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We consider a mathematical model which describes the dynamic evolution of a viscoelastic body in frictional contact with an
obstacle.The contact is modelled with a combination of a normal compliance and a normal damped response law associated with a
slip rate-dependent version of Coulomb’s law of dry friction. We derive a variational formulation and an existence and uniqueness
result of the weak solution of the problem is presented. Next, we introduce a fully discrete approximation of the variational problem
based on a finite element method and on an implicit time integration scheme. We study this fully discrete approximation schemes
and bound the errors of the approximate solutions. Under regularity assumptions imposed on the exact solution, optimal order
error estimates are derived for the fully discrete solution. Finally, after recalling the solution of the frictional contact problem, some
numerical simulations are provided in order to illustrate both the behavior of the solution related to the frictional contact conditions
and the theoretical error estimate result.

1. Introduction

So far, dynamic contact problems abound in industry and
everyday life. For this very reason, special care has been
given to themodelling,mathematical analysis, and numerical
solution of such problems for several decades, be it in the
engineering or the mathematical literature. Such problems
involve frictional contact phenomena that leads, because
of their inherent complexity, to nonlinear, nonsmooth, and
nonconvex mathematical problems.

Over the last decades, various contact boundary con-
ditions have been used to model contact phenomena and
their modelling is still under investigation; see, for instance,
[1–6]. Among these laws, the normal compliance condition
introduced in [7] remains one of the most popular contact
models used in the literature; see [4, 8–11]. It represents a
regularization of the so-called Signorini contact condition,
expressed in terms of unilateral constraints for the displace-
ment field, and described the contact with a deformable foun-
dation. Such a law allows penetrations, while the Signorini
condition does not. Note that these contact conditions, used

in most of the related works on the subject, are formulated in
terms of the displacement field. However, normal compliance
conditions expressed in terms of the normal velocity seem to
bemore appropriate when the contact surfaces are lubricated,
as mentioned in [5, 12]. Such kind of conditions is called
normal damped response conditions. In this current paper,
we model the contact with new and nonstandard conditions
which involve both the normal compliance law and normal
damped response law and, as such, describes the contact with
a specific particular deformable foundation. Furthermore,
one cannot hope to fully grasp the phenomenon of contact
without taking into account the friction. In the literature, it is
generallymodelled by either the so-called Tresca or Coulomb
friction laws. Normally, one would expect the friction coeffi-
cient to be constant; however, such a classical approach has
shown its own limits for friction-induced phenomena such
as stick-slip motion. For this very reason, several authors
have introduced nonmonotone versions of friction laws
[5, 13].

Due to all the motivations mentioned above, in this
work, we consider the mathematical study of a dynamic
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frictional contact problem in which the contact is mod-
elled with a combination of normal compliance law and
normal damped response law, associated with a nonmono-
tone friction law involving a slip rate dependent fric-
tion.

The current study represents continuation of [14–17] and
its aim is to provide the variational and numerical analysis of
a new and nonstandard dynamic frictional contact problem
supported by numerical simulation. With respect to these
articles, this paper presents several traits of novelty that we
describe in what follows. Here, we no longer have finite
penetration in contrast to [14–16], where a combination of a
normal compliance law and unilateral constraint was used,
nor finite velocity as in [17], where a combination of a normal
damped response law and unilateral constraint in velocity
was considered. Note that we consider here a dynamic
contact model, since the static case had been studied in
[15, 16] for a material whose behavior was described by only
an elastic constitutive law. We insist on the fact that, in
the problem considered in this paper, the behavior of the
foundation is described by a Kelvin-Voigt-like foundation
modelled by a combination of normal compliance and nor-
mal damped response. Furthermore, such considerations
lead to nonstandard Coulomb’s law of dry friction where
the threshold depends on the tangential velocity, through
the coefficient of friction, and both the normal displacement
and normal velocity, because of the normal compliance
and normal damped response, respectively. Another trait
of novelty arises from the mathematical analysis with in
particular the numerical analysis of such a problem by
considering a dynamic process. Indeed, in this study, we
derive optimal order error estimates in the fully discrete case
under regularity assumptions imposed on the exact solution.
Finally, we provide numerical simulations to validate the
bound of the error estimate and to illustrate the mechanical
behavior of the concrete physical body.

The rest of the paper is structured as follows. In Section 2
we introduce the notation we shall use as well as some
preliminary material. In Section 3 we present the classical
formulation of the frictional contact problem, we list the
assumptions on the data, and we derive the variational for-
mulation of the initial and approximate problem. Then, the
existence and uniqueness result of the weak solution of the
problem is presented. Section 4 is devoted to the presentation
of the error estimate result in the fully discrete numerical
case. In Section 5, the numerical strategy used to solve the
frictional contact problem is presented, followed by numer-
ical simulations on a two-dimensional example including
numerical validation of the optimal error estimate established
in Section 4.

2. Notation and Preliminaries

We present the notation and some preliminary material
which will be of use later on. Everywhere in this paper, we
use the notation N for the set of positive integers and R+

will represent the set of nonnegative real numbers; that is,
R+ = [0, +∞). Let 𝑑 ∈ N. Then, we denote by S𝑑 the space

of second-order symmetric tensors onR𝑑.The inner product
and norm on R𝑑 and S𝑑 are defined by

u ⋅ k = 𝑢𝑖V𝑖,
‖k‖ = (k ⋅ k)1/2 ,

∀u, k ∈ R𝑑,
𝜎 ⋅ 𝜏 = 𝜎𝑖𝑗𝜏𝑖𝑗,
‖𝜏‖ = (𝜏 ⋅ 𝜏)1/2 ,

∀𝜎, 𝜏 ∈ S𝑑.

(1)

Here and below the indices 𝑖, 𝑗, 𝑘, and 𝑙 run between 1 and 𝑑
and, unless otherwise stated, the summation convention over
repeated indices is used.

Let Ω be a bounded domain Ω ⊂ R𝑑 (𝑑 = 1, 2, 3) with a
Lipschitz continuous boundary Γ and let Γ1 be a measurable
part of Γ such that meas(Γ1) > 0. We use the notation
x = (𝑥𝑖) for a typical point in Ω ∪ Γ and we denote by
^ = (]𝑖) the outward unit normal at Γ. Also, an index that
follows a comma represents the partial derivativewith respect
to the corresponding component of the spatial variable; for
example, 𝑢𝑖,𝑗 = 𝜕𝑢𝑖/𝜕𝑥𝑗. We use standard notations for the
Lebesgue and Sobolev spaces associated with Ω and Γ and,
moreover, we consider the spaces

𝐻 = 𝐿2 (Ω)𝑑 = {u = (𝑢𝑖) | 𝑢𝑖 ∈ 𝐿2 (Ω)} ,
𝑄 = {𝜏 = (𝜏𝑖𝑗) ∈ 𝐿2 (Ω)𝑑×𝑑 | 𝜏𝑖𝑗 = 𝜏𝑗𝑖} ,
𝐻1 = {u = (𝑢𝑖) | 𝜀 (u) ∈ Q} ,
𝑄1 = {𝜏 ∈ Q | Div (𝜏) ∈ 𝐻} .

(2)

Here 𝜀 : 𝐻1 → 𝑄 and Div : 𝑄1 → 𝐻 represent the
deformation and divergence operators given by

𝜀 (k) = (𝜀𝑖𝑗 (k)) , 𝜀𝑖𝑗 (k) = 12 (V𝑖,𝑗 + V𝑗,𝑖) ,
Div 𝜎 = (𝜎𝑖𝑗,𝑗) .

(3)

The spaces𝐻,𝑄,𝐻1, and𝑄1 are real Hilbert spaces endowed
with the inner products

(u, k)𝐻 = ∫
Ω
𝑢𝑖V𝑖 𝑑𝑥,

(𝜎, 𝜏)𝑄 = ∫
Ω
𝜎𝑖𝑗𝜏𝑖𝑗 𝑑𝑥,

(u, k)𝐻1 = (u, k)𝐻 + (𝜀 (u) , 𝜀 (k))𝑄 ,
(𝜎, 𝜏)𝑄1 = (𝜎, 𝜏)𝑄 + (Div 𝜎,Div 𝜏)𝐻 ,

(4)

and the associated norms ‖ ⋅ ‖𝐻, ‖ ⋅ ‖𝑄, ‖ ⋅ ‖𝐻1 and ‖ ⋅‖𝑄1 , respectively. We denote by V] and v𝜏 the normal and
the tangential component of v on Γ, respectively, given
by V] = v ⋅ ^, v𝜏 = v − V]^. For a regular function
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𝜎 : Ω ∪ Γ → S𝑑 we denote by 𝜎] and 𝜎𝜏 the normal and
the tangential components of the vector 𝜎^ on Γ, respectively,
and we recall that 𝜎] = (𝜎^) ⋅ ^ and 𝜎𝜏 = 𝜎^ − 𝜎]^.

Next recall the definitions of classical (one-sided) direc-
tional derivative and its generalization in the sense of Clarke.
Let 𝑋 be a Banach space and 𝑋∗ its dual. For a function𝜑 : 𝑋 → R𝑑, the directional derivative of 𝜑 at 𝑥 ∈ 𝑋 in the
direction V ∈ 𝑋 is defined by

𝜑󸀠 (𝑥; V) = lim
𝜆↓0

𝜑 (𝑥 + 𝜆V) − 𝜑 (𝑥)𝜆 (5)

whenever this limit exists.The Clarke generalized directional
derivative of a locally Lipschitz function 𝜑 : 𝑋 → R𝑑 at the
point 𝑥 ∈ 𝑋 in the direction V ∈ 𝑋 is defined by

𝜑0 (𝑥; V) = lim sup
𝑦→𝑥,𝜆↓0

𝜑 (𝑦 + 𝜆V) − 𝜑 (𝑦)𝜆 . (6)

The Clarke subdifferential of 𝜑 at 𝑥 is a subset of𝑋∗ given by

𝜕𝜑 (𝑥) = {𝜁 ∈ 𝑋∗ : 𝜑0 (𝑥; V) ≥ ⟨𝜁, V⟩𝑋∗×𝑋 ∀V ∈ 𝑋} . (7)

A locally Lipschitz function 𝜑 : 𝑋 → R𝑑 is said to be regular
(in the sense of Clarke) at 𝑥 ∈ 𝑋 if, for all V ∈ 𝑋, the
directional derivative 𝜑󸀠(𝑥; V) exists and 𝜑󸀠(𝑥; V) = 𝜑0(𝑥; V).
The function 𝜑 is regular (in the sense of Clarke) on𝑋 if it is
regular at every point 𝑥 ∈ 𝑋.

Now let us consider some material useful for the numer-
ical analysis of the problem. We will need the following
Gronwall inequalities, proved in [18].

Lemma 1. Let 𝑇 > 0 be given. For a positive integer 𝑁 we
define 𝑘 = 𝑇/𝑁. Assume that {𝑔𝑛}𝑁𝑛=1 and {𝑒𝑛}𝑁𝑛=1 are two
sequences of nonnegative numbers satisfying

𝑒𝑛 ≤ 𝑐̃𝑔𝑛 + 𝑐̃ 𝑛∑
𝑗=1

𝑘𝑒𝑗, 𝑛 = 1, . . . , 𝑁 (8)

for a positive constant 𝑐̃ independent of𝑁 or 𝑘.Then there exists
a positive constant 𝑐, independent of𝑁 or 𝑘, such that

max
1≤𝑛≤𝑁

𝑒𝑛 ≤ 𝑐max
1≤𝑛≤𝑁

𝑔𝑛. (9)

3. Mechanical Problem and
Variational Formulation

We consider a viscoelastic body that occupies the bounded
domain Ω with Γ, its boundary. We assume that Γ is a Lip-
schitz continuous boundary divided into three measurable
parts Γ1, Γ2, and Γ3 such that the meas(Γ1) > 0. We use
the notations u and 𝜎 for the displacement field and the
stress field, respectively; therefore, 𝜀(u), u̇, and ü represent the
linearized strain tensor, the velocity field, and the acceleration
field, respectively. We denote by ] the unit outward normal,
defined almost everywhere on Γ. Let [0, 𝑇] be the time

interval of interest with 𝑇 > 0. The body is clamped onΓ1 × (0, 𝑇) and, therefore, the displacement field vanishes
there. A volume force of density f0 acts in Ω × (0, 𝑇), and
surface tractions of density f2 act on Γ2 × (0, 𝑇). In this
study, we consider the dynamic contact with friction between
a viscoelastic body and a foundation on Γ3 × (0, 𝑇). The
material’s behavior is modelled by a viscoelastic constitutive
law of the form

𝜎 = C𝜀 (u̇) +E𝜀 (u) . (10)

Here 𝜀(u) is the linearized strain tensor, C is a nonlinear
operator which describes the viscous properties of the mate-
rial, and E is a nonlinear operator which describes its elastic
behavior. Various examples and mechanical interpretations
in the study of viscoelastic materials of the form (10) can
be found in [19] and the references therein. Such kinds of
constitutive laws were used in the literature in order to model
the behavior of real materials like rubbers, rocks, metals,
pastes, and polymers. In addition, the foundation is made of
a soft material, where the contact is modelled with normal
compliance and normal damped response. The friction is
based on nonmonotone Coulomb’s law of dry friction during
the contact with the soft material. The boundary conditions
on the contact surface are described in what follows.

When the body moves towards the obstacle, the contact
is described by both a normal compliance condition and
a normal damped response condition. In this case, the
foundation is characterized by a Kelvin-Voigt like model.
Therefore,

−𝜎] = 𝑝 (𝑢]) + 𝑞 (𝑢̇]) . (11)

Here 𝑝 represents the positive normal compliance function
such that 𝑝(𝑟) = 0 for 𝑟 ≤ 0 and 𝑞 represents the positive
normal damped response function such that 𝑞(𝑟) = 0 for 𝑟 ≤0. A similar rheological model was used in [20] to describe
the behavior of soft clay with application on rheological
consolidation.

Furthermore, the contact is associated with Coulomb’s
law of dry friction in which the coefficient of friction 𝜇 is
assumed to depend on the slip rate ‖u̇𝜏‖. Therefore, when𝜎] < 0, the friction condition is described by
󵄩󵄩󵄩󵄩𝜎𝜏󵄩󵄩󵄩󵄩 ≤ 𝜇 (󵄩󵄩󵄩󵄩u̇𝜏

󵄩󵄩󵄩󵄩) (𝑝 (𝑢]) + 𝑞 (𝑢̇])) ,
−𝜎𝜏 = 𝜇 (󵄩󵄩󵄩󵄩u̇𝜏

󵄩󵄩󵄩󵄩) (𝑝 (𝑢]) + 𝑞 (𝑢̇])) u̇𝜏󵄩󵄩󵄩󵄩u̇𝜏
󵄩󵄩󵄩󵄩
if u̇𝜏 ̸= 0.

(12)

Details on the normal compliance conditions associated with
Coulomb’s law of dry friction can be found in [4, 5, 18], for
instance. To simplify the notation and when it is sensible, we
omit the dependence in position of the variables.

With these preliminaries, the classical formulation of our
dynamic frictional contact problem is the following.

Problem P. Find a displacement field u : Ω × (0, 𝑇) → R𝑑

and a stress field 𝜎 : Ω × (0, 𝑇) → S𝑑 such that
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𝜎 (𝑡) = C𝜀 (u̇ (𝑡)) +E𝜀 (u (𝑡)) in Ω × (0, 𝑇) , (13)

Div 𝜎 (𝑡) + f0 (𝑡) = 𝜌ü (𝑡) in Ω × (0, 𝑇) , (14)

u (𝑡) = 0 on Γ1 × (0, 𝑇) , (15)

𝜎 (𝑡) ^ = f2 (𝑡) on Γ2 × (0, 𝑇) , (16)

− 𝜎] (𝑡) = 𝑝 (𝑢] (𝑡)) + 𝑞 (𝑢̇] (𝑡)) on Γ3 × (0, 𝑇) , (17)

{{{{{
󵄩󵄩󵄩󵄩𝜎𝜏 (𝑡)󵄩󵄩󵄩󵄩 ≤ 𝜇 (󵄩󵄩󵄩󵄩u̇𝜏 (𝑡)󵄩󵄩󵄩󵄩) (𝑝 (𝑢] (𝑡)) + 𝑞 (𝑢̇] (𝑡))) ,
−𝜎𝜏 (𝑡) = 𝜇 (󵄩󵄩󵄩󵄩u̇𝜏 (𝑡)󵄩󵄩󵄩󵄩) (𝑝 (𝑢] (𝑡)) + 𝑞 (𝑢̇] (𝑡))) u̇𝜏 (𝑡)󵄩󵄩󵄩󵄩u̇𝜏 (𝑡)󵄩󵄩󵄩󵄩 if u̇𝜏 (𝑡) ̸= 0

on Γ3 × (0, 𝑇) , (18)

for all 𝑡 ∈ R+ and, moreover,

u (0) = u0

u̇ (0) = u1

in Ω.
(19)

Here, (13) represents the viscoelastic constitutive law of
thematerial. Equation (14) is the classic equilibrium equation
which includes the acceleration term; 𝜌 denotes the density
of the material and is assumed to be a constant for the sake
of simplicity. Conditions (15) and (16) are the homogeneous
displacement and traction boundary conditions, respectively,
and (19) represents the initial conditions, with u0 and u1

being the initial displacement and velocity, respectively.
Our interest lies in the contact conditions (17) and (18).
In this case, the contact condition (17) allows nonlimited
penetration. It could be assimilated to a Kelvin-Voigt law
since the normal stress on the contact boundary is described
by a combination of a normal compliance law and normal
damped response law. The friction condition, described in
(18), represents Coulomb’s law of dry friction where 𝜇 is the
slip rate dependent coefficient of friction.

In order to introduce a weak formulation of the mechan-
ical ProblemP, we consider a closed subspace of𝐻1

𝑉 = {k = (V𝑖) ∈ 𝐻1 | k = 0 on Γ1} . (20)

Completeness of the space (𝑉, ‖ ⋅ ‖𝑉) follows from the
assumption meas(Γ1) > 0, which allows the use of Korn’s
inequality, for some constant 𝐶𝐾, depending only on Ω andΓ1,

‖𝜀 (k)‖𝑄 ≥ 𝐶𝐾 ‖k‖𝐻1 ∀k ∈ 𝑉. (21)

On 𝑉, we use the inner product given by

(u, k)𝑉 = (𝜀 (u) , 𝜀 (k))𝑄 ∀u, k ∈ 𝑉, (22)

and let ‖ ⋅ ‖𝑉 be the associated norm; that is,

‖k‖𝑉 = ‖𝜀 (k)‖𝑄 ∀k ∈ 𝑉. (23)

It follows from (21) and (23) that ‖ ⋅ ‖𝐻1 and ‖ ⋅ ‖𝑉 are
equivalent norms on𝑉 and therefore (𝑉, ‖⋅‖𝑉) is a real Hilbert
space. Also, note that since

‖k‖𝐻1 = (‖k‖2𝐻 + ‖k‖2𝑉)1/2 ∀k ∈ 𝐻1, (24)

we obtain that

‖k‖𝑉 ≥ 𝐶𝐾 ‖k‖𝐻 ∀k ∈ 𝑉. (25)

The duality pairing between𝑉 and𝑉∗ is denoted by ⟨⋅, ⋅⟩.
Identifying 𝐻 with its dual, we have an evolution triple 𝑉 ⊂𝐻 ⊂ 𝑉∗ with dense, continuous, and compact embedding. By
the Sobolev trace theorem and by (25), there exists a constant𝑐0 depending only on the domainsΩ, Γ1, and Γ3 such that

‖k‖𝐿2(Γ3 ;R𝑑) ≤ 𝑐0 ‖k‖𝑉 ∀k ∈ 𝑉. (26)

By (26) there exists a continuous trace operator 𝛾 : 𝑉 →𝐿2(Γ3;R𝑑) and for the function v ∈ 𝑉 we still denote by v its
trace 𝛾v. In what follows, we need the spacesV = 𝐿2(0, 𝑇; 𝑉),
H = 𝐿2(0, 𝑇;𝐻), andW = {v ∈V | v̇ ∈V∗} where the time
derivative involved in the definition ofW is understood in the
sense of vector valued distributions. Equipped with the norm‖v‖W = (‖v‖2V + ‖v‖2V∗)1/2, the spaceW becomes a separable
Hilbert space. We also have W ⊂ V ⊂ H ⊂ V∗ and the
following inequality holds, where 𝑐𝑒 is a constant,

‖k‖V∗ ≤ 𝑐𝑒 ‖k‖𝐿2(0,𝑇,𝐿2(Γ3 ;R𝑑)) ∀k ∈ 𝑉. (27)

It is well known that the embedding W ⊂ 𝐶([0, 𝑇];𝐻) and
embedding {w ∈ V | ẇ ∈W} ⊂ 𝐶([0, 𝑇]; 𝑉) are continuous.
Moreover, choosing 𝜂 ∈ (0, 1/2) we introduce the space 𝑍 =𝑉∩𝐻1−𝜂(Ω;R𝑑) equipped with𝐻1−𝜂 norm. Note that𝑉 ⊂ 𝑍
and 𝑍 ⊂ 𝐻 with both embeddings being compact, and hence𝐻 ⊂ 𝑍∗ ⊂ 𝑉∗ where both embeddings are again compact.

We introduce now Ehrling’s lemma, proved in [21].

Lemma 2. Let𝑋0,𝑋, and𝑋1 be three Banach spaces such that

𝑋0 ⊂ 𝑋 ⊂ 𝑋1, (28)
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with the injection of 𝑋 into 𝑋1 being continuous and the
injection of 𝑋0 into 𝑋 being compact. Then, for each 𝜀 > 0,
there exists some constant 𝐶(𝜀) such that

‖k‖𝑋 ≤ 𝜀 ‖k‖𝑋0 + 𝐶 (𝜀) ‖k‖𝑋1 , ∀k ∈ 𝑋0. (29)

Using this lemma, we get the following inequality:

‖k‖2𝐿2(Γ3,R𝑑) ≤ 𝜀 ‖k‖2𝑉 + 𝐶 (𝜀) ‖k‖2𝐻 , ∀k ∈ 𝑉. (30)

In the study of the contact problem, we assume the following
properties on the data.

𝐻(C). The viscosity operatorC : Ω×S𝑑 → S𝑑 satisfies

(a) C (⋅, 𝜀) is measurable on Ω ∀𝜀 ∈ S𝑑,
(b) (C (x, 𝜀1) −C (x, 𝜀2)) : (𝜀1 − 𝜀2) ≥ 𝑐2 󵄩󵄩󵄩󵄩𝜀1 − 𝜀2󵄩󵄩󵄩󵄩2 ∀𝜀1, 𝜀2 ∈ S𝑑, a.e. x ∈ Ω with 𝑐2 > 0,(c) 󵄩󵄩󵄩󵄩C (x, 𝜀1) −C (x, 𝜀2)󵄩󵄩󵄩󵄩 ≤ 𝐿C 󵄩󵄩󵄩󵄩𝜀1 − 𝜀2󵄩󵄩󵄩󵄩 ∀𝜀1, 𝜀2 ∈ S𝑑, a.e. x ∈ Ω with 𝐿C > 0.

(31)

𝐻(E). The elasticity operatorE : Ω×S𝑑 → S𝑑 satisfies

(a) E (⋅, 𝜀) is measurable on Ω ∀𝜀 ∈ S𝑑,(b) (E (x, 𝜀1) −E (x, 𝜀2)) : (𝜀1 − 𝜀2) ≥ 0 ∀𝜀1, 𝜀2 ∈ S𝑑, a.e. x ∈ Ω,(c) 󵄩󵄩󵄩󵄩E (x, 𝜀1) −E (x, 𝜀2)󵄩󵄩󵄩󵄩 ≤ 𝐿E 󵄩󵄩󵄩󵄩𝜀1 − 𝜀2󵄩󵄩󵄩󵄩 ∀𝜀1, 𝜀2 ∈ S𝑑, a.e. x ∈ Ω with 𝐿E > 0.
(32)

𝐻(𝑝). The normal compliance function𝑝 : Γ3×R→ R

satisfies

(a) There exists 𝐿𝑝 > 0 such that 󵄨󵄨󵄨󵄨𝑝 (x, 𝑢) − 𝑝 (x, V)󵄨󵄨󵄨󵄨 ≤ 𝐿𝑝 |𝑢 − V| ∀x ∈ Γ3,(b) There exists 𝑐3 > 0 such that 𝑝 (x, 𝑢) ≤ 𝑐3 ∀ (x, 𝑢) ∈ Γ3 ×R,(c) 𝑝 (x, 𝑢) = 0 ∀𝑢 ≤ 0 a.e x ∈ Γ3.
(33)

𝐻(𝑞). The normal damped response function 𝑞 :Γ3 ×R→ R satisfies

(a) There exists 𝐿𝑞 > 0 such that 󵄨󵄨󵄨󵄨𝑞 (x, 𝑢) − 𝑞 (x, V)󵄨󵄨󵄨󵄨 ≤ 𝐿𝑞 |𝑢 − V| ∀x ∈ Γ3,(b) There exists 𝑐4 > 0 such that 𝑞 (x, 𝑢) ≤ 𝑐4 ∀ (x, 𝑢) ∈ Γ3 ×R,(c) 𝑞 (x, 𝑢) = 0 ∀𝑢 ≤ 0 a.e x ∈ Γ3.
(34)

𝐻(𝜇). The friction bound 𝜇 : [0,∞) → R satisfies

(a) 𝜇 is continuous,
(b) 󵄨󵄨󵄨󵄨𝜇 (𝑠)󵄨󵄨󵄨󵄨 ≤ 𝑐, 𝑐 > 0,(c) 𝜇 (𝑠1) − 𝜇 (𝑠2) ≥ −𝜆 (𝑠1 − 𝑠2) ∀𝑠1 > 𝑠2 ≥ 0 with 𝜆 > 0.

(35)

The assumption (35)(c) represents a one-side
Lipschitz condition, which allows the function𝜇(⋅) to decrease with a rate not faster than 𝜆.𝐻(𝑓). The force and the traction densities satisfy

f0 ∈ 𝐿2 (0, 𝑇;𝐻) ,
f2 ∈ 𝐿2 (0, 𝑇; 𝐿2 (Γ2;R𝑑)) . (36)

Also, we assume that the initial values satisfy the
following.𝐻0. u0 ∈ 𝑉 and u1 ∈ 𝐻.

Using theClarke subdifferential (7), the friction condition
(18) can be expressed in another form. Indeed, define a
function 𝑗 : R𝑑 → R by

𝑗 (𝜂) = ∫‖𝜂‖

0
𝜇 (𝑠) 𝑑𝑠 ∀𝜂 ∈ R𝑑. (37)

Then, assuming𝐻(𝜇)(a)–(c), the condition (18) is equivalent
to the following subdifferential inclusion:

−𝜎𝜏 ∈ (𝑝 (𝑢]) + 𝑞 (𝑢̇])) 𝜕𝑗 (u̇𝜏) on Γ3 × (0, 𝑇) , (38)
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where 𝜕𝑗(𝜂)denotes theClarke subdifferential of 𝑗 at the point
𝜂 ∈ R𝑑.

Properties of the function 𝑗 are summarized in the next
lemma.

Lemma 3. If the assumptions 𝐻(𝜇)(a)-(b) hold, then the
function 𝑗 defined by (37) is locally Lipschitz, and

𝜉 ⋅ u ≥ 0 ∀u ∈ R𝑑, 𝜉 ∈ 𝜕𝑗 (u) ,
‖𝜉‖ ≤ 𝑐 ∀u ∈ R𝑑, 𝜉 ∈ 𝜕𝑗 (u) . (39)

If furthermore the assumption𝐻(𝜇)(c) holds, then we have

(𝜉1 − 𝜉2) ⋅ (u1 − u2) ≥ −𝜆 󵄩󵄩󵄩󵄩u1 − u2
󵄩󵄩󵄩󵄩2

∀u1, u2 ∈ R𝑑, 𝜉𝑖 ∈ 𝜕𝑗 (u𝑖) , 𝑖 = 1, 2. (40)

Proof. First, we have to proof that 𝑗 is locally Lipschitz. In
order to do so, let 𝜂 ∈ R𝑑 and 𝑟 > 0. For 𝜂1, 𝜂2 ∈ 𝐵(𝜂, 𝑟),
we get

󵄨󵄨󵄨󵄨𝑗 (𝜂1) − 𝑗 (𝜂2)󵄨󵄨󵄨󵄨 ≤ max
z∈𝐵(𝜂,𝑟)

𝜇 (‖z‖) 󵄩󵄩󵄩󵄩𝜂1 − 𝜂2󵄩󵄩󵄩󵄩 . (41)

With𝐻(𝜇)(a) and Proposition 5.6.28(ii) in [22], we have the
following characterization of the Clarke subdifferential 𝜕𝑗:

𝜕𝑗 (𝜂) = {{{{{
𝐵 (0, 𝜇 (0)) for 𝜂 = 0,
𝜇 (󵄩󵄩󵄩󵄩𝜂󵄩󵄩󵄩󵄩) 𝜂󵄩󵄩󵄩󵄩𝜂󵄩󵄩󵄩󵄩 for 𝜂 ̸= 0. (42)

Then, the other properties follow straightforwardly.

We define the operators 𝐴 : 𝑉 → 𝑉∗, 𝐵 : 𝑉 → 𝑉∗,
functional 𝐽 : 𝐿2(Γ3;R𝑑) → R, and f : (0, 𝑇) → 𝑉∗, defined
by

⟨𝐴u, k⟩𝑉∗×𝑉 = ∫
Ω
C𝜀 (u) 𝜀 (k) 𝑑𝑥 for u, k ∈ 𝑉,

⟨𝐵u, k⟩𝑉∗×𝑉 = ∫
Ω
E𝜀 (u) 𝜀 (k) 𝑑𝑥 for u, k ∈ 𝑉,

𝐽 (k) = ∫
Γ3

𝑗 (k) 𝑑Γ for k ∈ 𝐿2 (Γ3;R𝑑) ,
⟨f (𝑡) , k⟩𝑉∗×𝑉 = (f0 (𝑡) , k)𝐻 + (f2 (𝑡) , k)𝐿2(Γ2 ;R𝑑)

for k ∈ 𝑉.

(43)

If 𝐻(C) holds, the operator 𝐴 has the following proper-
ties:

(a) 𝐴 ∈L (𝑉; 𝑉∗) is symmetric,
(b) There exists 𝐿C > 0 such that ⟨𝐴k, k⟩𝑉∗×𝑉 ≤ 𝐿C ‖k‖2𝑉 ∀V ∈ 𝑉,
(c) There exists 𝑐2 > 0 such that ⟨𝐴k, k⟩𝑉∗×𝑉 ≥ 𝑐2 ‖k‖2𝑉 ∀V ∈ 𝑉.

(44)

Under the assumptions 𝐻(E), the operator 𝐵 satisfies the
following properties:

(a) 𝐵 ∈L (𝑉; 𝑉∗) is symmetric,
(b) There exists 𝐿E > 0 such that ⟨𝐵k, k⟩𝑉∗×𝑉 ≤ 𝐿E ‖k‖2𝑉 ∀V ∈ 𝑉,
(c) ⟨𝐵k, k⟩𝑉∗×𝑉 ≥ 0 ∀V ∈ 𝑉.

(45)

Assuming 𝐻(𝜇), the functional 𝐽 : 𝐿2(Γ3;R𝑑) → R is
locally Lipschitz, and we have the following inequalities on
𝜉 ∈ 𝜕𝐽(v):

(a) ‖𝜉‖𝐿2(Γ3 ;R𝑑) ≤ 𝑐 ∀𝜉 ∈ 𝜕𝐽 (k) ,(b) 𝜉 ⋅ k ≥ 0 ∀𝜉 ∈ 𝜕𝐽 (k) ,
(c) (𝜉1 − 𝜉2, k1 − k2)𝐿2(Γ3 ;R𝑑) ≥ −𝜆 󵄩󵄩󵄩󵄩k1 − k2󵄩󵄩󵄩󵄩2𝐿2(Γ3 ;R𝑑) ∀𝜉𝑖 ∈ 𝜕𝐽 (k𝑖) , 𝑖 = 1, 2, ∀k1, k2 ∈ 𝐿2 (Γ3;R𝑑) .

(46)
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Now, multiplying the equation of motion by the test
function v, integrating over Ω × (0, 𝑇), using the Green
formula and the definition of the operators, we obtain the
following variational formulation of ProblemP.

Problem P𝑉. Find a displacement field u ∈ V with u̇ ∈ W

and a friction stress field 𝜉 ∈ 𝐿2(0, 𝑇, 𝐿2(Γ3;R𝑑)) such that,
for a.e. 𝑡 ∈ (0, 𝑇) and for all v ∈ 𝑉,
⟨𝜌ü (𝑡) + 𝐴u̇ (𝑡) + 𝐵u (𝑡) − f (𝑡) , k⟩𝑉∗×𝑉

+ (𝑝 (𝑢] (𝑡)) , V])𝐿2(Γ3 ;R) + (𝑞 (𝑢̇] (𝑡)) , V])𝐿2(Γ3 ;R)

+ (𝑝 (𝑢] (𝑡)) + 𝑞 (𝑢̇] (𝑡))) 𝜉 (𝑡) , k𝜏)𝐿2(Γ3 ;R𝑑) = 0,
(47)

with

𝜉 (𝑡) ∈ 𝑆2𝜕𝑗(u̇𝜏(𝑡)) on Γ3 × (0, 𝑇) , (48)

where 𝑆2𝜕𝑗(u̇𝜏(𝑡)) is the set of all 𝐿2 selections of 𝜕𝑗(u̇𝜏(𝑡)) and
u (0) = u0,
u̇ (0) = u1. (49)

Finally, we formulate the result concerning the existence
and uniqueness of solution to ProblemP𝑉. In order to keep
the paper with a reasonable length, we skip the proof of this
result.

Theorem 4. Assume that 𝐻(C), 𝐻(E), 𝐻(𝑝), 𝐻(𝑞), 𝐻(𝜇),𝐻(𝑓), and𝐻0 hold. Then, ProblemP𝑉 has a unique solution.

Note that the proofs of this theorem are based on similar
arguments to those used in [14, 17, 23].

4. Fully Discrete Error Estimates

We introduce a fully discrete approximation of Problem P𝑉

in order to bound the error of the fully discrete solutions. To
this end, on a finite time interval [0, 𝑇] with 𝑇 > 0 given, we
consider a positive integer 𝑁 and we define the time step-
size 𝑘 = 𝑇/𝑁 and the time nodal points 𝑡𝑛 = 𝑛𝑘 and0 ≤ 𝑛 ≤ 𝑁.

We assume thatΩ is a polyhedral domain andwe consider
a regular family of finite element partition of Ω. Let 𝑉ℎ ⊂ 𝑉
be the associate finite element space of continuous piecewise
linear functions which vanish on Γ1. Here ℎ > 0 denotes the
spatial discretization parameter.

In what follows, we denote f𝑛 = f(𝑡𝑛) and u𝑛 = u(𝑡𝑛). For
a sequence uℎ𝑘 = {uℎ𝑘

𝑛 }𝑁𝑛=0, we use the notation 𝛿𝑛uℎ𝑘
𝑛 = (uℎ𝑘

𝑛 −
uℎ𝑘
𝑛−1)/𝑘, 𝑛 = 1, . . . , 𝑁, for the backward divided differences,

as well as the additional notation 𝛿uℎ𝑘 = {𝛿𝑛uℎ𝑘}𝑁𝑛=1. Let uℎ
0 ,

uℎ
1 ∈ 𝑉ℎ be suitable approximations of u0, u1 characterized

by

⟨uℎ
0 − u0, kℎ⟩𝑉 = 0,

⟨uℎ
1 − u1, kℎ⟩𝐻 = 0

(50)

for all kℎ ∈ 𝑉ℎ. It is easy to observe that󵄩󵄩󵄩󵄩󵄩uℎ
0

󵄩󵄩󵄩󵄩󵄩𝑉 ≤ 󵄩󵄩󵄩󵄩u0
󵄩󵄩󵄩󵄩𝑉 ,

󵄩󵄩󵄩󵄩󵄩uℎ
1

󵄩󵄩󵄩󵄩󵄩𝐻 ≤ 󵄩󵄩󵄩󵄩u1
󵄩󵄩󵄩󵄩𝐻 .

(51)

The fully discrete approximation of Problem P𝑉 is the
following.

Problem Pℎ𝑘
𝑉 . Find a velocity field {wℎ𝑘

𝑛 }𝑁𝑛=0 ⊂ 𝑉ℎ and a
friction stress field {𝜉ℎ𝑘𝑛 }𝑁𝑛=0 ⊂ 𝐿2(Γ3;R𝑑) such that

⟨𝜌𝛿wℎ𝑘
𝑛 + 𝐴wℎ𝑘

𝑛 + 𝐵uℎ𝑘
𝑛 − f𝑛, kℎ⟩𝑉∗×𝑉

+ (𝑝 (𝑢ℎ𝑘𝑛]) , Vℎ])𝐿2(Γ3 ;R)
+ (𝑞 (𝑤ℎ𝑘

𝑛]) , Vℎ])𝐿2(Γ3 ;R)

+ ((𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘
𝑛])) 𝜉ℎ𝑘𝑛 , kℎ𝜏)𝐿2(Γ3 ;R𝑑) = 0

∀kℎ ∈ 𝑉ℎ,
(52)

with

𝜉ℎ𝑘𝑛 ∈ 𝑆2𝜕𝑗(wℎ𝑘𝑛𝜏) a.e. on Γ3, 𝑛 = 1, . . . , 𝑁, 𝑇 = 𝑁𝑘,
uℎ𝑘
0 = uℎ

0 ,
wℎ𝑘

0 = uℎ
1 .

(53)

We consider the following discrete displacement

uℎ𝑘
𝑛 = uℎ𝑘

0 + 𝑛∑
𝑗=1

𝑘wℎ𝑘
𝑗 . (54)

Remark 5. From now on, the constant denoted by 𝐶 may
differ from line to line.

In what follows, our aim is to analyze the error between
the solution of Problem P𝑉 in displacement and its fully
discrete approximation, solution of Problem Pℎ𝑘

𝑉 . Note that
the analysis of the error estimates in terms of tangential
constraint remains an open problem. The main result of this
section lies in the following theorem.

Theorem 6. Assume 𝑘 is sufficiently small. Then, under the
assumptions 𝐻(C), 𝐻(E), 𝐻(𝑝), 𝐻(𝑞), 𝐻(𝜇), 𝐻(𝑓), and 𝐻0

and the regularity u ∈ 𝐶1(0, 𝑇; [𝐻2(Ω)]𝑑) ∩ 𝐻3(0, 𝑇;𝐻) and
u̇𝜏 ∈ 𝐶(0, 𝑇;𝐻2(Γ3)𝑑)we have the optimal order error estimate

max
1≤𝑛≤𝑁

(󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 + 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝐻) ≤ 𝐶 (ℎ + 𝑘) , (55)

with 𝐶 a constant independent of ℎ and 𝑘.
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Proof. We take v = vℎ in (47) and we combine it with (52) in
order to get

⟨𝜌 (ẇ𝑛 − 𝛿wℎ𝑘
𝑛 ) + 𝐴 (w𝑛 − wℎ𝑘

𝑛 )
+ 𝐵 (u𝑛 − uℎ𝑘

𝑛 ) , kℎ⟩𝑉∗×𝑉 + (𝑝 (𝑢𝑛])
− 𝑝 (𝑢ℎ𝑘𝑛]) , Vℎ])𝐿2(Γ3 ;R)

+ (𝑞 (𝑤𝑛])
− 𝑞 (𝑤ℎ𝑘

𝑛]) , Vℎ])𝐿2(Γ3 ;R)
+ ((𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛

− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘
𝑛])) 𝜉ℎ𝑘𝑛 , kℎ𝜏)𝐿2(Γ3 ;R𝑑) = 0.

(56)

Now, taking kℎ = wℎ𝑘
𝑛 in (56) and combining these 2

inequalities, we obtain

⟨𝜌 (ẇ𝑛 − 𝛿wℎ𝑘
𝑛 ) + 𝐴 (w𝑛 − wℎ𝑘

𝑛 )
+ 𝐵 (u𝑛 − uℎ𝑘

𝑛 ) , kℎ⟩𝑉∗×𝑉 + (𝑝 (𝑢𝑛])
− 𝑝 (𝑢ℎ𝑘𝑛]) , Vℎ])𝐿2(Γ3 ;R)

+ (𝑞 (𝑤𝑛])
− 𝑞 (𝑤ℎ𝑘

𝑛]) , Vℎ])𝐿2(Γ3 ;R)
+ ((𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛

− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘
𝑛])) 𝜉ℎ𝑘𝑛 , kℎ𝜏)𝐿2(Γ3 ;R𝑑)

= ⟨𝜌 (ẇ𝑛 − 𝛿wℎ𝑘
𝑛 ) + 𝐴 (w𝑛 − wℎ𝑘

𝑛 )
+ 𝐵 (u𝑛 − uℎ𝑘

𝑛 ) ,wℎ𝑘
𝑛 ⟩𝑉∗×𝑉 + (𝑝 (𝑢𝑛])

− 𝑝 (𝑢ℎ𝑘𝑛]) , 𝑤ℎ𝑘
𝑛])𝐿2(Γ3 ;R)

+ (𝑞 (𝑤𝑛])
− 𝑞 (𝑤ℎ𝑘

𝑛]) , 𝑤ℎ
])𝐿2(Γ3 ;R)

+ ((𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛
− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉ℎ𝑘𝑛 ,wℎ𝑘
𝑛𝜏)𝐿2(Γ3 ;R𝑑) .

(57)

After reformulation of (57) under the form (⋅,w𝑛 − wℎ𝑘
𝑛 ) =(⋅,w𝑛 − kℎ), we have

⟨𝜌 (ẇ𝑛 − 𝛿wℎ𝑘
𝑛 ) + 𝐴 (w𝑛 − wℎ𝑘

𝑛 ) + 𝐵 (u𝑛 − uℎ𝑘
𝑛 ) ,w𝑛

− wℎ𝑘
𝑛 ⟩𝑉∗×𝑉 + (𝑝 (𝑢𝑛]) − 𝑝 (𝑢ℎ𝑘𝑛]) , 𝑤𝑛]

− 𝑤ℎ𝑘
𝑛])𝐿2(Γ3 ;R)

+ (𝑞 (𝑤𝑛]) − 𝑞 (𝑤ℎ𝑘
𝑛]) , 𝑤𝑛]

− 𝑤ℎ𝑘
𝑛])𝐿2(Γ3 ;R)

+ ((𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛
− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉ℎ𝑘𝑛 ,w𝑛𝜏 − wℎ𝑘
𝑛𝜏)𝐿2(Γ3 ;R𝑑)

= ⟨𝜌 (ẇ𝑛 − 𝛿wℎ𝑘
𝑛 ) + 𝐴 (w𝑛 − wℎ𝑘

𝑛 )
+ 𝐵 (u𝑛 − uℎ𝑘

𝑛 ) ,w𝑛 − kℎ⟩𝑉∗×𝑉 + (𝑝 (𝑢𝑛])
− 𝑝 (𝑢ℎ𝑘𝑛]) , 𝑤𝑛] − Vℎ])𝐿2(Γ3 ;R)

+ (𝑞 (𝑤𝑛])
− 𝑞 (𝑤ℎ𝑘

𝑛]) , 𝑤𝑛] − Vℎ])𝐿2(Γ3 ;R)

+ ((𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛
− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉ℎ𝑘𝑛 ,w𝑛𝜏 − kℎ𝜏)𝐿2(Γ3 ;R𝑑) .
(58)

From that, we deduce that

⟨𝜌 (ẇ𝑛 − 𝛿wℎ𝑘
𝑛 ) + 𝐴 (w𝑛 − wℎ𝑘

𝑛 ) + 𝐵 (u𝑛 − uℎ𝑘
𝑛 ) ,w𝑛

− wℎ𝑘
𝑛 ⟩𝑉∗×𝑉 + (𝑝 (𝑢𝑛]) − 𝑝 (𝑢ℎ𝑘𝑛]) , 𝑤𝑛]

− 𝑤ℎ𝑘
𝑛])𝐿2(Γ3 ;R)

+ (𝑞 (𝑤𝑛]) − 𝑞 (𝑤ℎ𝑘
𝑛]) , 𝑤𝑛]

− 𝑤ℎ𝑘
𝑛])𝐿2(Γ3 ;R)

+ ((𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛
− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉𝑛,w𝑛𝜏 − wℎ𝑘
𝑛𝜏)𝐿2(Γ3 ;R𝑑)

+ ((𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘
𝑛])) 𝜉𝑛

− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘
𝑛])) 𝜉ℎ𝑘𝑛 ,w𝑛𝜏 − wℎ𝑘

𝑛𝜏)𝐿2(Γ3 ;R𝑑)
= ⟨𝜌 (ẇ𝑛 − 𝛿wℎ𝑘

𝑛 ) + 𝐴 (w𝑛 − wℎ𝑘
𝑛 )

+ 𝐵 (u𝑛 − uℎ𝑘
𝑛 ) ,w𝑛 − kℎ⟩𝑉∗×𝑉 + (𝑝 (𝑢𝑛])

− 𝑝 (𝑢ℎ𝑘𝑛]) , 𝑤𝑛] − Vℎ])𝐿2(Γ3 ;R)
+ (𝑞 (𝑤𝑛])

− 𝑞 (𝑤ℎ𝑘
𝑛]) , 𝑤𝑛] − Vℎ])𝐿2(Γ3 ;R)

+ ((𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛
− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉ℎ𝑘𝑛 ,w𝑛𝜏 − kℎ𝜏)𝐿2(Γ3 ;R𝑑) .

(59)

Therefore, after some elementarymanipulations, it is easy
to see that

(𝜌 (𝛿w𝑛 − 𝛿wℎ𝑘
𝑛 ) ,w𝑛 − wℎ𝑘

𝑛 )𝐻 + ⟨𝐴 (w𝑛 − wℎ𝑘
𝑛 ) ,w𝑛

− wℎ𝑘
𝑛 ⟩𝑉∗×𝑉 + ((𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉𝑛
− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉ℎ𝑘𝑛 ,w𝑛𝜏 − wℎ𝑘
𝑛𝜏)𝐿2(Γ3 ;R𝑑)

= (𝜌 (ẇ𝑛 − 𝛿w𝑛) ,wℎ𝑘
𝑛 − w𝑛)𝐻
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+ (𝜌 (𝛿w𝑛 − 𝛿wℎ𝑘
𝑛 ) ,w𝑛 − kℎ)𝐻 (𝜌 (ẇ𝑛 − 𝛿w𝑛) ,w𝑛

− kℎ)
𝐻
+ ⟨𝐴 (w𝑛 − wℎ𝑘

𝑛 ) ,w𝑛 − kℎ⟩𝑉∗×𝑉
+ ⟨𝐵 (u𝑛 − uℎ𝑘

𝑛 ) , (wℎ𝑘
𝑛 − w𝑛) + (w𝑛 − kℎ)⟩𝑉∗×𝑉

+ (𝑝 (𝑢𝑛]) − 𝑝 (𝑢ℎ𝑘𝑛]) , (𝑤ℎ𝑘
𝑛] − 𝑤𝑛])

+ (𝑤𝑛] − Vℎ]))𝐿2(Γ3;R)
+ (𝑞 (𝑤𝑛])

− 𝑞 (𝑤ℎ𝑘
𝑛]) , (𝑤ℎ𝑘

𝑛] − 𝑤𝑛]) + (𝑤𝑛] − Vℎ]))𝐿2(Γ3 ;R)

+ ((𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛
− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉ℎ𝑘𝑛 ,w𝑛𝜏 − kℎ𝜏)𝐿2(Γ3 ;R𝑑)
+ ((𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘

𝑛])) 𝜉𝑛
− (𝑝 (𝑢𝑛]) + 𝑞 (𝑤𝑛])) 𝜉𝑛,w𝑛𝜏 − wℎ𝑘

𝑛𝜏)𝐿2(Γ3 ;R𝑑) .
(60)

Remark 7. From now on, the constant denoted by 𝐶 may
differ from line to line.

It is easy to see that

2 (𝑎 − 𝑏, 𝑎) = ‖𝑎 − 𝑏‖2 + ‖𝑎‖2 − ‖𝑏‖2 . (61)

Then, we take 𝑎 = w𝑛 − wℎ𝑘
𝑛 and 𝑏 = w𝑛−1 − wℎ𝑘

𝑛−1

𝜌2𝑘 (󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 − 󵄩󵄩󵄩󵄩󵄩w𝑛−1 − wℎ𝑘
𝑛−1

󵄩󵄩󵄩󵄩󵄩2𝐻)
≤ 𝜌 ((𝛿w𝑛 − 𝛿wℎ𝑘

𝑛 ) ,w𝑛 − wℎ𝑘
𝑛 )𝐻 .

(62)

From the coercivity of the operator 𝐴 in (44), we get

𝑐2 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝑉 ≤ ⟨𝐴 (w𝑛 − wℎ𝑘
𝑛 ) ,w𝑛 − wℎ𝑘

𝑛 ⟩𝑉∗×𝑉 . (63)

The operator 𝐴 is Lipschitz continuous, from (44):

⟨𝐴 (w𝑛 − wℎ𝑘
𝑛 ) ,w𝑛 − kℎ⟩𝑉∗×𝑉

≤ 𝐿C 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ󵄩󵄩󵄩󵄩󵄩𝑉 .
(64)

The operator 𝐵 is also Lipschitz continuous, from (45):

⟨𝐵 (u𝑛 − uℎ𝑘
𝑛 ) ,wℎ𝑘

𝑛 − kℎ⟩𝑉∗×𝑉
≤ 𝐿E 󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 󵄩󵄩󵄩󵄩󵄩wℎ𝑘
𝑛 − kℎ󵄩󵄩󵄩󵄩󵄩𝑉 .

(65)

With (26), (33)(a), and (34)(a), we have

(𝑝 (𝑢𝑛]) − 𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤𝑛]) − 𝑞 (𝑤ℎ𝑘
𝑛]) , 𝑤ℎ𝑘

𝑛]

− Vℎ])𝐿2(Γ3 ;R)
≤ (𝑐0𝐿𝑝

󵄩󵄩󵄩󵄩󵄩𝑢𝑛] − 𝑢ℎ𝑘𝑛]󵄩󵄩󵄩󵄩󵄩𝑉
+ 𝐿𝑞

󵄩󵄩󵄩󵄩󵄩𝑤𝑛] − 𝑤ℎ𝑘
𝑛]
󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R)

) 󵄩󵄩󵄩󵄩󵄩𝑤ℎ𝑘
𝑛] − Vℎ]󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R)

≤ (𝑐0𝐿𝑝

󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 + 𝐿𝑞

󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R)
)

⋅ (󵄩󵄩󵄩󵄩󵄩wℎ𝑘
𝑛 − w𝑛

󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑) + 𝑐0 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ󵄩󵄩󵄩󵄩󵄩𝑉) .

(66)

From (30), (33)(b), (34)(b), and (46)(c), we get

((𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘
𝑛])) 𝜉𝑛

− (𝑝 (𝑢ℎ𝑘𝑛]) + 𝑞 (𝑤ℎ𝑘
𝑛])) 𝜉ℎ𝑘𝑛 ,w𝑛𝜏 − wℎ𝑘

𝑛𝜏)𝐿2(Γ3 ;R𝑑)
≥ −𝜆 (𝑐3 + 𝑐4) 󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − wℎ𝑘

𝑛𝜏

󵄩󵄩󵄩󵄩󵄩2𝐿2(Γ3 ;R𝑑) ≥ −𝜆 (𝑐3 + 𝑐4)
⋅ (𝜀 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩2𝑉 + 𝐶 (𝜀) 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻) .
(67)

Using now (26), (33)(a), and (46)(a), we have

󵄩󵄩󵄩󵄩󵄩𝑝 (𝑢𝑛]) 𝜉𝑛 − 𝑝 (𝑢ℎ𝑘𝑛]) 𝜉ℎ𝑘𝑛 󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑝 (𝑢𝑛]) 𝜉𝑛 − 𝑝 (𝑢ℎ𝑘𝑛]) 𝜉𝑛
+ 𝑝 (𝑢ℎ𝑘𝑛]) 𝜉𝑛 − 𝑝 (𝑢ℎ𝑘𝑛]) 𝜉ℎ𝑘𝑛 󵄩󵄩󵄩󵄩󵄩
≤ 𝑐0𝐿𝑝𝑐 󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 + 2𝑐3𝑐.
(68)

Then, with (26), (34)(a), and (46)(a), we have

󵄩󵄩󵄩󵄩󵄩𝑞 (𝑤𝑛]) 𝜉𝑛 − 𝑞 (𝑤ℎ𝑘
𝑛]) 𝜉ℎ𝑘𝑛 󵄩󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩󵄩𝑞 (𝑤𝑛]) 𝜉𝑛 − 𝑞 (𝑤ℎ𝑘

𝑛]) 𝜉𝑛
+ 𝑞 (𝑤ℎ𝑘

𝑛]) 𝜉𝑛 − 𝑞 (𝑤ℎ𝑘
𝑛]) 𝜉ℎ𝑘𝑛 󵄩󵄩󵄩󵄩󵄩 ≤ 𝑐0𝐿𝑞𝑐 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝑉
+ 2𝑐4𝑐.

(69)

Therefore, using this time only (26) and (33)(a) we deduce
that

󵄩󵄩󵄩󵄩󵄩𝑝 (𝑢ℎ𝑘𝑛]) 𝜉𝑛 − 𝑝 (𝑢𝑛]) 𝜉𝑛󵄩󵄩󵄩󵄩󵄩 ≤ 𝑐0𝐿𝑝𝑐 󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 , (70)
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and from (26), (30), and (34)(a), we obtain

󵄩󵄩󵄩󵄩󵄩𝑞 (𝑤ℎ𝑘
𝑛]) 𝜉𝑛 − 𝑞 (𝑤𝑛]) 𝜉𝑛󵄩󵄩󵄩󵄩󵄩

≤ 𝐿𝑞𝑐 (𝜀 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 + 𝐶 (𝜀) 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝐻) .
(71)

Thus, from (62)–(71), we get

𝜌2𝑘 (󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 − 󵄩󵄩󵄩󵄩󵄩w𝑛−1 − wℎ𝑘
𝑛−1

󵄩󵄩󵄩󵄩󵄩2𝐻)
+ (𝑐2 − (𝜆 (𝑐3 + 𝑐4) + 𝐿𝑞𝑐) 𝜀) 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩2𝑉
≤ (𝜌 (𝛿w𝑛 − 𝛿wℎ𝑘

𝑛 ) ,w𝑛 − kℎ)𝐻 + 𝜌 󵄩󵄩󵄩󵄩ẇ𝑛 − 𝛿w𝑛
󵄩󵄩󵄩󵄩𝐻

⋅ (󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝐻 + 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ󵄩󵄩󵄩󵄩󵄩𝐻) + 𝐿C 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝑉
⋅ 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ󵄩󵄩󵄩󵄩󵄩𝑉 + 𝐿E 󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝑉
⋅ (󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ󵄩󵄩󵄩󵄩󵄩𝑉 + 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝑉)
+ (𝑐0𝐿𝑝

󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 + 𝐿𝑞

󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑))
⋅ (󵄩󵄩󵄩󵄩󵄩wℎ𝑘

𝑛 − w𝑛

󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑) + 𝑐0 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ󵄩󵄩󵄩󵄩󵄩𝑉)
+ 2 (𝑐3 + 𝑐4) 𝑐 󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − kℎ𝜏󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑)
+ 𝑐0𝐿𝑞𝑐 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝑉 󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − kℎ𝜏󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑)
+ 𝑐0𝐿𝑝𝑐 󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩𝑉
⋅ (󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − kℎ𝜏󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑) + 𝑐0 󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − wℎ𝑘

𝑛𝜏

󵄩󵄩󵄩󵄩󵄩𝑉)
+ 𝐿𝑞𝑐𝐶 (𝜀) 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 .

(72)

Then, from (25), (26), (30), the inequalities 𝑎𝑏 ≤ 2𝑎2+2𝑏2
and 𝑎𝑏 ≤ 𝜀𝑎2 + 𝑏2/4𝜀, and (72), we obtain

𝜌2𝑘 (󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 − 󵄩󵄩󵄩󵄩󵄩w𝑛−1 − wℎ𝑘
𝑛−1

󵄩󵄩󵄩󵄩󵄩2𝐻)
+ (𝑐2 − (𝜆 (𝑐3 + 𝑐4) + 𝐿𝑞𝑐) 𝜀) 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩2𝑉
≤ (𝜌 (𝛿w𝑛 − 𝛿wℎ𝑘

𝑛 ) ,w𝑛 − kℎ)𝐻
+ 𝐶(󵄩󵄩󵄩󵄩ẇ𝑛 − 𝛿w𝑛

󵄩󵄩󵄩󵄩2𝐻 + 󵄩󵄩󵄩󵄩󵄩u𝑛 − uℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝑉 + 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ󵄩󵄩󵄩󵄩󵄩2𝑉)
+ 𝜀 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩2𝑉 + 𝐶 󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − kℎ𝜏󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑)
+ 𝐶 󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − kℎ𝜏󵄩󵄩󵄩󵄩󵄩2𝐿2(Γ3;R𝑑) + 𝐶 (𝜀) 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 ,

(73)

with 𝐶 a positive constant that may change from line to line.

Remark 8. Note that if 𝜀 is small enough, 𝑐2−(𝜆(𝑐3+𝑐4)+𝐿𝑞𝑐+1)𝜀 > 0.
Now, we replace 𝑛 by 𝑗 and sum over 𝑗 from 1 to 𝑛 to

obtain

(󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 − 󵄩󵄩󵄩󵄩󵄩w0 − wℎ𝑘
0

󵄩󵄩󵄩󵄩󵄩2𝐻) + 2𝜌 (𝑐2 − (𝜆 (𝑐3 + 𝑐4)
+ 𝐿𝑞𝑐 + 1) 𝜀) 𝑛∑

𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗 − wℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩2𝑉
≤ 2 𝑛∑

𝑗=1

𝑘 ((𝛿w𝑗 − 𝛿wℎ𝑘
𝑗 ) ,w𝑗 − kℎ𝑗 )𝐻

+ 𝐶 𝑛∑
𝑗=1

𝑘 (󵄩󵄩󵄩󵄩󵄩ẇ𝑗 − 𝛿w𝑗

󵄩󵄩󵄩󵄩󵄩2𝐻 + 󵄩󵄩󵄩󵄩󵄩u𝑗 − uℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩2𝑉
+ 󵄩󵄩󵄩󵄩󵄩w𝑗 − kℎ𝑗 󵄩󵄩󵄩󵄩󵄩2𝑉) + 𝐶

𝑛∑
𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗𝜏 − kℎ𝑗𝜏󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑)
+ 𝐶 𝑛∑

𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗𝜏 − kℎ𝑗𝜏󵄩󵄩󵄩󵄩󵄩2𝐿2(Γ3 ;R𝑑) + 𝐶 (𝜀)
𝑛∑

𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗

− wℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩2𝐻 .

(74)

We consider the term∑𝑛
𝑗=1 𝑘((𝛿w𝑗 − 𝛿wℎ𝑘

𝑗 ),w𝑗 − kℎ𝑗 )𝐻; we
have

𝑛∑
𝑗=1

𝑘 ((𝛿w𝑗 − 𝛿wℎ𝑘
𝑗 ) ,w𝑗 − kℎ𝑗 )𝐻

= 𝑛∑
𝑗=1

((w𝑗 − wℎ𝑘
𝑗 ) − (w𝑗−1 − wℎ𝑘

𝑗−1) ,w𝑗 − kℎ𝑗 )𝐻
= 𝑛∑

𝑗=1

(w𝑗 − wℎ𝑘
𝑗 ,w𝑗 − kℎ𝑗 )𝐻

− 𝑛−1∑
𝑗=0

(w𝑗 − wℎ𝑘
𝑗 ,w𝑗+1 − kℎ𝑗+1)𝐻

≤ 𝜀󸀠 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 + 𝐶 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ𝑛󵄩󵄩󵄩󵄩󵄩2𝐻
+ 𝐶 󵄩󵄩󵄩󵄩󵄩w0 − wℎ𝑘

0

󵄩󵄩󵄩󵄩󵄩2𝐻 + 𝐶 󵄩󵄩󵄩󵄩󵄩w1 − kℎ1󵄩󵄩󵄩󵄩󵄩2𝐻
+ 𝑛−1∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩w𝑗 − wℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩𝐻 󵄩󵄩󵄩󵄩󵄩w𝑗 − kℎ𝑗 − (w𝑗+1 − kℎ𝑗+1)󵄩󵄩󵄩󵄩󵄩𝐻
≤ 𝜀󸀠 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘

𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 + 𝐶 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ𝑛󵄩󵄩󵄩󵄩󵄩2𝐻
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+ 𝐶 󵄩󵄩󵄩󵄩󵄩w0 − wℎ𝑘
0

󵄩󵄩󵄩󵄩󵄩2𝐻 + 𝐶 󵄩󵄩󵄩󵄩󵄩w1 − kℎ1󵄩󵄩󵄩󵄩󵄩2𝐻
+ 𝑛−1∑

𝑗=1

𝑘4 󵄩󵄩󵄩󵄩󵄩w𝑗 − wℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩2𝐻
+ 𝑛−1∑

𝑗=1

1𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗 − kℎ𝑗 − (w𝑗+1 − kℎ𝑗+1)󵄩󵄩󵄩󵄩󵄩2𝐻 ,
(75)

with 𝜀󸀠 < 1/2. We recall the following classical inequality:

󵄩󵄩󵄩󵄩󵄩u𝑗 − uℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩𝑉 ≤ 󵄩󵄩󵄩󵄩󵄩u0 − uℎ
0

󵄩󵄩󵄩󵄩󵄩𝑉 +
𝑗∑

𝑝=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑝 − wℎ𝑘
𝑝

󵄩󵄩󵄩󵄩󵄩𝑉 + 𝐼𝑗, (76)

where 𝐼𝑗 is defined by the following relation

𝐼𝑗 =
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∫

𝑡𝑗

0
w (𝑠) 𝑑𝑠 − 𝑗∑

𝑝=1

𝑘w𝑝

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑉 ≤ 𝑘 ‖u‖𝐻2(0,𝑇;𝑉) . (77)

Thus, since 2𝑎𝑏 ≤ 𝑎2 + 𝑏2,
󵄩󵄩󵄩󵄩󵄩u𝑗 − uℎ𝑘

𝑗

󵄩󵄩󵄩󵄩󵄩2𝑉
≤ 󵄩󵄩󵄩󵄩󵄩u0 − uℎ

0

󵄩󵄩󵄩󵄩󵄩2𝑉 + (
𝑗∑

𝑝=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑝 − wℎ𝑘
𝑝

󵄩󵄩󵄩󵄩󵄩𝑉)
2 + 𝑘2 ‖u‖2𝐻2(0,𝑇;𝑉) + 2 󵄩󵄩󵄩󵄩󵄩u0 − uℎ

0

󵄩󵄩󵄩󵄩󵄩𝑉
𝑗∑

𝑝=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑝 − wℎ𝑘
𝑝

󵄩󵄩󵄩󵄩󵄩𝑉
+ 2 󵄩󵄩󵄩󵄩󵄩u0 − uℎ

0

󵄩󵄩󵄩󵄩󵄩𝑉 𝑘 ‖u‖𝐻2(0,𝑇;𝑉) + 2 𝑗∑
𝑝=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑝 − wℎ𝑘
𝑝

󵄩󵄩󵄩󵄩󵄩𝑉 𝑘 ‖u‖𝐻2(0,𝑇;𝑉)

≤ 3 󵄩󵄩󵄩󵄩󵄩u0 − uℎ
0

󵄩󵄩󵄩󵄩󵄩2𝑉
+ 3 ( 𝑗∑

𝑝=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑝 − wℎ𝑘
𝑝

󵄩󵄩󵄩󵄩󵄩𝑉)
2 + 3𝑘2 ‖u‖2𝐻2(0,𝑇;𝑉) ≤ 𝐶(󵄩󵄩󵄩󵄩󵄩u0 − uℎ

0

󵄩󵄩󵄩󵄩󵄩2𝑉 + 𝑗
𝑗∑

𝑝=1

𝑘2 󵄩󵄩󵄩󵄩󵄩w𝑝 − wℎ𝑘
𝑝

󵄩󵄩󵄩󵄩󵄩2𝑉 + 𝑘2 ‖u‖2𝐻2(0,𝑇;𝑉)) .

(78)

Therefore,

𝑛∑
𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩u𝑗 − uℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩2𝑉 ≤ 𝐶𝑇(󵄩󵄩󵄩󵄩󵄩u0 − uℎ
0

󵄩󵄩󵄩󵄩󵄩2𝑉
+ 𝑛∑

𝑗=1

𝑘2 𝑗∑
𝑝=1

󵄩󵄩󵄩󵄩󵄩w𝑝 − wℎ𝑘
𝑝

󵄩󵄩󵄩󵄩󵄩2𝑉 + 𝑘2 ‖u‖2𝐻2(0,𝑇;𝑉)) .
(79)

By considering the constant 𝑐5 = min(1, (2/𝜌)(𝑐2 −(𝜆(𝑐3 +𝑐4) + 𝐿𝑞𝑐 + 1)𝜀)), it is possible to bound from below ‖w𝑛 −
wℎ𝑘

𝑛 ‖2𝐻 + (2/𝜌)(𝑐2 − (𝜆(𝑐3 + 𝑐4) + 𝐿𝑞𝑐 + 1)𝜀)∑𝑛
𝑗=1 𝑘‖w𝑗 −wℎ𝑘

𝑗 ‖2𝑉
by 𝑐5(‖w𝑛−wℎ𝑘

𝑛 ‖2𝐻+∑𝑛
𝑗=1 𝑘‖w𝑗− wℎ𝑘

𝑗 ‖2𝑉). Note that 𝑐5 is positive
due to Remark 8.

Denote

𝑒𝑛 = 󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 +
𝑛∑

𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗 − wℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩2𝑉 ,
𝑔𝑛 = 𝑛∑

𝑗=1

𝑘 (󵄩󵄩󵄩󵄩󵄩ẇ𝑗 − 𝛿w𝑗

󵄩󵄩󵄩󵄩󵄩2𝐻 + 󵄩󵄩󵄩󵄩󵄩w𝑗 − kℎ𝑗 󵄩󵄩󵄩󵄩󵄩2𝑉)
+ 𝑛∑

𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗𝜏 − kℎ𝑗𝜏󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑) + 󵄩󵄩󵄩󵄩󵄩u0 − uℎ
0

󵄩󵄩󵄩󵄩󵄩2𝑉

+ 𝑘2 ‖u‖2𝐻2(0,𝑇;𝑉) + 󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ𝑛󵄩󵄩󵄩󵄩󵄩2𝐻 + 󵄩󵄩󵄩󵄩󵄩w0 − wℎ𝑘
0

󵄩󵄩󵄩󵄩󵄩2𝐻
+ 󵄩󵄩󵄩󵄩󵄩w1 − kℎ1󵄩󵄩󵄩󵄩󵄩2𝐻 +

𝑛−1∑
𝑗=1

1𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗 − kℎ𝑗 − (w𝑗+1 − kℎ𝑗+1)󵄩󵄩󵄩󵄩󵄩2𝐻
+ 𝑛∑

𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗𝜏 − kℎ𝑗𝜏󵄩󵄩󵄩󵄩󵄩2𝐿2(Γ3 ;R𝑑) .
(80)

Then, we can reformulate (74) as follows:

𝑒𝑛 ≤ 𝐶𝑔𝑛 + 𝑛∑
𝑗=1

𝑘𝑒𝑗, for 𝑛 = 1, . . . , 𝑁. (81)

From (81), we apply the discrete form of the Gronwall
Lemma 1 to obtain that

max
1≤𝑛≤𝑁

(󵄩󵄩󵄩󵄩󵄩w𝑛 − wℎ𝑘
𝑛

󵄩󵄩󵄩󵄩󵄩2𝐻 +
𝑛∑

𝑗=1

𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗 − wℎ𝑘
𝑗

󵄩󵄩󵄩󵄩󵄩2𝑉)

≤ 𝐶[[
𝑁∑
𝑗=1

𝑘 (󵄩󵄩󵄩󵄩󵄩ẇ𝑗 − 𝛿w𝑗

󵄩󵄩󵄩󵄩󵄩2𝐻 + 󵄩󵄩󵄩󵄩󵄩w𝑗 − kℎ𝑗 󵄩󵄩󵄩󵄩󵄩2𝑉)
+ max

1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − kℎ𝑛𝜏󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑)
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+ max
1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩󵄩w𝑛𝜏 − kℎ𝑛𝜏󵄩󵄩󵄩󵄩󵄩2𝐿2(Γ3 ;R𝑑) + 󵄩󵄩󵄩󵄩󵄩u0 − uℎ
0

󵄩󵄩󵄩󵄩󵄩2𝑉
+ 𝑘2 ‖u‖2𝐻2(0,𝑇;𝑉) + max

1≤𝑛≤𝑁

󵄩󵄩󵄩󵄩󵄩w𝑛 − kℎ𝑛󵄩󵄩󵄩󵄩󵄩2𝐻
+ 󵄩󵄩󵄩󵄩󵄩w0 − wℎ𝑘

0

󵄩󵄩󵄩󵄩󵄩2𝐻 + 󵄩󵄩󵄩󵄩󵄩w1 − kℎ1󵄩󵄩󵄩󵄩󵄩2𝐻
+ 𝑁−1∑

𝑗=1

1𝑘 󵄩󵄩󵄩󵄩󵄩w𝑗 − kℎ𝑗 − (w𝑗+1 − kℎ𝑗+1)󵄩󵄩󵄩󵄩󵄩2𝐻]] .
(82)

Now, let uℎ
𝑗 ∈ 𝑉ℎ be the finite element interpolations of

u𝑗. It follows from [24] that

𝑘 𝑁∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩ẇ𝑗 − 𝛿w𝑗

󵄩󵄩󵄩󵄩󵄩2𝐻 ≤ 𝑐𝑘2 ‖w‖2𝐻2(0,𝑇;𝐻) ,
1𝑘

𝑁−1∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩(w𝑗 − kℎ𝑗 ) − (w𝑗+1 − kℎ𝑗+1)󵄩󵄩󵄩󵄩󵄩2𝐻
≤ 𝑐ℎ2 ‖u‖2𝐻2(0,𝑇;𝐸) ,󵄩󵄩󵄩󵄩󵄩u0 − uℎ

0

󵄩󵄩󵄩󵄩󵄩𝐸 ≤ 𝑐ℎ 󵄩󵄩󵄩󵄩u0
󵄩󵄩󵄩󵄩𝐻2(Ω;R𝑑) ,󵄩󵄩󵄩󵄩󵄩u1 − uℎ

1

󵄩󵄩󵄩󵄩󵄩𝐻 ≤ 𝑐ℎ 󵄩󵄩󵄩󵄩u1
󵄩󵄩󵄩󵄩𝐻1(Ω;R𝑑) .

(83)

Then, the error bound follows fromTheorem 6 and (50).

5. Numerical Simulations

The aim of this section is to present the numerical strategy
used to solve the frictional contact Problem P, to provide
numerical simulations and also to get a numerical evidence
of the convergence of the discrete scheme established in
Section 4.

Numerical Solution. The numerical solution is based on an
iterative procedure which leads to a sequence of convex
programming problems already used in [14, 23]. For each
“convexification” iteration of index𝑚, the value of the friction
coefficient 𝜇(‖w𝜏‖R𝑑) is fixed to a given value depending on
the tangential velocity solution w𝜏 found in the previous
iteration. Then, the resulting nonsmooth convex iterative
problems are solved by classical numerical methods. Further-
more, the frictional contact conditions are treated by using
a numerical approach based on the augmented Lagrangian
method (cf. [25]). To this end, we consider additional ficti-
tious nodes for the Lagrange multiplier in the initial mesh.
The construction of these nodes depends on the contact ele-
ment used for the geometrical discretization of the interfaceΓ3. In the case presented below, the discretization is based
on “node-to-rigid” contact element, which is composed by
one node of Γ3 and one Lagrange multiplier node. For more
details on the discretization step and Computational Contact
Mechanics, we refer to [2, 6, 25–27]. The numerical solution
of the nonsmooth nonconvex variational ProblemP is based

on the iterative scheme given in the following algorithmic
lines characterized by the time stepping loop of index 𝑛 and
the convexification loop of index𝑚. The convexification loop
is ended by the stopping criterion given by (85).

Let 𝜖conv > 0, and let w(0) be given.
For 𝑛 = 0, 1, . . . , 𝑁, do time stepping loop.

For𝑚 = 0, 1, . . ., do convexification loop.

Problem Pconv. Find a velocity field{wℎ𝑘,(𝑚+1)
𝑛 }𝑁𝑛=0 ⊂ 𝑉ℎ and a friction stress

field {𝜉ℎ𝑘,(𝑚+1)
𝑛 }𝑁𝑛=0 ⊂ 𝐿2(Γ3;R𝑑) such that

⟨𝛿wℎ𝑘,(𝑚+1)
𝑛 + 𝐴𝑛 (wℎ𝑘,(𝑚+1)

𝑛 ) + 𝐵uℎ𝑘,(𝑚+1)
𝑛

− f𝑛, Vℎ⟩𝑉∗×𝑉 + (𝑝 (𝑢ℎ𝑘,(𝑚+1)
𝑛] ) , Vℎ])𝐿2(Γ3 ;R)

+ (𝑞 (𝑤ℎ𝑘,(𝑚+1)
𝑛] ) , Vℎ])𝐿2(Γ3 ;R)

+ ((𝑝 (𝑢ℎ𝑘,(𝑚+1)
𝑛] ) + 𝑞 (𝑤ℎ𝑘,(𝑚+1)

𝑛] ))
⋅ 𝜉ℎ𝑘,(𝑚+1)

𝑛 , kℎ𝜏)𝐿2(Γ3 ;R𝑑) = 0,
∀kℎ ∈ 𝑉ℎ, 𝜉ℎ𝑘,(𝑚+1)

𝑛 ∈ 𝑆2
𝜕𝑗(wℎ𝑘,(𝑚)𝜏 )

on Γ3,
𝑇 = 𝑁𝑘,

(84)

until ‖uℎ𝑘,(𝑚+1)
𝑛 −uℎ𝑘,(𝑚)

𝑛 ‖𝑉 ≤ 𝜖conv‖uℎ𝑘,(𝑚)
𝑛 ‖𝑉, and󵄩󵄩󵄩󵄩󵄩𝜉ℎ𝑘,(𝑚+1)

𝑛 − 𝜉ℎ𝑘,(𝑚)
𝑛

󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑) ≤ 𝜖conv 󵄩󵄩󵄩󵄩󵄩𝜉ℎ𝑘,(𝑚)
𝑛

󵄩󵄩󵄩󵄩󵄩𝐿2(Γ3 ;R𝑑) . (85)

We recall that the discrete displacement is given by uℎ𝑘
𝑛 =

uℎ𝑘
0 + ∑𝑛

𝑗=1 𝑘wℎ𝑘
𝑗 .

Note that the different numerical methods used for
the numerical algorithm (85) have been implemented in a
Fortran computer code which is based on aMODULar Finite
Element library (MODULEF) developed by INRIA (Institut
National de Recherche en Informatique et en Automa-
tique, Rocquencourt, France). For more details, we refer to
https://www.rocq.inria.fr/modulef/english.html.

Numerical Example. We consider the physical setting
depicted in Figure 1. There, Ω = (0, 𝐿) × (0, 𝑙) ⊂ R2 with𝐿 > 0, 𝑙 > 0 and

Γ1 = ({0} × [0, 𝑙]) ∪ ({𝐿} × [0, 𝑙]) ,
Γ2 = [0, 𝐿] × {𝑙} ,
Γ3 = [0, 𝐿] × {0} .

(86)

The domain Ω represents the cross section of a three-
dimensional linearly viscoelastic body subjected to the action
of tractions in such a way that the plane stress hypothesis is
assumed.

On the part Γ1 = ({0} × [0, 𝑙]) ∪ ({𝐿} × [0, 𝑙]), the body is
clamped and, therefore, the displacement field vanishes there.
Vertical tractions act on the part [0, 𝐿] × {𝑙} of the boundary.
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Deformable obstacle

Direction of motion of the mass

Γ1
Γ1

Γ2

Γ3

Ω deformable body

Figure 1: Reference configuration of the two-dimensional body.

No body forces are assumed to act on the viscoelastic body
during the dynamic process. The body is in frictional contact
with an obstacle on the part Γ3 = [0, 𝐿] × {0} of the boundary.
Note that we used the viscosity in (13) for mathematical
reasons, so far, but from the practical point of view one may
take the viscosity as small as one wishes. Here, since it is not
our main interest, it is reasonable to neglect it. Indeed, this
choice was motivated by the fact that our aim was to focus
only on the behavior of the very specific frictional contact
conditions.

Therefore, the material response is governed by an elastic
linear constitutive law defined by the elasticity tensorE given
by

(E𝜏)𝛼𝛽 = 𝐸𝜅(1 + 𝜅) (1 − 2𝜅) (𝜏11 + 𝜏22) 𝛿𝛼𝛽 + 𝐸1 + 𝜅𝜏𝛼𝛽,
1 ≤ 𝛼, 𝛽 ≤ 2, ∀𝜏 ∈ S2.

(87)

Here, 𝐸 and 𝜅 are Young’s modulus and Poisson’s ratio of the
material and 𝛿𝛼𝛽 denotes the Kronecker delta.

Note that, in order to insure the boundedness condition
for both functions expressed in (33)(b) and (34)(b), one may
consider the functions

𝑝 (𝑟) = min (𝑐]𝑟+, 𝑐3) ,
𝑞 (𝑟) = min (𝑑]𝑟+, 𝑐4) , (88)

where 𝑐3 and 𝑐4 are very large and 𝑟+ = max(0, 𝑟). Therefore,
the normal compliance and normal damped response used
here are defined by the following functions

𝑝 (𝑟) = 𝑐]𝑟+,
𝑞 (𝑟) = 𝑑]𝑟+. (89)

For the coefficient of friction, we choose a function 𝜇 :[0,∞) → R+ of the form

𝜇 (󵄩󵄩󵄩󵄩u̇𝜏
󵄩󵄩󵄩󵄩) = (𝑎 − 𝑏) ⋅ 𝑒−𝛼‖u̇𝜏‖ + 𝑏, (90)

with 𝑎, 𝑏, 𝛼 > 0 and 𝑎 ≥ 𝑏. Such a slip weakening
phenomenon appears in the study of geophysical problems;
see [28] for details. Indeed, in this case the coefficient of
friction decreases with the slip from the value 𝑎 to the limit
value 𝑏. And, for this reason, the corresponding friction
law can be characterized as being nonmonotone. Since the
function 𝜇(⋅) is a contraction on [0,∞), we have 𝛼(𝑎−𝑏) < 𝜆,
and, as a consequence, the condition (35)(c) is verified.

Also, in order to describe the motion of a mass along the
boundary Γ2, we consider the following function for f2, with𝑥, the abscissa of a point on the boundary

f2 (𝑥, 𝑡) = (0, − 𝑔 (𝑥, 𝑡)) ,
𝑔 (𝑥, 𝑡) = 𝐹𝑒−𝜓(𝑥−𝑐𝑡)2 , ∀𝑥 ∈ [0, 𝐿] ∀𝑡 ∈ [0, 𝑇] , (91)

where 𝐹, 𝜓, 𝑐 > 0.
The choice of this particular function is motivated by sev-

eral points which will be highlighted through the numerical
simulations presented below. For the computation, we use the
following data:

𝑇 = 1 s,
𝐿 = 2m,
𝑙 = 0.1m,

u0 = 0m,
u1 = 0m/s,
𝜌 = 1000 kg/m3,
𝐸 = 100GPa,
𝜅 = 0.3,
f0 = (0, 0) GPa,
𝐹 = 10GPa/m,
Ψ = 50m−1,

𝑐masse = 2m/s,
𝑐3 = 108 GPa/m,
𝑐4 = 108 GPa/m,
𝑐] = 5GPa,
𝑑] = 0.1GPa⋅s,
𝑎 = 1,
𝑏 = 0.5,
𝛼 = 2000.

(92)
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t = 0.6 s

t = 0.2 s

t = 0.8 s

t = 0.4 s

Figure 2: Time evolution of the deformed meshes and contact forces on Γ3.
𝜓 = 5 𝜓 = 20

Figure 3: Deformed meshes and contact forces on Γ3 for 𝜓 = 5 and 𝜓 = 20, without friction.

In Figure 2, we plot the deformed configuration as well as
the interface forces on Γ3 at the moments 𝑡 = 0.2 s, 0.4 s, 0.6 s,
and 0.8 s.Note that at a given instant 𝑡 = 𝑡0, significant normal
contact forces only exist on a portion of the boundary Γ3 and
those forces will eventually vanish over time. Such a behavior
is consistentwith themovement of amass along the boundaryΓ2. Besides, the velocity of the mass along the boundary can
be assimilated to the coefficient 𝑐masse. This is why, with the
choice cmasse = 𝐿/𝑇, the mass proceeds from left to right
through the whole boundary Γ2.

Next, we study the influence of the parameter 𝜓 on
the normal contact stresses on Γ3. At a given instant 𝑡 =𝑡0, since the mass is located at 𝑥0 = 𝑐masse𝑡0, the forces
decrease exponentially with the distance between the node
considered on the contact boundary and the node at the
abscissa 𝑥0. Here, 𝜓 describes the decay rate of 𝑔. Regarding
the mass, it could be understood as its length: the longer
the mass is, the lower 𝜓 should be. Such an assumption is
confirmed by Figure 3, where the deformed configurations
and the interface forces are plotted for 2 values of 𝜓.

This kind of simulation is supposed to model coarsely the
action of a train wheel (mass) on a rail (deformable body)
placed in contact on a ballast (deformable obstacle).

Error Estimate. In order to check the convergence of the
discrete scheme and to illustrate the optimal error estimate
obtained in Section 4, we report in Figure 4 numerical solu-
tion errors in the energy norm defined by

‖k‖𝐸 fl ⟨𝜌k̈ (𝑡) + 𝐵k (𝑡) , k⟩1/2𝑉∗×𝑉
(93)

which is equivalent to the norm ‖k‖𝑉. Since the true solution
u is not available, we use instead the numerical solution
corresponding to fine discretization of Ω as the “reference”

0.125 0.25 0.50.0625 1
h + k

||
u r

ef
−
uh

||
E

0.0156

0.0313

0.0625

0.125

0.25

0.5

1

Figure 4: Numerical errors.

solution uref in computing the solution errors. Here, the
numerical solution with ℎ = 1/128 and 𝑘 = 1/128 is taken
to be the “reference” solution uref . This fine discretization
corresponds to a problem with 33538 degrees of freedom
and 32768 elements and was computed in 5001 CPU time
(expressed in seconds) on an IBM computer equipped with
Intel Dual core processors (Model 5148, 2.33GHz).The curve
of the numerical error estimate is asymptotically linear,
which is consistent with the theoretically predicted optimal
linear convergence of the numerical solution established in
Section 4.
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