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In this research report, a new framework based on the notion of capacity sensitivity is introduced to study the capacity of continuous memoryless point-to-point channels. The capacity sensitivity reects how the capacity changes with small perturbations in any of the parameters describing the channel, even when the capacity is not available in closed-form. This includes perturbations of the cost constraints on the input distribution as well as on the channel distribution.

The framework is based on continuity of the capacity, which is shown for a class of perturbations in the cost constraint and the channel distribution. The continuity then forms the foundation for obtaining bounds on the capacity sensitivity. As an illustration, the capacity sensitivity bound is applied to obtain scaling laws when the support of additive α-stable noise is truncated.

Introduction

In a wide class of communication systems, the channel capacity characterizes the cuto rate beyond which the probability of error cannot be made arbitrarily close to zero. For the class of discrete memoryless channels the capacity is now well understood [START_REF] Shannon | A mathematical theory of communication[END_REF]. However, generalizing to continuous channels has proven non-trivial, with the important exception of the linear additive white Gaussian noise (AWGN) channel subject to a power constraint [START_REF] Shannon | A mathematical theory of communication[END_REF]Theorem 18].

Due to the diculty in deriving closed-form expressions for the capacity and the optimal input distribution of continuous channels, the focus has shifted to determining structural properties of the optimal input distribution, as well as bounds and numerical methods to compute the capacity. By adopting this approach, a range of continuous channels have been considered including: non-linear or non-deterministic input-output relationships; general input constraints; and non-Gaussian noise. Early work in this direction was initiated by Smith [START_REF] Smith | The information capacity of amplitude-and variance-constrained scalar Gaussian channels[END_REF] and more recently, Fahs and Abou-Faycal [START_REF] Fahs | Input constraints and noise density functions: a simple relation for bounded-support and discrete-capacity achieving inputs[END_REF] have proven conditions for the discreteness and compactness of the optimal input distribution, which applies to a wide range of continuous channels. This provides a means to numerically compute the capacity, without resorting to the Blahut-Arimoto algorithm [START_REF] Blahut | Computation of channel capacity and rate-distortion functions[END_REF][START_REF] Arimoto | An algorithm for computing the capacity of arbitrary discrete memoryless channels[END_REF].

Despite the progress in characterizing the optimal input distribution, there has been limited success in obtaining general closed-form characterizations of the capacity. Aside from the theoretical interest in such characterizations, it is also problematic for system design in the presence of non-Gaussian noise or input constraints beyond the power controla problem for systems that experience impulsive noise [START_REF] Pinto | Communication in a Poisson eld of interferers-part II: Channel capacity and interference spectrum[END_REF][START_REF] Egan | Achievable rates for additive isotropic alpha-stable noise channels[END_REF] or encode information in the timing of the signal [START_REF] Srinivas | Molecular communication in uid media: The additive inverse Gaussian noise channel[END_REF].

An alternative approach to characterize the capacity of continuous channels is to focus on the sensitivity of the capacity, or how the capacity changes when any of the parameters describing the channel are varied. Along these lines, the eect of the input alphabet support has been studied in [START_REF] Wu | Functional properties of minimum mean-square error and mutual information[END_REF][START_REF] Wu | The impact of constellation cardinality on Gaussian channel capacity[END_REF]. In particular, it was shown that the gap between the capacity of the unit-variance discrete-input Gaussian memoryless channel converges exponentially fast to the capacity of the unit-variance continuous-input memoryless AWGN channel. The key to this approach is the continuity of the capacity with respect to parameters such as the input alphabet support or the value of the cost constraint.

In this research report, we introduce a general framework to study the capacity sensitivity by exploiting the theory of stability and sensitivity of optimization problems [START_REF] Bonnans | Optimization problems with perturbations: A guided tour[END_REF]. As a rst step, we identify a large class of memoryless channels where the capacity is continuous with respect to parameters in the cost constraint or the channel distribution. This class includes channels with familiar cost constraints such as power and amplitude and Gaussian noise, as well as channels with many other constraints (including channels with multiple constraints) and non-Gaussian noise.

An important implication of the continuity of the capacity is that if two channels are close, in a sense that will be claried later, one channel can be used to approximate the capacity of the other. To this end, we derive new bounds to quantify the capacity sensitivity in two key classes of perturbations: the constraint cost; and the noise distribution when it is absolutely continuous with respect to the Lebesgue measure. We illustrate our framework by deriving a scaling law for the capacity sensitivity in truncated α-stable noise.

The remainder of this paper is organized as follows. Section 2 consists of a formulation of the capacity sensitivity problem. Sections 3 and 4 specialize the capacity sensitivity to perturbations of the input constraint and the noise distribution, respectively. Section 5 applies our main results to characterize the capacity sensitivity in truncated Gaussian and α-stable. Section 6 discusses challenges of the general capacity sensitivity problem and outlines future directions.
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We are concerned with real-valued point-to-point memoryless channels. Consider the linear additive noise channel with output Y of the form

Y = X + N, (1) 
where the input X has an alphabet X ⊆ R and the noise N has a distribution function on R, denoted by F N . In the case the noise has a probability density function on R, it is denoted by p N . Note that since the channel is linear and additive, when the noise has a probability density function the channel law can be written as

p Y |X (y|x) = p N (y -x). (2)
As a consequence of the noisy channel coding theorem, when the capacity of (1) exists it is obtained by optimizing the mutual information subject to any constraints on the input X. Let B(R) be the Borel σ-algebra on R and let P denote the collection of Borel probability measures on (R, B(R)) equipped with the topology of weak convergence, which is metrized by the Lévy-Prokhorov metric [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. The capacity of ( 1) is then the solution to the optimization problem

sup µ∈P I(X; Y ) subject to µ ∈ Λ, (3) 
where Λ is a compact subset of probability measures on (R, B(R)). Key examples of the set Λ are the p-th order constraints (p > 0), dened by

Λ p = {µ : E µ [|X| p ] ≤ b}, (4) 
where b > 0. Here, the second-order power constraint E µ [X 2 ] ≤ b, arising in power-limited wired and wireless communications [START_REF] Shannon | A mathematical theory of communication[END_REF] corresponds to p = 2; and the rst-order constraint E[|X|] ≤ b, arising in timing channels [START_REF] Srinivas | Molecular communication in uid media: The additive inverse Gaussian noise channel[END_REF] corresponds to p = 1.

In the case in which N ∼ N (0, σ 2 ), it is well-known that subject to a power constraint b, the capacity is given by [1, Theorem 18]

C = 1 2 log 1 + b σ 2 . (5) 
However, this result is an anomaly: in general, it is not possible to obtain a simple closed-form representation of the capacity of (1) subject to arbitrary constraints. In fact, even the capacity of the AWGN channel is not well understood with constraint sets Λ p for p = 2.

Our focus in this paper is to characterize the capacity sensitivity. In the most general formulation, we can view the capacity as a map from the input alphabet X , the output alphabet Y, the noise distribution F N , and the constraint set Λ to R + . That is, (X , Y, F N , Λ) → C. We dene the capacity sensitivity as follows. Denition 1. Let K = (X , Y, F N , Λ) and K = ( X , Ŷ, FN , Λ) be two tuples of channel parameters. The capacity sensitivity due to a perturbation from channel K to the channel K is dened as

C K→ K ∆ = |C(K) -C( K)|. (6) 
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The capacity sensitivity problem is a special case of analyzing the sensitivity of nonlinear optimization problems, where we identify the capacity as the value function. Clearly, the problem of computing the capacity sensitivity is trivial when the capacity is available in closed-form (such as the case of Gaussian noise with a power constraint). However, the problem is signicantly more challenging in the usual situation in which the only explicit characterization of the capacity is

(3) under general channel perturbations. As such, we will focus on two special classes of channel perturbations: the constraint set Λ and the noise distribution F N .

Constraint Perturbations

In this section, we consider the capacity of channels subject to constraints of the form

Λ(b) = {µ : E µ [f i (|X|)] ≤ b i , i = 1, 2, . . . , m}, (7) 
where µ is an input probability measure, f i : R → R, i = 1, 2, . . . , m are positive, non-decreasing functions with f i (| • |) lower semicontinuous, and b i ∈ R + , i = 1, 2, . . . , m. Moreover, we assume that E µ [f i (|X|)] is weakly continuous for each i = 1, 2, . . . , m. Note that this class of constraints includes the constraint sets Λ p as special cases when X is also restricted to have compact support.

In the case of constraints of the form in [START_REF] Egan | Achievable rates for additive isotropic alpha-stable noise channels[END_REF], dene the capacity function as 

C(b) = sup µ∈Λ(b) I(X; Y ), (8) 

Continuity of C(b)

The rst step to characterizing the capacity sensitivity C b→ b is to establish continuity of C(b).

Consider the following conditions.

(C1) Λ(b) in ( 7) is non-empty and compact.

(C2) I(X; Y ) is weakly continuous on Λ(b).

Theorem 1. Suppose that conditions (C1) and (C2) hold. Then, C(b) in ( 8) is continuous at b.

Proof. See Appendix A.

Observe that Theorem 1 relies on the weak continuity of the mutual information. The mutual information is weakly continuous for the case of discrete probability measures [START_REF] Rockafellar | Convex Analysis[END_REF] but not in general for the continuous case. Despite this, a range of continuous channels have been shown to satisfy weak continuity; including the Gaussian channel with a power constraint [START_REF] Wu | Functional properties of minimum mean-square error and mutual information[END_REF]. In particular, this implies that the capacity C(b) of the Gaussian channel with a power constraint is continuous, which is clearly consistent with [START_REF] Arimoto | An algorithm for computing the capacity of arbitrary discrete memoryless channels[END_REF]. General conditions for the weak continuity of the mutual information have recently been provided in [START_REF] Fahs | On the niteness of the capacity of continuous channels[END_REF]Theorem 5].
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Characterization of C b→ b

We now bound the capacity sensitivity C b→ b. By virtue of Theorem 1, C(b) in ( 8) is continuous.

It then follows that if the directional derivative exists, we can apply the multivariate form of Taylor's theorem to quantify the eect of perturbing b to b. More precisely, Taylor's theorem yields Observe that [START_REF] Wu | The impact of constellation cardinality on Gaussian channel capacity[END_REF] provides a means of obtaining rst-order estimates of the capacity at a point b given that the capacity is known at b. Aside from providing a general characterization of the capacity sensitivity, our approach can also be used to simplify numerical approximations of the capacity. In particular, suppose that it is challenging to obtain a large number of capacity points corresponding to dierent choices of b, then (10) forms a basis for the computation of piecewise linear approximations.

C( b) = C(b) + D d C(b) + o( b -b ), (10) 
The problem that remains is to ensure the existence of D d C(b). To this end, recall that the capacity problem in ( 8) is convex and consider the dual of the problem in ( 8), given by

inf λ≥0 sup µ∈P I(X; Y ) - m i=1 λ i E µ [f i (|X|)] -b i , (11) 
with Lagrangian

L(µ, λ; b) = I(X; Y ) - m i=1 λ i E µ [f i (|X|)] -b i . (12) 
Consider the following condition.

(C3) There exists a unique optimal input probability measure µ * for the problem [START_REF] Srinivas | Molecular communication in uid media: The additive inverse Gaussian noise channel[END_REF].

We then have the following characterization of the directional derivative.

Lemma 1. Let L(b) be the set of Lagrange multipliers λ that optimize [START_REF] Bonnans | Optimization problems with perturbations: A guided tour[END_REF]. Suppose that conditions (C1)-(C3) hold. Then, the directional derivative D d C(b) exists and is given by

D d C(b) = inf λ∈L(b) D d L(µ * , λ; b) = inf λ∈L(b) m i=1 λ i d i , (13) 
where

d = [d 1 , . . . , d m ] and λ = [λ 1 , . . . , λ m ] Proof. See Appendix C.
A bound for the capacity sensitivity with respect to b in [START_REF] Egan | Achievable rates for additive isotropic alpha-stable noise channels[END_REF] then follows immediately by applying the triangle inequality to (10) and using Lemma 1.

Theorem 2. Suppose the conditions (C1)-(C3) hold. Then, the capacity sensitivity C b→ b is upper bounded by

|C(b) -C( b)| ≤ λ * b -b + |o( b -b )|, (14) 
where λ * is the Lagrange multiplier that optimizes [START_REF] Rockafellar | Convex Analysis[END_REF].
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In this section, we turn to the capacity sensitivity to perturbations in the noise distribution F N . Throughout this section, we assume that F N corresponds to an absolutely continuous probability measure with respect to the Lebesgue measure. Therefore there exists a noise probability density function p N and the capacity sensitivity to perturbations of p N is denoted by C p 0

N →p 1 N , given by C p 0 N →p 1 N = |C(p 0 N ) -C(p 1 N )|. ( 15 
) Consider a sequence {p i N } ∞ i=1 with p i N -p 0 N T V → 0. We rst establish conditions on the sequence {p i N } ∞ i=1 such that lim i→∞ C(p i N ) = C(p 0 N ).
Using this result, we then derive an upper bound on C p 0

N →p 1 N in terms of p 0 N -p 1 N T V .
Note that the mutual information functional is completely determined by the input probability measure µ and the noise probability density function p N . As such, we adopt the notation I(X; Y ) = I(µ, p N ) to make the dependence explicit.

Convergence of C(p i N )

Consider a convergent sequence of probability density functions {p i } ∞ i=1 in an appropriate sense (i.e., pointwise, in total variation, in Kullback-Leibler divergence, or weakly) with p i → p. It is not true in general that the dierential entropy converges [START_REF] Fahs | On the niteness of the capacity of continuous channels[END_REF][START_REF] Silva | On convergence properties of Shannon entropy[END_REF]; i.e., lim i→∞ h(p i ) = h(p). As a consequence, in order to ensure convergence of the mutual information and the capacity in [START_REF] Fahs | Input constraints and noise density functions: a simple relation for bounded-support and discrete-capacity achieving inputs[END_REF] it is necessary to place restrictions on the sequence of probability density functions {p i } ∞ i=1 .

In order to prove convergence of C(p i N ), it is therefore also necessary to place restrictions on the sequence of noise probability density functions {p i N } ∞ i=1 . The following convergence theorem is obtained by using the fact that the constraint set Λ is independent of the choice of p N and applying a variation of Berge's maximum theorem [START_REF] Ok | Real Analysis with Economic Applications[END_REF].

Theorem 3. Let {p i N } ∞
i=1 be a pointwise convergent sequence with limit p 0 N . Let Λ be a compact set of probability measures not dependent on p N , and {µ i } ∞ i=1 be a weakly convergent sequence of probability measures in Λ with limit µ 0 . Suppose the following conditions hold: (C4) The mutual information I(µ, p N ) is weakly continuous on Λ.

(C5) For the convergent sequence {p i N } ∞ i=1 and all weakly convergent sequences

{µ i } ∞ i=1 in Λ, lim i→∞ I(µ i , p i N ) = I(µ 0 , p 0 N ). (16) 
(C6) There exists an optimal input probability measure µ * i for each noise probability density

p i N . Then, lim i→∞ C(p i N ) = C(p 0 N ).
Proof. See Appendix D. . We address the capacity sensitivity in the following theorem. Theorem 4. Let {p i N } ∞ i=1 be a convergent sequence in total variation distance of noise probability density functions with limit p 0 N . Suppose that the conditions (C4)-(C6) in Theorem 3 hold. Further, suppose that the following condition holds: RR n°9012 (C7) Let 0 ≤ θ ≤ 1 and for all p i N dene

q i N (θ) = (1 -θ)p 0 N + θp i N . (17) 
For each i, suppose there exists M i < ∞ and N i < ∞ such that

lim θ→0 + I(µ * 0 , q i N ) -I(µ * 0 , p 0 N ) θ p 0 N -p i N T V = M i , lim θ→0 + I(µ * 1 , p 0 N ) -I(µ * 1 , q i N ) θ p 0 N -p i N T V = N i , (18) 
M = sup i M i < ∞ and N = sup i N i < ∞. Then for any i ≥ 1, C p 0 N →q i N (θ) ≤ max{M, N }θ p 0 N -p i N T V + o(θ). (19) 
Proof. See Appendix E.

Observe that Theorem 4 is bounded in terms of the total variation distance p 0 N -p i N T V . In particular, the theorem implies that C p 0

N →p i N = O( p 0 N -p i N T V ).
In contrast with other metrics on spaces of probability density functions, the total variation distance can often be computed or bounded. In the following section, we apply Theorem 4 to investigate the eect of truncating symmetric α-stable noise probability density functions via the capacity sensitivity C p 0

N →p i N .
5 Capacity Sensitivity in α-Stable Noise

In this section, we characterize the capacity sensitivity C p 0 N →p 1 N in the case of truncated α-stable noise using the results in the previous section. The class of α-stable noise includes Gaussian noise (α = 2) and Cauchy noise (α = 1) as special cases. More generally, α-stable noise (0 < α < 2) is often used as a model for impulsive noise and arises in wireless [START_REF] Pinto | Communication in a Poisson eld of interferers-part II: Channel capacity and interference spectrum[END_REF] and molecular [START_REF] Farsad | Stable distributions as noise models for molecular communication[END_REF] communication systems. We focus on the subclass of symmetric α-stable noise with 0 < α < 2, which has a characteristic function

Φ(t) = e -σ α |t| α , (20) 
where σ > 0 is the scale parameter. In general, symmetric α-stable noise does not have a closed-form probability density function. As such, the characteristic function plays an important role.

To proceed, let p 0 N be a symmetric α-stable probability density function and p T N be a trun-

cation of level T > 0 of p 0 N dened by p T N (x) = p 0 N (x) κ T , |x| ≤ T 0, otherwise (21) 
where the normalization constant is given by

κ T = |y|≤T p 0 N (y)dy. ( 22 
)
We assume that the constraint set Λ = {µ : E µ [|X| r ] ≤ c} with 0 < r < α.
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Our goal is to show that the conditions (C4)-(C7) in Theorem 3 and Theorem 4 hold, which implies that the capacity converges as p 0 N -p 1 N T V → 0 and the sensitivity is bounded by [START_REF] Evans | Stability in nonlinear programming[END_REF].

Verication of (C4): Observe that the sequence {p n N } ∞ n=1 converges pointwise and in total variation distance by the denition in (21). Moreover, the constraint set Λ = {µ : E µ [|X| r ] ≤ c} for 0 < r < α is compact in the topology of weak convergence. For a xed p n N , by [14, Theorem 2] it follows that I(µ, p n N ) is weakly continuous on Λ.

Verication of (C5): We need to show that for the sequence {p n N } and all weakly convergent sequences {µ n }, we have lim n→∞ I(µ n , p n N ) = I(µ 0 , p 0 N ). By [14, Theorem 1], since {p n N } converges pointwise to p 0 N and has nite fractional moments it follows that the dierential entropy 

- ∞ -∞ p n N (x) log p n N (x)dx n→∞ → - ∞ -∞ p 0 N (x) log p 0 N (x)dx. (23) Let Y n = X n + N n ,
p Yn (y) = ∞ -∞ p n N (y -x)dµ n (x). (24) 
The characteristic function of Y n , denoted by Φ(Y n ), is then given by

Φ Yn (t) = Φ Xn (t)Φ Nn (t), (25) 
where Φ Xn and Φ Nn are the characteristic functions of X n and N n , respectively. As µ n converges weakly and p n N converges pointwise, we then have

lim n→∞ Φ Yn (t) = lim n→∞ Φ Xn (t)Φ Nn (t) = Φ X0 (t)Φ N0 (t) = Φ Y0 (t). (26) 
This implies that Y n converges weakly and hence p Yn (y) converges pointwise. Again applying [14, Theorem 1], it follows that h(Y n ) → h(Y 0 ). This completes the proof that lim n→∞ I(µ n , p n N ) = I(µ 0 , p 0 N ).

Verication of (C6): By [14, Theorem 2], there exists a unique optimal input probability measure µ * n .

As the conditions in Theorem 3 are satised, it follows that lim n→∞ C(p n N ) = C(p 0 N ). In other words, the capacity converges as the truncation level T → ∞. One implication of this result is that numerical approximations of the capacity based on truncations of the support of symmetric α-stable noise converge as T → ∞.

In order to obtain an estimate of the capacity sensitivity C p N 0 →p N,T , we seek to use Theorem 4. As conditions (C4)-(C6) are satised, all that remains is to show that condition (C7) also holds, which is veried in Appendix F.

Having shown that conditions (C4)-(C7) hold, we now evaluate the bound in Theorem 4 for the cases of truncated symmetric α-stable noise. In general, the capacity of symmetric α-stable noise channels under constraints of the form E µ [|X| r ] ≤ c are not known. To understand the eect of the truncation on the capacity sensitivity, we investigate the asymptotic scaling law

|C(p 0 N ) -C(p n N )| = O( p 0 N -p n N T V ), which is a consequence of Theorem 4. Observe that |x|≤n |p 0 N (x) -p n N (x)|dx = 1 - 1 κ n 1 - |x|>n p 0 N (x)dx = 1 -κ n . (27) 
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Similarly,

|x|>n |p 0 N (x) -p n N (x)|dx = |x|>n p 0 N (x)dx = 1 -κ n , (28) 
from which it follows that p 0 N -p n N T V = 1 2 (1 -κ n ) with κ n as dened in ( 22). Now, the asymptotic probability density function tail representation for the symmetric αstable random variable N 0 corresponding to p 0 N , given by [18, Eq. (1.2.10)]

P(N 0 > λ) = σ α C α λ -α , ( 29 
)
where C α is a constant only depending on α. As such, 1 -κ n = O(n -α ). Applying this result to Theorem 4, then implies that the capacity sensitivity for a truncation level T = n is given by

|C(p 0 N ) -C(p n N )| = O(n -α ). ( 30 
)
6 Conclusions

With the important exception of Gaussian point-to-point channels subject to an average power constraint, there has been limited success in characterizing the capacity of continuous channels.

In this paper, we have approached this problem using a framework based on the new notion of capacity sensitivity. In particular, we provided general conditions to guarantee continuity of the capacity with respect to parameters describing the channel. The continuity then formed the foundations to obtain bounds on the capacity sensitivity. The sensitivity bound was applied to obtain scaling laws for the capacity when the support is truncated for Gaussian and α-stable Lemma 2. Suppose that Λ(b) is non-empty and denote the strict interior as We begin by proving (a). Let b ∈ R m + . To proceed, we rst show that Λ( b) is compact by applying Prokhorov's theorem [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. In particular, we need to show that Λ( b) is tight and closed.

I b = {µ : E µ [f i (|X|)] < b i , i = 1,
Observe that for any > 0 and i ∈ {1, 2, . . . , m}, there exists an a i, > 0 such that for all µ ∈ Λ( b),

P(|X| ≥ a i, ) ≤ E µ [f i (|X|)] a i, ≤ b i a i, < , (31) 
which follows from the Markov inequality and the fact that each f i is a positive, non-decreasing function. Choose K = [-a * , , a * , ], where a * , = max i a i, . Hence, K is compact on R and µ(K ) ≥ 1for all µ ∈ Λ( b). Recall that Λ( b) is tight if for all probability measures µ ∈ Λ( b) there exists a compact subset K of R m such that µ(K ) > 1 -. We have therefore shown that Λ( b) is tight.

To show that Λ( b) is closed, let {µ n } ∞ n=1 be a convergent sequence in Λ( b) with limit µ 0 . Recall that f i (|x|) is lower semicontinuous and bounded from below. By a consequence of the Portmanteau theorem [START_REF] Billingsley | Convergence of Probability Measures[END_REF], for each i = 1, 2, . . . , m we have

E µ0 [f i (|X|)] = ∞ -∞ f i (|x|)dµ 0 ≤ lim inf n→∞ ∞ -∞ f i (|x|)dµ n (x) ≤ b i . (32)
The inequality in (32) means that the convergent sequence {µ n } ∞ n=1 converges to a probability measure in Λ( b). Since the inequality in (32) holds for all i = 1, 2, . . . , m, it follows that µ 0 ∈ Λ( b). As our choice of convergent sequence was arbitrary, it also follows that Λ( b) is closed and hence Λ( b) is compact.

Note that since our choice of b was arbitrary, for any given b ∈ R m + we can nd a choice of b such that b > b and Λ( b) is compact, which completes the proof of step (a).

We now prove step (b) to complete the proof. To show that cl(I b ) = Λ(b), we require that the limit point of any convergent sequence in I b lies in Λ(b). This follows immediately from same argument as in (32).
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To prove Lemma 2, we extend the results of Evans and Gould [START_REF] Evans | Stability in nonlinear programming[END_REF] to the case of probability measures on (R, B(R)) equipped with the topology of weak convergence. The key to the extension is that fact that the topology of weak convergence is metrized by the Lévy-Prokhorov metric, denoted by ρ, which means that a similar argument can be applied. To make this report selfcontained, we provide the details of the proof. Dene B as the set of points b such that Λ(b) is non-empty. Denote

1 n = [ 1 n , . . . , 1 n ] T ∈ R m , n ≥ 1. Further, dene N (µ) as an -ball centered at µ and let ρ(µ, Λ(b)) = inf μ∈Λ(b) ρ(µ, μ).
Denition 2. Suppose b ∈ B and > 0. An -neighborhood of Λ(b), denoted by η (Λ(b)) is dened by

η (Λ(b)) = {µ : ρ(µ, Λ(b)) < } = ∪ µ∈Λ(b) N (µ). (33) 
The rst notion of continuity is upper hemicontinuity, which is dened as follows. ) that is at a maximum distance from Λ(b). Since the terms of the sequence µ n eventually lie in a compact set, there is a convergent sequence µ nj → µ 0 . We then have

Denition 3. Suppose Λ(b) is compact. The point-to-set map Λ is upper hemicontinuous at b if ∀ > 0, there exists δ > 0 such that b -b < δ implies that Λ(b) ⊆ η (Λ(b)).
E µn j [f i (|X|)] ≤ b + 1 nj for each i = 1, 2, . . . , m. Since E µn j [f i (|X|)] is weakly continuous, E µn j [f i (|X|)] → E µ0 [f i (|X|)],
hence µ 0 ∈ Λ(b). For n j suciently large, µ nj is within of µ 0 and hence the entire set Λ(b+ We are now state the following theorem.

Theorem 5. The map Λ is upper hemicontinuous at b if and only if there exists b > b such that Λ( b) is compact.

Then, J 1 ∪ J 2 = {1, 2, . . . , m}. Consider the convergent sequence b (n) → b with n > 0, and let 

Λ nj = {µ : E µ [f j (|X|)] ≤ b (n) j }. Consider the case j ∈ J 1 . Note that Λ δ (b) is compact and Λ δ (b) ⊆ I b ⊆ Λ(b). Dene b * j = max µ∈Λ δ (b) E µ [f j (|X|)]. Since Λ δ (b) ⊆ I b , b * j < b j . Let Λ * j = {µ : E µ [f j (|X|)] ≤ b * j }. It then follows that µ ∈ Λ δ (b), which implies that E µ [f j (|X|)] ≤ b * j for each j ∈ J 1 , so Λ δ (b) ⊆ ∩ j∈J1 Λ * j . But since b (n) → b,
Λ * j ⊆ Λ nj for each j ∈ J 2 . As such, Λ δ (b) ⊆ Λ(b) ⊆ ∩ j∈J2 Λ * j ⊆ ∩ j∈J2 Λ nj . This means that Λ δ (b) ⊆ ∩ j∈J1∪J2 Λ nj = Λ(b (n) ) (37 

C Proof of Lemma 1

Consider the class of optimization problems denoted by (P u ) in the form

min x∈X f (x, u) subject to x ∈ Φ(u), ( 38 
)
where X is a Banach space and u lies in a metric space U . The constraint set is restricted to have the nitely constrained form

Φ(u) = {x : g i (x) ≤ u, i = 1, 2, . . . , q}. (39) 
We denote the set of solutions to (P u ) as S(u).

Our proof relies on the following theorem given in [START_REF] Bonnans | Optimization problems with perturbations: A guided tour[END_REF]Theorem 4.3], which applies to problem (38).
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Theorem 8. Let u 0 ∈ U . Suppose that (i) the problem (P u 0 ) is convex, (ii) the optimal set S(u 0 ) is non-empty and compact, (iii) the directional regularity condition holds for all x 0 ∈ S(u 0 ), and (iv) for suciently small t > 0 the program (P u 0 +td ) possesses an o(t)-optimal solution x(t) such that dist(x(t), S(u 0 )) → 0 as t → 0 + . Then the optimal value function is directionally dierentiable at u 0 in the unit direction d and

v (u 0 , d) = inf x∈S(u 0 ) sup λ∈Λ(u 0 ) D u L(x, λ, u 0 )d. (40) 
It follows that if we can show that Theorem 8 holds for the capacity optimization problem, then we obtain the desired result. To proceed, note that the mutual information is a convex functional of the input probability measure µ and that the constraint set Λ(b) is a convex set, which ensures that the condition (i) is satised. Moreover, the optimal input probability measure µ * exists and is unique by assumption, which yields condition (ii).

To prove condition (iii), we use the fact that if Slater's condition for the problem (P u 0 ), then the directional regularity condition is guaranteed to hold [11, pg. 17 

D Proof of Theorem 3

We apply the same argument as in the proof of Berge's maximum theorem, restricted to the sequence {p i N } ∞ i=1 . Let Λ * (p i N ) be the set of optimal input distributions corresponding to a noise probability density function p i N . To prove C is continuous at p 0 N , consider the sequence {p i N } ∞ i=1 which converges to p 0 N . We wish to show that C(p i N ) → C(p 0 N ). Observe that C(p i N ) has a subsequence C(p i k N ) → lim sup i→∞ C(p i N ). Now pick any µ i k ∈ Λ * (p i k N ) so that C(p i k N ) = I(µ i k , p i k N ) for each i k . Since Λ * is compact valued and upper hemicontinuous at µ * 0 , we can nd a subsequence of (µ * i k ) that converges to a point µ * 0 in Λ * (p 0 N ). Using condition (C5), then (61)

C(p i k N ) = I(µ * i k , p i k N ) i k →∞ → I(µ * 0 , p 0 N ) = C(p 0 N ) (41 
Similarly,

I 2 ≤ 1 κ i -1 ∞ -∞
p 0 N (y) log p 0 N (y)dy = O(i -α ).

(62)

To complete the proof, we show that 1 -κ T = Ω(T -α ). Indeed, there exists a c l > 0 such that

1 -κ T ≥ 2 y>T c l y -1-α dy = 2K α T -α , (63) 
with K α > 0. This implies that sup i M i < ∞ and sup i N i < ∞, as required.
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where b = [b 1

 1 , . . . , b m ] T . We seek to characterize the capacity sensitivity for perturbations of b. More precisely, let b, b ∈ R m . Then, the capacity sensitivity for perturbations of b is given by C b→ b = |C(b) -C( b)|.

  where the direction d is given by d = bb and D d C(b) is the derivative of the capacity C in (8) in the direction d evaluated at the point b.

4. 2 1 N

 21 Characterization of C p 0 N →p Theorem 3 provides conditions on the sequence of probability density functions {p i N } ∞ i=1 to ensure that the capacity C(p i N ) converges; however, it does not provide an explicit characterization of the capacity sensitivity C p 0 N →p 1 N

  general perspective, the capacity sensitivity framework provides a new means of understanding how channel parameters aect the capacity. Beyond the perturbations we have considered, there are many other parameters of the channel that are of interest. Some of the open questions beyond the scope of this paper include what is the inuence of more general perturbations of the constraint set on the capacity? More concretely, how is the capacity inuenced by changes from a power constraint to low order fractional moment constraints? Another open question is whether or not it is possible to obtain closed-form bounds on the capacity sensitivity for truncated α-stable noise distributions? More generally, is it possible to characterize the eect of perturbing noise distributions of mixed type? RR n°9012 Appendices A Proof of Theorem 1 Throughout this appendix, we use the following notation. Let b, b ∈ R m , m ∈ N, then b > b implies that b i > b i for all i = 1, 2, . . . , m. We now turn to the proof of Theorem 1, which relies on the following lemma, proven in Appendix B.

2 ,

 2 . . . , m}. Further, suppose that I(X; Y ) is weakly continuous, there exists a b > b such that Λ( b) is compact, and the closure of the strict interior cl(I b ) = Λ(b). Then, the capacity C(b) is continuous at b. To use Lemma 2, the following are proven: (a) there exists b > b such that Λ( b) and (b) the closure condition cl(I b ) = Λ(b) holds.

  Equivalently, Λ is upper hemicontinuous at b if whenever b n ∈ B and b n → b there exists an n 0 ∈ N such that Λ(b n ) ⊆ η (Λ(b)) for all n > n 0 . The second notion of continuity is lower hemicontinuity.Denition4. Suppose Λ(b) is compact. The point-to-set map Λ is lower hemicontinuous at b if ∀ > 0, there exists δ > 0 such that bb < δ implies that Λ(b) ⊆ η (Λ(b)). Equivalently, Λ is lower hemicontinuous at b if whenever b (n) ∈ B and b (n) → b there exists an n 0 ∈ N such that Λ(b) ⊆ η (Λ(b (n) )) for all n > n 0 .It is important to not to confuse upper and lower hemicontinuity of point-to-set maps with upper and lower semicontinuity of functions. Intuitively, upper hemicontinuity can be viewed as constraining the size of expansions of the set Λ(b), in the presence of small changes to b.Conversely, lower hemicontinuity can be viewed as constraining the size of contractions. When both upper and lower hemicontinuity hold for a map Λ(b) at the point b, the map is said to be hemicontinuous at b.We begin the proof of Lemma 2 by showing that Λ(b) is upper hemicontinuous. The following lemma is instrumental in the proof. Lemma 3. Suppose Λ( b) is compact for some b > b. Then, for each > 0 there is a b * > b such that Λ(b * ) ⊆ η (Λ(b)). Proof. Consider the sequence b + 1 n . For n suciently large, b + 1 n < b and by the weak continuity of E µ [f i (|X|)], Λ(b + 1 n ) is closed and hence compact. Let µ n be a point in Λ(b + 1 n

  b). Taking b * = b + 1 nj completes the proof.

  for all n suciently large, Λ δ (b) ⊆ ∩ j∈J1 Λ nj . Now consider j ∈ J 2 and dene b * j = max µ∈Λ(b) E µ [f j (|X|)]. By the denition of J 2 , b * j < b j for each j ∈ J 2 and hence Λ(b) ⊆ ∩ j∈J2 Λ * j . Since b (n) → b, for n suciently large b nj > b * j and hence

  ) for all n suciently large and hence eventually Λ(b) ⊆ η (Λ(b (n) )) and Λ is lower hemicontinuous at b.Conversely, suppose Λ is lower hemicontinuous at b.Clearly, cl(I b ) ⊆ Λ(b). It therefore remains to show that Λ(b) ⊆ cl(I b ). Let µ ∈ Λ(b). If µ ∈ I b , then µ ∈ cl(I b ). Suppose µ ∈ I b and select > 0. Since I b = ∅, there exists a sequence b -1 n which eventually lies in B. Since Λ is lower hemicontinuous at b, Λ(b) ⊆ η (Λ(b -1 n )), n > n 0 . This means that there exists a µ ∈ N (µ), and since µ ∈ Λ(b -1 n ), µ is also in I b . As such, in every neighborhood of µ, there exists µ ∈ I b , which implies that µ ∈ cl(I b ).

Finally, we require

  the following theorem from[START_REF] Evans | Stability in nonlinear programming[END_REF]. Theorem 7. If I(X; Y ) is weakly upper semicontinuous and Λ is upper hemicontinuous at b, then the capacity C in (8) is weakly upper semicontinuous at b. Similarly, if I(X; Y ) is weakly lower semicontinuous and Λ is lower hemicontinuous at b, then the capacity C in (8) is weakly lower semicontinuous at b.The desired result then follows by applying Theorem 5 and Theorem 6 in Theorem 7.

  ]. In our setting, Slater's condition states that there exists a probability measure µ ∈ Λ(b) such that E µ [f i (|X|)] < b i , i = 1,2, . . . , m. Clearly, Slater's condition holds as each f i is positive and non-decreasing. Condition (iv) is a consequence of the fact that the constraint perturbations are nitely constrained and [11, Theorem 4.2]. The result then follows from using the identity D d L(µ * , λ; b) = ∇L(µ * , λ; b) • d.

1 N

 1 ) which proves that C(p 0 N ) = lim sup i→∞ C(p i N ). But the same argument also shows that C(p 0 N ) = lim inf i→∞ C(p i N ), which completes the proof.E Proof of Theorem 4We seek an upper bound on|C(p 0 N ) -C(p 1 N )|. To this end, observe that C(p 0 N ) -C(p 1 N ) = I(µ * 0 , p 0 N ) -I(µ * 1 the fact that µ *1 maximizes the mutual information for the noise distribution p . Similarly,C(p 0 N ) -C(p 1 N ) = I(µ * 0 , p 0 N ) -I(µ * 1 , p 0 N ) + I(µ * 1 , p 0 N ) -I(µ * 1 , p 1 N ) ≥ I(µ * 1 , p 0 N ) -I(µ * 1 , p 1 N ).

p

  show that G k,i = O(i -α ), k = 1, 2, we consider the two integrals in (59). Let µ * k ∈ {µ * 0 (y;p i N , µ * k ) -p Y (y; p 0 N , µ * k )) log p Y (y; p 0 N , µ * k -x) -p 0 N (y -x))dµ * k (x) log p Y (y; p 0 N , µ * k Y (y; p 0 N , µ * k )| log p Y (y; p 0 N , µ * k )|dy = O(i -α ).

  where X n is a random variable corresponding to the input probability measure µ n and N n is the noise random variable with probability density function p n

N . We now show that the dierential entropy h(Y n ) → h(Y 0 ). Since p n N is absolutely continuous for each n, it follows that
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We now turn to obtaining conditions under which the point-to-set map Λ is lower hemicontinuous. We rst require the notion of the δ-shrinkage.

where ρ is the Lévy-Prokhorov metric.

To prove lower hemicontinuity of Λ, the rst step is to obtain a characterization of the sets η (Λ(b

Proof. Denote ∂A as the boundary of the set A. Cover Λ(b) with a nite number of /4 radius spheres, each sphere centered on a point in Λ(b). Call the j-th sphere N j . Note that

Now suppose that µ 0 ∈ Λ(b). Then, µ 0 ∈ N j for some j. Since ρ(µ j , Λ(b)) = δ j ≥ δ, µ j ∈ Λ δ (b). Either µ j ∈ ∂Λ δ (b) or the line from µ j to the center of N j must pierce ∂Λ δ (b). In either case, there exists µ j ∈ N j such that µ j ∈ ∂Λ δ (b). Since both µ 0 and µ j are in the same /4-sphere, an -sphere about µ j contains µ 0

To complete the proof, suppose that µ 0 ∈ I b . If ρ(µ 0 , Λ(b)) ≥ δ, µ 0 ∈ Λ δ (b), and hence µ 0 ∈ η (Λ δ (b)). Suppose ρ(µ 0 , Λ(b)) < δ. Then there exists μ ∈ Λ(b) such that ρ(µ 0 , μ) < δ. The point μ must be covered by some N j , and there is also a µ j ∈ N j where µ j ∈ ∂Λ δ (b).

We now prove conditions under which Λ is lower hemicontinuous. 

Proof. Suppose cl(I
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It then follows that

By hypothesis, we then have for each i,

This implies that

The result then follows by using the above inequalities with (44).

F Verication of (C7) for Truncated α-Stable Noise

We verify that condition (C7) in Theorem 4 holds for the channels in Section 5; namely, truncated α-stable noise channels subject to a fractional moment constraint E µ [|X| r ] ≤ c with 0 < r < α.

Fix the parameters α, γ and choose the sequence of probability density functions {p i N } ∞ i=1 to be the sequence of level i truncations dened in (20), where p 0 N is the probability density function of symmetric α-stable noise with scale parameter γ.

We proceed in two steps. First, we establish the existence of certain Gâteaux dierentials which in turn guarantee M i and N i in Theorem 4 are nite for xed i. We then prove that M = sup i M i and N = sup i N i are nite.

In this appendix, we denote the output probability density function for Y as p Y (y; p N , µ), where p N is the noise probability density function and µ is the input probability measure.

F.1 Existence of Gâteaux Dierentials

The rst step is to show that G i,1 < ∞. By the denition of mutual information,

RR n°9012

Using the fact that the continuity condition in (C5) for the mutual information holds and L'Hôpital's rule,

Using the denition of the derivative

We now consider the case h → 0 + and note that the case h → 0 -can be treated similarly. By the mean value theorem, there exists a 0 ≤ c(h

where the last inequality follows from the dominated convergence theorem. In particular, observe that

We then have

whenever θ + c(h) ≤ 

As such, p Y (y;

This implies that

for y suciently large, which in turn means that -p Y (y; p i N , µ * 0 ) log p(y; p 0 N , µ * 0 ) is integrable. Moreover, observe that a similar argument also guarantees the integrability of -p i N (y) log p 0 N (y), which justies the interchange of the limit and the integral in (52).

Hence,

where the interchange of the limit and the integral again follows from the dominated convergence theorem.

Since for a xed i, p 0 N -p i N T V < ∞ it then follows that M i < ∞. A similar argument guarantees G 2,i = lim

which in turn implies that N i < ∞.

F.2 Finiteness of M and N

The last step is to show that sup i M i < ∞ and sup i N i < ∞. To do this, we show that G 1,i = O(i -α ) and G 2,i = O(i -α ). We then show that 1 p 0 N -p i N T V = Ω(i -α ), which yields the desired result. 1 We say that f (x) = Ω(g(x)) if and only if ∃k > 0, c > 0 such that |f (x)| ≥ κ|g(x)|, ∀|x| ≥ c. 
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