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Singular perturbations for a subelliptic operator

Paola Mannucci, Claudio Marchi, Nicoletta Tchou
Università degli Studi di Padova, Université de Rennes 1

Abstract

We study some classes of singular perturbation problems where the
dynamics of the fast variables evolve in the whole space obeying to
an infinitesimal operator which is subelliptic and ergodic. We prove
that the corresponding ergodic problem admits a solution which is
globally Lipschitz continuous and it has at most a logarithmic growth
at infinity.

The main result of this paper establishes that as ǫ→ 0, the value
functions of the singular perturbation problems converge locally uni-
formly to the solution of an effective problem whose operator and data
are explicitly given in terms of the invariant measure for the ergodic
operator.

Keywords: Subelliptic equations, Heisenberg group, invariant measure,
singular perturbations, viscosity solutions, degenerate elliptic equations.
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1 Introduction

This paper is devoted to the asymptotic behaviour as ǫ → 0 of stochastic
control systems of the form

dXt = φ̃(Xt, Yt, ut)dt+
√
2σ̃(Xt, Yt, ut)dWt, X0 = x ∈ R

n

dYt =
1

ǫ
b(Yt)dt+

√
2√
ǫ
σ(Yt)dWt, Y0 = y ∈ R

m
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where ut is a control law, Wt is a standard Brownian motion, while the
coefficients φ̃, σ̃, b and σ are Lipschitz continuous uniformly in u. We are
mostly interested in the asymptotic behaviour of the value function

V ǫ(t, x, y) := sup
u∈U

E[

∫ T

t
f(Xs, Ys, us)ds + ea(t−T )g(XT )]

where E denotes the expectation, U is the set of progressively measurable
processes with values in a compact metric set U and a is a fixed positive
parameter. Our aim will be to characterize the limit of V ǫ as the solution
to an effective Cauchy problem whose operator and terminal data need to
be suitably chosen.
Problems of this type arise from models where the variables Y evolve much
faster than the variables X.
Although the present work is not directly concerned with financial math-
ematics, it has been partially inspired by some models of financial assets
whose price Xt is a stochastic process with a possibly degenerate diffu-
sion. In such models, the volatility Yt is also a stochastic process which
is correlated to the former one. Some of the financial models discussed in
([21],[11],[7] and the references therein) involve stochastic processes Xt with
degenerate diffusions. On the other hand, the volatility Yt may also be a
stochastic process with a degenerate diffusion, see for example the models
of Feller and Cox-Ingersoll-Ross ([11, pag.42]).
The main issue of this paper is to tackle this problem when the coeffi-
cients are not periodic in y and the diffusion matrices σ̃σ̃T and σσT may
be degenerate and unbounded. For the sake of simplicity, we shall focus
our attention to the model case where σ̃σ̃T is bounded and the diffusion
matrix σ is the one associated to the Heisenberg group in R

3

σ(y) =





1 0
0 1
2y2 −2y1



 , for y = (y1, y2, y3).

We note that σσT is degenerate and with unbounded coefficients.
It is well known that the ergodicity of the fast variable cannot be

expected for general drift b. In order to overcome this issue, we consider a
drift b in the Ornstein-Uhlenbeck form

b(y) = −(k1y1, k2y2, k3y3) for some k1 > 4, k2 > 4, k3 > 0
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(see A2)). This choice of the drift is reminiscent of other similar conditions
about recurrence of diffusion processes in the whole space (see for example
[13] and references therein).

By standard theory (see [10]), the value function V ǫ is the unique (vis-
cosity) solution to the following Cauchy problem for an Hamilton-Jacobi-
Bellman equation

(1.1)











−∂tV ǫ +H
(

x, y,DxV
ǫ,D2

xxV
ǫ,
D2

xyV
ǫ

√
ǫ

)

−1
ǫL(y,DyV

ǫ,DyyV
ǫ) + aV ǫ = 0 in (0, T ) × R

n ×R
3

V ǫ(T, x, y) = g(x, y) on R
n × R

3

where

H(x, y, p,X,Z) := min
u∈U

{

−tr(σ̃σ̃TX)− φ̃ · p− 2tr(σ̃σTZ)− f(x, y, u)
}

L(y, q, Y ) := tr(σσTY ) + b · q.

For the sake of completeness, in order to exhibit the degeneracy and the
unboundedness of the operator, we write explicitly the second order term
of L:

(1.2) tr(σσTD2U) = Uy1y1 +Uy2y2+4(y21+y
2
2)Uy3y3+4y2Uy1y3−4y1Uy2y3 .

We assume without any loss of generality that a is strictly positive;
actually, for a ≤ 0, the function W ǫ(t, x, y) = e−A(T−t)V ǫ(t, x, y), with
A > −a, satisfies the same Cauchy problem but with a positive coefficient
of the 0-th order term.

Our aim is to establish that, as ǫ → 0+, the function V ǫ converges
locally uniformly to a function V = V (t, x) (namely, independent of y)
which can be characterized as the unique (viscosity) solution to the effective
Cauchy problem

(1.3)

{

−∂tV +H
(

x,DxV,D
2
xxV

)

+ aV = 0 in (0, T )× R
n

V (T, x) = g(x) on R
n

where, for every (x, p,X), the effective Hamiltonian H(x, p,X) and the
effective terminal datum are given by

H(x, p,X) :=

∫

R3

H(x, y, p,X, 0)dµ(y)(1.4)

g(x) :=

∫

R3

g(x, y)dµ(y)(1.5)
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and µ is the invariant measure of the diffusion process with infinitesimal
generator −L. As a matter of facts, H(x, p,X) is the ergodic constant λ of
the cell problem

(1.6) −tr(σ(y)σT (y)D2w(y))− b(y)Dw(y)+H(x, y, p,X, 0) = λ y ∈ R
3,

while g(x) is the constant obtained in the long time behaviour of the
parabolic Cauchy problem

∂tw
′ − Lw′ = 0 in (0,∞)× R

3, w′(0, y) = g(x, y) on R
3.

There is a large literature on singular perturbation problems: see [1,
14, 15] and references therein. We shall follow a pure PDE-approach. In
this framework, the singular perturbation problems are strictly related to
homogenization problems (see also [20]); Alvarez and Bardi [1, 2] extended
to singular perturbation problems with periodic fast variables the celebrated
perturbed test function method by Evans (see also [3] for some cases in
hypoelliptic periodic setting). Let us also recall that, the papers [5, 6, 13]
studied singular perturbation problems of uniformly elliptic operators on
the whole space.

The novelties of our results is that the variable Yt is unbounded and
the diffusion matrix of the fast variable may be degenerate and unbounded.
In other words, the main issues to overcome are the lack of periodicity and
the degeneracy of the operator. The proof of our main Theorem 2.1 is not
an adaptation to the subelliptic case of some arguments already known in
the non degenerate case. Indeed our proof is based on the perturbed test
function method suitably adapted with a Lyapunov function. Moreover our
techniques shed some light on some difficult points in the literature on the
whole space.

Let us recall that existence and uniqueness of the ergodic constant λ
for (1.6) (namely, that δuδ locally converge to λ, where uδ solves the ap-
proximated cell problem (3.1) below) and the stabilization to a constant
have been established in our previous paper [18]. Unfortunately, by the lack
of compactness for y, these properties seem to be not sufficient for applying
the usual semilimits method for the convergence of V ǫ. In order to overcome
this issue:

• we shall prove that the cell problem admits a corrector w which is
globally Lipschitz continuous and it has at most a logarithmic type
growth at infinity;
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• under some additional assumptions we get that the corrector w is
C2,α(R3).

• we take advantage of the existence and uniqueness of the invariant
measure and a superlinear Lyapunov function for the operator L.

In our opinion, the proof of the global Lipschitz continuity of the corrector
has its own interest because it can be extended to many other operators
in unbounded domains. In this direction, let us quote the papers [13] and
[17] where similar results are obtained for strictly elliptic operators.
Moreover the C2-regularity of the corrector is not straightforward because
our operator contains second order horizontal derivatives and Euclidean
first derivatives as well and such a second order part of the operator does
not immediately regularize the first order one.

The paper is organized as follows: in Section 2 we state the perturba-
tion problem and our main convergence result. Section 3 is devoted to the
solution of the cell problem and its properties. In Section 4, by means of
these result we prove the convergence of V ǫ to V .

2 The convergence result

Throughout this paper unless otherwise explicitly stated, we assume

A1) the diffusion matrix σ has the following form:

σ(y) =





1 0
0 1
2y2 −2y1



 , for y = (y1, y2, y3).

A2) the drift is b(y) = −(k1y1, k2y2, k3y3) with k1 > 4, k2 > 4, k3 > 0;

A3) the function f = f(x, y, u) is Lipschitz continuous in (x, y) uniformly
in u and, for some Cf > 0, it satisfies

|f(x, y, u)| ≤ Cf (1 + |x|) ∀(x, y, u) ∈ R
n × R

3 × U ;

A4) the function g is continuous in (x, y) and there exits Cg such that

|g(x, y)| ≤ Cg(1 + |x|) ∀(x, y) ∈ R
n × R

3;
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A5) φ̃(x, y, u) and σ̃(x, y, u) are Lipschitz continuous and bounded in (x, y)
uniformly on u: |φ̃(x, y, u)| ≤ Cφ̃, |σ̃(x, y, u)| ≤ Cσ̃;

A6) for any (x, p,X) the function F (y) = −H(x, y, p,X, 0) is such that

F , ∂F
∂y3

and ∂2F
∂y2

3

are bounded and globally Lipschitz.

Remark 2.1

• Let us underline that condition (A2) is linked with the form of the
second order operator given in (1.2). This assumption will play a
crucial role in several main points, for instance in (3.4), Theorem 3.2,
Theorem 3.4 and in (4.9).

• We note also that there holds:

(2.1) |H(x, y, p,X,Z) −H(x′, y, p′,X ′, Z)|
≤ C

(

|p− p′|+ |X −X ′|
)

+ C|x− x′| (1 + |p|+ |X|) .

• We stress that assumption A6) will be only used for obtaining the
regularity of the corrector.

We state now that the problem (1.1) is well posed and the solution V ǫ

has a sublinear growth in the slow variable.

Proposition 2.1 Under Assumptions (A1)-(A5), for any ǫ > 0 there ex-
ists a unique continuous viscosity solution V ǫ to problem (1.1) such that

(2.2) |V ǫ(t, x, y)| ≤ C0(1 + |x|), ∀(t, x, y) ∈ (0, T )× R
n × R

n

for some positive constant C0 independent on ǫ. In particular {V ǫ}ǫ is a
family of locally equibounded functions.

Proof. The uniqueness follows from the comparison principle proved in
Da Lio-Ley [9] (recall that they require that the diffusion matrix and the
drift grow at most quadratically and respectively linearly with respect to
the state). We now claim that there exist a supersolution w+ and a sub-
solution w− such that |w±(x)| ≤ C(1 + |x|) for |x| sufficiently large. We
shall prove the existence of w+ and we shall omit the analogous arguments
for w−.
Let w0 ∈ C∞(Rn) be a function in x such that

w0 = C1(1 + |x|) for |x| ≥ R ≥ 1, w0(x) ≥ g(x, y) ∀(x, y),
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for some positive constants C1 and R. For |x| ≥ R, there holds

− ∂tw0 +H(x, y,Dxw0,D
2
xxw0,

D2
xyw0√
ǫ

)− 1

ǫ
L(y,Dyw0,Dyyw0) + aw0 =

H(x, y,Dw0,D
2w0, 0) + aw0 =

min
u∈U

{

−tr(σ̃σ̃TD2w0)− φ̃ ·Dw0 − f(x, y)
}

+ aw0(x) ≥

− C2C1 + aC1(1 + |x|)− Cf (1 + |x|)

where C2 depends on Cφ̃ and Cσ̃. Choosing C1 big enough (for instance

C1 ≥ Cf+1
a ) and R big enough (for instance R ≥ C2C1) the function w0 is a

supersolution (1.1) for |x| > R. Eventually adding a new positive constant
C3 big enough, w

+ = w0+C3 is a supersolution in the whole (0, T )×R
n×R

3

which amounts to our claim. In conclusion, applying Perron’s method, we
infer the existence of a solution to (1.1) verifying (2.2). 2

The main purpose of this paper is to prove the following

Theorem 2.1 Under assumptions A1)-A6), the solution V ǫ of (1.1) con-
verges uniformly on the compact subsets of (0, T ) × R

n × R
3 to the unique

viscosity solution V of (1.3) where H and g are defined in (1.4) and re-
spectively in (1.5).

3 The cell problem

In this section we prove that there exists an unique constant λ such that
the cell problem (1.6) admits solutions. We shall also prove the existence
of a solution w which is globally Lipschitz continuous and with log-growth
at infinity. Assuming also A6) we prove that w ∈ C2. This solution w will
play a crucial role in the proof of Theorem 2.1.

3.1 Approximated cell problems

In order to solve the cell problem (1.6), it is expedient to introduce the
approximated problems

(3.1) δuδ − tr(σ(y)σT (y)D2uδ)− b(y)Duδ = F (y) in R
3,
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where δ > 0 and F (y) = −H(x, y, p,X, 0) with (x, p,X) fixed. In this
section the results are obtained for a general function F (y) which satisfies:

(3.2) F (y) is continuous and bounded in R
3.

Note that under assumptions (A1)-(A5), for (x, p,X) fixed, the function
F (·) = −H(x, ·, p,X, 0), satisfies assumption (3.2).

Let us recall from [18] some properties of the operator L and functions
uδ (and we refer the reader to this paper for the detailed proof).

Lemma 3.1 There exists a unique invariant measure µ associated to the
operator −L; moreover

L∗µ = 0, µ > 0, µ ∈ C∞(R3)

where L∗ is the adjoint operator of −L.

Remark 3.1 As a byproduct of [18], we have the following estimate on the
decay of µ at infinity:

∫

R3

(y41 + y42 + y23)dµ(y) < +∞.

Actually, by [18, Prop. 2.1 (proof)], the function w(y) := (y41+y
4
2)/12+y

2
3/2

satisfies [18, eq. (2.10)] with φ > k(y41 + y42 + y23) (for k > 0 sufficiently
small). Hence, for this choice of φ, relations [18, equation (2.14)] and [18,
equation (2.18)] hold true. Letting ρ→ 0+ we get:

∫

R3 φdµ < +∞.

Lemma 3.2 Under assumptions (A1),(A2),(3.2), there exists an unique
smooth solution uδ of the approximating problem (3.1) such that

|uδ(y)| ≤
C

δ
∀y ∈ R

3

for some positive constant C independent of δ. Moreover the functions δuδ
are locally uniformly Hölder continuous, i.e. there exists α ∈ (0, 1) such
that for every compact K ⊂ R

3 there exists a constant N such that

|δuδ(y1)− δuδ(y2)| ≤ N |y1 − y2|α, ∀y1, y2 ∈ K, ∀δ ∈ (0, 1).

The constant N only depends on K and on the data of the problem (in
particular is independent of δ).

8



Theorem 3.1 The solution uδ of problem (3.1) given in Lemma 3.2 sat-
isfies

lim
δ→0

δuδ =

∫

R3

F (y)dµ(y),

where µ is the invariant measure of −L established in Lemma 3.1.

3.2 Global Lipschitz continuity.

In this section we derive the global Lipschitz continuity of the solution uδ of
(3.1) from its continuity under the weaker assumption of an at most linear
growth of F . In our opinion, this result has its own interest. We assume:

(3.3)







(A1)− (A2)
F Lipschitz continuous in R

3 with Lipschitz constant L
|F (y)| ≤ CF (|y|+ 1) ∀y ∈ R

3

It is clear that the globally Lipschitz continuity implies that |F (y)| ≤
L(|y|+ 1) ∀y ∈ R

3, but in the following proof we want to underline sepa-
rately the dependence on the Lipschitz continuity and the linear behaviour
at infinity.

Lemma 3.3 Under assumptions (3.3) there exists a constant C such that

(3.4) |uδ(y)| ≤ C

(

|y|+ 1

δ

)

, y ∈ R
3.

Proof. The comparison principle for equation (3.1) comes from Da Lio -
Ley ([9]) (this is true also for elliptic operators, see [6]). The existence of
a continuous viscosity solution uδ in R

3 comes from Perron Theorem, by
finding sub- and super solution in R

3. We remark that, in the case when
F is bounded by a constant CF in R

3, a trivial supersolution is CF

δ (a

subsolution −CF

δ ) and the result easily follows.
In the more general, sublinear case, let us introduce some constants:

l := min{k1 − 4, k2 − 4, k3} > 0(3.5)

Cl := max{1, 2CF
l

}(3.6)

r0 := 1 +
2Cl
CF

.(3.7)
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Let U0 any regular function U0 ∈ C2(R3) such that U0(y) = |y| + 1 in
R
3\Br0 . (For instance U0(r) = C0+C2r

2+C4r
4 in B(0, r0) and U0(r) = r+1

in R
3 \Br0).

There exists a constant M0 independent of δ ∈ [0, 1] such that

(3.8) δU0 − LU0 − F (y) ≥ −M0 in Br0

Let us define the function U ∈ C2(R3) as

U(·) = Cl

(

U0(·) +
2M0

δ

)

.

We claim that U is a supersolution to (3.1). Let us test the supersolution
property first in Br0 then in R

3 \ Br0 . For y ∈ Br0 , thanks to Cl ≥ 1 (see
(3.6)) and the definition of M0 in (3.8), we have:

δU −LU − F (y) = Cl(δU0 + 2M0 − LU0)− F (y)

≥ (Cl − 1)F (y) + ClM0 ≥ 0

if M0 is sufficiently large. For y ∈ R
3 \Br0 , denote r = |y|

δU(y) − L(y,DU(y),D2U(y))− F (y)

= Cl

(

δ(|y| + 1 +
2M0

δ
)− 2 + 4(y21 + y22)

r
+

(k1y
2
1 + k2y

2
2 + k3y

2
3)

r

)

+

+Cl
1

r3
(y21 + y22)(1 + 4y23)− F (y)

≥ Cl

(

−2

r
+

(k1 − 4)y21 + (k2 − 4)y22 + k3y
2
3)

r

)

− F (y)

≥ Cl(−
2

r
+ lr)− CF (r + 1)

≥ 0

where we used (3.5), (3.6) and (3.7). From the comparison principle then
uδ ≤ U(y) = Cl

(

U0 +
2M0

δ

)

≤ C(|y| + 1
δ ). The same method applies to

define a subsolution and to prove that uδ ≥ −C(|y|+ 1
δ ). 2

Theorem 3.2 Under assumptions (3.3), let uδ be the unique continuous
solution of (3.1) which satisfies (3.4). there holds

|uδ(y′)− uδ(y)| ≤ ψ(|y′ − y|) ∀y, y′ ∈ R
3,
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where ψ ∈ C2(R) is a concave increasing function with ψ(0) = 0 and
ψ′ > max{ L

k1−4 ,
L

k2−4 ,
L
k3
} (recall that L is the Lipschitz constant of F ) and

it is independent of δ. In particular there holds

(3.9) |uδ(y′)− uδ(y)| ≤ L(|y′ − y|) ∀y, y′ ∈ R
3,∀δ > 0

for L > L
l , where l is defined in (3.5).

Proof. For each η > 0, we introduce the function

Ψ(x, y) = u(x)− u(y)− ψ(|x− y|)− η|x|2 − η|y|2

where ψ is a function as in the statement and for simplicity we take u := uδ.
Assume for the moment that there holds

(3.10) Ψ(x, y) ≤ 8η

δ
∀x, y ∈ R

3, η ∈ (0, 1);

then, for any x, y ∈ R
3, as η → 0+, we obtain the following inequality

u(x)− u(y) ≤ ψ(|x− y|)

which is equivalent to the statement because of the arbitrariness of x and y.
Let us now prove inequality (3.10); to this end, we shall proceed by

contradiction. Let (x, y) be a maximum point of function Ψ in R
3 × R

3.

This maximum does exist since from (3.4) we have that limx→+∞
u(x)
|x|2 = 0.

Let us assume by contradiction that

(3.11) Ψ(x, y) = u(x)− u(y)− ψ(|x − y|)− η|x|2 − η|y|2 > 8η

δ
.

Clearly, the points x and y cannot coincide, otherwise (3.11) is false. We
set ψ̃(x, y) := ψ(|x− y|)+ η(|x|2 + |y|2) and we invoke [8, Theorem 3.2]: for
every ρ > 0 there exist two symmetric 3× 3 matrices X and Y such that

(px,X) ∈ J 2,+u(x), (py, Y ) ∈ J 2,−u(y),(3.12)
(

X 0
0 −Y

)

≤ A+ ρA2,(3.13)

where

px := Dxψ̃(x, y), py := −Dyψ̃(x, y), A :=

(

D2
xxψ̃(x, y) D2

xyψ̃(x, y)

D2
yxψ̃(x, y) D2

yyψ̃(x, y)

)

.

11



We write explicitly px, py and A:

px = ψ′(|x− y|) x− y

|x− y| + 2ηx = ψ′(|x− y|)q + 2ηx(3.14)

py = ψ′(|x− y|) x− y

|x− y| − 2ηy = ψ′(|x− y|)q − 2ηy(3.15)

where we defined

(3.16) q :=
x− y

|x− y| .

Defining B := I−q⊗q
|x−y| , the matrix A assumes the following form

(3.17) A = ψ′(|x− y|)
(

B −B
−B B

)

+ ψ′′(|x− y|)
(

q ⊗ q −q ⊗ q
−q ⊗ q q ⊗ q

)

+ 2η

(

I 0
0 I

)

.

From the definition of sub and supersolution and (px,X), (py, Y ), we
have

δu(x)− tr(σ(x)σT (x)X)− b(x)px ≤ F (x),

δu(y)− tr(σ(y)σT (y)Y )− b(y)py ≥ F (y).

Subtracting the latter inequality from the former, we infer

(3.18) δ(u(x)− u(y))− tr

(

σ(x)σT (x)X − σ(y)σT (y)Y

)

+

(

− b(x)px + b(y)py

)

≤ F (x)− F (y).

We want to estimate from below the three terms on the left hand side of
(3.18):

i) U := δ(u(x)− u(y)),

ii) T : −tr
(

σ(x)σT (x)X − σ(y)σT (y)Y

)

,

iii) G := −b(x)px + b(y)py.

12



(i). The assumption by contradiction (3.11) yields

(3.19) U := δ(u(x)− u(y)) ≥ δψ(|x − y|) + δ(η|x|2 + η|y|2) + 8η ≥ 8η.

(ii). Multiplying relation (3.13) by (ζ, ξ) where ζ and ξ are vectors in R
3 we

obtain (ζ, ξ)

(

X 0
0 −Y

)

(ζ, ξ)T ≤ (ζ, ξ)A(ζ, ξ)T + ρ(ζ, ξ)A2(ζ, ξ)T . Then,

using (3.17), we have

(3.20) ζXζT − ξY ξT ≤ ψ′(|x− y|)
(

ζBζT − ξBζT − ζBξT + ξBξT
)

+

+ ψ′′(|x− y|)(< ζ − ξ, q >)2 + 2η(|ζ|2 + |ξ|2) + ρa(ζ, ξ)

where we denoted by a(ζ, ξ) := (ζ, ξ)A2(ζ, ξ)T and q is defined in (3.16).
Recall that, for any choice of two orthonormal basis {ei}i=1,2 and {ẽi}i=1,2

in R
2, (if ei is a orthonormal basis, trM =

2
∑

i=1

eiMeTi ) we have

tr(σσTX) = tr(σTXσ) =

2
∑

i=1

eiσ
TXσeTi

tr(σσTY ) = tr(σTY σ) =

2
∑

i=1

ẽiσ
TXσẽTi .

We choose

(3.21) ζi = eiσ
T (x), ξi = ẽiσ

T (y);

hence, we get

T = −
2
∑

i=1

eiσ
T (x)Xσ(x)eTi +

2
∑

i=1

ẽiσ
T (y)Y σ(y)ẽTi = −(

2
∑

i=1

ζiXζ
T
i −

2
∑

i=1

ξiY ξ
T
i ).

Then from inequality (3.20) we obtain

T ≥ −ψ′(|x− y|)
2
∑

i=1

(ζi − ξi)B(ζi − ξi)
T − ψ′′(|x− y|)

2
∑

i=1

(< ζi − ξi, q >)
2

−2η

2
∑

i=1

(|ζi|2 + |ξi|2)− ρ

2
∑

i=1

a(ζi, ξi).
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From the definition of the matrix B we have

(3.22)

T ≥ − ψ′

|x− y|

2
∑

i=1

(|ζi − ξi|2) + (
ψ′

|x− y| − ψ′′)
2
∑

i=1

(< ζi − ξi, q >)
2

−2η

2
∑

i=1

(|ζi|2 + |ξi|2)− ρ

2
∑

i=1

a(ζi, ξi)

≥ − ψ′

|x− y|

2
∑

i=1

(|ζi − ξi|)2 − 2η

2
∑

i=1

(|ζi|2 + |ξi|2)− ρ

2
∑

i=1

a(ζi, ξi),

where the last inequality was obtained taking into account that ψ is in-
creasing and concave, so ψ′

|x−y| − ψ′′ ≥ 0.

(iii). From expressions (3.14) and (3.15) of px and py, we have

G =

(

− b(x) + b(y)

)

ψ′(|x− y|)q + 2η

(

− b(x)x− b(y)y

)

.

By our choice of b (recall: b(x) = (−k1x1,−k2x2,−k3x3)), G becomes

(3.23) G =

(

k1(x1 − y1)
2 + k2(x2 − y2)

2 + k3(x3 − y3)
2

)

ψ′(|x− y|)
|x− y| +

2η

(

k1(x
2
1 + y21) + k2(x

2
2 + y22) + k3(x

2
3 + y23)

)

.

Now, replacing inequalities (3.19), (3.22) and (3.23) in (3.18), we obtain

L|x− y| ≥ F (x)− F (y) ≥ U + T + G ≥
8η − ψ′

|x−y|
∑2

i=1(|ζi − ξi|)2 − 2η
∑2

i=1(|ζi|2 + |ξi|2)− ρ
∑2

i=1 a(ζi, ξi) +
(

k1(x1 − y1)
2 + k2(x2 − y2)

2 + k3(x3 − y3)
2

)

ψ′

|x−y| +

2η

(

k1(x
2
1 + y21) + k2(x

2
2 + y22) + k3(x

2
3 + y23)

)

.

Passing to the limit as ρ→ 0+, we obtain

L|x− y| ≥(3.24)

η
(

8− 2
∑2

i=1(|ζi|2 + |ξi|2) + 2k1(x
2
1 + y21) + 2k2(x

2
2 + y22) + 2k3(x

2
3 + y23)

)

+

+ ψ′

|x−y|

[

−∑2
i=1(|ζi − ξi|)2 + k1(x1 − y1)

2 + k2(x2 − y2)
2 + k3(x3 − y3)

2)
]

.
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The contradiction is easily obtained choosing as the two orthonormal basis
the canonical basis in R

2, e1 = ẽ1 = (1, 0) and e2 = ẽ2 = (0, 1). Then
the vectors ζi and ξi (see (3.21)), with x = (x1, x2, x3) and y = (y1, y2, y3)
become ζ1 = (1, 0, 2x2), ζ2 = (0, 1,−2x1), ξ1 = (1, 0, 2y2), ξ2 = (0, 1,−2y1),
and

|ζ1|2 = 1 + 4x22, |ζ2|2 = 1 + 4x21, |ξ1|2 = 1 + 4y22, |ξ2|2 = 1 + 4y21,

|ζ1 − ξ1|2 = 4(x2 − y2)
2, |ζ2 − ξ2|2 = 4(x1 − y1)

2.

Hence, relation (3.24) becomes

L|x− y| ≥ η[8 − 8− 8(x21 + y21 + x22 + y22) +

2k1(x
2
1 + y21) + 2k2(x

2
2 + y22) + 2k3(x

2
3 + y23)] +

ψ′

|x− y| [(k1 − 4)(x1 − y1)
2 + (k2 − 4)(x2 − y2)

2) + k3(x3 − y3)
2]

≥ 2η[(k1 − 4)(x21 + y21) + (k2 − 4)(x22 + y22) + k3(x
2
3 + y23)] +

ψ′

|x− y| [(k1 − 4)(x1 − y1)
2 + (k2 − 4)(x2 − y2)

2 + k3(x3 − y3)
2].

By our choice of k1, k2 and k3 in (A2) (namely, k1, k2 > 4 , k3 > 0) we get

L|x−y|2 ≥ ψ′(|x−y|)[(k1−4)(x1−y1)2+(k2−4)(x2−y2)2+k3(x3−y3)2],
thus we obtain a contradiction provided that we choose a function ψ such
that

ψ′ > max{ L

k1 − 4
,

L

k2 − 4
,
L

k3
}.

Hence, the proof of our claim (3.10) is accomplished. The second statement
of the theorem easily follows by taking ψ(z) = Lz, with L > max{ L

k1−4 ,
L

k2−4 ,
L
k3
}.

2

Remark 3.2 Similar arguments can be applied to other matrices still re-
lated to degenerate elliptic operators as, for example, in dimension 2:

σ(y) := (σij(y))i,j with σij(y) = aijy1 + bijy2 + cij

which in particular encompasses the Ornstein-Uhlenbeck operator and Grushin
operator, respectively

σOU =

(

1 0
0 0

)

, σG =

(

1 0
0 y

)

.

For the Grushin operator in a forthcoming paper [19] we will obtain a local
Hölder continuity uniform in δ using a technique introduced in [12].
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3.3 A key estimate on the growth of the approximate cor-

rector

The aim of this section is to establish that the solution to the approximat-
ing cell problem has a logarithmic growth at infinity. Our arguments are
borrowed form [13, Proposition 3.2].

Lemma 3.4 Assume (A1) and (A2). Let uδ(y) be the solution of equation
(3.1) with (3.2). There exists C > 0 such that

|uδ(y)− uδ(0)| ≤ C
[

1 + log((y21 + y22)
2 + y23 + 1)

]

∀y ∈ R
3, δ ∈ (0, 1).

Proof. We can argue as in [13, Proposition 3.2], replacing its Lemma 3.3
with our Theorem 3.2; to this end, our first step is to claim that, for C1

and R sufficiently large, the function g(y) := C1 log((y
2
1 + y22)

2 + y23) is a
supersolution to (3.1) in R

3 \BR. Indeed, by equality (1.2) there holds:

tr(σσTD2g(y)) =
8C1(y

2
1 + y22)

(y21 + y22)
2 + y23

b(y) ·Dg(y) = −C1
4(y21 + y22)(k1y

2
1 + k2y

2
2) + 2k3y

2
3

(y21 + y22)
2 + y23

.

By these identities, we get

δg(y) − tr(σ(y)σT (y)D2g)− b(y)Dg ≥ F (y), y ∈ R
3 \BR,

provided that C and R are sufficiently large. Now if maxBR
uδ ≤ 0 then

we have maxBR
uδ ≤ g(y) for any y ∈ ∂BR. By the comparison principle

established in [9], we obtain uδ ≤ g in R
3. If maxBR

uδ > 0, we note that

g1(·) := g(·) +maxBR
uδ is still a supersolution of (3.1) in R

3 \BR. Hence,
again by the comparison principle we have uδ ≤ g1 in R

3. By Theorem 3.2
we infer: uδ(y)−uδ(0) ≤ g1(y)+LR which gives one of the two inequalities
of the statement. The proof of the other one is similar and we shall omit
it. 2

3.4 The cell problem

Theorem 3.3 Under assumptions A1)-A6) of Section 2, for every (x, p,X)
the constant λ = −

∫

R3 H(x, y, p,X, 0)dµ(y) (µ is the invariant measure de-
fined in Lemma 3.1) is the unique constant such that the cell problem (1.6)
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admits a solution w(y) which is globally Lipschitz continuous and satisfies
the following estimate:

(3.25) |w(y) − w(0)| ≤ C
[

1 + log((y21 + y22)
2 + y23 + 1)

]

∀y ∈ R
3.

Moreover, the solution w is unique up to an additive constant.

Proof. To prove the existence of such a λ we argue as in [13, Proposition
3.2], replacing its Lemma 3.3 with our Theorem 3.2. We consider the so-
lution uδ of the approximated cell problem (3.1), recalling that, from A3),
F (y) is bounded in R

3; then wδ(y) := uδ(y)− uδ(0) satisfies

δwδ(y)− tr(σ(y)σT (y)D2wδ)− b(y)Dwδ = F (y)− δuδ(0).

From the Lipschitz continuity of uδ(y) in (3.9) we have that

|wδ(y)| = |uδ(y)− uδ(0)| ≤ L̄|y|

and
|wδ(y)− wδ(z)| = |uδ(y)− uδ(z)| ≤ L̄|y − z|

hence wδ(y) are locally equibounded and equicontinuous. Then by Ascoli-
Arzela theorem and standard diagonal argument we can conclude that there
exists a function w with the desired properties. Moreover from Theorem 3.1
we know that

δuδ →
∫

H(x, y, p,X, 0)dµ(y) = −λ.

To prove the uniqueness of λ and the uniqueness up to a constant of w,
we use the arguments of [12, Thm.4.5]. For the sake of completeness, let us
recall them briefly.
First of all we assume that any solution w of (1.6) is regular and this is
not retrictive because the smoothness will be proved in Theorem 3.4 in the
next section.
Assume by contradiction that there exist two constants λ1 6= λ2 and two
regular functions w1, w2 such that (λ1, w1) and (λ2, w2) are both solutions
to problem (1.6). Without any loss of generality we assume λ1 < λ2. We
set u(·) := w1(·) − w2(·) and U1(y) := y41 + y42 + y23. Without any loss
of generality (eventually adding a constant), we assume supR3 u > 0. We
observe that, for γ > 0 sufficiently small and β > 0 sufficiently large, there
hold

−tr(σσTD2u)− bDu = λ1 − λ2 in R
3(3.26)

−tr(σσTD2U1)− bDU1 ≥ γU1 − β in R
3.(3.27)
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(For instance an explicit and tedious calculation gives: γ < 2k3, γ < 4k1,
γ < 4k2, β ≥ 100

4k1−γ + 100
4k2−γ .)

Consider ρ > 0 so small to have ρβ < λ2 − λ1 and set U(·) := ρU1(·). By
the global Lipschitz continuity of w1 and w2, we have

(3.28) lim
|y|→∞

(u(y)− U(y)) = −∞.

Hence, there exists an open bounded set Ω ⊂ R
3 such that u ≤ U in

R
3 \ Ω. By linearity of the operator, relations (3.26) and (3.27) entail that

the function η(·) := u(·)− U(·) satisfies
−tr(σσTD2η)− bDη ≤ −ργU1 − (λ2 − λ1 − ρβ) < 0 in R

3

where the last inequality is due to our choice of ρ and to U1 ≥ 0. Applying
the maximum principle to η on the domain Ω we obtain: η ≤ 0 in Ω. Hence,
we have: η ≤ 0 in R

3, namely

u(y) ≤ ρU1(y) ∀y ∈ R
3.

Letting ρ→ 0+, we get u ≤ 0 in R
3 which gives the desired contradiction.

Let us now pass to prove that if (λ,w1) and (λ,w2) are both solutions
to (1.6) then w1 = w2 + C, for some constant C. By (3.27), there exists
R > 0 such that

−tr(σσTD2U1)− bDU1 > 0 for |y| > R.

For u = w1 − w2 as before, we claim that there holds

(3.29) sup
R3

u = max
B(0,R)

u.

Actually, for any ρ > 0, for η(·) = u(·) − ρU1(·),
−tr(σσTD2η)− bDη < 0 for |y| > R.

As before (see (3.28)) lim
|y|→∞

η(y) = −∞ and this implies that η attains his

maximum on R
3.

By the maximum principle, η cannot attain its maximum over B(0, R)
C
at

any point in its interior. Then

u(y)− ρU1(y) ≤ max
|y′|=R

(

u(y′)− ρU1(y
′)
)

∀|y| ≥ R;

letting ρ→ 0+, we obtain our claim (3.29).
By (3.29), for any r > R, the strong maximum principle on u over

B(0, r) ensures that u is a constant function on B(0, r). By the arbitrariness
of r, we obtain the desired result. 2
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3.5 Regularity of the corrector w

In this subsection we prove the C2-regularity of the corrector w. This result
seems not straightforward. Actually, since our operator L contains second
order horizontal derivatives and Euclidean first derivatives as well, the sec-
ond order part of the operator does not immediately regularize the first
order one. On the other hand is worth to observe that, for H(x, ·, p,X, 0) ∈
C∞, the solution w of (1.6) is C∞ by hypoellipticity.

We start with a lemma which states the equivalence between solution
in the sense of distributions and continuous viscosity solutions, under a
growth condition at infinity.

Lemma 3.5 Consider the equation

(3.30) −tr(σσTD2χ)− b(y)Dχ+Kχ = R(y), y ∈ R
3,

where R is a bounded globally Lipschitz continuous function and K is a
strictly positive constant. Then
1) there exists a unique bounded and globally Lipschitz continuous viscosity
solution χ;
2) χ is a solution in the sense of distributions;
3) any bounded solution of (3.30) in the sense of distributions coincides
with χ.

Proof. 1) Follows from Lemma 3.2 and Theorem 3.2.
2) Follows from [16, Theorem 1].
3) If χ1 is a solution of (3.30) in the sense of distributions, we define χ :=
χ1 − χ, (χ is bounded). By linearity, χ solves in the sense of distributions

−tr(σσTD2χ)− bDχ+Kχ = 0.

By the hypoellipticity of the operator, χ is smooth. Hence χ1 = χ + χ
is continuous and, by [16, Theorem 2] is also a viscosity solution. By the
uniqueness of sublinear viscosity solutions of (3.30), we get χ1 = χ. 2

Theorem 3.4 Under assumptions (A1)-(A6), let w be the solution of the
cell problem (1.6) found in Theorem 3.3. Then w ∈ C2,α

loc (R
3), for some

α ∈ (0, 1).

Proof. Let us denote by X1 = (∂y1 + 2y2∂y3) and X2 = (∂y2 − 2y1∂y3) the
two vector fields associated to the two columns of the matrix σ. Recall that
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these two vectors are the generators of the Heisenberg group and span all
R
3 because their commutator is [X1,X2] = −4 ∂

∂y3
.

Along the proof α is a strictly positive constant which may change line to
line.
The corrector w solves

(3.31) −tr(σ(y)σT (y)D2w(y)) − b(y)Dw(y) = G(y)

with
G(y) := λ−H(x, y,Dxψ(t, x),D

2
xxψ(t, x), 0).

First let us get the Lipschitz continuity of ∂w
∂y3

. Derivating equation (3.31)

with respect to y3 we obtain that the function u := ∂w
∂y3

solves in the sense
of distributions

(3.32) −tr(σσTD2u)− bDu+ k3u =
∂G

∂y3
,

with k3 > 0 by assumption A2). Note that u is bounded by Theorem 3.2,
then by Lemma 3.5 we get that u is Lipschitz continuous and it is also a
viscosity solution; hence

(3.33) u =
∂w

∂y3
∈ BLip(R3).

Deriving equation (3.32) with respect to y3, we get that the function z :=
∂2w/∂y23 solves

(3.34) −tr(σσTD2z)− bDz + 2k3z =
∂2G

∂y23
.

By assumption A6), we can apply Lemma 3.5 also to (3.34) and we get that
the function z is globally Lipschitz continuous, i.e.

(3.35)
∂2w

∂y23
∈ BLip(R3).

Now we study the regularity of w with respect to y1 and y2; to this end,
let us come back to (3.31). From the Lipschitz continuity of w (see Theo-
rem 3.2), we get

−tr(σσTD2w) ∈ L∞
loc(R

3).
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By (3.33), we have

∂2w

∂y1∂y3
,
∂2w

∂y2∂y3
,
∂2w

∂y23
∈ L∞(R3).

Taking into account the explicit expression of −tr(σσTD2w) we have that

∂2w

∂y21
+
∂2w

∂y22
∈ L∞

loc(R
3).

This relation and (3.35) imply ∆w ∈ L∞
loc(R

3), (∆ is the Euclidean Lapla-
cian). Hence from classical results on uniformly elliptic equations we obtain

Dw ∈ C0,α
loc (R

3).

Now we can replace w with u, (3.33) with (3.35) and (3.31) with (3.32),
using the same arguments we get:

(3.36) Du ∈ C0,α
loc (R

3).

In particular

∂2w

∂y1∂y3
,
∂2w

∂y2∂y3
,
∂2w

∂y23
∈ C0,α

loc (R
3).

As before we have that ∆w ∈ C0,α
loc (R

3). Hence, from classical results on
uniformly elliptic equations we obtain the statement.

2

Remark 3.3 We remark that in this proof the structure of the operator
L and Theorem 3.2 play a crucial role, this allows us to overcome the
application of some deep results on the hypoelliptic theory.

4 Proof of Theorem 2.1.

In this section we prove the convergence of the solution V ǫ of (1.1) to the
solution of the effective equation (1.3).

Let us recall from Proposition 2.1 that, for every compact K ⊂ R
n,

the solutions V ǫ are equibounded in (0, T ) ×K × R
3, hence the following

semilimits

V (t, x, y) = lim sup
ǫ→0+,t′→t,x′→x,y′→y

V ǫ(t′, x′, y′) for t < T

V (T, x, y) = lim sup
t′→T−,x′→x,y′→y

V (t′, x′, y′) for t = T ;
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(and similarly for V replacing lim sup by lim inf) are well defined. This two
step definition of V is needed to overcome an expected initial layer.

For the sake of clarity we shall divide the proof in several steps, as
follows:

Step 1. V and V are independent of y;

Step 2. V and V are respectively a subsolution and a supersolution of the
parabolic equation (1.3);

Step 3. V (T, x) ≤ g(x) ≤ V (T, x), where g(x) is defined in (1.4);

Step 4. V = V =: V and V ǫ → V locally uniformly.

4.1 Step 1

Lemma 4.1 Under assumptions A1)-A5), V and V are independent of y.

Proof. Let us observe that V (t, x, y) and V (t, x, y) are respectively BUSC
and BLSC. We prove that V (t, x, y) is independent of y; being similar, the
proof for V (t, x, y) is omitted.

We claim that for (t0, x0) ∈ (0, T )×R
n fixed, V (t0, x0, y) is a subsolu-

tion for y ∈ R
3 to equation

(4.1) −tr(σσT (y)DyyV )− b(y) ·DyV = 0.

Assuming for the moment that is true, since V (t0, x0, y) is BUSC in y, we
can apply the Liouville theorem proved in [18, Proposition 3.1] to deduce
that the function V (t0, x0, y) does not depend on y.

In order to prove that V (t0, x0, y) is a subsolution to equation (4.1) we
follow the same arguments as in Step 2 of [5, Theorem 3.2], which we write
for the sake of completeness.

First of all we prove that V (t, x, y) is a subsolution to equation (4.1) for
(t, x, y) ∈ (0, T )×R

3 ×R
3. To do this we fix a point (t, x, y) and a smooth

function ψ such that V − ψ has a local strict maximum at (t, x, y) = P

in B(P , r) = {(t, x, y) : |(t, x, y) − (t, x, y)| ≤ r}, for some r > 0. Using
the definition of the half relaxed semilimit it is possible to prove (see [4])

that there exists ǫn → 0 and (tn, xn, yn) ∈ B(P, r) such that (tn, xn, yn) →
(t, x, y), (tn, xn, yn) are maxima for V ǫn−ψ inB(P , r) and V ǫn(tn, xn, yn) →
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V (t, x, y). Since V ǫn solves (1.1) then

−∂tψ +H

(

xn, yn,Dxψ,D
2
xxψ,

D2
xyψ√
ǫn

)

−1

ǫ n
tr(σ(yn)σ(yn)

TDyyψ)−
1

ǫ n
b(yn) ·Dyψ + aV ǫn(tn, xn, yn) ≤ 0

Then

−tr(σ(yn)σ(yn)TDyyψ)− b(yn) ·Dyψ ≤

ǫn

[

∂tψ −H

(

xn, yn,Dxψ,D
2
xxψ,

D2
xyψ√
ǫ

)

− aV ǫn

]

From the regularity of ψ, the continuity of H (obtained from A1), A3),
A5)) and the local uniform boundedness of V ǫn , the part in the brackets
on the right hand side is uniformly bounded with respect to n in B(P , r),
then passing to the limit as ǫn → 0 we get

−tr(σ(y)σ(y)TDyyψ)− b(y) ·Dyψ ≤ 0,

i.e. V (t, x, y) is a subsolution to equation (4.1) for (t, x, y) ∈ (0, T )×R
n×R

3.
We now show that, arguing as in [4, Lemma II.5.17], for every fixed

(t0, x0) ∈ (0, T ) × R
n the function V (t0, x0, y) is a subsolution to equation

(4.1). We fix y and φ(y), a smooth function such that V (t0, x0, y)−φ(y) has
a strict local maximum at y in B(y, δ) and such that φ(y) ≥ 1 in B(y, δ).
Let us chose δ > 0 small enough s.t. t0 − δ > 0. We define, for η > 0

φη(t, x, y) = φ(y)

(

1 +
|x− x0|2 + |t− t0|2

η

)

and we consider (tη, xη , yη) a maximum point of V − φη in B((t0, x0, y), δ).
We remark that

(4.2) V (tη, xη , yη)− φη(tη, xη , yη) ≥ V (t0, x0, y)− φ(y)

V (tη, xη , yη)− φ(yη) ≥ V (t0, x0, y)− φ(y)

and we can prove that, eventually passing to subsequences (as η → 0)
first that (tη, xη) → (t0, x0), then that yη → y using the strict maximum
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property of y.
Using (4.2) and the upper semicontinuity of V

Kη :=

(

1 +
|xη − x0|2 + |tη − t0|2

η

)

→ K > 0.

Now, using the fact that V (t, x, y) is a subsolution of (4.1) in (tη, xη , yη)
we get

−tr(σ(yη)σ(yη)TD2
yyφη)− b(yη) ·Dyφη ≤ 0,

which gives, passing to the limit as η → 0

−tr(σ(y)σ(y)TD2
yyφ)− b(y) ·Dyφ ≤ 0.

2

Remark 4.1 Using (4.2) and the upper semicontinuity of V it is possible
to prove that Kη → 1. This property in not used in our proof but can be
useful in more general and nonlinear cases.

4.2 Step 2

Proposition 4.1 Under the assumptions A1)-A5), V and V are respec-
tively a subsolution and a supersolution of the parabolic equation in (1.3).

Proof. We prove that V is a viscosity subsolution of (1.3) in ]0, T [×R
n.

The proof that V is a viscosity supersolution is analogous, so we shall omit
it.

We take a smooth test function ψ(t, x) such that (t, x) ∈]0, T [×R
n is

a strict local maximum point for V − ψ. We have to prove that

−∂tψ(t, x) +H
(

x,Dxψ(t, x),D
2
xxψ(t, x)

)

+ aψ(t, x) ≤ 0.

Without any loss of generality we can assume that:

1. V (t, x) = ψ(t, x);

2. ψ is coercive in x uniformly in t, i.e.

(4.3) lim
|x|→∞

inf
t∈[0,T ]

ψ(t, x) = +∞;
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3. there holds

(4.4) inf
x∈Rn

ψ(
t̄

2
, x) > M + 1, inf

x∈Rn
ψ(
t̄+ T

2
, x) > M + 1

where M is a constant such that |V ǫ(t, x, y) ≤M ;

4. sup
(t,x)∈K

|∂tψ(t, x)| ≤ CK for any K compact in [0, T ]× R
n.

For any fixed η ∈]0, 1], let us consider now the ”perturbed test func-
tion”:

ψǫη(t, x, y) := ψ(t, x) + ǫ(w(y) + ηχ(y))

where w(y) is the viscosity solution of the cell problem (1.6) founded in
Theorem 3.3 associated to (x,Dxψ(t, x),D

2
xxψ(t, x)) and χ(y) is the Lya-

punov function

(4.5) χ(y) = y21 + y22 + y23.

Note that, from (3.25) and the definition of χ in (4.5), we have

(4.6) w(y) + ηχ(y) → +∞, if |y| → +∞.

and there exists a constant k0 independent of η such that

(4.7) w(y) + ηχ(y) ≥ −k0(1 + log(η)).

Let consider the function

Ψ(t, x, y) := V ǫ(t, x, y)− ψǫη(t, x, y)

Thanks to the equi-boundedness of V ǫ, (4.6) and (4.3) we have:

Ψ(t, x, y) → −∞, if (x, y) → +∞

and there exists a point (tǫ,η, xǫ,η, yǫ,η) ∈ [
t̄

2
,
t̄+ T

2
] × R

n × R
3 which is a

global maximum point of Ψ in [
t̄

2
,
t̄+ T

2
]× R

n × R
3.

Claim 4.1 (tǫ,η, xǫ,η) is bounded uniformly in ǫ.
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The points tǫ,η are obviously bounded. Now using the maximum prop-
erty of (tǫ,η, xǫ,η, yǫ,η), we have:

V ǫ(tǫ,η, xǫ,η, yǫ,η)−ψǫη(tǫ,η, xǫ,η, yǫ,η) ≥ V ǫ(t̄, 0, 0)−ψ(t̄, 0)−ǫ(w(0)+ηχ(0);

then from (4.7)

K ≥ V ǫ(tǫ,η, xǫ,η, yǫ,η)− V ǫ(t̄, 0, 0) + ψ(t̄, 0) + ǫ(w(0) + ηχ(0)) ≥
ψ(tǫ,η, xǫ,η) + ǫ(w(yǫ,η) + ηχ(yǫ,η)) ≥ ψ(tǫ,η, xǫ,η)− ǫk0(1 + log(η))

and we end the proof of Claim 4.1 using and (4.3).

Claim 4.2 If tǫ,η =
t̄

2
or tǫ,η =

t̄+ T

2
, then for any (t′, x′, y′) ∈ [ t̄2 ,

t̄+T
2 ]×

R
n × R

3

Ψ(t′, x′, y′) ≤ −1 + ǫk0(1 + log(η)).

Thanks to (4.7)

Ψ(t′, x′, y′) ≤ V ǫ(tǫ,η, xǫ,η, yǫ,η)− ψ(tǫ,η, xǫ,η) + ǫk0(1 + log(η)).

Using now (4.4) and the definition of M

Ψ(t′, x′, y′) ≤ V ǫ(tǫ,η, xǫ,η, yǫ,η)− (M + 1) + ǫk0(1 + log(η))

≤ −1 + ǫk0(1 + log(η)).

Claim 4.3 If tǫ,η ∈]
t̄

2
,
t̄+ T

2
[ , then

(4.8) − ∂tψ(tǫ,η, xǫ,η) + H̄
(

x,Dxψ(t, x),D
2
xxψ(t, x)

)

− ηL(yǫ,η,Dyχ(yǫ,η),D
2
yyχ(yǫ,η)) + Fǫ,η + aV ǫ(tǫ,η, xǫη, yǫ,η) ≤ 0,

where

Fǫ,η = H(xǫ,η, yǫ,η,Dxψ(tǫ,η, xǫ,η),D
2
xxψ(tǫ,η, xǫ,η), 0)

−H(x, yǫ,η,Dxψ(t, x),D
2
xxψ(t, x), 0).

By definition of viscosity subsolution of (1.1) and using the regularity
of w (proved in Theorem 3.4) , ψ and χ :

− ∂tψ(tǫ,η, xǫ,η) +H(xǫ,η, yǫ,η,Dxψ(tǫ,η, xǫ,η),D
2
xxψ(tǫ,η, xǫ,η), 0)

− L(yǫ,η,Dyw(yǫ,η),D
2
yyw(yǫ,η))− ηL(yǫ,η,Dyχ(yǫ,η),D

2
yyχ(yǫ,η))

+ aV ǫ(tǫ,η, xǫη, yǫ,η) ≤ 0
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Now we use (1.6) for y = yǫ,η

− ∂tψ(tǫ,η, xǫ,η) +H(xǫ,η, yǫ,η,Dxψ(tǫ,η, xǫ,η),D
2
xxψ(tǫ,η, xǫ,η), 0)

+H(x,Dxψ(t, x),D
2
xxψ(t, x))−H(x, yǫ,η,Dxψ(t, x),D

2
xxψ(t, x), 0)

− ηL(yǫ,η,Dyχ(yǫ,η),D
2
yyχ(yǫ,η)) + aV ǫ(tǫ,η, xǫη, yǫ,η) ≤ 0

which is equivalent to (4.8).

Claim 4.4 If tǫ,η ∈]
t̄

2
,
t̄+ T

2
[ , then {yǫ,η}ǫ is uniformly bounded.

By contradiction: let us assume that there exists a sequence {ǫn}n with
ǫn → 0 such that

tǫn,η ∈]
t̄

2
,
t̄+ T

2
[, |yǫn,η| → ∞ for n→ ∞

Then, there holds, calling yǫn,η = (yǫn,η,1, yǫn,η,2, yǫn,η,3):

(4.9) − L(yǫn,η,Dyχ(yǫn,η),Dyyχ(yǫn,η)) =

2(−2 + (k1 − 4)y2ǫn,η,1 + (k2 − 4)y2ǫn,η,2 + k3y
2
ǫn,η,3) → ∞.

Moreover, by Claim 4.1 and 2.1 we get

|Fǫn,η| ≤ K(η) = K.

Coming back to (4.8), using again Claim 4.1 and the uniform bound-
edness of V ǫ we have a contradiction.

Claim 4.5 There holds

(tǫ,η, xǫ,η) → (t̄, x̄) for ǫ→ 0.

There exists (t̃, x̃) ∈ [
t̄

2
,
t̄+ T

2
] × R

n such that (possibly passing to a

subsequence)
(tǫ,η, xǫ,η) → (t̃, x̃) as ǫ→ 0.

By definition of (tǫ,η, xǫ,η, yǫ,η) we have: ∀(t′, x′, y′) ∈ [
t̄

2
,
t̄+ T

2
]× R

n × R
3

(4.10) V ǫ(tǫ,η, xǫ,η, yǫ,η)− ψ(tǫ,η, xǫ,η)− ǫ(w(yǫ,η) + ηχ(yǫ,η)) ≥
V ǫ(t′, x′, y′)− ψ(t′, x′)− ǫ(w(y′) + ηχ(y′))
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Let (t, x, y) ∈ [
t̄

2
,
t̄+ T

2
] × R

n × R
3. Passing to lim sup

(ǫ,t′,x′,y′)→(0,t,x,y)
in the

previous inequality (4.10):

(4.11)
lim sup

(ǫ,t′,x′,y′)→(0,t,x,y)
[V ǫ(tǫ,η, xǫ,η, yǫ,η)− ψ(tǫ,η, xǫ,η)− ǫ(w(yǫ,η) + ηχ(yǫ,η))] ≥

V̄ (t, x)− ψ(t, x)

Moreover there is a sequence ǫn → 0 such that

(4.12)
lim sup

(ǫ,t′,x′,y′)→(0,t,x,y)
[V ǫ(tǫ,η, xǫ,η, yǫ,η)− ψ(tǫ,η, xǫ,η)− ǫ(w(yǫ,η) + ηχ(yǫ,η))] =

lim
n→∞

[V ǫn(tǫn,η, xǫn,η, yǫn,η)− ψ(tǫn,η, xǫ,η)− ǫn(w(yǫ,η) + ηχ(yǫn,η))]

We split the argument according to the case that tǫn,η belongs to the interior
or to the boundary of [ t̄2 ,

t̄+T
2 ].

• If tǫn,η =
t̄

2
or tǫn,η =

t̄+ T

2
we apply claim 4.2

V ǫn(tǫn,η, xǫn,η, yǫn,η)− ψ(tǫn,η, xǫ,η)− ǫn(w(yǫ,η) + ηχ(yǫn,η) =

Ψ(tǫn,η, xǫn,η, yǫn,η) ≤ −1 + ǫnk0(1 + log(η))

If tǫn,η =
t̄

2
or tǫn,η =

t̄+ T

2
for an infinite sequence of indices ǫn we

have:
−1 ≥ V̄ (t, x)− ψ(t, x)

and this is a contradiction since , for (t, x) = (t̄, x̄), V̄ (t̄, x̄)−ψ(t̄, x̄) =
0.

• If tǫ,η ∈]
t̄

2
,
t̄+ T

2
[, then by Claim 4.4 {yǫ,η}ǫ is uniformly bounded and

we can assume (possibly passing to a subsequence) that

yǫn,η → ỹη
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Using (4.11), (4.12) and the upper-semicontinuity of V̄

V̄ (t̃, x̃)− ψ(t̃, x̃) ≥ lim sup
(ǫ′,t′,x′,y′)→(0,t̃,x̃,ỹη)

[

V ǫ′(t′, x′, y′)

− ψ(t′, x′)− ǫ′(w(y′) + ηχ(y′))
]

≥ lim
n→∞

[V ǫn(tǫn,η, xǫn,η, yǫn,η)

−ψ(tǫn,η, xǫ,η)− ǫn(w(yǫ,η) + ηχ(yǫn,η))]

≥ V̄ (t, x)− ψ(t, x).

Using the strict maximum property of (t̄, x̄), we get (t̄, x̄) = (t̃, x̃).

Let us remark that the previous inequalities imply also:

(4.13) lim
n→∞

V ǫn(tǫn,η, xǫn,η, yǫn,η) = V̄ (t̄, x̄)

Claim 4.6 There holds

(4.14) − ∂tψ(t, x) +H
(

x,Dxψ(t, x),D
2
xxψ(t, x)

)

− ηL(ỹη,Dyχ(ỹη),D
2χ(ỹη)) + aV̄ (t̄, x̄) ≤ 0.

Using Claim 4.3, we get

− ∂tψ(tǫn,η, xǫn,η) +H
(

x,Dxψ(t, x),D
2
xxψ(t, x)

)

− ηL(ỹη,Dyχ(yǫn,η),D
2
yyχ(yǫn,η)) + Fǫn,η + aV ǫn(tǫn,η, xǫn,η, yǫn,η) ≤ 0.

Thanks to the regularity properties of H (see (2.1)) and ψ, it is easy to get

Fǫn,η → 0

From (4.13), the statement follows easily.

Claim 4.7 There holds

−∂tψ(t, x) +H
(

x,Dxψ(t, x),D
2
xxψ(t, x)

)

+ aV̄ (t̄, x̄) ≤ 0.

We split the argument according to the fact that {ỹη}η is uniformly
bounded or not. If {ỹη}η is uniformly bounded, then passing to the limit
as η → 0 in inequality (4.14) we get the statement. If {ỹη}η is unbounded,
eventually passing to a subsequence, we can assume that |ỹη| → +∞ as
η → 0. Arguing as in (4.9), we get

−L(ỹη,Dyχ(ỹη),D
2
yyχ(ỹη)) → +∞ as η → 0.
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In particular, for η sufficiently small, there holds

−L(ỹη,Dyχ(ỹη),D
2
yyχ(ỹη)) ≥ 0.

Replacing this inequality in relation (4.14), we get the statement.
Conclusion of the proof. By the arbitrariness of the test function ψ
and of the point (t, x), we obtain that V is a (viscosity) subsolution of the
parabolic equation in (1.3). 2

4.3 Step 3

Proposition 4.2 There holds

V (T, x) ≤ g(x) ≤ V (T, x) ∀x ∈ R
n.

Proof. We shall prove only the former inequality since the latter is anal-
ogous. We first recall from Lemma 4.1 that, for t > 0, the function V is
independent of y; hence, also V (T, x, y) is independent of y. Fix x̄ ∈ R

n;
for every r > 0 sufficiently small, we define

gr(y) := sup
|x−x̄|≤r

g(x, y)

and we observe that assumption (A4) ensures that gr is a continuous
bounded function with

|gr(y)− g(x, y)| ≤ ω(r) ∀x ∈ Br(x̄).

This implies that

(4.15) −ω(r) + gr(y) ≤ g(x̄, y) ≤ ω(r) + gr(y) ∀y ∈ R
3.

We also introduce the parabolic Cauchy problem

(4.16)

{

∂tw
r − tr(σσTD2

yyw
r)− b ·Dyw

r = 0 in (0,∞) × R
3

wr(0, y) = gr(y) on R
3;

by standard arguments, it admits exactly one bounded solution. On the
other hand, let us also consider the problem

(4.17)

{

∂tw
′ − tr(σσTD2

yyw
′)− b ·Dyw

′ = 0 in (0,∞) × R
3

w′(0, y) = g(x̄, y) on R
3;
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we recall from [18, Theorem4.2] that there holds lim
t→∞

w′(t, y) = g(x̄) locally

uniformly in y; in particular, for every η > 0 and R > 1, there exists τ > 0
such that

(4.18) |w′(t, y)− g(x̄)| ≤ η ∀(t, y) ∈ (τ,∞)×BR(0).

Moreover, by relation (4.15), one can easily show that wr(t, y) ± ω(r) are
respectively a supersolution and a subsolution to problem (4.17); hence,
the comparison principle yields

|w′(t, y)− wr(t, y)| ≤ ω(r) ∀(t, y) ∈ (0,∞) × R
3.

By the last inequality and (4.18) we deduce that: for every η > 0 and R > 1,
there exists τ > 0 such that

(4.19) |wr(t, y)− g(x̄)| ≤ η + ω(r) ∀(t, y) ∈ (τ,∞)×BR(0).

For later use, we introduce some notations; we set Qr := (T − r, T )×
Br(x̄) and let M ∈ R be sufficiently large that for every (t, x, y) ∈ (0, T )×
Br(x̄)× R

3:

‖w′‖∞ ≤M(4.20)

‖wr‖∞ ≤M(4.21)

|V ǫ(t, x, y)| ≤M.(4.22)

Consider also a smooth function ψ0 = ψ0(x) (namely, it is independent of
t and of y) such that

(4.23)











ψ0(x̄) = 0,
ψ0(x) ≥ 0 ∀x ∈ Br(x̄),
ψ0(x) ≥M − inf

(z,y)∈Br(x̄)×R3
g(z, y) ∀x ∈ ∂Br(x̄).

Let C > 0 be a constant such that

(4.24) |H(x, y,Dxψ0(x),D
2
xxψ0(x), 0)| ≤ C ∀(x, y) ∈ Br(x̄)× R

3.

For (t, x, y) ∈ Qr ×R
3, we define

ψǫ(t, x, y) := wr
(

T − t

ǫ
, y

)

+ ψ0(x) + C1(T − t)
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with C1 := C + aM . We claim that the function ψǫ is a supersolution to
the following initial-boundary value problem
(4.25)














(i) − ∂tΨ+H(x, y,DxΨ,D
2
xxΨ,D

2
xyΨ/

√
ǫ)− 1

ǫL(y,DyΨ,D
2
yyΨ)

+aΨ = 0 in Qr × R
3

(ii) Ψ(T, x, y) = g(x, y) on Br(x̄)× R
3

(iii) Ψ(t, x, y) =M on (T − r, T )× ∂Br(x̄)× R
3.

Assume for the moment that this claim is true. On the other hand, the
function V ǫ is a subsolution to problem (4.25); therefore, by comparison
principle (see, for instance, [2, Proposition 1 (proof)]), we get

V ǫ(t, x, y) ≤ ψǫ(t, x, y) ∀(t, x, y) ∈ (T − r, T )×Br(x̄)× R
3.

For y ∈ BR/2(0) (R is defined in (4.19)) and t ∈ (T − r, T ), we get

V (t, x, y) = lim sup
ǫ→0+,t′→t,x′→x,y′→y

V ǫ(t′, x′, y′)

≤ lim sup
ǫ→0+,t′→t,x′→x,y′→y

ψǫ(t′, x′, y′)

≤ lim sup
ǫ→0+,t′→t,y′→y

wr
(

T − t′

ǫ
, y′
)

+ lim sup
t′→t,x′→x

[ψ0(x
′) + C1(T − t′)]

≤ ḡ(x̄) + η + ω(r) + ψ0(x) + C1(T − t)

where the last inequality is due to relation (4.19) (observe that definitely
y′ ∈ BR(0) and

T−t′
ǫ > τ) and to the continuity of ψ0. Since V is indepen-

dent of y, we deduce

V (t, x) ≤ g(x̄) + η + ω(r) + ψ0(x) + C1(T − t).

Passing to the lim sup
t′→T−,x′→x̄,y′→y

(recall ψ0(x̄) = 0), we infer

V (T, x̄) ≤ g(x̄) + η + ω(r).

By the arbitrariness of η and of r, we get

V (T, x̄) ≤ g(x̄)

which is equivalent to our statement.
Let us now pass to prove the claim: ψǫ is a supersolution to prob-

lem (4.25). First we check the initial-boundary conditions (ii) and (iii).
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In order to prove (ii), it suffices to note that the definition of gr and the
second property in (4.23) entail

ψǫ(T, x, y) = wr(0, y)+ψ0(x) ≥ wr(0, y) ≥ g(x, y) ∀(x, y) ∈ Br(x̄)×R
3.

In order to prove (iii), we observe that gr(y) ≥ inf
(x,z)∈Br(x̄)×R3

g(x, z); hence,

the comparison principle for (4.16) yields

wr(t, y) ≥ inf
(x,y)∈Br(x̄)×R3

g(x, y) ∀(t, y) ∈ (0,∞)× R
3.

Taking also into account the third property in (4.23), we conclude

ψǫ(t, x, y) = wr(
T − t

ǫ
, y) + ψ0(x) + C1(T − t) ≥M

for every (t, x, y) ∈ (T − r, T )× ∂Br(x̄)× R
3.

Now we prove (i). Let us assume that wr is a classical solution to (4.16).
In this case, in (T − r, T )×Br(x̄)× R

3 there holds

−∂tψǫ +H(x, y,Dxψ
ǫ,D2

xxψ
ǫ,D2

xyψ
ǫ/
√
ǫ)− 1

ǫ
L(y,Dyψ

ǫ,D2
yyψ

ǫ) + aψǫ

=
1

ǫ

[

∂tw
r − L(y,Dyw

r,D2
yyw

r)
]

+ C1 +H(x, y,Dxψ0,D
2
xxψ0, 0) + aψǫ

= C1 +H(x, y,Dxψ0,D
2
xxψ0, 0) + awr(

T − t

ǫ
, y) + aψ0(x) + aC1(T − t)

= C1 + awr(
T − t

ǫ
, y) +H(x, y,Dxψ0,D

2
xxψ0, 0)

≥ C1 − C − aM

≥ 0.

where we used the definition of C1 := C+aM , the definition of C in (4.24)
and the definition of M (4.20).
In the case when wr is only a viscosity solution to (4.16), we can accomplish
the proof following the same arguments of [2, Theorem 3]. 2

4.4 Step 4

We proved that V and V are respectively a subsolution and a supersolution
of (1.3). WE can apply the comparison principle to equation (1.3) that holds
since H defines a degenerate elliptic equation and H is Lipschitz continuous
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on x (see (2.1)). Then V (t, x) ≤ V (t, x); by definition the reverse inequality
is obvious. Then V = V (t, x) = V (t, x) is the unique continuous solution
of the parabolic equation (1.3) and the local uniform convergence follows
from standards arguments.
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Padova, Via Gradenigo 6/b, 35131, Padova, Italy,
Nicoletta Tchou, IRMAR,
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