prove that
M = supiMi and N = supiNi are �nite.

In this appendix, we denote the output probability density function for Y as pY (y; pN , µ),
where pN is the noise probability density function and µ is the input probability measure.

F.1 Existence of Gâteaux Di�erentials

Fix i ≥ 1 and for 0 ≤ θ ≤ 1 de�ne qiN,θ = (1− θ)p0
N + θpiN . Consider the Gâteaux di�erential

lim
θ→0+

I(µ∗0, q
i
N,θ)− I(µ∗0, p

0
N )

θ
= G1,i. (48)

The �rst step is to show that Gi,1 <∞. By the de�nition of mutual information,

Gi,1 = lim
θ→0+

[
−
∫ ∞
−∞

pY (y; qiN,θ, µ
∗
0) log pY (y; qiN,θ, µ

∗
0)dy +

∫ ∞
−∞

qiN,θ(y) log qiN,θ(y)dy

+

∫ ∞
−∞

pY (y; p0
N , µ

∗
0) log pY (y; p0

N , µ
∗
0)dy −

∫ ∞
−∞

p0
N (y) log p0

N (y)dy

]
. (49)
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Using the fact that the continuity condition in (C5) for the mutual information holds and
L'Hôpital's rule,

Mi = lim
θ→0+

−
[∫ ∞
−∞

pY (y; qiN,θ, µ
∗
0) log pY (y; qN,θ, µ

∗
0)dy −

∫ ∞
−∞

qiN,θ(y) log qiN,θ(y)dy

]′
. (50)

Using the de�nition of the derivative[∫ ∞
−∞

pY (y; qiN,θ, µ
∗
0) log pY (y; qN,θ, µ

∗
0)dy −

∫ ∞
−∞

qiN,θ(y) log qiN,θ(y)dy

]′
= lim
h→0

[∫∞
−∞ pY (y; qiN,θ+h, µ

∗
0) log pY (y; qN,θ+h, µ

∗
0)− qiN,θ+h(y) log qiN,θ+h(y)dy

h

−
∫∞
−∞ pY (y; qiN,θ, µ

∗
0) log pY (y; qN,θ, µ

∗
0)− qiN,θ(y) log qiN,θ(y)dy

h

]
(51)

We now consider the case h → 0+ and note that the case h → 0− can be treated similarly. By
the mean value theorem, there exists a 0 ≤ c(h) ≤ h such that

lim
h→0

[∫∞
−∞ pY (y; qiN,θ+h, µ

∗
0) log pY (y; qN,θ+h, µ

∗
0)− qiN,θ+h(y) log qiN,θ+h(y)dy

h

−
∫∞
−∞ pY (y; qiN,θ, µ

∗
0) log pY (y; qN,θ, µ

∗
0)− qiN,θ(y) log qiN,θ(y)dy

h

]

= lim
h→0+

∫ ∞
−∞

[
pY (y; qiN,θ, µ

∗
0) log pY (y; qN,θ, µ

∗
0)− qiN,θ(y) log qiN,θ(y)

]′
θ+c(h)

dy

= lim
h→0+

∫ ∞
−∞

[(
pY (y; piN , µ

∗
0)− pY (y; p0

N , µ
∗
0)
)

log pY (y; qiN,θ+c(h), µ
∗
0) + pY (y; piN , µ

∗
0)− pY (y; p0

N , µ
∗
0)

−
(
piN (y)− p0

N (y)
)

log qiN,θ+c(h)(y) + piN (y)− p0
N (y)

]
dy

=

∫ ∞
−∞

(
pY (y; piN , µ

∗
0)− pY (y; p0

N , µ
∗
0)
)

log pY (y; qiN,θ, µ
∗
0)−

(
piN (y)− p0

N (y)
)

log qiN,θ(y)dy,

(52)

where the last inequality follows from the dominated convergence theorem. In particular, observe
that

|(pY (y; piN , µ
∗
0)− pY (y; p0

N , µ
∗
0)) log pY (y; qiN,θ+c(h), µ

∗
0)| ≤ (pY (y; piN , µ

∗
0) + pY (y; p0

N , µ
∗
0))| log pY (y; qiN,θ+c(h), µ

∗
0)|.

(53)

We then have

p(y; qiN,θ+c(h), µ
∗
0) = (1− θ − c(h))pY (y; p0

N , µ
∗
0) + (θ + c(h))pY (y; piN , µ

∗
0)

≥ (1− θ − c(h))pY (y; p0
N , µ

∗
0) ≥ 1

2
pY (y; p0

N , µ
∗
0), (54)

whenever θ + c(h) ≤ 1
2 , which holds since θ + c(h) is arbitrarily small. Therefore,

|(pY (y; piN ) + pY (y; p0
N , µ

∗
0))|| log pY (y; qiN,θ+c(h), µ

∗
0)| ≤ −(pY (y; piN , µ

∗
0) + pY (y; p0

N ), µ∗0) log
1

2
pY (y; p0

N , µ
∗
0).

(55)
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Since −
∫∞
−∞ pY (y; p0

N , µ
∗
0) log pY (y; p0

N , µ
∗
0) <∞, it follows that −pY (y; p0

N , µ
∗
0) log pY (y; p0

N , µ
∗
0)

is integrable. This means that we only need to show that −pY (y; piN , µ
∗
0) log pY (y; p0

N , µ
∗
0) is

integrable. To this end, recall that

piN (x) =

{
p0N (x)
κi

, |x| ≤ T
0, otherwise.

(56)

As such,

pY (y; piN , µ
∗
0) =

∫ ∞
−∞

piN (y − x)dµ∗0(x)

=

∫
x:|y−x|≤T

p0
N (y − x)

κi
dµ∗0(x)

≤ 1

κi

∫ ∞
−∞

p0
N (y − x)dµ∗0(x)

=
1

κi
pY (y; p0

N , µ
∗
0). (57)

This implies that

−pY (y; piN , µ
∗
0) log pY (y; p0

N , µ
∗
0) ≤ − 1

κi
pY (y; p0

N , µ
∗
0) log pY (y; p0

N , µ
∗
0), (58)

for y su�ciently large, which in turn means that −pY (y; piN , µ
∗
0) log p(y; p0

N , µ
∗
0) is integrable.

Moreover, observe that a similar argument also guarantees the integrability of −piN (y) log p0
N (y),

which justi�es the interchange of the limit and the integral in (52).
Hence,

G1,i = lim
θ→0+

∫ ∞
−∞

(
pY (y; piN , µ

∗
0)− pY (y; p0

N , µ
∗
0)
)

log pY (y; qiN,θ, µ
∗
0)−

(
piN (y)− p0

N (y)
)

log qiN,θ(y)dy

=

∫ ∞
−∞

(
pY (y; piN , µ

∗
0)− pY (y; p0

N , µ
∗
0)
)

log pY (y; p0
N , µ

∗
0)−

(
piN (y)− p0

N (y)
)

log p0
N (y)dy,

(59)

where the interchange of the limit and the integral again follows from the dominated convergence
theorem.

Since for a �xed i, ‖p0
N − piN‖TV < ∞ it then follows that Mi < ∞. A similar argument

guarantees

G2,i = lim
θ→0+

I(µ∗1, p
0
N )− I(µ∗1, q

i
N )

θ
<∞, (60)

which in turn implies that Ni <∞.

F.2 Finiteness of M and N

The last step is to show that supiMi < ∞ and supiNi < ∞. To do this, we show that
G1,i = O(i−α) and G2,i = O(i−α). We then show that1 ‖p0

N − piN‖TV = Ω(i−α), which yields
the desired result.

1We say that f(x) = Ω(g(x)) if and only if ∃k > 0, c > 0 such that |f(x)| ≥ κ|g(x)|, ∀|x| ≥ c.
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To show that Gk,i = O(i−α), k = 1, 2, we consider the two integrals in (59). Let µ∗k ∈ {µ∗0, µ∗1}
and consider

I1 =

∣∣∣∣∫ ∞
−∞

(pY (y; piN , µ
∗
k)− pY (y; p0

N , µ
∗
k)) log pY (y; p0

N , µ
∗
k)dy

∣∣∣∣
=

∣∣∣∣∫ ∞
−∞

∫ ∞
−∞

(piN (y − x)− p0
N (y − x))dµ∗k(x) log pY (y; p0

N , µ
∗
k)dy

∣∣∣∣
≤
∣∣∣∣ 1

κi
− 1

∣∣∣∣ ∫ ∞
−∞

pY (y; p0
N , µ

∗
k)| log pY (y; p0

N , µ
∗
k)|dy

= O(i−α). (61)

Similarly,

I2 ≤
∣∣∣∣ 1

κi
− 1

∣∣∣∣ ∣∣∣∣∫ ∞
−∞

p0
N (y) log p0

N (y)dy

∣∣∣∣
= O(i−α). (62)

To complete the proof, we show that 1 − κT = Ω(T−α). Indeed, there exists a cl > 0 such
that

1− κT ≥ 2

∫
y>T

cl
y−1−α dy

= 2KαT
−α, (63)

with Kα > 0. This implies that supiMi <∞ and supiNi <∞, as required.
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